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ABSTRACT OF THE DISSERTATION

Discovery, biosynthesis and evolutionary history of sioxanthin, a novel glycosylated
carotenoid from marine bacteria Salinispora

Taylor Kristen Stratton Richter
Doctor of Philosophy in Marine Biology
University of California, San Diego, 2014

Professor Bradley Moore, Chair

Members of the marine actinomycete genus Salinispora constitutively produce
an orange pigment during vegetative growth. Investigations into the genome
sequences identified putative carotenoid biosynthetic genes in four regions of the
genome. Gene inactivation experiments in S. tropica CNB-440 confirmed that these
four regions, consisting of two gene clusters and two independent genes, contribute to

the production of a single carotenoid that is responsible for Salinispora pigmentation.
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This distributed biosynthetic genome arrangement is unusual among literature about
bacterial carotenogenesis and is counter to what is understood about the genome
organization of secondary metabolites. Isolation and purification of carotenoids from S.
tropica enabled the structural elucidation of the compound responsible for orange
pigmentation. The compound is a novel carotenoid (2°S)-1’-(B-D-glucopyranosyloxy)-
3’,4’-didehydro-1°,2’-dihydro-,y-caroten-2’-ol, which has been given the trivial name
“sioxanthin”. Sioxanthin is a C4g carotenoid, glycosylated on one end of the molecule
and containing an aryl functional group on the other end. Glycosylation is unusual
among the actinomycetes and sioxanthin represents a poorly studied group of
carotenoids which are polar on one end and non-polar on the other. The addition of a
hydroxyl group on the 2’-carbon was not predicted by bioinformatics and has not yet
been identified in Salinispora. Gene sequence homology predicts that the sioxanthin
biosynthetic pathway is present in all of the Salinispora as well as other members of the
family Micromonosporaceae including the genera Micromonopsora, Verrucosispora,
and Actinoplanes. Additionally, investigations of clustering of carotenoid biosynthetic
genes in heterotrophic bacteria showed that a non-clustered genome arrangement is
more common than the literature suggests, with nearly half of the investigated genomes
showing a non-clustered architecture. The sioxanthin evolutionary history was explored
via character trees that predicted the ancestral traits for each region of the pathway.
These indicate that genes responsible for cyclization, isomerization, and glycosylation
were horizontally acquired more recently in Micromonosporaceae evolution than the
rest of the pathway. Comparisons of gene and species trees confirm that each of these

acquisitions were from separate bacterial groups. It seems that the novel and unique
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carotenoid, sioxanthin, is the result of integration of carotenoid biosynthetic genes from

multiple sources.

XXiV



1 Introduction
1.1 Background information
1.1.1 Introduction to natural products

Small molecules are the tool set through which living organisms detect, interact
with, and adapt to each other and their surrounding environment. These chemical
compounds are found all throughout nature and are often the result of an organism’s
secondary metabolism. Unlike primary metabolism, which includes universal life
processes (the buildup and breakdown of cellular machinery, ATP production,
respiration, etc.) and regulates basic cell function, secondary metabolism is typically
organism-specific and serves ecological or adaptive functions*. While the biological
function for most such compounds remains a mystery, many have been implicated in
roles including feeding deterrents, quorum sensing molecules, defense mechanisms,
settling cues, and nutrient scavenging, among others™?.

Humans have a long history of exploiting bioactive natural products for
medicinal purposes, from the medicinal plants of ancient healers, to current drugs which
rely on modern chemical techniques to isolate pure compounds from natural sources®.
The earliest compounds used in medicine came from plants and included compounds
such as salicylic acid (1) and quinine (2), both still in use today as a pain reliever and
anti-malarial, respectively® (Figure 1.1:). Since the discovery of penicillin (3), the
scientific world has also been looking to microbes as sources of novel bioactive
molecules® (Figure 1.1). From 1981-2010, 30% of FDA approved drugs were derived
from natural products and target maladies such as infectious disease, parasites, cancer,

and inflammation, to name a few*. Bacteria, which are responsible for producing



approximately 10% of known bioactive natural products, are a growing source of novel

chemistry®,
o] OH
S
OH —‘/
Y
J=o
HO
salicylic acid (1) quinine (2) penicillin G (3)

Figure 1.1: Early known natural products with profound biological properties still in use today.

Bacteria are the planet’s oldest life forms and inhabit every possible
environmental niche>®. This vast range of adaptive capabilities is often reflected in the
structural diversity of bacterially-derived natural products. Natural product structural
classes from bacteria include ribosomally and non-ribosomally produced peptides,
modified amino acids, polyketides, terpenoids, glycosides, alkaloids, and structures that
combine multiple classes’. Among the most prolific of microbial natural product
producers are the actinomycetes, responsible for 45% of microbially-derived bioactive
natural products®.

The bacterial order Actinomycetales (phylum Actinobacteria) is a
morphologically diverse group of filamentous, high G+C bacteria with an
unprecedented capacity for natural product biosynthesis®. Of the 110 actinomycete
genera, considerable novel chemistry has been discovered in the genus Streptomyces®.
Indeed, a majority of natural product-derived antibiotics used in medicine, in addition to
antifungal, anticancer, anti-parasitic, and anti-inflammatory compounds are from

Streptomyces strains”. Though long believed to be only soil-dwelling bacteria, this
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genus of over 900 species is now known to inhabit a diverse array of habitats, including
deserts, deep sea sediments, and as symbionts of multicellular organisms®.
Investigations into the chemistry of bacteria in these diverse environments, particularly
the marine environment, has increased in recent years as the spread of antibiotic
resistance calls for the discovery of novel compound classes®.

1.1.2 Natural products in the marine environment

The ocean covers greater than 70% of the Earth’s surface, making it home to a
wide variety of bacteria in underexplored marine habitats that require unique secondary
metabolic adaptations. Access to these new habitats has led to the discovery of novel
chemistry from a host of marine organisms, including marine actinomycetes™.
Actinomycetes from the marine environment are the source of a diverse set of
compound classes that contain unique structural features and novel bioactivities (Figure
1.2; Table 1.1)*". Halogenated molecules, for example, are more common in the
organohalogen-rich marine environment than in terrestrial environments and are known
to modulate the bioactivity of many compounds®?,

As actinomycetes are thought of as terrestrial bacteria, it was long believed that
those found in the marine environments were transients that had been washed in from
the shore as dormant spores, without actually residing in or adapted to the ocean
conditions™. However, studies have since confirmed that marine-adapted
actinomycetes not only exist, but represent a significant addition to actinomycete

diversity*®. One such addition is the genus Salinispora, the first obligate marine



actinomycete.
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Figure 1.2: Structural diversity of natural products from marine actinomycetes (see Table 1 for
information regarding activity, source and structural class)



Table 1.1: Description of the chemical and biological diversity of marine actinomycete natural
products. Numbers correspond to structures in Figure 1.2

Compound Chemical class  Activity Isolate genus Refer
ence
4 AbyssomycinC  Polycyclic Antibacterial Verrucosispora u
polyketide
5 Diazepinomicin  Farnesylated Anticancer Micromonospora 1
dibenzodiazepin
one
6 Lynamycin B Bisindole Antibacterial Marinispora 1o
pyrrole
7 Marinopyrrole B Bispyrrole Antibacterial Streptomyces v
8 Dermacozine A  Phenazine Cytotoxic, radical Dermacoccus 18
scavenging
9  Proximicin A Aminofuran Cytostatic Verrucosispora 19
10 Salinamide A Bicyclic Antiinflammatory  Streptomyces 20
depsipeptide

* Adapted from Zotchev 2012
1.1.3 Introduction to the Salinispora and their secondary metabolism

The Salinispora were first identified in sediment samples from the Bahamas in
1991%, and in the years since have been identified in tropical, sub-tropical, and
temperate ocean sediments from around the world**?*, The genus contains three
formally described species, S. arenicola, S. tropica, and S. pacifica®®*. The species are
closely related with a 16S rRNA sequence identity greater than 99% and are
morphologically indistinguishable with the same orange-pigmented filamentous growth
and black spore formation®*%.

