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Obstructive sleep apnea (OSA) is a sleep disorder caused by periodic airway
obstructions and has been associated with numerous health consequences,
which are thought to result from tissue hypoxia. However, challenges in the
direct measurement of tissue-level oxygenation make it difficult to analyze the
hypoxia exposure pattern in patients. Furthermore, current clinical practice relies
on the apnea-hypopnea index (AHI) and pulse oximetry to assess OSA severity,
both of which have limitations. To overcome this, we developed a clinically
deployable mathematical model, which outputs tissue-level oxygenation. The
model incorporates spatial pulmonary oxygen uptake, considers dissolved
oxygen, and can use time-dependent patient inputs. It was applied to explore a
series of breathing patterns that are clinically differentiated. Supporting previous
studies, the result of this analysis indicated that the AHI is an unreliable
indicator of hypoxia burden. As a proof of principle, polysomnography data
from two patients was analyzed with this model. The model showed greater
sensitivity to breathing in comparison with pulse oximetry and provided systemic
venous oxygenation, which is absent from clinical measurements. In addition,
the dissolved oxygen output was used to calculate hypoxia burden scores
for each patient and compared to the clinical assessment, highlighting the
importance of event length and cumulative impact of obstructions. Furthermore,
an intra-patient statistical analysis was used to underscore the significance of
closely occurring obstructive events and to highlight the utility of the model
for quantitative data processing. Looking ahead, our model can be used with
polysomnography data to predict hypoxic burden on the tissues and help guide
patient treatment decisions.

KEYWORDS

desaturation, hypoxia, hypoxemia, breathing, oxygenation, hypopnea, mass transfer

1 Introduction

Obstructive sleep apnea (OSA) is a sleep-related breathing disorder caused by repeated
pharyngeal collapse, which leads to episodes of restricted breathing (hypopnea) or
ceased breathing (apnea) (Shah et al., 2021). Consequently, if left untreated, OSA has
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been linked to health problems including hypertension, worsening
cardiovascular disease outcomes, metabolic disorders, and cognitive
dysfunction (Lam et al., 2006; Bucks et al., 2013; Kendzerska et al.,
2014; Wu et al., 2016). Qualitatively, an increasing severity of OSA
is believed to be associated with a higher risk of developing
consequences such as hypertension (Marin et al., 2012). Currently,
OSA severity is primarily measured using the apnea-hypopnea
index (AHI), which has not been shown as a reliable predictor
of disease progression in patients with comorbid cardiovascular
disease (Kendzerska et al., 2014; Wu et al., 2016). In reality, a
better assessment of pathological effects requires a mechanistic
understanding of tissue exposure to hypoxia and its impact on
various target tissues and organs. Furthermore, considering the
range of OSA severity, it is also important to conduct patient-
specific studies for a more accurate quantification of health
risks.

The hypoxia exposure pattern in OSA is the most important
pathophysiologic abnormality accounting for the cardiovascular
consequences of OSA. Direct measurement of the blood oxygen
concentration at the level of the deeper tissues is difficult to achieve
non-invasively, and pulse oximetry is not sufficiently accurate
(Mardirossian and Schneider, 1992). Considering this,mathematical
modeling could potentially bridge the gap between available clinical
data and quantification of OSA impact on tissue function.Therefore,
the challenge is to develop a model, which outputs blood oxygen
concentration at the tissue level using input breathing data. Previous
models of sleep-related breathing disorders have been developed to
understand the resulting physiological impacts (Cheng et al., 2010;
Cheng and Khoo, 2012). Although these representations are useful
for a general understanding of hemoglobin desaturation during
OSA, it would be of greater clinical relevance to incorporate patient
data for a more individualized assessment. For optimal clinical
relevance, the ideal model would be one that incorporates data
collected from polysomnography, the standard diagnostic test for
OSA. Yet, this approach has not been thoroughly explored in current
OSA literature. In addition, many models are complex, with some
requiring hundreds of parameters (Cheng et al., 2010; Cheng and
Khoo, 2012). Accordingly, it would be of great value to develop a
model that can be easily deployedwithin a clinical polysomnography
to generate a quantitative assessment of OSA severity by directly
modeling tissue intermittent hypoxia exposure.

Therefore, we aimed to develop a clinically deployable
mathematical model, with few parameters and the capability of
taking time-dependent breathing and heart rate data as inputs,
to simulate the blood oxygen concentration at the level of
the deeper tissues. Simulations of a normal breathing pattern
and severe OSA were used to validate the model. Additional
simulated breathing patterns with events of apneas/hypopneas
were also used to study cases of varying OSA severity, different
ventilatory responses, the implications of unscored obstructive
events, and the effect of apnea/hypopnea duration. Furthermore,
to demonstrate possible clinical applications, respiratory and heart
rate data from two OSA patients was used as an input to the
model. In combination, the results illustrate the future clinical
value of the model in assessing tissue-level hypoxia exposure
patterns.

2 Methods and model formulation

The model was built using analytical equations that were
solved in MATLAB R2022b. Details of all model variables
and physiological and fitting parameters are provided in
Supplementary Tables S1–S4. The physiological parameters were
taken from or calculated using literature values. Furthermore,
for each OSA patient, a fitting parameter was used to convert
nasal pressure data into a time-dependent lung volume. Essential
definitions of variables and parameters are provided in Tables 1, 2,
respectively. Additional details of model derivation and MATLAB
implementation are provided in the Supplementary Material
for anyone who may be interested in reproducing the
model.

