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Arterial spin labeled (ASL) magnetic resonance imaging (MRI) is the primary method 

for noninvasively measuring regional brain perfusion in humans. We introduce ASLPrep, 

a suite of software pipelines that ensure the reproducible and generalizable processing 

of ASL MRI data. Despite comprising only 2% of human body mass, the adult brain 

receives approximately 15% of cardiac output to support the intensive demands of neural 

computation1. Cerebral blood flow (CBF) is tightly linked to brain metabolism2, varies 

predictably across the lifespan3 and is increasingly seen as an important biomarker of 

diverse neuropsychiatric and neurological disorders4. Although the gold standard method 

of measuring CBF is 15O-positron emission tomography (PET), arterial spin labeled 

(ASL) perfusion magnetic resonance imaging (MRI) has evolved to become the dominant 

method for noninvasive, contrast-free measurement of CBF in humans due to its ease of 

implementation and lack of either injected contrast or ionizing radiation5.

The ascendancy of ASL MRI has also been accompanied by a rapid rise of both acquisition 

methods and analytic techniques5. For example, widely used ASL MRI sequences vary in 

their labeling type, number of echo times, labeling duration, number of post-labeling delays 

(PLDs) used, image scaling, background suppression and the acquisition of a reference 

(M0) image. Furthermore, different MRI schemes for ASL may yield markedly different 

outputs: commonly used schemes can provide a timeseries of control and label pairs, a 

single difference image or a fully quantified CBF image. When combined, these factors have 

limited the generalizability of techniques for the processing and quantification of CBF and 

have slowed the pace of translational research6. To address this gap, we introduce ASLPrep: 
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a generalizable and robust software workflow that allows for reproducible processing of a 

wide range of ASL MRI data (Fig. 1).

ASLPrep requires imaging metadata be recorded in brain imaging directory structure 

(BIDS)7 format and leverages BIDS to automatically configure appropriate workflows based 

on the data provided. ASLPrep was inspired by fMRIPrep8, which provides adaptive and 

reliable processing of fMRI data but does not provide functionality for the processing 

of ASL images or quantification of CBF. ASLPrep builds on widely used neuroimaging 

toolboxes, such as FSL9, FreeSurfer10, AFNI11, ANTs12 and diverse Python packages 

(Supplementary Tables 1 and 2); like fMRIPrep, ASLPrep depends on sMRIPrep13 for 

structural processing and SDCFlows14 for distortion correction. ASLPrep also includes 

in-house implementations for algorithms unavailable elsewhere, for instance the structural 

correlation based outlier rejection (SCORE) denoising option15, which is useful for studies 

of populations with greater head motion, such as children and many clinical populations.

Building on this preprocessing workflow, ASLPrep can execute advanced methods to 

quantify CBF. In addition to the standard CBF quantification procedure that uses 

a general kinetic model16, ASLPrep includes two different Bayesian models that 

incorporate information regarding brain structure: BASIL (Bayesian inference for arterial 

spin labeling)17 and SCRUB (structural correlation with robust Bayesian)18. Following 

computation of the CBF map, BASIL also provides partial volume corrected (PVC) gray 

matter (GM) and white matter (WM) perfusion maps, which adjusts CBF according to the 

mixture of GM and WM present in the anatomical image. For all quantification models, 

regional CBF can be summarized in a diverse set of standard atlases or custom atlases 

provided by the user.

By refactoring the reporting system of fMRIPrep8 to be compatible with ASL data, both 

minimal preprocessing and quantification workflows are transparently documented with 

a detailed visual report that is generated dynamically. Each step in the workflow is 

demonstrated and its performance can be assessed for quality with dedicated visualizations 

(Supplementary Fig. 1). In addition to such visualizations, ASLPrep provides multiple 

quantitative measures of image quality. Like fMRIPrep8, processing reports also include 

a ‘citation boilerplate’ that comprehensively describes the actual workflow implemented, 

including software versions and relevant citations to facilitate maximally transparent 

reporting in papers that use ASLPrep.