The most distinguishing feature of these closely-related Salinispora species is
their secondary metabolism. Studies of natural products in Salinispora have identified
not only a wealth of bioactive compounds, but a species-specific distribution of
metabolites (Figure 1.3: Selection of compounds isolated from each species of Salinispora. Star
indicates that the compound is known only in Salinispora 22%-%)?®  The most promising drug

candidate of the Salinispora natural products discovered to date, salinosporamide A

(11), was found in S. tropica, although a structural analog, termed salinosporamide K
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(12), has been identified in S. pacifica®”?. Salinosporamide A is a proteasome inhibitor
and has undergone phase I human clinical trials for cancer®, including multiple
myeloma, and is predicted to serve as a feeding deterrent in nature. S. tropica is host to
seven pathways common throughout the species including the enediyene sporolide A
(12) and the polyketide salinilactam A (14) (Figure 1.3)*%%*! S arenicola has thus far
been the most prolific natural product producer among the Salinispora species with an
average genome size 300kb larger and containing four more operational biosynthetic
units (groups of pathways thought to produce related compounds) than the other two
species®. Like S. tropica, S. arenicola species host seven pathways found in all
members of the species, in addition to several that are unique to S. arenicola?®3%%,
Though, S. pacifica has only one species specific pathway that is common throughout
the species, it is the most chemically diverse species, with several pathways found only
in a few strains, including cyanosporaside (23), salinispyrone (22), and the

pacificanones (24)%°%.
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Figure 1.3: Selection of compounds isolated from each species of Salinispora. Star indicates that the
compound is known only in Salinispora 223313

Although pathway diversity more closely follows phylogeny, each species’
secondary metabolic capabilities do correlate with their individual biogeographic range,
thereby suggesting a role for secondary metabolites in an organism’s ability to expand
into new habitats or adapt to a variety of niches. S. arenicola which produces the
greatest number and structural diversity of secondary metabolites also has the most
cosmopolitan distribution®%. S. tropica, on the other hand, has the smallest chemical
arsenal as well as the most limited geographic range, having only been found in the
Bahamas and the Sea of Cortez?>*. S. pacifica has been found globally in sites where
S. tropica is absent and, like S. arenicola, has a large, diverse suite of chemical

capabilities®®.



1.1.4 Genome sequencing reveals untapped potential and secondary metabolic
diversity of the Salinispora

Sequenced genomes are available for all three species (two closed and 86 draft
genomes), and, along with the biogeography and chemical studies, have provided
valuable insight into the diversity of these bacteria. Despite having higher than average
sequence identity of individual genes, DNA hybridization across genomes is well below
the 70% cutoff used to classify bacteria as a single species®. Much of the sequence
divergence is localized to genomic islands®, which are hot spots for horizontal gene
transfer and accumulation of secondary metabolic gene clusters. These genome
sequences have demonstrated the huge biosynthetic potential that remains untapped in
Salinispora. This group of bacteria dedicates approximately 10% of their genome to
secondary metabolism biosynthetic gene pathways, a higher proportion than even some
of the most prolific terrestrial Streptomyces®’. Bioinformatic analyses of genome
sequences allows for a genome “mining” approach, in which pathways can be used to
predict a compound of interest and targeted for investigation prior to chemical analyses
such as bioactivity guided isolation, thus streamlining the hunt for novel chemistry®’. In
S. tropica, for example, genome analysis predicted the structures of lymphostin (13) and
salinilactam A (14), prior to their chemical isolation and identification®".

The availability of genome sequences has exposed secondary metabolic
potential that was overlooked by traditional chemical methods. Bioinformatic analyses
of 75 Salinispora genome sequences have identified 124 polyketide (PKS) and
nonribosomal peptide (NRPS) type pathways, though only nine have been formally

linked to a secondary metabolite, showing a huge untapped chemical potential®.



Furthermore, rarefaction curves of the pathway diversity suggest that the number of
potential pathways is currently being greatly underestimated®. Combining chemical
and molecular analyses with information from the Salinispora genomes provides a vital
opportunity to link metabolite structures to pathways; a necessary step to understanding
enzyme function for pathway engineering.

In addition to providing insight to the undiscovered chemistry of known
bacteria, the availability of genome sequences provide insight into the genome
arrangement and evolution of secondary metabolism. Microbial secondary metabolite
biosynthetic genes are generally organized into gene clusters in which all of the genes
of the pathway, including regulatory, resistance and transport elements are co-localized
on the same or neighboring operons™*°. This conspicuous grouping of associated genes
is such a prevalent feature of secondary metabolism that it is thought that there must be
a fitness advantage to the evolution and maintenance of this genomic organization. The
clustering of genes in a single pathway is proposed to improve coordination during
horizontal gene transfer, regulation efficiency, shorter diffusion times for proteins
finding their targets and forming complexes, and limits the probability of loss of

function due to mutation®-°

. Itis likely a combination of these factors that create the
pattern of gene clustering common in bacterial secondary metabolism.

This genome organization is the basis of current genome mining and pathway
prediction models (such as antiSMASH)*°. Bacterial pathways that do not conform to
the standard single gene cluster model remain challenging to interpret, making

structural predictions for the product compound difficult. Indeed, some pathways are so

refractory that they may be overlooked all together.
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In Salinispora, gene clusters are proposed to have arisen as the result of frequent
horizontal gene transfer. A recent study has shown that only five pathways were
present in the common ancestor of Salinispora, with only two of them shared with the
closely related genus Micromonospora®. This observation suggests that the remaining
96% of the pathways in the genus were acquired via horizontal gene transfer. Genomic
islands, regions of the genome rich in secondary metabolic pathways, are home to
mobile genetic elements, which may influence the transfer of pathways found in the
region and provide further evidence of horizontal gene transfer in the acquisition of
secondary metabolite pathways**.
1.1.5 Salinispora pigmentation and introduction to carotenoids

Despite all of the emphasis on Salinispora secondary metabolic diversity, there
are several pathways that are shared throughout the genus. Surprisingly, some of these
ubiquitous molecules still lack chemical characterization, including the compounds
responsible for pigmentation. Orange pigmentation in bacteria, such as other
actinomycetes, is primarily due to the accumulation of carotenoids. Carotenoids are
highly conjugated, linear tetraterpenoids responsible for the majority of yellow, orange,
and red pigmentation seen in all three domains of life*!. Over 750 carotenoid structures

have been identified in nature and they share a linear, conjugated backbone and a

common biosynthesis ** (Figure 1.4).
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Figure 1.4: Selection of carotenoids in nature and the organisms in which they are found.

The early steps involved in the formation of these molecules are conserved,
though evolution has resulted in enzyme sequence divergence as well as diversity in the

later steps of carotenoid modification*'. As shown in Scheme 1.1, carotenoids are built
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from the linear condensation of isoprene units, derived from primary metabolism, as is
true in other terpene biosynthesis****. The first dedicated step in carotenoid
biosynthesis is the tail-tail condensation of these chains*. Most often, it is of two
molecules of geranylgeranyl pyrophosphate (GGPP 35), resulting in the production of
phytoene (36). Dehydrogenation of the chain produces the chromophore, characteristic
of carotenoids. This long chain of unsaturated carbon bonds results in a cloud of
delocalized electrons across the molecule that are easily excited (resulting in
pigmentation) or can be donated to quench oxidized molecules (making a carotenoid a
good antioxidant)®®. Further modifications on either end of the molecule give rise to the
structural diversity seen in nature. Carotenoids fall into two general categories:
carotenes, which are purely hydrocarbon, and xanthophylls, which have oxygen-
containing functional groups*’. Bacterial carotenoid biosynthetic genes were first
identified in Rhodococcus capsulatus where they form a cluster*’. Similar
arrangements have been found throughout bacteria, where clustering is the common

arrangement except in the cyanobacteria®’.



13

Isopenyl
diphosphate
isomerase
—> A
IPP (30) DMAPP (31)
/Polyprenyl synthetase
N N
GPP (32)
Polyprenyl synthetase
l Squalene
synthase
A A N
A A NGPats0, AN X A
FPP (33) Squalene (34)
l Polyprenyl synthetase
N N N o0
GGPP (35)
l Phytoene synthase
A A A X X X X X
Phytoene (36)
l Phytoene dehydrogenase
A A N Ve Y N X X X SN
Phytofluene (37)
Phytoene dehydrogenase
X XX X X X X
Tetrahydrolycopene (38)
l Phytoene dehydrogenase
A Ve Yo Yo Yo Y N X X X XN X \ v
Neurosporene (39) Further
Phytoene dehydrogenase modifications
produce
over 700 known
N A Y Y0 Yo Yo Ve S e SN \/ carotenoid
Lycopene (40) structures
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geranylgeranyl pyrophosphate (GGPP).
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Carotenoid biosynthesis occurs in every branch of the tree of life, with the
exception of animals where carotenoids are introduced by diet. Perhaps the most well-
known role for carotenoids is in photosynthetic organisms. Plants and photosynthetic
fungi and bacteria use carotenoids as accessory pigments in their light harvesting
centers®. Carotenoids, which absorb light in the 420-550 nm range, partially fill in the
gap in the visible light range that is missed by chlorophyll, thus expanding the
wavelengths of light that photosynthetic organisms can utilize for energy production®®.
Additionally, carotenoids dissipate excess light, thereby protecting the light-harvesting
complex from DNA and tissue damage due to UV irradiation*®. Their biological
function in non-phototrophic microorganisms is less obvious, though several functions
have been reported for carotenoids in these organisms. The protective functions of
carotenoids fall in to two basic categories: oxidative stress relief and membrane
stability. As powerful antioxidants, carotenoid biosynthesis has been shown to increase
in response to the presence of activated oxygen species directly*. In nature, this
response has been seen in high copper concentration®, light>** and biofilm
formation®, each of which acts as a means of reactive oxygen species formation.
Carotenoids are localized to cell membranes, where they can increase or decrease
membrane fluidity depending on the polarity of their functional groups™. This has been
shown in nature where pigmented bacteria are better able to withstand temperature
extremes of polar and hot spring regions through the membrane modifying effects of
carotenoids>®>’. These molecules are able to exert both oxidative stress and membrane
stability functions simultaneously. Expression of carotenoids in Lactococcus lactis

improved its multi-stress tolerance, increasing its resistance to oxidative stressors
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(hydrogen peroxide and low pH) as well as membrane destabilizers (bile and
lysozyme)>®.