2.1 Pulmonary arterial oxygenation

The systemic capillaries were modeled as a single compartment
(Supplementary Figure S1). All oxygen transfer to the tissues in the
systemic circulation was assumed to occur in the capillary region.
This was parameterized using an overall metabolic rate for tissue
oxygen consumption. Therefore, the total oxygen concentration
in the pulmonary arteries was taken to be equivalent to that in
the systemic veins (Cpa,O2T ≈ Csv,O2T). Similarly, the total oxygen
concentration in the pulmonary veins was taken to be equivalent
to that in the systemic arteries (Cpv,O2T ≈ Csa,O2T), assuming that
transfer out of the arterioles is not significant. If necessary, oxygen
leakage in the arteriole system can be incorporated by equating
the total oxygen concentration entering the systemic capillary
compartment to a fraction of that leaving the pulmonary capillary
compartment (Csa,O2T = fraction ⋅Cpv,O2T).

To determine the total oxygen concentration in the pulmonary
arteries, an unsteady-state mass balance was performed over

TABLE 1 Definitions of model variables and terms.

Variable Definition

CA,O2
Dissolved oxygen concentration in alveolar membrane

Cc,O2
Spatially averaged dissolved oxygen concentration in pulmonary
capillary compartment

Ccv,i Oxygen concentration in control volume: i = d (dissolved), T (total)

Cj,O2i Oxygen concentration: j = pa (pulmonary arteries), pc (pulmonary
capillary compartment), pv (pulmonary veins), sa (systemic arteries),
sv (systemic veins) and i = d (dissolved), T (total)

PA,O2
Alveolar oxygen partial pressure

Pj,O2
Oxygen partial pressure (j as defined for Cj,O2i)

Sj,O2
Fraction of hemoglobin oxygen saturation (j as defined for Cj,O2i)

t Time

ΔV Differential volume

VA Simulated alveolar volume

z Spatial coordinate
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TABLE 2 Definitions of physiological parameters.

Parameter Definition

Aeff Effective cross-sectional area of all pulmonary capillaries

βp Oxygen solubility in alveolar-capillary membrane and blood
plasma

br Breathing rate

CHb Hemoglobin concentration in blood

DL,O2
Oxygen lung diffusing capacity

kl Lung mass transfer coefficient

kpc Pulmonary capillary control volume mass transfer coefficient

Lc Pulmonary capillary compartment length

MRO2
Total basal metabolic rate for oxygen consumption

PB Barometric pressure

PH2O Water vapor pressure at normal body temperature

PI,O2
Inspired oxygen partial pressure

R Ideal gas constant

T Normal body temperature

VD Dead space volume

VEnd End-expiration alveolar volume

Vpc Total pulmonary capillaries blood volume

V sys,cap Total systemic capillaries blood volume

VT Tidal volume

V vent Alveolar ventilation volume

yO2
Inspired oxygen mole fraction

a differential control volume moving through the systemic
capillary compartment at the same velocity as the surrounding
blood:

dCcv,T

dt
= −

MRO2

Vsys,cap
(1)

Eq. 1 was solved over time to determine the relation between the
total oxygen concentration in the pulmonary arteries and veins
(Supplementary Appendix S1.1).

An important point to highlight is that the total concentration
of oxygen in the blood was taken as the sum of the dissolved
and hemoglobin-bound components. The dissolved oxygen
concentration is necessary to consider as it drives the gradients
for mass transfer, and it is what the tissues are exposed to. In
other words, oxygen must dissociate from hemoglobin and dissolve
into the blood plasma before it can be transferred to the body
tissues.

Cj,O2T (t) = Cj,O2d (t) + 4 ⋅CHb ⋅ Sj,O2
(t) (2)

In Eq. 2, j = pa, pc, pv, sa, and sv for the pulmonary arteries,
pulmonary capillary compartment, pulmonary veins, systemic
arteries, and systemic veins, respectively.

The relation between hemoglobin saturation and
oxygen partial pressure was estimated using a fit to the

standard oxygen-hemoglobin dissociation curve (Severinghaus,
1979):

Sj,O2
(t) = (1+

(23,400 mmHg3)

(Pj,O2
(t))3 + (150 mmHg2) Pj,O2

(t)
)
−1

(3)

Pj,O2
(t) =

Cj,O2d (t)
βp

(3a)

In Eqs 3, 3a, j is the same as defined in Eq. 2.

2.2 Pulmonary capillary mass transfer

The pulmonary capillaries were modeled as a single
compartment, assuming no significant regional heterogeneity
in lung ventilation/perfusion (Supplementary Figure S2). An
unsteady-state mass balance was performed over a control volume
moving within the compartment to obtain a time-dependent, spatial
oxygen profile:

ΔV
dCcv,T

dt
= kpc (CA,O2

(t) −Ccv,d (t)) (4)

kpc =
DL,O2

βp
(Δz
Lc
) (4a)

Lc =
Vpc

Aeff
(4b)

CA,O2
(t) = βp ⋅ PA,O2

(t) (4c)

The total oxygen concentration within the control volume was
assumed to be spatially uniform. In addition, the mass transfer
coefficient was assumed to be uniform along the length of the
pulmonary capillary compartment. Pulmonary blood velocity was
used to track the movement of the control volume along the
pulmonary capillaries and to allow for the effect of perfusion on the
mass transfer mechanism (more details provided in Supplementary
Appendix S1.2). In addition, the effect of theO2 −Hb reaction was
incorporated by using Eqs 2,3 to calculate the dissolved oxygen
concentration. The oxygen mass transfer rate was determined using
the molar flux across the alveolar-capillary membrane. Pseudo-
steady state was assumed to be valid for this transfer process as
the diffusion time was much smaller than the time for boundary
changes (Supplementary Appendix S3). The dissolved oxygen in the
alveolar membrane was assumed to be uniform along the length of
the pulmonary capillary compartment. Furthermore, the solubility
factor for oxygen was assumed to be the same for the membrane
space and blood plasma.