ASLPrep is distributed as a Docker image that includes all dependencies (https://

hub.docker.com/r/pennlinc/aslprep), ensuring that it can be run in nearly any computing 

environment. The modular code base of ASLPrep uses Nipype19 and is openly developed 

on GitHub (https://github.com/pennlinc/aslprep), allowing for rapid detection of bugs, 

integration of feature requests and support for the international user base. Before the 

release of patches or new versions, all changes to the underlying code of ASLPrep are 

subject to continuous integration testing via CircleCI. Extensive documentation (https://

aslprep.readthedocs.io) is version controlled and frequently updated, facilitating broad 

dissemination. So far, a total of more than 48,000 datasets have been successfully processed 

using ASLPrep by users worldwide.
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To illustrate the generalizability of ASLPrep, we processed five different datasets acquired 

with a wide range of acquisition parameters (n=3,571 total scans, 1,978 females, mean 

age of 26.88years, s.d.=19.79years, Supplementary Table 3). These datasets included four 

ASL sequences collected on Siemens scanners using pseudo-continuous labeling (PCASL), 

but different encoding schemes: two-dimensional (2D) spin-echo PCASL images from 

the Philadelphia Neurodevelopmental Cohort (PNC) (n=1,527, 797 females, mean age 

15.00years, s.d.=3.65 years), 2D gradient echo-images from the NKI-Rockland sample 

(NKI) (n=1,648, 956 females, mean age 36.35years, s.d.=22.66 years), a three-dimensional 

(3D) stack-of-spirals spin-echo acquisition from a study of irritability in youth (IRR) 

(n=218, 136 females, mean age of 21.56 years, s.d. = 3.51 years) and a publicly available 

study of aging that used a 3D GRASE PCASL sequence (AGE) (n = 63, 35 females, mean 

age of 48.98years, s.d.=24.41 years). Furthermore, we included a study of fronto-temporal 

dementia (FTD) (n=115, 54 females, mean age of 53.47 years, s.d. = 15.36 years) that was 

collected on a GE scanner using a 3D EPI gradient echo sequence with PCASL. For each 

of these diverse datasets, we completed both minimal preprocessing and CBF quantification. 

Specifically, we evaluated the mean CBF of GM and WM in each dataset, and examined 

how GM CBF evolved with age20. While these analyses focused on CBF quantified using 

the standard CBF quantification procedure, we also conducted analyses using the other 

quantification methods packaged with ASLPrep.

Across datasets and workflows, pipelines automatically configured by ASLPrep finished 

without errors. As part of quality assurance, 5% participants with gross motion (frame-wise 

displacement greater than 1 mm) or nonphysiologic CBF (for example, a ratio of GM to 

WM CBF of less than 1) were excluded from further analyses (Supplementary Table 4; 

final sample n = 3,383). Inspection of data from individual participants (Extended Data 

Fig. 1) as well as group average CBF from each dataset (Extended Data Fig. 2) revealed a 

consistent performance. Compared to a pipeline previously used in published studies of the 

PNC, ASLPrep preserved anatomical detail and reduced blurring (Extended Data Fig. 3). 

Furthermore, there was good alignment between the regional distribution of CBF quantified 

using ASLPrep and a commonly used PET atlas (Extended Data Fig. 4). When we evaluated 

the impact of in-scanner motion on data quality across quantification methods, Bayesian 

methods (such as BASIL) attenuated the impact of participant movement (Extended Data 

Fig. 5). As expected, the distinction between GM and WM CBF was more striking in 

datasets of youth and was reduced in datasets that were composed of older individuals (Fig. 

2a and Extended Data Fig. 6). When we aggregated data from individual participants across 

all datasets, the anticipated nonlinear decline of CBF over the lifespan was evident (Fig. 2b). 

While GM atrophy in aging may produce a decline in CBF due to partial volume effects, a 

nonlinear decline in CBF was still apparent after partial volume correction ( ).

Across the over 3,000 participants evaluated, the processing time of ASL images using 

ASLPrep did not exceed 70 minutes (when executed using four cores and 30GB of RAM). 

However, ASLPrep also requires anatomical image processing, which increases the total 

runtime of ASLPrep to a mean of 4.5hours (Extended Data Fig. 8). However, one critical 

feature of ASLPrep is that it can consume processed anatomical images that conform to the 

BIDS-derivatives standard (for example, sMRIPrep13) obviating the need for reprocessing 

structural images and accelerating runtime. This feature is particularly important for multi-
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modal imaging studies, as it allows a single source of preprocessed anatomical information 

to be used, ensuring consistency across image types (ASL, fMRI, dMRI, etc).

In summary, ASLPrep allows investigators to correctly apply reproducible preprocessing 

pipelines and advanced CBF quantification methods to ASL images that conform to the 

BIDS standard ASLPrep adapts its workflow to the characteristics of the input data, 

ensuring appropriate image processing if the data have been correctly specified in BIDS. 

By harnessing complementary techniques from multiple software packages and combining 

them in an interoperable framework, ASLPrep reduces the burden on investigators who wish 

to avoid learning the details of many disparate techniques. Taken together, ASLPrep ensures 

fully reproducible and widely generalizable processing, quality assurance and quantification 

of ASL images.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41592-022-01458-7.