Carotenoids are also important contributors to industry, human health and
nutrition due to their pigmentation and antioxidative properties. As a natural product,
carotenoids represented a $1.2 USD billion market in 2010, with isolated compounds
being used in everything from food colorants to supplements in the prevention of cancer
and macular degeneration®®. Carotenoids serve as virulence factors in pathogenic
microbes such as Staphylococcus aureus, where the production of carotenoids makes
them less susceptible to neutrophil killing, and have been implicated in suppressing the
human immune system®. These compounds also enable Enterococcus species to persist
longer in the environment by protecting against photoinactivation®’. Better
understanding of the biosynthesis and biological functions of carotenoids can have an
impact on human health in addition to the food industry.

1.1.5 New insights from this dissertation

In this dissertation, the biosynthesis, structure and evolutionary history of
sioxanthin, a novel carotenoid identified in Salinispora will be discussed. Using
bioinformatics predictions and gene inactivation experiments, a biosynthetic pathway
was uncovered in an unusual non-clustered arrangement that involves at least four
separate regions of the genome contributing genes to the biosynthesis of a single
molecule (see Chapter 2). This molecule is a novel, glycosylated carotenoid, which
shares structural elements of other actinomycete carotenoids (see Chapter 3). Finally,
by examining the phylogenetics of the biosynthetic pathway and exploring carotenoid

biosynthesis in other bacteria, the evolution of this novel compound and the prevalence
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of gene clustering in microbial carotenoid biosynthesis can be discussed (see Chapter
4). This work will lay the foundation for exploring the function of carotenoids in
Salinispora in addition to expanding the understanding of genomic arrangement of

secondary metabolite biosynthetic genes.
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2 ldentification of carotenoid biosynthetic genes in Salinispora
2.1 Introduction
2.1.1 Pigments are a characteristic feature of Salinispora

Despite their differences in chemotype, the three species of Salinispora are
morphologically indistinguishable®?. This is due, in a large part, to pigmentation,
which is visibly similar across species. Throughout vegetative growth, Salinispora are
bright orange in color! (Figure 2.1). Then, as the culture ages, a black pigment is
formed during sporulation® (Figure 2.1). The pigmentation schema is consistent for
both solid and liquid cultures of various nutrient regimens, in both light and dark
growth conditions. This observation led to the understanding that the orange pigment is

not growth condition dependent and is constitutively expressed.

Figure 2.1: Growth of S. tropica CNB-440 showing the orange vegetative pigment and the
development of black spores over time. Photos show growth at day 6, day 9, and day 18.

A growth stage pigment duality is not uncommon among the actinomycetes.
Bacteria of the genus Streptomyces, for example, are known producers of a gray spore
pigment®™. Though a full structure has never been determined, the PKS-derived
biosynthesis has been well studied. The Salinispora gene cluster (strop2486-strop2510)
putatively responsible for spore pigmentation is homologous to that of the whiE locus
from Streptomyces coelicolor A3(2), with additional genes for further modification.

Similarly, many other actinomycetes, including Streptomyces, produce yellow, orange,
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and red pigments during vegetative growth®®. These colors are the result of carotenoid
accumulation and are induced by exposure to light®**.

Presumably, the distinctive orange pigmentation in Salinispora is likewise due,
at least in part, to the accumulation of carotenoids. In addition to the production of
carotenoids in related bacteria, further support for the hypothesis is provided by
identification of carotenoid biosynthesis gene homologs in the Salinispora genome®?.
2.1.2 Carotenoid biosynthesis is highly conserved

Carotenoid production is common throughout nature, with all three domains of
life possessing versions of the biosynthetic pathway. As described in section 1.1.5, the
early steps in carotenoid biosynthesis are highly conserved, with bacteria utilizing
isoprene units derived from the non-mevalonate (MEP) pathway™*** to form the 40-
carbon, desaturated lycopene.

Lycopene, then, becomes the starting material for a series of further enzymatic
modifications that result in the great carotenoid diversity known in nature. These
further modifications take place on the ends of the linear molecule, preserving the long
chromophore backbone, while enabling additional structural and functional diversity.

As is common in other secondary metabolites, carotenoid biosynthetic genes in
bacteria are typically clustered together in a single region of the genome. This gene
clustering simplifies coordinated regulation of genes as well as complete transfer during
horizontal gene transfer®®.

As part of a greater effort to link biosynthetic pathways to their resultant
chemical structure, a goal of this project was to identify the biosynthetic genes

responsible for orange pigmentation in Salinispora. Investigations in to the genome
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sequences identified putative carotenoid biosynthetic genes in four regions of the
genome. Gene inactivation experiments confirmed that these four genome regions,
consisting of two gene clusters and two independent genes, contribute to the production
of a single carotenoid compound that is responsible for Salinispora pigmentation. This
distributed biosynthetic genome arrangement is unusual among bacterial
carotenogenesis and is counter to what is understood about secondary metabolic
genome organization. Furthermore, the genes identified to contribute to pigmentation
are predicted to make a glycosylated compound, making it unique in this family of
bacteria.

2.2 Results and Discussion
2.2.1 Salinispora carotenoid biosynthesis shared across species

Comparisons of carotenoid extracts from representatives of two Salinispora
species showed the same HPLC retention times and UV spectra (Figure 2.2). The UV
traces have an absorbance between 450-510 nm and a three-pronged peak, indicative of
a carotenoid. Salinispora bacteria appear to produce two major carotenoids based on
HPLC analysis, a polar compound eluting at about 3.5 min and a smaller, less polar
molecule at 5 min. The more lipophilic compound is likely a precursor to the more
polar compound, evident by the similarity in the UV spectra and the higher proportion
in S. arenicola, which has a slower growth rate than S. tropica. This result suggests that
S. tropica and S. arenicola not only produce carotenoids during vegetative growth, but
that they likely produce the same compound. Thus, this observation suggested that
genetic and chemical analyses could be focused on the faster growing species, S.

tropica, and the conclusions applied to the other species.
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Figure 2.2: HPLC and UV profiles (at 450 nm) of the crude extracts of Salinispora tropica CNB-
440 and Salinispora arenicola CNS-205.

2.2.2 ldentification of candidate carotenogenesis genes

To investigate the biosynthetic origin of orange pigmentation believed to derive
from carotenoid molecules, gene homology searches of known carotenoid biosynthetic
genes in the S. tropica CNB-440 genome were performed. Using sequences of
biochemically characterized carotenoid biosynthetic enzymes as a search query,
putative carotenogenesis genes were identified in four regions of the S. tropica genome
(Figure 2.3). Two regions had previously been identified as gene clusters terpl and
terp2 predicted to function in terpene biosynthesis'®. The remaining two regions were
individual genes located in isolation from other known terpene biosynthesis genes.

Initial screening found only carotenogenesis genes homologous to those in
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Streptomyces, and suggested the production of the carotene isorenieratene (26). HPLC
profiles of S. tropica extracts differ from isorenieratene extracts from light-induced
Streptomyces coelicolor, indicating that S. tropica does not produce isorenieratene
(Figure 2.4). The shorter retention time of the major peak in S. tropica suggests a more
polar compound, likely due to the presence of oxygen-containing functional groups. A
more comprehensive search including sequences from more distantly related bacteria

identified genes for additional modifications.

Terp2 Strop_0241
N O
Strop_2408
B crtlU

Terpl merR ipi crtl crte crtB
4437 | 4439 ] 4440 4441
Terp2

Figure 2.3: A) Map of S. tropica showing the relative locations of putative carotenoid biosynthesis
genes. B) Expansion of the regions showing gene arrangements including gene locus number. Non-
clustered genes are shown in red, terpl is in blue, and terp2 in black. Solid colored genes are those
which were successfully inactivated. Genes with letter codes are predicted to be involved in the
carotenoid biosynthetic pathway.
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Figure 2.4: HPLC profiles (450 nm) of S. tropica crude extract (red) and partially purified
isorenieratene (shown with *) from S. coelicolor (blue).

Because a non-clustered genomic arrangement of secondary metabolites is
unusual in bacteria, we investigated the conservation and arrangement of these genes in
other members of the genus. Two closed and 86 draft Salinispora genomes are
currently available covering all three species. Analysis of the carotenoid genes and
surrounding areas indicate that every strain of Salinispora had two terp clusters with
identical gene arrangement in addition to two non-clustered genes in matching gene
neighborhoods (Figure 2.5, Figure 2.6, Figure 2.7,

Figure 2.8). The identification of these genes in other species of Salinispora
demonstrates that the carotenoid biosynthesis genomic pattern, in addition to the

compound produced, is conserved throughout the genus.
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Figure 2.7: Alignments of lycopene cyclase genes and gene neighborhoods from genomes of
selected strains of S. tropica, S. arenicola, and S. pacifica showing conservation of genome
organization across species.