Since the plasma and red blood cells are not separately modeled,
the individual diffusion and reaction coefficients (consisting of
diffusion through the alveolar-capillary membrane, blood plasma,
red blood cells, and facilitated diffusion due to the oxygen-
hemoglobin interaction) are not known. Therefore, a physiologic
estimate of the lung diffusive capacity was used, which inherently
incorporates these terms and is around 21 mL O2 ⋅min−1 ⋅mmHg−1

for a normal subject at rest (Guyton and Hall, 2000). Data from a
clinical paper showed that the average lung oxygen diffusive capacity
did not significantly deviate from this normal value under the
condition of anoxia (Fishman, 1954). Therefore, it was assumed to
be constant for all cases (simulated and patient).
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2.3 Alveolar mass transfer

The alveoli were modeled as a single, homogeneous
compartment (Supplementary Figure S1). An unsteady-state mass
balance was performed for the inspiration and expiration processes
to determine the alveolar oxygen partial pressure in response to
input breathing data. The inspired air was assumed to be ideal,
saturated with water vapor, at normal body temperature, and at
a 0.21 oxygen mole fraction. With no spatial variations in gas
concentration, the oxygen partial pressure leaving the alveolar
compartment was taken to be equivalent to that within it. Mass
transfer out of the alveolar compartment was calculated using the
concentration gradient in dissolved oxygen across the alveolar-
capillary membrane. A spatially averaged oxygen concentration
along the pulmonary capillary compartment (Cc,O2

) was used for
this gradient. The resulting differential equations are similar to
those presented in previous literature (Reynolds et al., 2010).

During inspiration, when dVA
dt
> 0, the alveolar partial pressure

was determined using:

VA (t)
dPA,O2

dt
=
dVA

dt
(PI,O2
− PA,O2
(t)) − kl (CA,O2

(t) −Cc,O2
(t))R ⋅T

(5)

PI,O2
= yO2
(PB − PH2O) (5a)

kl =
DL,O2

βp
(5b)

Cc,O2
(t) = 1

Lc
∫
Lc

0
Cpc,O2d (z, t) dz (5c)

During expiration, when dVA
dt
< 0, the alveolar partial pressure

was determined using:

VA (t)
dPA,O2

dt
= −kl (CA,O2

(t) −Cc,O2
(t))R ⋅T (6)

2.4 Normal and simulated OSA breathing
patterns

An approximation of a normal breathing pattern was used to
validate the model (Reynolds et al., 2010):

VA (t) =
1
2
Vvent sin(2π ⋅ br ⋅ t−

π
2
)+(1

2
Vvent +VEnd) (7)

Vvent = VT −VD (7a)

Variations of this breathing pattern were used to simulate
multiple cases of OSA for assessing the AHI. This was done
by varying the breathing rate and tidal volume and introducing
apnea/hypopnea events. The AHI for each OSA simulation was
defined as the number of apnea/hypopnea events divided by the total
breathing time studied (in hours) after achieving model stability.
All simulated breathing patterns represented the alveolar volume,
and the duration of inspiration and expiration was assumed to be
equivalent for each. In these simulations, a sinusoidal function was
used to approximate breathing, but the model has the capability to
use any form of input breathing data.

TABLE 3 OSA patient characteristics.

Patient Age (yr) Sex Height (m) Weight (kg) BMI (kg/m2)

1 55 M 1.78 84.1 26.6

2 49 M 1.85 105.7 30.7

2.5 OSA patient breathing pattern

Nasal pressure data from two OSA patients was obtained during
multi-hour sleep studies, which were conducted with and without
continuous positive airway pressure (CPAP) administration.
Human protection: the analysis was done using de-identified
datasets generated from studies performed in the UCI Sleep
Center. The research was done in compliance with the UCI
IRB regulations (UCI IRB #267). For each patient, the recorded
pressure during a portion of the study without CPAP was
converted to a time-dependent lung volume for implementation
as a model input. To achieve this, each pressure signal was first
normalized to a mean of zero by subtracting a moving average
(taken over 70-s intervals for Patient 1 and 50-s intervals for
Patient 2) from the raw signal (Supplementary Appendix S4;
Supplementary Figures S4, S5). Following this, for each patient, a
portion of the signal identified as normal breathing by a clinicianwas
isolated.Thebreathing rate, determined from the isolated signal, and
tidal volume, approximated using the patient’s height-based ideal
body weight, were used to simulate a normal breathing pattern and
corresponding flow rate for each case (Supplementary Appendix S4;
Supplementary Figures S6, S7). Considering that the body-mass
index (BMI) falls within the overweight range for Patient 1
(25 ≤ BMI<30) and the obese range for Patient 2 (BMI ≥30)
(Table 3), average functional residual capacities (FRC) measured
in overweight and obese subjects suspected of having OSA
(Abdeyrim et al., 2015) were used as the end-expiration volumes
in the simulated breathing patterns. To convert the recorded
nasal pressure to a nasal flow rate, a fitting parameter for each
patient was defined by assuming that the average maximum nasal
pressure during the identified normal breathing corresponds to
the maximum simulated inspiratory flow for ideal tidal breathing.
The calculated fitting parameters represent total nasal conductance,
effectively combining air density, areas of flow, kinematic heat ratio,
and inlet pressure for a laminar flow relationship (Mansour et al.,
2002; Mansour et al., 2003). The generated nasal flow signals were
then integrated over time to achieve time-dependent lung volumes,
which were used to approximate the patient alveolar volumes as
model inputs (Supplementary Appendix S4).