Methods

ASLPrep allows investigators to easily process diverse ASL MRI5,21 data and compute CBF. 

ASLPrep is designed using an adaptive architecture that leverages the Brain Imaging Data 

Structure (BIDS)7, an open standard for describing neuroimaging data. ASLPrep reads the 

metadata provided by BIDS, allowing workflows to automatically adapt to the parameters of 

the data without manual intervention. ASLPrep leverages Nipype19 to ensure compatibility 

across tools from many software packages (for example, Freesurfer, AFNI, ANTS, FSL) and 

effectively combine their complementary strengths (Supplementary Table 1).

ASLPrep’s design is inspired by fMRIPrep8 and adheres to the principles of NiPreps22 

(www.nipreps.org): it maximizes interoperability and adaptability to input data with BIDS, 

it reproducibly delivers ‘analysis-ready’ data so that researchers can confidently focus on 

statistical modeling, and code is managed with software engineering techniques to ensure 

quality and reliability following BIDS-Apps’ directions23 (for example, uses open-source 

development, implements version control with GitHub, includes continuous integration of 

testing with CircleCI to check every code update and so on). ASLPrep is composed of four 

main workflows (Fig. 1): anatomical preprocessing, ASL preprocessing, CBF computation 

and assessment of image quality.

Anatomical preprocessing.

The anatomical preprocessing workflow in ASLPrep leverages sMRIPrep (v.0.6.1)13, 

a structural MRI (sMRI) processing pipeline. sMRIPrep performs basic processing 

steps including subject-wise averaging, bias field correction, segmentation and spatial 

normalization. The anatomical outputs of sMRIPrep can be used while processing multi-

modal imaging data, including fMRIPrep8, QSIPrep24 and ASLPrep. The main steps of 

anatomical preprocessing are summarized below:
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Bias field correction and T1w subject-wise averaging.—The structural T1w image 

is first corrected for intensity nonuniformity with N4BiasFieldCorrrection25 as implemented 

in ANTs. If there are several T1w images, bias-corrected corrected images are fused into a 

reference T1w map with Freesurfer’s mri_robust_template26.

Brain extraction and tissue segmentation.—The bias-corrected T1w image is skull-

stripped with antsBrainExtraction.sh using either the OASIS27 (default) or NKI28 template. 

Note that the template used here for brain extraction is distinct from the template used 

for spatial normalization. After brain extraction, FSL’s FAST29 is used to segment the 

T1w brain into cerebrospinal fluid (CSF), GM and WM. FAST produces both a hard 

segmentation as well as partial volume estimates for each tissue class.

Spatial normalization and template selection.—Following bias correction and brain 

extraction, the T1w image is normalized to the MNI152 Nonlinear Asymmetric30,31 

template using the top-performing deformation provided by antsRegistration32. Beyond 

the MNI template, Templateflow31 allows for the selection of other available templates 

including the PNC33, NKI and OASIS templates.

ASL preprocessing.

Due to the variety of ASL data types, ASL preprocessing workflows require that the input 

data conform to the ASL BIDS specification. The processing workflows can accommodate 

disparate ASL labeling approaches5, readout methods34 and number of volumes in the 

ASL input data. The most common labeling approaches include continuous labeling, pulsed 

labeling and PCASL, with PCASL the method recommended in a recent consensus white 

paper5.

Input data.—The four possible types of ASL data provided by an acquisition sequence are: 

(1) a timeseries of control and label images, (2) a ΔM image, (3) an M0 image and (4) a 

quantified CBF image. It should be noted that the ΔM and CBF images are derived rather 

than raw data. However, some ASL sequences from GE or Philips scanners provide these 

derived images instead of the raw ASL timeseries; as such they are considered as potential 

input data to ASLPrep. These possible inputs are briefly defined below:

1. ASL timeseries: a typical ASL timeseries consists of control and label images, 

which are acquired in pairs in an ASL sequence, and scaled identically. When 

background suppression is not used, the control image can be used in place of 

the M0 image for calibration. Most but not all ASL sequences will provide this 

timeseries; some sequences will provide an ΔM image or the fully quantified 

CBF image.

2. ΔM: the ΔM images are formed by the pairwise subtraction of the label and 

control images. Multiple control-label pairs are always acquired, which after 

subtraction generates a timeseries of ΔM images. Some sequences provide an 

average ΔM image rather than the full ASL timeseries of control and label pairs; 

ASLPrep can recognize and process either.
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3. M0: an M0 image is used as a reference image and to estimate the equilibrium 

magnetization (M0) of blood. If an M0 scan is not provided, the average of 

the control images is used as the reference (while checking for background 

suppression). Alternatively, a user-specified M0 value specified in the BIDS 

metadata will override the M0 scan (if present) and be used for calibration.