B-carotene desaturase

279820 284620 280820 204820
[l b

Salinispura t.r'upica cra-aao- MC 009380
264820 269820
B

41 e - 4O a4 4
Salinispora tropica CNT230 : K2610RAFT_scaffoldiodld,1d
88881 83681 78681 TaE81

63681 58681 52681 48681 436
b [ —

3 D b
K1 44 - T W a 4 < 4 4aa

Sal:.mspora arenicola CHS-205: NC_009953

289602 204602 209602 304602 303602 319602 324602 F20602 J3602
» o B D — b b DS =
4 a @& @ 4 < - Jd &ada 4 <3 41 <14
Salinispora arenicola CHRLO7 : FS830RAFT_scaffoldionns,5
~2275 -1 ~12739 ~773% ~ETEA tzsb 71 12261 17261 22361
D = Bk b O > b »
T
@l d @& 4 <A 4d <G4

Salinizpora pacifica CHT796 : BL20DRAFT_scaffold_16.17
40481 4541 SHIL 55491 G431 GSE 70491 75491 F0491 85491
ey e B 3, — B b bbb

<] a4 @@ 4@ e Jdd aEa 4 < 4 <4
Salinispora pacifica CHTS51 : CS3S0ORAFT_scaffoldiool? . 17

45649 44D 35649 F0649 25649 20649 15649 10643 Sidd 3

N . B e e CELr b Cmss p bb

4d a @y €4 @& !] 44 aEada 4 <1 4 <14
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The four regions of the genome will be discussed individually, beginning with
the terpl and terp2 gene clusters that were first identified during a survey of secondary
metabolic gene clusters in S. tropica'®.

The terpl gene cluster, the region occupied by strop3244 —strop3251, includes a
mixture of genes with high, low, and no homology to known carotenogenesis pathways.
The borders of the cluster are loosely defined by predicted gene function and previous
annotation'®*®. Two genes, strop3248 and strop3251, have high homology to genes in
the lycopene biosynthesis pathway, and are predicted to be necessary to carotenoid
biosynthesis (Table 2.1). Three other genes in this cluster have low homology to genes
involved in structural modification of lycopene, specifically in carotenoid glycosylation
(strop3246 and strop3247) and ketolation/hydroxylation (strop3244). Query sequences
for these glycosylation and ketolation/hydroxylation came from phylogenetically distant
bacteria, which could decrease the strength of homology. The other genes in the terpl
cluster had no predicted function in carotenoid biosynthesis, but were included in
further analyses as they were situated between carotenogenesis genes and, therefore,

may represent novel carotenoid biosynthetic functions.



Table 2.1: Results of BLAST analysis of the predicted S. tropica carotenogenesis genes.

Cluster Locus

Terpl 3244

3245
3246

3247

3248

3249

3250

3251
3252
3253
Terp2 4437
4438
4439

4440

4441
none 0241

none 2408

Gene annotation

Spheroidene
monooxygenase

N-acetyltransferase

Protein of unknown
function

Glycosyl transferase

Phytoene
dehydrogenase

Alcohol phosphatidyl
transferase

5,10- methylene
tetrahydrofolate
reductase

Polyprenyl synthetase

Hypothetical protein
Protein kinase
Regulatory protein

Isopentyl diphosphate
isomerase

Phytoene
dehydrogenase

Polyprenyl synthetase

Phytoene synthase
Amine oxidase

Lycopene cyclase

Predicted
carotenoid
function
crtA

none
cruf

cruC
crtl

crtD

none
none

crte
none
none
merR
ipi
crtl

crte

crtB
crtU

crty

Genome

Rhodobacter
sphaeroides

Meiothermus ruber

Meiothermus ruber

Streptomyces griseus
Meiothermus ruber

Streptomyces griseus

Frankia sp. Eullc
Nocardia brasiliensis

Streptomyces griseus

Streptomyces griseus

Frankia sp. Eullc
Pseudonocardia
dioxanivorans

Streptomyces
avermitilis

32

%
identity

33%

36%
42%

31%
33%

42%

58%

66%

54%

43%

50%
51%

47%

The terp2 gene cluster comprises five genes, strop4437--strop4441, all of which

have a predicted role in carotenoid biosynthesis. The cluster borders are well defined™?

and are bounded by tRNA genes on one side, while the other side was determined by

the loss of synteny when compared to other Salinispora genomes. The terp2 cluster is
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comprised entirely of predicted carotenoid biosynthesis genes (Table 2.1). These genes
are homologous to those involved in the early dedicated steps of carotenoid biosynthesis
(Scheme 1.1), including the merR regulatory gene, common in these pathways™. Both
terp clusters contain polyprenyl synthetase and phytoene dehydrogenase genes.
Interestingly, among the predicted carotenogenesis genes, only the terp2 cluster is
located within a Salinispora genomic island*.

Two additional predicted carotenogenesis genes were found elsewhere in the
genome, independent of other related genes. These genes, strop2408 and strop0241, are
homologous to genes involved in lycopene cyclization and -carotene
desaturation/methylation, respectively. These genes are immediately surrounded by
hypothetical genes, as well as those involved in protein biosynthesis/modification.

2.2.3 Inactivation of predicted genes and analysis of mutant phenotypes

As bacterial carotenoid biosynthetic genes are typically clustered based on the
literature, the identification of non-clustered genes in multiple regions of the genome
was unexpected. Their presence, however, was not necessarily indicative of their
involvement in the pathway. In order to confirm the biosynthetic pathway of the
Salinispora pigment, the predicted carotenogenesis genes were inactivated by PCR-
directed mutagenesis in which the gene of interest was replaced with a gene encoding

antibiotic resistance®’®

and the resultant mutants analyzed for altered phenotypes.
Both the terpl and terp2 clusters contain genes with predicted roles in lycopene
biosynthesis. This isoprene, which is derived from the head-to-head condensation of

two geranylgeranyl pyrophophtate (GGPP) molecules serves as the central precursor to

the majority of carotenoids. Thus, phytoene synthase (strop4441), in terp2, and
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polyprenyl synthetases (strop4440 and strop3251), in both loci, were genetically
inactivated, and extracts of the mutants were analyzed by HPLC. Inactivation of
strop4441 revealed a complete loss of orange pigmentation as demonstrated by both the
visible phenotype, as well as the absence of compounds from the HPLC trace at 450 nm
(Figure 2.9). The genetic interrogation of the two polyprenyl synthetases that share
67% sequence identity revealed that just the strop4440 homolog in terp2 is associated
with visible carotenoid pigmentation as the strop3251 knowckout mutant showed no
alteration from the wild-type. These observations suggest that the terp2 locus is largely
responsible for the biosynthesis of carotenoid precursors in Salinispora. Further, these
experiments demonstrate for the first time that carotenoids alone are responsible for

vegetative pigmentation in these bacteria.
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Figure 2.9: Results of gene inactivation experiments showing gene locus, predicted biosynthetic
role, HPLC trace and photo of carotenoid mutant colonies. Vertical blue bar shows retention time of
wild-type peak. Mutations that altered carotenoid production are highlighted in bold and are shown
in the photographs. * shows major mutant carotenoid compound targeted for further investigation in Chapter

3.

The remainder of the genes in the terpl cluster were similarly interrogated to

determine their roles in the biosynthetic pathway. Of the eight genes investigated in the

strop3244—strop3251 locus, carotenoid extracts of three gene knockout mutants

showed compounds at different HPLC retention times and, in some cases, with different

UV spectra than the wild-type (Figure 2.9). These observations indicate that although

the mutants continue to synthesize carotenoids, the molecules produced are different

from the two wild-type carotenoids, thereby confirming a role for these genes in the

biosynthesis. These genes include a hydratase (strop3246) which is predicted to serve
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as an attachment site for a glycosyl residue via the glycosyl transferase (strop3247).
The strop3248 is predicted to be a carotenoid desaturase. Since bacteria mutated at this
gene were still pigmented, strop3248 cannot be the phytoene dehydrogenase found in
lycopene biosynthesis. This role is predicted to be encoded by strop4439 (in terp2),
which is was not interrogated genetically, but is the only other S. tropica CNS-440 gene
predicted to perform this function. Thus, the strop3248 likely results in an additional
desaturation. The remaining genes in the cluster did not alter Salinispora pigmentation
when inactivated and were deemed unnecessary to the primary pathway under native
growth conditions.