2.6 Numerical solution and outputs

All differential equations were solved using the finite difference
method (Supplementary Appendix S1). The initial time steps
for the simulations and patient cases were chosen to ensure
model stability, convergence, and computational efficiency
(Supplementary Appendix S5.4). Furthermore, all breathing
patterns were introduced after allowing the model to stabilize
(t = 360 s). For the results, all presented dissolved oxygen
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concentrations are in units of μmol/L of blood. In addition,
percent decreases in hemoglobin oxygen saturation and dissolved
oxygen concentration were calculated by comparing the average
normal values to the minimum points during the period of
study (Supplementary Appendix S6.2). To determine the percent
reduction in the average mass transfer to the tissues, the difference
in systemic arterial and venous dissolved oxygen concentrations
was averaged over the breathing pattern time and compared to the
normal value (Supplementary Appendix S6.2).

2.7 Analysis of patient data and statistics

For analysis of the clinical performance of the model, each
patient was given a proposed hypoxia burden score for a selected
event series (Figure 8 for Patient 1 and Figure 9 for Patient 2)
and for the entire period of study. To determine the scores,
an average and standard deviation of the dissolved oxygen in
the systemic arteries across multiple wake sequences were first
calculated for both patients (Supplementary Appendix S6.3). A
value for the area between the arterial dissolved oxygen curve
for the sequence of analysis and the average arterial dissolved
oxygen during wakefulness was calculated and normalized by the
time of the analyzed sequence to give the hypoxia burden score.
Furthermore, an individual burden score was determined for the
hypoxia period over the full analysis sequence for each patient.
The hypoxia state was defined as a value of the systemic arterial
dissolved oxygen lower than one standard deviation below the
average arterial dissolved oxygen during wakefulness. The area
deviation for this hypoxia sequence was determined as shown in
Supplementary Figure S10 and normalized by the total time spent
in hypoxia. When assessing the scores, a higher value indicates

more severe hypoxia burden. Using the average dissolved oxygen for
wakefulness as the threshold to calculate area deviations, the hypoxia
burden score for wakefulness would be approximately equal to 0.
All equations and further details of the procedure are provided in
Supplementary Appendix S6.3.

Furthermore, a statistical analysis was performed on data from
Patient 1 to assess the significance of closely occurring obstructive
events and to demonstrate the utility of the model for quantitative
data processing. The variables studied were the systemic arterial
and venous saturations and the difference in dissolved oxygen
concentration across the systemic capillaries. Four separate intervals
of time were selected, with each one including two obstructive
events (apnea or hypopnea) and the subsequent desaturation
periods identified in the clinic. An average of each variable was
calculated for all four intervals (Supplementary Appendix S6.5).
Interval duration was kept constant at 125 s. Overall averages of
each variable, taken over the duration of the entire study, were
subtracted from the interval averages to create the data set for
analysis (Supplementary Appendix S6.5). p-values were computed
using the one-sample t-test in MATLAB (“ttest”). The test assesses
the hypothesis that the data comes from a distribution with a
mean of zero. The changes in the variables due to obstructive
events were determined to be significant at p-values lower than
0.05.

3 Results

3.1 Simulated normal subject

The model was first validated by comparing the results for a
simulated normal breathing pattern at rest (Figure 1A) to expected

FIGURE 1
Results for normal subject. (A) Input simulated normal breathing pattern with VEnd = 2.3 L, VT = 0.5 L, VD = 0.15 L, and br = 12 breaths/min. (B) Alveolar
oxygen partial pressure. (C) Systemic arterial and venous hemoglobin oxygen saturation. (D) Dissolved oxygen concentration in systemic arteries and
veins.
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FIGURE 2
Analysis of simulated case of severe OSA. (A) Input breathing pattern with four 40-s apneas over a 3.3-min period, resulting in an AHI of 72.
Hyperventilation is characterized by VT = 1.0 L and br = 24 breaths/min. (B) Systemic arterial and venous hemoglobin oxygen saturation. (C) Dissolved
oxygen concentration in systemic arteries and veins. The grayed portions indicate periods of ceased breathing (B,C). (D) Alveolar and pulmonary
capillary oxygen partial pressures for normal condition (t = 360 s) and at the end of the breathing pattern (t = 560 s).

physiological values. The average alveolar oxygen partial pressure
was around 99 mmHg (Figure 1B). This is within the range of
98–104 mmHg stated in previous literature (Gardner, 1994; Guyton
and Hall, 2000). The fraction of hemoglobin oxygen saturation was
predicted to be around 0.98 in the systemic arteries and 0.76 in the
systemic veins (Figure 1C), which approximates normal values of
0.97 and 0.75, respectively (Guyton and Hall, 2000). Furthermore,
on average, the simulated dissolved oxygen concentration was
139 μM in the systemic arteries and 57 μM in the systemic veins
(Figure 1D). When converted to oxygen partial pressures (Psa,O2

=
99 mmHg and Psv,O2

= 41 mmHg), the values fall within expected
ranges of ≈ 85–100 mmHg and ≈ 27–45 mmHg, respectively
(Guyton and Hall, 2000; van Faassen et al., 2009; Ortiz-Prado et al.,
2019).

3.2 Simulated severe OSA

A severe OSA breathing pattern was simulated to further
validate the model and to assess the effect of frequent apneas
on oxygenation in the systemic arteries and veins (Figure 2).
The simulated pattern consisted of four 40-s apneas within
a 3.3-min period (AHI = 72) (Figure 2A), which meets the
severe OSA criteria of AHI ≥30. These obstructive events were
separated by 10-s periods of hyperventilation (VT = 1.0 L and
br = 24 breaths/min) (Figure 2A). The resulting breathing pattern
is similar to that in previous literature (Netzer et al., 2001;
Cheng and Khoo, 2012). Realistically, this pattern would not be
repeated multiple times over an hour as a patient would awaken
once the hemoglobin saturation reached critically low values.