4. CBF: the quantified CBF image is produced by dividing the ΔM by the processed 

M0 image or by the user-specified M0 value specified in BIDS. Using a standard 

model, the CBF image is then scaled into physiological units (ml per 100 g 

min−1). Rarely, ASL sequences provide a fully quantified CBF map instead of 

an ASL timeseries or a ΔM image. In this case, most steps of ASLPrep are 

obviated. However, normalization to a template and calculation of average values 

for atlas parcels can still be performed. In this case, an M0 image is necessary for 

generation of a high-quality brain mask.

Using this input data, the general ASL preprocessing workflow is as follows:

Reference volume selection.—For each ASL dataset, a reference volume for motion 

correction and co-registration is selected. When an ASL timeseries is provided, the median 

of ASL volumes is selected as the reference volume. For a single ΔM or CBF image, the M0 

scan (if present) is used as the reference volume. The reference volume is skull-stripped with 

FSL’s BET35 and refined with the co-registered T1w brain mask.

Motion estimation.—The head motion parameters from the ASL timeseries (if available) 

are estimated with FSL’s MCFLIRT36.

Slice-timing correction.—If slice-timing information is available in the metadata,the 

slice-timing correction is performed on the ASL data with AFNI’s11 3dTshift. However, 

slice-timing correction is optional, can be turned off and is not applied if slice times are not 

specified in the BIDS metadata. Note that while slice-timing correction can be applied for 

2D ASL data, it is not recommended for 3D ASL data.

ASL-T1w coregistration.—Coregistration aligns the T1w image and ASL reference 

volume. This uses boundary-based coregistration as implemented with FSL’s FLIRT37. A 

rigid body transform (six degrees of freedom) is specified by default. Forward and backward 

transformation matrices are generated for required subsequent preprocessing.

Distortion correction.—Distortion correction is implemented using SDCFlows38 

(susceptibility distortion correction workflows). SDCFlows provides workflows for the 

preprocessing of several MRI schemes that allow the estimation of B0 field-inhomogeneity 

maps, which are directly related to the distortion. Distortion correction is applied to the ASL 

data if the appropriate fieldmap information is provided in the BIDS metadata. Distortion 

correction is optional. SDCFlows additionally includes an experimental fieldmap-less39 

distortion correction method, which uses a nonlinear registration between the ASL reference 

image and the T1w image.
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CBF computation.

Following common preprocessing steps, there are two streams for CBF computation and 

denoising. The first stream is the default (Basic CBF) and consists of CBF computation with 

the general kinetic model16,40. The first step produces a CBF timeseries if there are multiple 

control-label pairs or ΔM images provided. Optionally, this CBF timeseries can then be 

denoised using SCORE15. Last and also optionally, a Bayesian model can be applied that 

incorporates data from the anatomic image using SCRUB18.

The second stream uses FSL’s BASIL toolbox. BASIL’s Bayesian model incorporates 

spatial regularization and produces a single CBF map. Note that because it produces a single 

CBF map rather than a CBF timeseries, it cannot be used jointly with SCORE. Following 

computation of the CBF map, BASIL also calculates a GM and WM CBF map with partial 

volume correction applied.

Both common steps and specific procedures for each of the two CBF computation streams 

are detailed below:

Procedures common to both processing streams.—ΔM Computation: after ASL 

preprocessing, the ΔM images are extracted. Depending on the ASL input data, the label and 

controls images are subtracted pairwise to obtain a timeseries of ΔM images. However, if 

input data contain a ΔM image or CBF maps, this step is not performed.

CBF calibration: as noted above, the ΔM images require scaling to calculate CBF. This 

can be done using a dedicated M0 image (preferred), the average of the control images 

from the ASL timeseries (if no background suppression is used) or a user-specified value 

provided in the JSON. If an M0 image is present, it will be used instead of the mean of the 

control images. However, specification of an M0 value in the JSON will force its application 

regardless of the other images present; this should generally be avoided. Default smoothing 

of M0 scan images is implemented with 5 mm full-width at half-maximum, but the users can 

adjust to any value. Smoothing of the M0 is advisable for CBF computation.