One of these genes, strop3244, has homology (57% identity) to the known
carotenoid gene crtA which is responsible for the 2’ addition of either a hydroxyl or
keto group. Three additional genes in the cluster (strop3245, strop3249, and strop3250)
had no predicted role in carotenoid biosynthesis and inactivation of two (strop3245 and
strop3249) confirmed that they are not utilized. At this point, the functions of
strop3245 and strop3249 in Salinispora metabolism are undetermined. No successful
deletion could be created in the strop3250 gene and thus its function in carotenoid
biosynthesis is not confirmed. This gene is annotated as a 5,10-
methylenetetrahydrofolate reductase, and homologs in Streptomyces are involved in the
met pathway responsible for methionine biosynthesis™. Inactivation of genes in these
pathways are often lethal or result in spontaneous reversion/mutation to the wild-type
phenotype’®. This observation may explain why it was not possible to obtain genetic

mutants in this region despite several attempts.
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Extracts of the non-clustered gene (strop0241 and strop2408) mutants also
showed an altered HPLC profile (Figure 2.9), suggesting their potential for participating
in modification of the Salinispora carotenoid. In addition to the HPLC evidence, the
strop2408 deletion mutant had a visibly altered phenotype with the production of pink,
rather than orange, colonies. The production of pink colonies has been shown
previously when there is a loss of function of the lycopene cyclase gene in otherwise
orange Streptomyces, thought to be due to the accumulation of lycopene instead of the
wild-type isoreneiratene?.

Gene inactivation and HPLC analysis of the resulting mutant strain extracts
confirmed the involvement of four genome regions in the biosynthesis of a single major
carotenoid. The terp2 cluster predicted to be responsible for the first dedicated steps in
carotenoid biosynthesis, building a linear, conjugated molecule from isoprene units
(Scheme 1.1). The non-clustered and terpl clustered genes then perform further
modifications. Terpl, however, appears to be a mixture of carotenoid biosynthetic
genes and others not involved in this pathway. The genes strop3244 and strop3251,
despite their homology to carotenoid biosynthetic genes, appear to be inactive, and
could either be remnants of carotenoid evolution in this bacterium or are participating in
other pathways. Loss of function in these genes, as with the other successful mutations,
resulted in no obvious changes in growth rate or phenotype other than pigmentation.
These compounds, while likely to be adaptive in nature, are not necessary for growth or
development under normal laboratory growth conditions.

To date only two examples of a non-clustered gene arrangement have been

described in bacterial carotenoid biosynthesis outside of the cyanobacteria. They were
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identified in the extremophilic Deinococcus-Thermus group (pathway has been
explored genetically in Deinococcus radiodurans and proposed via sequence homology
in Meiothermus ruber) as well as in Gemmatimonas aurantiaca a Gram-negative

2122 |n both of these cases, the

bacterium isolated from activated sludge (Figure 2.10)
biosynthetic pathway was incomplete and many of the proposed enzymes lacked

characterization.

Deinococcus radiodurans
Deinoxanthin
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Gemmatiomonas aurantiaca
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Figure 2.10: Biosynthetic pathway and resulting carotenoid in the two published examples of non-
clustered bacterial carotenoid biosynthesis. Gene color corresponds to the region of the structure it is
thought to encode??*.

2.2.4 Bioinformatic predictions of carotenoid structure

In general, carotenoid biosynthesis has been well studied and, although new
enzyme functions continue to be uncovered, much is known about the relationship
between gene sequence and function that enable us to make predictions about the

structure of the Salinispora carotenoid®* .
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As shown in Scheme 1.1, carotenoid biosynthesis is a conserved process that

begins with the condensation of isoprene units to form the longer chain molecules

farnesyl pyrophosphate (FPP, C1s product) or geranylgeranyl pyrophosphate (GGPP,

Coo product). Two molecules of either FPP or GGPP undergo a head-to-head

condensation to produce a Csp dehydrosqualene or a C4o phytoene using a

dehydrosqualene synthase or phytoene synthase, respectively. Since these synthase

enzymes are conserved, the carbon chain length of the resulting molecule can be

predicted by sequence similarity. As Figure 2.11 describes, the strop4441 encoded

synthase protein clades more closely with the phytoene synthase CrtB than it does with

the dehydrosqualene synthase CrtM, suggesting that Salinispora produces a 40-carbon

carotenoid molecule (Scheme 2.1).

CrtB Mycobacterium

CrtB Streptomyces

1 L stropddd!

CrtB Synechacoceus

Crihl Staphylococcus
CrtM Lactobacillus
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Figure 2.11: Clade of strop4441 and known carotenoid synthase sequences. Enzyme products are

shown below the titles.
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Scheme 2.1: Proposed biosynthesis of S. tropica carotenoid based on predicted gene functions
showing terp2 genes in black, terpl genes in blue, and non-clustered genes in red.

The next stage in carotenoid biosynthesis is dehydrogenation of the linear
molecule, which lengthens the chromophore, enabling the carotenoid’s pigmentation
and antioxidative properties. Several desaturases are known in carotenoid biosynthesis

to be responsible for the formation of lycopene or neurosporene, as well as for further
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downstream modification steps. Three of the genes shown to be involved in Salinispora
carotenoid biosynthesis were predicted to function as desaturases (strop4439,
strop3248, and strop0241) with two (strop4439 and strop3248) annotated to perform
the same phytoene dehydrogenase step. A clade of these protein sequences with known
carotenoid desaturases, however, suggests that they have independent roles (Figure
2.12). Strop4439 clades most closely with the 4-step phytoene dehydrogenases, as is
found in lycopene biosynthesis, while strop3248 likely acts after lycopene formation in
the additional 3°,4’-desaturation (Scheme 2.1). Finally, strop0241 most closely
resembles a B-carotene desaturase/methyl transferase which is known to convert a 3-

ring to an aromatic ring (Scheme 2.1), as is found in isorenieratene.
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Figure 2.12: Clade of S. tropica desaturases and known carotenoid desaturase sequences. Enzyme

products are shown below the titles.

Thus based on the assortment of carotenoid biosynthesis genes confirmed

through mutagenesis to be involved in the construction of the Salinispora carotenoid,

we can predict its chemical structure as shown in Figure 2.13. The terp2 gene cluster

makes lycopene, a 40-carbon linear molecule with four desaturation steps. Strop2408

forms a B-ring on one side of the molecule, which is converted in to an aromatic ring by
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the desaturase/methyl transferase action of strop0241 (Scheme 2.1). On the other end
of the molecule, strop3246, a CruF-like protein adds a 1’ hydroxyl, which is
glycosylated by the strop3247 glycosyl transferase. Addtionally, the 3°,4-- linkage is
desaturated by a CrtD homolog, encoded by strop3248. This structure, if accurate,

would represent a novel carotenoid.

OH
=]

Figure 2.13: Proposed structure of the Salinispora carotenoid structure based on the predicted
functions of the genes in the pathway.

Finding evidence of carotenoid glycosylation in Salinispora was unexpected, as
glycosylated carotenoids are rare in actinomycetes. Only eight actinomycetes spread
over 6 genera are known to produce glycosylated carotenoids®, suggesting a role for
horizontal gene transfer in the evolution of these compounds. As many of these species
lack a genome sequence, little is known about their biosynthesis or the biological
function of glycosylated carotenoids.

2.3 Conclusions

Orange pigmentation in marine bacteria of the genus Salinispora is the result of
the accumulation of a carotenoid molecule, likely with a novel glycosylated structure.
The biosynthesis of this compound involves genes in four distinct regions of the
genome, involving two gene clusters and two individual genes. This scattered genomic
arrangement is unusual in bacterial secondary metabolism and particularly for

carotenoid biosynthesis. The Salinispora carotenoid gene pathway utilizes genes that
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were initially overlooked due to low homology to known carotenoid genes. This
emphasizes the need for molecular characterization of biosynthetic genes in order to
make accurate structural and biochemical predictions. The unexpected composition and
arrangement of this biosynthetic pathway pushes the boundaries of what is understood
about bacterial genome organization, specifically in regards to secondary metabolism.
This has impacts on the ability to accurately predict secondary metabolite structure as
well as pathway function. In addition, it raises questions about the roles of genomic
rearrangement and horizontal gene transfer in pathway evolution.