Importantly, the model predicted a progressive decrease in the
minimum hemoglobin oxygen saturation and dissolved oxygen
concentration with each apnea (Figures 2B, C). For example, in
the systemic arteries, the saturation fraction was around 0.93
after the first apnea, dropped to 0.91 after the second one, and
further decreased to around 0.90 after the third apnea (Figure 2B).
Another significant result is that the alveolar and end-pulmonary
capillary oxygen partial pressures were not equivalent at the
end of the studied breathing period (Figure 2D). Furthermore,
it was noted that there is a brief time-delay from when each
apnea starts to when the drop in oxygenation is felt in the
systemic arteries and veins and, by extension, in the body tissues
(Figures 2B, C).

3.3 Effect of ventilatory response on
reoxygenation

Two variations of ventilatory response following an apnea
were simulated to assess differences in oxygen recovery. In
Simulation 1, the hypothetical patient resumed normal breathing
(br = 12 breaths/min) following each 20-s apnea (Figure 3A). In
Simulation 2, there was a 20-s period of hyperventilation (br =
24 breaths/min) after each apnea, followed by a resumption of
normal breathing (Figure 3B). Considering that these breathing
patterns incorporate two 20-s apneas over a 10-min period (AHI
= 12), they could represent a case of mild OSA, which has a
criteria of 5 ≤ AHI<15. Based on these simulations, reoxygenation
occurred faster when hyperventilation was initiated after an
obstructive event. It took approximately 3.5 min, following each
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FIGURE 3
Analysis of reoxygenation following different ventilatory responses. (A) Simulation 1: Mild OSA breathing pattern (AHI = 12) with normal breathing
following 20-s apnea. (B) Simulation 2: Mild OSA breathing pattern (AHI = 12) with 20-s period of hyperventilation (br = 24 breaths/min) following 20-s
apnea, before resumption of normal breathing. (C) Systemic arterial and venous hemoglobin oxygen saturation for both simulations. (D) Dissolved
oxygen concentration in systemic arteries and veins for both simulations.

FIGURE 4
Analysis of AHI scoring criteria for apneas using moderate OSA breathing patterns. (A) Simulation 3: Input breathing pattern with four 20-s apneas over
a 10-min period (AHI = 24) and no unscored obstructive events. (B) Simulation 4: Input breathing pattern with four 20-s apneas over a 10-min period
(AHI = 24) and six unscored obstructive events, each with a 5-s duration. (C) Systemic arterial and venous hemoglobin oxygen saturation for both
simulations. (D) Dissolved oxygen concentration in systemic arteries and veins for both simulations.
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FIGURE 5
Analysis of AHI scoring criteria for hypopneas. (A) Simulation 5: Input moderate OSA breathing pattern with four 10-s apneas over a 10-min period (AHI
= 24). (B) Simulation 6: Input breathing pattern with four 25-s unscored hypopneas over a 10-min period (AHI = 0), each with a 50% reduction in
airflow. (C) Systemic arterial and venous hemoglobin oxygen saturation for both simulations. (D) Dissolved oxygen concentration in systemic arteries
and veins for both simulations.

drop, to return to the normal saturation and dissolved oxygen
concentration with a normal breathing response (Figures 3C, D).
However, this time was reduced to around 0.5 min with
hyperventilation included (Figures 3C, D).The drops were identical
in both scenarios, but the hemoglobin oxygen saturations and
dissolved oxygen concentrations increased past the predicted
normal values for a short period during the hyperventilatory
response.

3.4 Contribution of unscored obstructive
events

3.4.1 Unscored apneas
Two variations of moderate OSA breathing patterns were

simulated to assess the scoring criteria of the AHI, which
requires apneas to be at least 10 s long. In Simulation 3, four
20-s apneas were incorporated into a 10-min breathing period
(Figure 4A). For Simulation 4, in addition to the four 20-s
apneas, six 5-s apneas were also included (Figure 4B). Since the
AHI does not account for the obstructive events lasting 5 s,
both breathing patterns had the same score of 24, which is
within the moderate OSA range of 15 ≤ AHI<30. Although
both cases have the same AHI, the breathing pattern with the
unscored obstructive events caused a more severe oxygen deficiency
(Figures 4C, D).

3.4.2 Unscored hypopneas
The scoring criteria of the AHI for apneas and hypopneas

differs. Unlike an apnea, which must last longer than 10 s, a

hypopnea also needs achieve at least a 4% decrease in oxygen
saturation to be considered as an obstructive event. Therefore,
to assess the importance of hypopneas in evaluating the effects
of OSA, two differing breathing patterns were compared. In
Simulation 5, four 10-s apneas were incorporated into a 10-
min period, resulting in a moderate AHI of 24 (Figure 5A).
For Simulation 6, four 25-s hypopneas, each with a 50%
airflow reduction, were incorporated into a 10-min period
(Figure 5B). However, since the decrease for the hemoglobin
oxygen saturation in the systemic arteries and veins was less
than 4% (Supplementary Table S5), the AHI for Simulation 6 is
0. Interestingly though, the results showed very similar saturation
and dissolved oxygen concentration profiles for both scenarios
(Figures 5C, D).