Stream 1: standard CBF ± SCORE and SCRUB.—CBF quantification with the 

standard model: CBF is quantified based on the general kinetic model16,40 and requires 

several parameters5, including labeling duration, PLD, T1-blood relaxation time, labeling 

efficiency, blood–brain partition coefficient and inversion time. Some of these parameters 

(such as bolus duration, labeling duration and PLD) are specific to the ASL labeling 

techniques. The other parameters (such as labeling efficiency and blood–brain partition 

coefficient) depend on the labeling approaches (PCASL or pulsed labeling) and hardware 

(for example, MRI machine magnetic strength). ASLPrep quantifies CBF for both single 

delay (one PLD) and multi-delay (multiple PLDs) ASL data. The multi-delay ASL data 

give us the opportunity to estimate arterial transit time using signal weighted delay41. All 

parameters necessary for computation of CBF using the standard model are read from the 

JSON that adheres to the BIDS specification for ASL.

CBF denoising with SCORE: CBF is known to be susceptible to artifacts42 especially 

from head motion. ASL’s low signal to noise ratio (SNR), particularly when acquired 
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without background suppression, is compensated for by averaging multiple label-control 

pairs. However, some volumes may be corrupted and can influence the average of the CBF 

map. The corrupted volumes are likely to be outliers of the CBF timeseries. To identify and 

remove these outlier volumes, ASLPrep implements SCORE15. The first step of SCORE is 

the detection of a small number of extreme outliers before further processing. These outliers 

are identified as CBF volumes with mean CBF in GM tissue that is greater than 2.5 times the 

standard deviation of the mean GM CBF. In the second step, each remaining CBF volume 

is compared to average CBF maps to detect noise in these volumes. The variability of CBF 

values in the three tissue types, GM, WM and CSF, is calculated. Then, CBF volumes with 

high variance of CBF values in the three anatomical tissues are flagged as outliers. In each 

step, outliers are identified and the remaining CBF volumes are averaged. The variance of 

averaged CBF in the three anatomical tissue classes is then compared with the previous 

iteration. The procedure is repeated while the CBF variance in anatomical tissues is lower 

than those previous iterations. In the last iteration, all outlier volumes are discarded before 

averaging the remaining CBF volumes. For further details, see ref.15

Bayesian estimation of CBF with SCRUB: while SCORE detects and removes outlier 

volumes that contribute to spatially constrained artifacts, Bayesian techniques may be used 

to improve SNR. Accordingly, ASLPrep optionally allows users to implement SCRUB18. 

SCRUB incorporates information from the structural image as a prior in a Bayesian to 

reduce noise and improve SNR. SCRUB uses an iterative reweighted least square method to 

estimate CBF inside a Bayesian framework. In this framework, the reweighted CBF at each 

voxel is comparedto the prior provided by a standard CBF based on the tissue probability 

maps from the soft segmentation of the anatomic image. A reliable CBF map is more likely 

when the CBF temporal variance is less than the mean CBF variance. If the CBF temporal 

variance is greater than the mean CBF variance, a higher weight is assigned to the previous 

term. For further details regarding SCRUB, see ref.18.

Stream 2: CBF computation with BASIL ± partial volume correction.—CBF 

computation with BASIL: ASLPrep includes the ability to compute CBF using BASIL17. 

BASIL was originally developed for CBF computation of multi-PLDs data, but it also 

can be used with single PLD data. BASIL uses a fast Bayesian inference method for the 

kinetic model inversion and includes perfusion estimation and associated variables, such as 

arterial transit time. BASIL also allows for the inclusion of the variability of other model 

parameters, such as relaxation timesfor tissue and blood, as well as labeling durations. After 

CBF computation, BASIL applies a Gaussian process based before computed CBF maps for 

adaptive spatial regularization43. For further details regarding BASIL, see ref.17.

Partial volume correction with BASIL: the low spatial resolution is a limitation of ASL 

and leads to partial volume effects5. Partial volume effects occur when voxels near the 

boundary between different tissue types (for example, GM and WM) contain a mixture of 

the respective tissues. As a result, a given voxel may have apparently lower CBF due to the 

greater proportion of WM at that location. Partial volume effects are particularly relevant 

in ASL data, where the ASL signal intensity at each voxel represents mixtures of signals 

from GM and WM (CSF perfusion is assumed to be zero). Partial volume effects can be 

accounted for using partial volume correction. High-resolution GM and WM probability 
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maps from T1 segmentation are transformed into the low-resolution space of the ASL data, 

allowing the relative mix of GM and WM at each ASL voxel to be estimated. BASIL uses 

these data in conjunction with adaptive spatial regularization to yield PVC CBF maps for 

both GM and WM. For further details, see ref.44.

Measures for quality control.