2.4 Materials and Methods
2.4.1 ldentification of candidate carotenoid biosynthetic genes in Salinispora

Two terpene clusters, named terpl and terp2, were previously identified in a
global analysis of secondary metabolic clusters in S. tropica, and had been predicted to
be involved in carotenoid biosynthesis-based gene annotation®. Genes in terp2,
strop3251, strop3248, and strop2408 were previously annotated as carotenoid
biosynthesis genes based on domain function, BLAST query searches of these genes
against the nr database were used to confirm homology. Additional genes were
identified via their sequence homology to known genes. Protein sequences for known
carotenoid biosynthetic genes were gathered from NCBI and used as BLASTx query
sequences against the Salinispora tropica CNB-440 and Salinispora arenicola CNS-
205 closed genomes. Query sequences came from actinomycete genomes where
possible. In the initial search, positive gene hits were those which had greater than 35%
sequence identity with more than 50% query coverage. A secondary search, concerning

genes involved in carotenoid glycosylation, had less stringent sequence identity
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requirements to accommodate the large phylogenetic distance between Salinispora and
the query-containing genome strains. Genes had to be present in both Salinispora
genomes to be considered a part of the carotenoid pathway.
2.4.2 Analysis of carotenoid biosynthetic gene synteny among Salinispora genomes
Eighty-eight Salinispora genomes are available on the Integrated Microbial
Genomes database hosted by the Joint Genome Institute®. Synteny of the carotenoid
gene clusters and neighborhoods was investigated by performing a sequence homology
search of the gene of interest against the Salinispora genomes and visually examining
the top hit and the surrounding region in the Gene Ortholog Neighborhood tool.
2.4.3 Phylogenetic trees for function prediction of the putative biosynthetic genes
Protein sequences were gathered from Genbank on NCBI from representative
phytoene/squalene synthases and carotenoid desaturases to be compared with the S.
tropica CNS-440 putative homologs (strop4441 and strop4439 vs synthases; strop3248
and strop0241 vs desaturases). Analyses were performed in the bioinformatics software
package MEGA (Molecular Evolution Genetics Analysis)*!. Sequences were aligned
using MUSCLE (Multiple Sequence Comparison by Log-Expectation)® and then used
in a maximum-likelihood tree following the default settings.
2.4.4 Bacterial strains and growth conditions
Wild-type Salinispora were grown in Al liquid (per liter: 10 g starch, 4 g yeast
extract, 2 g peptone, and 28 g Instant Ocean Marine Salts) and on solid (Al with
addition of 18 g agar/liter) media at 30°C*. Liquid cultures were grown as 50 ml
cultures in 250 ml Erlenmeyer flasks containing a spring with shaking at 200 rpm. All

bacterial cultures were grown without light. Mutant Salinispora strains were grown as
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above, but with the addition of apramycin (50 pug/ml) as a selection marker and
naladixic acid (100 pg/ml).

Escherichia coli strains were grown in LB (Luria-Bertani) broth and on solid
LB-agar media with the following antibiotics added as appropriate: carbenicillin (100
pg/ml), chloramphenicol (12.5 pg/ml), and apramycin (50 pg/ml). E. coli strains were
grown at 37°C, except for strain BW25113, which was grown at 30°C when necessary
to maintain the temperature-sensitive pKD20 plasmid.

2.4.5 Inactivation of putative carotenoid genes in Salinispora

Gene inactivation experiments were carried out in Salinispora tropica CNB-440
using PCR-directed gene mutagenesis, as previously described'’*®. Briefly, the
apramycin resistance cassette (aac(3)IV) from plJ773 was PCR amplified and extended
using tailed PCR primers (Table 2.2). The extended sequence region was homologous
to the sequence surrounding the gene of interest and provided a binding site for
recombination. The appropriate pCCFOS based fosmid and extended resistance
cassette were introduced in to E. coli BW25113/pkD20 via electroporation. The mutant
fosmid was inserted in to S. tropica CNB-440 through conjugation using E. coli S17-1.
Mutations were confirmed by colony PCR or PCR of the extracted S. tropica DNA and

sequencing of the PCR product.
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Table 2.2: Sequences of the tailed PCR primers used in the PCR-directed mutagenesis of S. tropica
genes. Apramycin resistance cassette binding site is shown in bold

Primer  Primer sequence
name
0241F TTCTCAACACCGGCATATCTCCGGCAAACTGGTGCGATGATTCCGGGGATCCGTCGACC

0241R  GGGATCGCCGGCTTCCGGTCAGTGTCCCCGGGCGAGCAGTGTAGGCTGGAGCTGCTTC
2408F CGGGGCGGCCGGTCCGGCCGGTGACCCCGACCATGGGTGATTCCGGGGATCCGTCGACC
2408R  GCTGGACGATGCAGCACCCGGCCCGGCGACGGGCGGTCATGTAGGCTGGAGCTGCTTC
3244F GACTTGTCGAACGAGCCACGCCCGGTCAACCGCCGCGCAATTCCGGGGATCCGTCGACC
3244R  CGTCCCCACCTTCGTTCCGCCGTCCGTGGTCCAGCCCAGTGTAGGCTGGAGCTGCTTC
3245F CTGGTGCGGTGGACACCGGACGACCTCGTTCGGCGGCTGATTCCGGGGATCCGTCGACC
3245R  GGGGGCTCTTCCGGAGGCGGCGGGTGGAGGGAGCGGCAGTGTAGGCTGGAGCTGCTTC
3246F CGGCCCACCGCCCTGCCGAGGCGTACCCGCCAGACCGTCATTCCGGGGATCCGTCGACC
3246R  CGGTGCCCCACTTCGTCGGGGGCCGGCGGTGAGACGTCGTGTAGGCTGGAGCTGCTTC
3247F CTGTTGCTGGCGGTGCTGGCCGGCGTGGCCGCGCTGACCATTCCGGGGATCCGTCGACC
3247R  TGCCTCCTAGACGACCGGACGGCCCCGCCAACTCAGGCGTGTAGGCTGGAGCTGCTTC
3248F GGCACACCATGGCGCGGATCGTGATCGTCGGCGCCGGGGATTCCGGGGATCCGTCGACC
3248R  ATCGCGACACCGCGGGCGGGCGTCGGCGGACCGGGCCTATGTAGGCTGGAGCTGCTTC
3249F GCCACGACACCGCGCGATCGGTGCGACGGTTGATCTGTGATTCCGGGGATCCGTCGACC
3249R  TCGCGATTCCCGTGCGCCTCCGGTGGGCCGGGAGCGTCATGTAGGCTGGAGCTGCTTC
3250F CTAGGGATAGCGGCCGTGCGCCGCTAGAGTCATGGCGTGATTCCGGGGATCCGTCGACC
3250R CGTCGCACCGATCGCGCGGTGTCGTGGCGCGTCTGGTCATGTAGGCTGGAGCTGCTTC
3251F GCACTGGCCGACTTCCTGGTGACCCGACGCGCCTGGATGATTCCGGGGATCCGTCGACC
3251R  CCCCGTCCGGTCGAGGTCTGGCCGGATGAGGCGGGGTCATGTAGGCTGGAGCTGCTTC
4440F  TCGACGCAACTTGTAACTCTAGGGTATGCTCCCCACATGATTCCGGGGATCCGTCGACC
4440R  CTGGCTACCTCCTCGAGAAAACGCGCCCATCATGCTCGCTGTAGGCTGGAGCTGCTTC
4441F GTTGCGTCGATTCATGCGTCGAATTGAGGAGGATCGGTGATTCCGGGGATCCGTCGACC
4441R  CGGTCAGCCTAGGGAAGGGCCGGGTGTGGGTGTCAACAGTGTAGGCTGGAGCTGCTTC

2.5.6 Extraction and analysis of mutant and wild-type carotenoids

Liquid cultures (50 ml) of Salinispora were harvested after 7-10 days growth by
centrifugation at 8000 rpm for 20 minutes. The media was discarded and the cell pellet
was soaked in approximately 20 ml acetone for carotenoid extraction. Acetone was
passed through a filter to remove cell debris and dried in vacuo. Extraction with
acetone was repeated until the solvent no longer gained color from the cell pellet,

approximately three times.
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Crude extracts were resuspended in acetonitrile and analyzed on an Agilent
1200 series analytical HPLC using reversed-phase conditions, detecting at 450 nm.
Extracts were analyzed on a Luna 5um C18 column 100 x 4.6 mm, with 98%
acetonitrile and 2% water under isocratic conditions. The HPLC comparing S. tropica
and S. arenicola crude extracts used a solvent system of 80% acetonitrile, 15%

methanol and 5% isopropanol isocratically on a Luna 5 um C18 150 x 4.6mm column.
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3 Characterization and structure elucidation of the novel carotenoid sioxanthin
3.1 Introduction

Carotenoid chemical structures provide valuable insight into their biosynthesis
and function. These prolific pigmented compounds have a common evolutionary
background and consist of certain common chemical features: a polyisoprenoid
construction, a long, conjugated chain at the central core, and near symmetry on either
side of the central double bond". Structural modifications on either side of the central
core contribute to the diversity of carotenoid molecules found in nature. The diversity
of structural modifications is reflective of diversity in the evolution of carotenoid
biosynthesis as well as in the functions that these molecules can play in cells’. Analysis
of carotenoid structures, however, can be difficult as these compounds are unstable in
the presence of oxygen, high temperature, acid, and light. Thus, multiple modes of
analysis are often required for identification®®. However, difficulties in separation and
identification are further compounded by the structural similarities in carotenoids and
the presence of interfering compounds®.