3.5 Significance of individual apnea
duration

3.5.1 Variable AHI
Two breathing patterns with the same total time of obstructed

breathing (2 min), but varying AHI scores, were simulated to
assess the relative importance of individual apnea duration and
frequency in determining the severity of decrease in blood oxygen
levels. For Simulation 7, four 30-s apneas were incorporated into
a 10-min breathing pattern, resulting in a moderate AHI of 24
(Figure 6A). In Simulation 8, eight 15-s apneas were incorporated
into a 10-min breathing pattern, resulting in a severe AHI of 48
(Figure 6B). Although the case with the higher AHI had more
oscillations in oxygen levels, the degree of hypoxemia was more
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FIGURE 6
Analysis of apnea frequency and duration. (A) Simulation 7: Input moderate OSA breathing pattern with four 30-s apneas over a 10-min period (AHI =
24). (B) Simulation 8: Input severe OSA breathing pattern with eight 15-s apneas over a 10-min period (AHI = 48). (C) Simulation 9: Input breathing
pattern with four 15-s apneas over a 10-min period (AHI = 24). (D) Systemic arterial and venous hemoglobin oxygen saturation for Simulations 7 and 8.
(E) Dissolved oxygen concentration in systemic arteries and veins for Simulations 7 and 8. (F) Systemic arterial and venous hemoglobin oxygen
saturation for Simulations 7 and 9. (G) Dissolved oxygen concentration in systemic arteries and veins for Simulations 7
and 9.

severe for the case with the longer individual apnea duration
(Figures 6D, E).

3.5.2 Constant AHI
Two moderate OSA breathing patterns with an AHI

score of 24 were simulated to assess the relation between
individual apnea duration and the severity of decrease in
blood oxygen levels. Individual apnea lengths of 15 and 30 s
were tested (Figures 6A, C, respectively). The model predicted
more severe drops in oxygen levels for the longer apnea
duration (Figures 6F, G). In addition, the time required for
reoxygenation appeared to be longer as the apnea duration increased
(Figures 6F, G).

3.6 Relative importance of AHI and apnea
duration in assessing OSA severity

The decrease for oxygenation in the systemic vessels
was compared for some of the simulated cases to assess
the relative importance of the AHI and individual apnea
duration in determining the severity of decrease in oxygen
levels during OSA (Figures 7A–C). For the cases with a
constant AHI, the model predicted a positive linear correlation
between the apnea duration and the magnitude of percentage
decreases (Figures 7D, E). However, there appeared to be no
clear correlation between the AHI and percentage decreases
(Figures 7A–C).
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FIGURE 7
Analysis of single apnea/hypopnea duration and AHI. (A) Comparison of some simulations for percent decrease in saturation. (B) Comparison of some
simulations for percent decrease in concentration. (C) Comparison of some simulations for percent decrease in oxygen mass transfer. (D) Percent of
normal saturation for simulations with variable single apnea duration and constant AHI. (E) Percent of normal concentration for simulations with
variable single apnea duration and constant AHI.

3.7 Performance of model in OSA patients

To demonstrate the clinical utility of the model, recorded
heart rate and approximated lung volume data from the
converted nasal pressure of two OSA patients were used as time-
dependent inputs (Supplementary Figures S11, S13). The model
output hemoglobin oxygen saturation in the systemic vessels,
which can be compared to the recorded pulse oximeter data
(Supplementary Figures S12A, S14A). In some regions for Patients
1 and 2, the recorded Sp,O2

was lower than the arterial saturation
predicted by the model, while it was comparatively higher following
a respiratory effort related arousal (RERA) event (Figures 8C, 9C),
and, in other regions, its fluctuations appeared to be in phase
with those of the venous saturation (Figure 9C). In addition,
the solution provided the dissolved oxygen concentration in the
systemic vessels to better quantify the hypoxic burden on tissues
(Supplementary Figures S12B, S14B; Table 4). This gives valuable
insight into how the dissolved oxygen in the systemic arteries
progressively decreases with continuously occurring obstructive
events (Figure 9D). Furthermore, although Patient 2 had a higher
AHI score identified in the clinic (calculated as the number of events
divided by the total time asleep in hours), the hypoxic burden
of Patient 1 was determined to be greater based on the proposed
scores (Table 4). This result can be explained by the longer average
hypopnea length for Patient 1 from sleep clinic data (Table 4). In
addition, the calculated scores allowed for quantification of the
overall burden specifically during hypoxic periods in patients,
which is valuable insight not reflected in the AHI. For further

interpretation of model results, the quantitative analysis performed
on data from Patient 1 showed a statistical significance when
assessing the differences between the overall and event interval
averages for oxygenation (Table 5).

4 Discussion

The development of cardiovascular consequences in OSA
patients is believed to be associated with intermittent hypoxia
(Shah et al., 2021). Indeed, changes in tissue oxygenation due to
airway obstruction affect the level of cellular reactive oxygen
species (ROS), which may lead to vascular injury and remodeling
(Shah et al., 2021). Clinical studies have found that the extent of
exposure to hypoxia, referred to as “hypoxia burden” inOSA ismore
predictive of cardiovascular disease than the AHI (Azarbarzin et al.,
2019). Considering this, an accurate assessment of OSA severity
and the resulting tissue hypoxia requires an understanding of the
dissolved oxygen concentration in the blood, which controls the
driving force for mass transfer into the tissues. In using the overall
metabolism to relate the dissolved oxygen entering and exiting
the body tissues, we created a practical and clinically deployable
approach to assess tissue oxygenation for different simulations of
OSA (Figures 3–6).Themodel codes are available on GitHub so that
anyone can vary the inputs of these simulations for further analysis.