ASLPrep generates a rich set of indices to assist in the quality control process. Because 

many errors of image processing result from problems with image registration, ASLPrep 

calculates measures that assess the quality of both co-registration of the ASL to the T1w 

image, as well as normalization of the T1w image to the specified template. Specifically, 

ASLPrep calculates the mask overlap, spatial correlation, Dice coefficient and Jaccard index 

for each step of registration. Furthermore, ASLPrep provides several quality measures for 

the ASL timeseries, including the mean frame-wise displacement45, the root mean square 

variance of temporal derivative of CBF time courses (DVARS)46, the number of voxels 

with a negative CBF and the CBF quality evaluation index (QEI)47. QEI is a quantitative 

metric of the quality of CBF maps based on the CBF map’s similarity with the structural 

tissues, the CBF spatial variability in each tissue class (GM, WM) and the percentage of 

negative voxels in the GM mask. QEI ranges from 0 from 1, with higher values referring 

to higher quality CBF maps; previous work has established that it is an excellent proxy of 

CBF image quality47. Finally, ASLPrep calculates the ratio of CBF in the GM mask to CBF 

in the WM mask; this ratio is expected to be greater than 1. All quality indices described 

above are written to a text file (tab-separated values) for each session processed; these are 

easily concatenated across participants to facilitate rapid quality assurance of large-scale 

ASL studies.

Regional quantification.

As a final step, ASLPrep optionally quantifies the mean CBF in each parcel in each of the 

standard atlases. To do this, standard atlases are transformed to CBF native space using 

a single interpolation. The mean of CBF values of each atlas’s parcels is extracted into a 

comma-separated values (.csv) file. At present, the Harvard–Oxford48 and Schaefer49 (200 

and 400 parcel resolution) atlases50 are included.

Standard output.

Processed data are named and include metadata to conform to the proposed BIDS 

specification for derived data.

The anatomical derivatives generated by sMRIPrep are placed in each participant’s anat/ 

subfolder. The main derivatives, in T1w and template spaces, include:

1. Preprocessed T1w, brain mask and tissues segmentation mask

2. GM, WM and CSF partial volume estimates

3. Transformation files for normalization between the T1w image and the template

ASL derivatives: similarly, ASL derivatives are stored in the perf/ subfolder. Based on 

the anatomical preprocessing, users can specify one or more output spaces: native ASL, 
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T1w, and one or more standard templates (MNI, OASIS, PNC and others, as available on 

TemplateFlow31) MNI output space is the default, which is written out in the resolution of 

the original ASL image. However, users can specify as many output spaces as they want. 

The main output in any space includes:

• ASL reference volume, brain mask and preprocessed data

• CBF timeseries and mean CBF map

• Transformation files or transforms between T1w and ASL reference

• Arterial transit time image, if multiple PLDs are available

• SCORE and/or SCRUB CBF maps, if requested

• BASIL and/or PVC CBF maps, if requested

• Quality control measures summarized in a .TSV file. The quality control 

measures include mean frame-wise displacement, relative root mean square of 

motion parameters (relRMS), DVARS, registration and normalization indexes, 

mean CBF, ratio of CBFGM to CBFWM and QEI for each CBF map.

• Regional quantification of CBF according to specified atlases written in a .CSV 

file

• Confound matrix for each ASL volume in a .TSV file. The confound matrix 

includes six motion parameters, frame-wise displacement and DVARS for each 

processed ASL volume.

ASLPrep report.

ASLPrep generates a descriptive HTML report for each participant and session 

(Supplementary Fig. 1). The report begins with a summary of key parameters found by 

ASLPrep in the BIDS layout. Subsequently, it lists the key operations and processing steps 

applied to the dataset. Notably, each step includes a thorough visual assessment of the 

data, including ‘before’ versus ‘after’ animations of each step. These visualizations include 

normalization, coregistration and distortion correction. The report additionally includes a 

carpet plot of both the raw and processed image timeseries, as well as views of all CBF 

maps generated. The report details multiple quality control features, including in-scanner 

motion, QEI, coregistration and normalization quality (overlap of coverage, Dice coefficient, 

Jaccard index) and mean CBF in both GM and WM masks. Critically, the report ends 

with boilerplate methods text, which provide a clear and consistent description of all 

preprocessing steps used, provided with appropriate citations.

Application of ASLPrep to lifespan data.