The key unifying feature of carotenoid molecular structures is the chromophore.
The chromophore is a conjugated linear chain and refers to the series of alternating
double and single carbon-carbon bonds that make up the core of the carotenoid
molecule. This portion of the molecule determines both the geometry and the chemical
reactivity of carotenoids'. Due to steric hindrance, carotenoids favor the all-trans
conformation, which influences their interactions with proteins and membrane
structures’. Furthermore, the conjugated system results in delocalized n-electrons that

give carotenoids their characteristic pigmentation as well as their antioxidative
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properties’. The wavelength of light absorbed is determined by the length of the
chromophore and can be measured by UV/Vis spectroscopy”. At least seven C—C
double bonds must be in conjugation in order for the molecule to be pigmented.
Increasing chromophore length makes it easier to excite the m-electrons and results in a
longer wavelength emission (shifted toward the red light end of the visible spectrum)®.
The alkene region of the chromophore can be identified by nuclear magnetic resonance
(NMR), though individual protons can sometimes to be difficult to distinguish in this
rather homogenous region.

The diversity of the carotenoid structures comes from the modifications of the
linear core including the addition of functional groups®. Carotenoids come in two basic
types: carotenes, comprised of only carbon and hydrogen, and xanthophylls, which have
oxygen-containing functional groups’. Carotenoids are generally extremely
hydrophobic molecules, though the addition of functional groups can alter the regional
polarity of the molecule®. Polarity influences how a carotenoid interacts with the
membrane and has implications for chemical analyses of these molecules such as
retention times on high-performance liquid chromatography (HPLC)®. Functional
groups also impact the UV/Vis spectra of the compound by lengthening the
chromophore or influencing the spectral fine structure® and can also determine the
amenability of the compound to ionization for mass spectrometric (MS) analyses. Gas
chromatographic (GC)-MS techniques, a favorite for analysis of nonpolar analytes, are
unsuitable for carotenoids, which degrade under high temperatures required for this
technique®. Therefore, atmospheric pressure chemical ionization (APCI) and

electrospray ionization (ESI) are the favored MS methods for carotenoid studies for
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determination of molecular mass and formula? ®. These methods have been shown to
produce a parent ion as well as characteristic fragmentations*®. However, carotenoid
ionization is often poor and can be easily overshadowed by other compounds in an
impure sample®.

Knowledge of the structural modifications is necessary to confirm the predicted
biosynthesis and to assign function. In this chapter, several analytical chemistry
techniques are combined to determine the structure of the Salinispora carotenoid. This
structure is predicted in Chapter 2 to be a novel carotenoid with both aryl and
glycosylated end groups. Structures are also determined for pathway mutants to
establish the function of each gene in the biosynthetic pathway.

3.2 Results and Discussion
3.2.1 Separation and purification of pigments from wild-type S. tropica

Carotenoids were isolated from six liters of wild-type S. tropica cultures and
purified via high performance liquid chromatography (HPLC). Considering the poor
stability of carotenoids, exposure to light, heat, and oxygen was limited. Reversed-
phase HPLC solvents were buffered with triethylamine and ammonium acetate, which
has been shown to improve carotenoid yields during HPLC purification®. Furthermore,
as the structure in Chapter 2 shows, the S. tropica structure contains a sugar residue.
Structures are also determined for pathway mutants to confirm the function of each
gene in the biosynthesis.

The reversed-phase HPLC (C18; 94.05% methanol, 5% dichloromethane, 0.05%
triethylamine, and 0.05M ammonium acetate; 3 ml/min; A=450nm) results showed a

major peak at around 21 minutes, with four other minor peaks (Figure 3.1). The minor
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peaks are likely conformational isomers, as upon isolation they re-equilibrated back to
multiple peaks. Mass spectral analysis by ESI and APCI were attempted, but no parent
ion could be identified for the carotenoid. Analysis using *H NMR showed that the
carotenoid sample was overwhelmed by impurities that were not UV-active. To remove
these impurities, the isolated carotenoid underwent a second round of HPLC
purification, this time under normal-phased (silica; 93% hexanes, 5% DCM, 2%
isopropanol; 3 ml/min; A=450nm) conditions. The major peak was isolated again
(Figure 3.2) and reanalyzed by *H NMR, which showed a single purified compound

(Figure 3.3).

Absorbance

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Time (min)

Figure 3.1: Reversed phased HPLC of the acetylated crude extract of the wild-type S. tropica. *
shows the collected peak.
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Figure 3.2: Normal phased HPLC of the peak isolated in Figure 3.1. * indicates peak that was
captured.
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Figure 3.3: '"H NMR (CD5CN; 600MHz) of the purified carotenoid from Salinispora tropica.

3.2.2. Structure elucidation of the Salinispora carotenoid

The purified compound was analyzed by electrospray ionization (ESI) and
atmospheric pressure chemical ionization (APCI) mass spectrometry (MS). Poor
ionization by ESI again resulted in no useable mass data. APCI returned an exact mass
of 937.5008 m/z (M+H)" corresponding to a molecular formula of Csg H73 012 (8 = 1.0
ppm). For further structure elucidation, the purified compound underwent
comprehensive 2-dimensional NMR analyses, including COSY (Suppl Figure 3.1),
TOCSY (Suppl Figure 3.2), ROESY (Suppl Figure 3.3), NOESY (Suppl Figure 3.4),
HSQC (Suppl Figure 3.5), and HMBC (Suppl Figure 3.6). The combined NMR data

confirmed the structure of a glycosylated, aromatic carotenoid structure as shown in
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Figure 3.4. The structure represents a novel carotenoid (2°S)-1’-(B-D-
glucopyranosyloxy)-3’,4’-didehydro-1’,2’-dihydro-¢,y-caroten-2’-ol (41), which we
named “sioxanthin”. The confirmed structure is similar to the structured predicted in
Chapter 2 with the addition of a hydroxyl group attached at the 2’ position. Structure
elucidation took place on an acetylated derivative, and resulted in structure (42) as

shown in Figure 3.5.

Figure 3.5: Penta-acetylated sioxanthin structure used in analysis and structure elucidation (42).

The *H NMR spectrum has signals in the predicted regions for a glycosylated
carotenoid. It shows methyl groups, including those from the added acetyl groups, in
the 81.0-2.5 region. The structural features on the right side of the molecule, including
the glycosyl and hydroxyl groups are located in the 63.5-6.0 region. The alkene chain is
represented in the 36-6.75 region. Far downfield, at 86.95, the aromatic ring protons

overlap. Carbon assignments were made using HMBC and HSQC data (Table 3.1).



Table 3.1: Carbon and proton NMR shifts and HMBC correlations (CDsCN, 600MHz). “x”
indicates atoms that could not be distinguished. Other missing values are due to overlapping signals
in the spectra and are indistinguishable.
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14"

8¢
134.7
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79.9
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133.9
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12.8
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95.9
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12.7

6H, mult.

6.95,d (7.6)"
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The structural features on the polar end of the molecule were clearly identified
using the 2D NMR techniques. COSY confirmed the structure of a hexose as well as
the 2’-hydroxyl and the 3°,4’-desaturation (Figure 3.6). This desaturation showed
correlations to the rest of the alkene chain, identifying the linkage between the sugar
residue and the rest of the molecule. This linkage was confirmed by TOCSY data
which identified the glycosyl group and the alkene chain as separate spin systems
(Figure 3.6). The 2’-acetylated hydroxyl and the 3,4’-desaturation were confirmed by

the COSY correlations as well as the splitting patterns in the *H NMR.

6.33
y/C;A\c\ 4.83
4.91 H

Figure 3.6: COSY and TOCSY correlations confirm the structural modifications on the right side of
the molecule. Arrows depict COSY correlations. TOCSY spin systems are shown in bold bonds.

The linkage between the glycosyl group and the alkene chain was further
confirmed through HMBC correlations (Figure 3.7). HMBC data also confirmed the
presence of a total of five acetyl groups, corresponding to the five hydroxyl functional

groups present in the molecule (Figure 3.8).
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OAc

Figure 3.7: HMBC correlations confirming the region between TOCSY spin systems, linking the
functional groups to the remainder of the molecule.
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Figure 3.8: HMBC correlations showing correlations to the carbonyl carbons in each acetyl group.

The repetitive nature of the molecule makes it difficult to confidently assign
every carbon and hydrogen atom. Though alkene and methyl groups can easily be
identified, the individual isoprene units have overlapping carbon and hydrogen shifts,
making them difficult to distinguish from one another. Comparisons to published NMR
shifts aided in the assignment™®. All methyl carbons in this region have a shift of about
012.8. The confidence in the structure of the alkene chain portion is enhanced by the
UV/Vis and MS data, which adhere to the literature describing carotenoid structures®.

The aromatic end of the compound was confirmed through the presence of
aromatic hydrogens at carbons 3(06.93) and 4 (56.95). Although these two positions are

indistinguishable, they are consistent with published NMR shifts of a 1,2,5,6-
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tetrasubstituted benzene that is a common structure element in carotenes (Figure 3.9).
The HMBC data show correlations to a methyl group carbon, referring to either carbon

17 or 18.

17b

Figure 3.9: HMBC correlations of the aromatic ring. Letter labels refer to carbons that cannot be
distinguished.

Stereochemistry of the hexose was determined through NOESY and ROESY
correlations, which identified the sugar as glucose (Figure 3.10). This identification of
glucose was unsurprising as D-glucose is the most common sugar known in bacterial

glycosylated carotenoids**.
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Figure 3.10: NOESY correlations of the sugar residue demonstrating stereochemistry.