This model was closer in approximating the trend of clinical
data when compared to previous literature (Netzer et al., 2001;
Cheng and Khoo, 2012). For example, in a previous paper, systemic
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TABLE 4 Comparison of model and clinical assessment.

Patient Proposed burden scores (μM)

Event sequence Total sequence

Normalized deviation from
wake sequence

Normalized deviation from
wake sequence

Normalized deviation from
threshold during hypoxia

1 32 14 18

2 35 3.3 8.7

Patient (AHI) Data from sleep clinic for total sequence

Total number of
events (apnea/hypopnea)

Total time of
events (s)

Average apnea
length (s)

Average hypopnea
length (s)

1 (11) 17 (3/14) 367 11.4 23.8

2 (53) 34 (5/29) 591 12.5 18.2

TABLE 5 Intra-patient statistical analysis.

Analyzed variable Difference from overall average p-value

Hemoglobin O2 saturation in systemic arteries −1.3% ± 0.68% 0.033

Hemoglobin O2 saturation in systemic veins −2.2% ± 0.37% 0.001

Difference in dissolved O2 concentration across systemic capillaries −18 μM ± 7.4 μM 0.017

Differences reported as mean ±sd. Sample size (n) = 4.

arterial oxygenation was simulated in response to a generic OSA
breathing pattern consisting of four apneas separated by brief
periods of hyperventilation (Cheng and Khoo, 2012). A similar
breathing pattern with corresponding pulse oximeter data from an
OSA patient was presented in another paper (Netzer et al., 2001)
and reproduced in our model (Figure 2A). Based on the recorded
pulse oximeter data, following each apnea, the minimum arterial
hemoglobin saturation drops to a lower value than the one preceding
it (Netzer et al., 2001). The trend is also observed in the output
of our model (Figure 2), but not in the previous modeling study
(Cheng and Khoo, 2012). This is likely due to their assumption
of complete equilibration between the alveolar and end-pulmonary
capillary oxygen partial pressures (Cheng and Khoo, 2012), which
should not be equivalent for such a breathing scenario (Figure 2D).
Indeed, this assumption may not be realistic for OSA patients with
lower lung oxygen diffusing capacities and for cases of a high heart
rate, where reduced red blood cell residence time in the pulmonary
capillaries may not allow complete equilibration of partial pressures.

As with any model, there are limitations in our approach,
as can be seen in the difference between the predicted systemic
arterial saturation (Ssa,O2

) and the OSA patient pulse oximetry
data (Supplementary Figures S12A, S14A). This is likely caused by
the pulse oximetry data itself through inaccuracies in recording
due to possible vasoconstriction at the point of measurement
or other pulse oximetry errors (Mardirossian and Schneider,
1992). However, it could also indicate the need for an improved
estimation of model inputs. For example, our estimation of
patient lung volume relied solely on the recorded nasal pressure
signal, and the calculation of the fitting parameter used an
ideal simulated normal breathing pattern for each patient. As
both the tidal volume and FRC may vary with the BMI and
positioning of the patient, a more accurate conversion to nasal

flow could be done by using proportionality coefficients for
inspiration and expiration, determined by recording nasal flow
and pressure over a few breaths for each patient (Thurnheer et al.,
2001). Another example is that pressure swings may occur
during obstructed breathing, which can lead to an inaccurate
representation of lung volume (Supplementary Appendix S4;
Supplementary Figure S8). In such a scenario, another measure
of lung volume, such as chest and abdomen signals from
respiratory inductance plethysmography (RIP) during a sleep
study, may be used. Additionally, patient-specific approximations
of the respiratory anatomy may be useful in determining a
more accurate representation of alveolar volume from the lung
volume.

The difference between recorded and simulated systemic arterial
saturation limitations may also indicate some limitations in our
modeling approach. For example, we assume all oxygen transfer in
the systemic circulation to occur within the capillaries; however,
arteriolar oxygen loss has been observed in previous animal studies
(Tsai et al., 2003). This effect is likely to vary among patients, so
either more clinical data or an approximation would be needed for
model incorporation. Furthermore, in patients with severe obesity,
pulmonary shunting resulting from alveolar collapse near the base
of the lung (Koenig, 2001) may need to be considered. This can be
incorporated into ourmodel bymultiplying the pulmonary flow rate
by an estimated lung shunt fraction, which would require additional
clinical data from a simple chest X-ray.

Currently, the AHI is widely used in clinical practice as an
indicator of OSA severity but has been identified as having several
limitations (Wu et al., 2016; Osman et al., 2018; Soori et al., 2022),
and other parameters have been found to better correlate with
disease development and the onset of comorbidities (Wu et al.,
2016). Our results elucidate that cases with the sameAHI could have
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FIGURE 8
OSA Patient 1 analysis over portion of sleep study. (A) Recorded heart rate and cardiac output. (B) Lung volume obtained from conversion of recorded
nasal pressure. (C) Model output hemoglobin oxygen saturation in systemic arteries and veins, along with recorded pulse oximeter data (Sp,O2

). The
dashed line and arrow are used to indicate a point where the model predicts a lower value than Sp,O2

following the RERA event. (D) Model output
dissolved oxygen concentration in systemic arteries and veins. The grayed portions indicate respiratory events, as labeled in (B). Breaks in the y-axis are
shown for (C,D).

vastly different clinical progressions because the tissues are exposed
to varying degrees of hypoxia, based on aspects of the breathing
pattern not reflected in the AHI (Figure 6). Further, the simulated
cases support the proposal to use the duration of obstructive
events to assess OSA (Wu et al., 2016), but outputting the blood
oxygenation profiles, made available by our model, might capture a
fuller clinical picture. For example, there are obstructive events that
do not meet prespecified duration and oxygen desaturation criteria
mandated by insurance companies, but our model demonstrates
that such patients could have a higher hypoxia burden than
those with a classical presentation of OSA (Figures 4, 5). These
results support the inability of the AHI to accurately capture the
physiological changes occurring in the body and indicate that its
predetermined criteria may be detrimental to the development
of patient treatment plans. Considering this, our model provides
an avenue to re-evaluate polysomnography data by using it as
an input to predict blood oxygenation for assessment of OSA
severity.