Datasets and ASLPrep execution.—The general workflow (Fig. 1) was applied to 

datasets with diverse participant populations and scanning parameters. No new data were 

collected specifically for this study; all data were acquired with Institutional Review Board 

approval at their original institutions. The University of Pennsylvania Institutional Review 

Board approved the PNC, FTD and IRR studies. The AGE and NKI datasets are publicly 

available, deidentified data resources. Supplementary Table 3 describes the acquisition 
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parameters of the datasets used; Supplementary Table 4 details the main preprocessing 

operations that were automatically applied to each dataset. One dataset included both an 

ASL timeseries of control-label pairs as well as an M0 image (IRR). In contrast, three 

datasets had control-label timeseriesbut lacked an M0 image (NKI, PNC, AGE), and one 

dataset only included ΔM and M0 images (FTD). Furthermore, the acquisition types of these 

datasets were also different: PNC and NKI were acquired in 2D while the other datasets 

were acquired in 3D. All data were collected using 3 T scanners. For each study, CBF was 

quantified using four approaches: the standard CBF model, SCRUB (with SCORE denoising 

turned on), BASIL and BASIL + PVC. All ASL data outputs were resampled to MNI2009a 

with resolution of 2 mm for uniformity. The only exception to this was the FTD dataset, 

where SCRUB could not be applied as it requires an ASL timeseries.

Each set of participant data was processed using ASLPrep v.0.2.7 (ref. 50) with four 

cores and 30 GB of RAM on the CUBIC High-Performance Cluster at the University of 

Pennsylvania. Notably, the anatomical preprocessing with sMRIPrep required substantially 

more time than ASL processing (Extended Data Fig. 8). While anatomical preprocessing 

took an average of 4.5 h, the ASL processing was completed in an average of 33.5 min.

Statistical analysis

For each CBF map, the mean CBF in GM and WM masks were extracted. To do this, as 

suggested51, GM and WM probability maps derived from segmentation of the T1 image 

were transformed into native ASL space and binarized after thresholding at 70% probability; 

average CBF values were calculated in this mask in native ASL space. As part of quality 

assurance, we excluded participants with mean frame-wise displacement greater than 1 mm 

or a CBF GM to WM ratio of less than 1. The quality assurance process resulted in a sample 

of 3,383 participants used for subsequent analysis (Supplementary Table 4). CBF in GM 

and WM masks were extracted for all the CBF maps (standard CBF, SCRUB, BASIL and 

BASIL + PVC). To rigorously model both linear and nonlinear evolution of CBF over the 

lifespan, the mean GM CBF was regressed on age using a generalized additive model with 

penalized splines.

We also evaluated the degree of anatomical detail preserved by ASLPrep in comparison to 

a previously published pipeline used for data from the PNC52. Image smoothness for each 

participant across each study was evaluated in template space and compared across pipelines 

using a two-sided paired t-test.

While the alignment between PET and ASL has been established in previous reports53, we 

compared CBF as quantified using ASLPrep to CBF measured using PET. Specifically, CBF 

calculated using ASLPrep was averaged in template space across datasets and correlated 

with the [15O]water PET atlas included in Statistical Parametric Mapping (SPM). To 

account for spatial autocorrelation and nonindependence of measurements, the similarity 

of the images was assessed using BrainSmash54, a conservative permutation-based testing 

procedure that uses generative models to preserve the spatial covariance structure in the null 

distribution.
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Finally, to examine the impact of data quality on each quantification method, we examined 

the relationship between data quality (summarized by the QEI) and in-scanner motion 

(summarized by frame-wise displacement). This relationship was evaluated for each 

quantification method and each dataset. The impact of quantification method on the 

relationship between in-scanner motion and data quality was evaluated using a linear 

mixed effects model, where QEI was the outcome and frame-wise displacement, age, 

sex, quantification method and dataset were modeled as fixed effects, and participant was 

modeled as a random effect. The effect of interest was the interaction between quantification 

method and frame-wise displacement on QEI.

All code used to perform the statistical tests are available at https://pennlinc.github.io/

aslprep_paper, under the BSD-3-Clause License.

Data availability

All quantified data are available as Source Data files provided with this paper. 

Additionally, raw data are available for many of the datasets used in evaluation 

of the software, depending on the original source of the data. PNC data 

are available on dbGAP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000607.v3.p2). NKI neuroimaging data are openly availableon the 

NeuroImaging Tools and Resources Collaboratory (https://fcon_1000.projects.nitrc.org/

indi/enhanced/). AGE data are available on Open Neuro (https://openneuro.org/datasets/

ds000240/versions/00002). For the remaining datasets, we do not control the distribution of 

them, but requested can be made to the original authors. The IRR dataset will be released 

publicly; at present, it is available on request from the corresponding author. Access to the 

FTD dataset is governed by the ALLFTD Consortium.

Code availability

ASLPrep is available under the BSD-3-clause license at https://github.com/pennlinc/aslprep. 

Docker images corresponding to every new release of ASLPrep are automatically 

generated and made available on Docker Hub (https://hub.docker.com/r/pennlinc/aslprep). 

All code used to perform the statistical tests are available at: https://pennlinc.github.io/

aslprep_paper, under the BSD-3-Clause License. Software documentation is available 

at https://aslprep.readthedocs.io. ASLPrep code is also available through Zenodo: https://

doi.org/10.5281/zenodo.4815777 (ref. 55) and as part of a Code Ocean compute capsule: 

https://doi.org/10.24433/CO.7220174.v1 (ref. 56).
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Extended Data

Extended Data Fig. 1. Exemplar data for each dataset and CBF quantification method.
A single participant from each dataset is shown (in MNI space), with CBF quantified 

using each of four methods. SCRUB could not be applied for the FTD dataset as an ASL 

timeseries is required; the sequence used for that study provided only a ΔM image.
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Extended Data Fig. 2. Mean cerebral blood flow maps for each dataset and quantification 
method.
CBF quantification for each dataset using the four methods supported by ASLPrep. An axial 

slice (z = 0) of the mean CBF image for each dataset is displayed (in MNI space) for 

each quantification method. SCRUB could not be applied for the FTD dataset as an ASL 

timeseries is required; the sequence used for that study provided only a single ΔM image.
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Extended Data Fig. 3. Image smoothness from a legacy pipeline and ASLPrep.
a) Comparison of CBF quantified with ASLPrep and a previously published pipeline used 

for the PNC; both pipelines implemented the standard kinetic model. Image smoothness 

in template space differed between ASLPrep and the previous pipeline (two-sided t-test; 

t(1,480) = 252.58, p < 1 × 10−16). b) Across-dataset average image.
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Extended Data Fig. 4. CBF quantified using ASLPrep aligns with a commonly used PET atlas.
a) CBF quantified using ASLPrep (averaged across datasets) aligned with CBF from a 

commonly used PET atlas included in SPM, where CBF was measured using [15O]water 

PET (Pearson r = 0.60). b) Assessment of the similarity of the images using a null 

distribution (comparison with a Brainsmash null p = 0.0001; panel b).
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Extended Data Fig. 5. Bayesian methods mitigate impact of in-scanner motion on CBF image 
quality.
Impact of motion on the CBF image quality as assessed by the Quality Evaluation Index. 

The impact of motion on quality differed significantly among quantification approaches 

(linear mixed effects model, F = 228.09, p = 1.0 × 10−25). The envelope indicates the 95% 

confidence interval.

Extended Data Fig. 6. CBF of gray and white matter across datasets.
The distribution of cerebral blood flow (CBF) within grey matter (GM) and white matter 

(WM) is displayed for each dataset, for each quantification option: the standard CBF model, 

BASIL (a), BASIL with partial volume correction (PVC; b), and SCRUB (c). SCRUB could 
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not be applied for the FTD dataset as an ASL timeseries is required; the sequence used 

for that study provided only a single ΔM image. Boxes within each violin plot indicate 

interquartile range with the median shown as a white dot.

Extended Data Fig. 7. CBF declines nonlinearly with age over the lifespan.
Evolution of gray matter CBF with age over the lifespan across all five datasets. For each 

dataset, we used four methods for quantifying CBF: the standard CBF model (see main text), 

BASIL (a), BASIL with partial volume correction (PVC; b), and SCRUB (c). We used a 

generalized additive model with penalized splines to characterize the nonlinear evolution of 

CBF over age. The thick black line represents the predicted values, while the dashed lines 

represent the 95% confidence intervals.
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Extended Data Fig. 8. Compute time for ASLPrep.
Distribution of compute time for each dataset, separated by ASL processing and anatomic 

processing (which relies upon sMRIPrep). Anatomic preprocessing always required a longer 

duration, with ASL preprocessing and CBF computation requiring less than 70 minutes in 

all datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Overview of ASLPrep.
Input data to ASLPrep includes ASL images, anatomical (T1 weighted) images and 

(optionally) M0 reference images. Anatomical preprocessing is executed using standard 

tools (as implemented in sMRIPrep); ASL image processing includes both preprocessing 

and CBF computation.
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Fig. 2: ASLPrep quantifies CBF across sequences, scanners and the lifespan.
a, CBF in GM and WM for each dataset. Boxes in each violin plot indicate interquartile 

range with the median shown as a white dot. b, GM CBF across the lifespan. The thick 

black line represents the predicted values from a generalized additive model; the dashed 

lines indicate the 95% confidence interval (R2 = 0.57; P = 1.1 × 10−16).
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