For further analysis of OSA, ventilatory response after an
apnea was determined to be a factor affecting the blood oxygen
concentration (Figure 3). Hyperventilation is commonly observed
in OSA patients following an obstructive event due to the onset
of hypercapnia (Khoo et al., 1991). Although our model does not
currently consider the effects of carbon dioxide, it does demonstrate
that hyperventilation following airway obstruction can lead to
higher than normal oxygen levels, which is a normal physiological
phenomenon called ventilatory overshoot (Figures 3C, D). In
addition, the absence of sufficient hyperventilation can result in
sustained lower oxygen levels (Figures 3C, D). Both conditions
can potentially lead to the onset of pathophysiological processes.
Continuously high oxygen exposure of the tissues can cause a state
of hyperoxia, which may be detrimental to cellular homeostasis
due to the higher production of ROS (Mach et al., 2011). On
the other hand, sustained lower oxygen levels can cause tissue
hypoxia, which is associated with low ROS levels (Shah et al.,
2021). In addition, ventilatory drive is dependent on a patient’s
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FIGURE 9
OSA Patient 2 analysis over portion of sleep study. (A) Recorded heart rate and cardiac output. (B) Lung volume obtained from conversion of recorded
nasal pressure. (C) Model output hemoglobin oxygen saturation in systemic arteries and veins, along with recorded pulse oximeter data (Sp,O2

). (D)
Model output dissolved oxygen concentration in systemic arteries and veins. The dashed lines in (D) are were used to represent the range of dissolved
arterial oxygen during wakefulness. The grayed portions indicate respiratory events, as labeled in (B).

adaptation to hypercapnia, which may differ based on OSA severity
(Muraja-Murro et al., 2012). Considering these points, the utility
of having clinical respiratory data as an input is essential due to
the variation in response to a ventilatory disturbance amongst
OSA patients. Although simulated cases of OSA are useful, patient-
specific inputs allow for a more accurate assessment of health
risks. Our model has this flexibility and is, therefore, proposed
as a clinical tool for predicting the effects of OSA. For example,
OSA patient gene expression relating to the function of endothelial
nitric oxide synthase (eNOS) (Gavrilin et al., 2022), which is
affected by ROS levels, could be compared to the duration of
hyperoxemia/hypoxemia predicted by our model. This would then
allow our model to be used as a tool to estimate gene expression
related to hyperoxemia/hypoxemia, while avoiding the need for
in-vitro polymerase chain reaction (PCR). Such an approximation
would give valuable insight into the risk of patients developing
pulmonary hypertension and cardiovascular disease.

To further strengthen the applicability of our model as a clinical
tool, we demonstrated its ability to predict oxygen levels using OSA

patient data as an input.The higher sensitivity of our model solution
results from its ability to capture the continuous physiological
changes occurring in the body during each breathing cycle, which
is not necessarily reflected in the recorded pulse oximeter data
(Figure 8C). Furthermore, the model solution displays systemic
venous oxygen levels (Supplementary Figures S12, S14), which
normally require invasive catheter insertion for directmeasurement.
Although a patient-specific estimation of the metabolic rate would
be needed for accurate prediction, our model provides the utility of
venous oxygenation as a potential clinical indicator for assessment of
disease severity. In addition, considering the role of dissolved oxygen
in controlling the mass transfer gradient to the tissues, the ability of
the model to provide systemic arterial and venous dissolved oxygen
is important in assessing hypoxia burden. Continuously occurring
events lower the driving force for oxygen transfer, a result that
cannot be effectively captured by relying on Sp,O2

(Figures 9C, D).
Furthermore, although Patient 2 experiences a greater overall time
of obstructive events (Table 4), the lower total hypoxia burden score
could indicate that the decrease in airflow during hypopneas is not
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as severe when compared to Patient 1. This provides a valuable
assessment not reflected in the AHI, which does not differentiate
hypopnea events based on the severity of airflow restriction.
Moreover, the results of the statistical analysis and the patient event
series (Figures 8, 9; Table 4) indicate the importance of considering
the temporal proximity of obstructive events, another factor not
distinctly accounted for in the AHI. The statistical analysis also
demonstrates the utility of our model in quantitatively processing
data. Our approach can now be used to study large sets of patient
data for a more in-depth statistical and clinical analysis.

In this work, we developed a clinically deployable mathematical
model to assess OSA. Using various simulated breathing patterns,
the results support previous claims of the AHI not being the
most reliable predictor of OSA severity. In addition, the clinical
application of our model was highlighted by using OSA patient
data from multi-hour sleep studies, underscoring several model
strengths. With several future directions, we aim to use this model
as a tool for evaluating OSA patient health risks. As an example,
additional clinically feasible inputs can be incorporated to further
improve the accuracy of our model outputs in predicting hypoxic
burden on the tissues. Furthermore, an extensive polysomnography
data set coupled with our model could allow for a more realistic
link between potential clinical indicators of OSA and disease
progression. The results could then be compared to gene expression
in patients for further analysis. In addition, narrowing our analysis
on certain target organs could allow the model to identify the most
likely comorbidity presentation in OSA patients. With these future
avenues, wewill aim to use ourmodel for the improvement of patient
care.
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