Stereochemistry of the 2’-hydroxyl was determined through circular dichroism
(CD) of the wild-type and the strop3247 (glycosyl transferase) mutant compound. Both
compounds showed the same CD spectral patterns and determined that the hydroxyl is
in the S configuration through comparisons with previously established standards
(Figure 3.11)"%. The molecule showed little optical rotation, [a]*, = 0.0015 deg (c =
0.0008 deg; methanol). As with CD measurements, this value was compared with the
aglycone compound from the strop3247 mutant. The mutant compound had a small and
opposite rotation [a]25p =-0.0035 deg (c = 0.0008 deg, methanol). The presence of an

attached glucose may have an impact on the overall optical rotation of the molecule.
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AE

Figure 3.11: CD spectra of the carotenoid showing the chirality at the C-2°. A) The established CD
spectra for the C-2” position in similar molecules, solid line shows S configuration, dotted line shows
R configuration (adapted from Ronnenberg et al 1985 '?). B) CD spectrum of the aglycone
sioxanthin intermediate.

The UV/Vis spectrum for sioxanthin has peaks at 446, 472, and 504 nm (with a
fine structure of %l11/11 84), showing a chromophore similar to that of lycopene (Figure
3.12). Though sioxanthin has never before been described, the modifications on both
ends of the molecule are known in other carotenoids. The aromatic ring portion is
known, for example, in isorenieratene, the primary carotenoid in the Streptomyces®®,
The other end of the molecule contains a 1°glycosylation, a 2° hydroxyl, and a 3°,4°
desaturation, all of which are known in molecules such as pheixanthophyll, found in a
single strain of Mycobacterium phlei*. Sioxanthin represents the first example of all of

these carotenoid modifications taking place in a single molecule.
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Figure 3.12: UV/Vis spectrum of sioxanthin showing the characteristic carotenoid peak structure.

3.2.3 Structures of the mutant compounds

As with the wild-type extracts, extracts from the mutant bacteria (developed in
Chapter 2) were stabilized by acetylation and purified by two rounds of HPLC. In both
rounds, the major peak was isolated. Extractions and purifications of the carotenoid
mutant bacteria resulted in much lower yields. Despite using ten liters of bacterial
cultures, only the strop3247 mutant yielded enough purified material for NMR analysis.
The reason for the lower yields is unknown, but may be due to altered efficiency in
growth, production or extraction. Mutant bacteria tend to have lowered growth
efficiency due to the alteration in genotype and phenotype and, presumably the presence
of antibiotics as a selective marker. Compound production may further be impeded by
missing steps in the biosynthetic pathway. While little is known about the distribution
of enzymes in the carotenoid biosynthetic pathway beyond their localization to the
membrane, the formation of a complex in these proteins would help explain the reduced
production efficiency as one portion of the complex must be bypassed. Furthermore,
each mutant produces a modified structure with slightly altered polarity, which could

impact the efficiency of the established extraction method.



The purified mutant extracts, with the exception of the strop0241 mutant,
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provided sufficient material for high resolution mass spectrometry (HR-MS). Mutant

extracts were characterized using HR-MS, which provided a molecular formula (Table

3.2). This information, along with UV/Vis (describing the length of the chromophore)

(Table 3.2) and HPLC retention time (indicating the presence or absence of polar

functional groups) data allowed for the predicted structures (Figure 3.13). Although the

purified compounds from the strop0241 mutant were visibly orange, they had very low

yields. Masses obtained from this mutant were not consistent with carotenoid molecules

and were likely due to impurities.

Table 3.2: UV/Vis and MS data gave rise to the predicted structures of carotenoids from mutant
bacterial extracts.

Measured mass Error
Compound | Source UVv/Vis %11/ (M+H) Formula (ppm)
41 wild-type 446,472,504 | 84
42 pentacetate 937.5088 Cs6H7,015 1.0
sioxanthin
43 strop2408 mt 446, 470,502 | 89 555.4563 C4oHs550 0.5
44 strop3246 mt 440, 462,492 | 83 533.4145 CyoHs3 0.3
45 strop3247 mt 446, 472,504 | 233 607.4140 C4oH5405 1.8
46 strop3248 mt 436, 456,488 | 88 551.4252 C4oH540 0.9
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Figure 3.13: Proposed structures of major carotenoids from the biosynthetic mutants.

Further structure elucidation was done on the strop3247 mutant compound,
which underwent *H NMR analysis. The NMR confirms that the structure (45) lacks
the glucose functional group, but is in all other ways identical to the wild-type structure

(Figure 3.14).
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Figure 3.14: *H NMR (CD;CN; 600MHz) spectrum of the strop3247 mutant compound 45 (blue)
compared with the spectrum of the wild-type sioxanthin acetate derivative 42 (red). Glucose signals
are found in the 63.5-5.5 ppm region.

3.2.4 Structural information of mutant carotenoids improves understanding of the
biosynthetic pathway

Analyses of the mutant carotenoid structures confirmed the putative roles of the
genes first assigned by informatics and in vivo mutagenesis in Chapter 2. Structures
confirmed that the inactivated genes performed their predicted functions by resulting in
compounds with the corresponding structural feature missing (Table 3.2, Figure 3.13).
Therefore, strop2408 encodes a lycopene cyclase (crtY) that forms a cyclized end,

strop3246 encodes a 1°,2’-hydratase (cruF) which adds a 1°-hydroxyl, strop3247
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encodes a glycosyl transferase (cruC) which adds a glucose to the 1’-hydroxy, and
strop3248 encodes a 3°,4’-desaturase which adds a double bond. Though it could not
be confirmed by MS data, strop0241 is predicted to be the desaturase/isomerase
responsible for the conversion of the B-ring in to an aryl functional group. The only
biosynthetic step that was not accounted for in this study is that for the addition of the
2’-hydroxy group. The biosynthetic gene responsible for the addition of this functional
group is unknown, as there is currently no known enzyme that performs this function in
carotenoid biosynthesis. A 2,2°-hydroxylase is also missing from the biosynthetic
pathways of (2S,2’S)-oscillol 2,2’°-di-(alpha-L-rhamnoside), from Gemmatiomonas
aurantiaca, and deinoxanthin, from Deinococcus radiodurans™*°, Both of these
pathways have a non-clustered arrangement, as is found in Salinispora™*®.
Cyanobacteria are also known to produce carotenoids with 2,2’-hydroxy group
additions, but no gene has been found to be responsible for this enzymatic reaction®*.
The closest to a 2’-hydroxylase is the crtA gene. Though primarily known as a
ketolase, there are known homologs of this gene that instead result in a hydroxyl in the
2,2’ position'®. However, the crtA homolog in Salinispora (strop3244) was shown not
to participate in the biosynthesis of sioxanthin (Fig 2.8).

Identification of these structural features provides evidence of the order in which
enzymes act during the biosynthesis of sioxanthin. The intermediates isolated from the
biosynthetic mutants show that both ends of the compound are biosynthesized
independently (Scheme 3.1), though in each of these ends, biosynthesis follows a
certain order. Unsurprisingly, on the left side of the molecule, cyclization takes place

prior to desaturation/isomerization. The right side of the molecule is less obvious, but
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can be determined by intermediates. The 1°,2’-hydration occurs first, resulting in a 1°-
hydroxy group as well as a saturation of the 1°,2” bond. Next is the desaturation of the
3°,4’ bond, followed by the addition of the 2’-hydroxy, and finally, the glycosylation of
the 1’-hydroxyl. Searches of the chemical structure databases confirm that all of the
identified intermediate compounds have been previously identified, with the exception

of the strop3247 mutant compound (45).
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3.3 Conclusions

The S. tropica carotenoid structure was determined using a combination of
UV/Vis, MS, NMR, and CD data. This compound, assigned the trivial name
sioxanthin, is a novel carotenoid with both aryl and glucose functional groups. Each
end of the molecule has been previously identified, which aided in the structural
elucidation. Carotenoids from biosynthetic mutants were determined using NMR and
MS techniques, which enabled structural predictions. These intermediate structures
confirm the function of the inactivated genes as well as provide insight into the
sequence of biosynthesis.

3.4 Materials and methods
3.4.1 Growth conditions of Salinispora cultures.

S. tropica wild-type and mutants were grown in 50 mL starter cultures as
described in Section 2.4.4. Apramycin and naladixic acid were used in the growth of
mutant strains. After five days of growth, 5 mL of the starter culture were transferred
under sterile conditions to 2.5 L flasks containing 1 L Al liquid medium. Cultures were
allowed to continue growing for 10-14 days at 30° C and shaking at 220 rpm. All
cultures were checked for contamination by monitoring growth of 10 pL of the culture
on an Al agar media plate grown in the dark at 30° C. Contaminated cultures were
excluded from further analysis.

3.4.2 Harvesting cells and pigment extractions
Cultures were centrifuged in a Beckman-Coulter Avanti J-E centrifuge at 11,000 x g
for 30 minutes at 4° C. Media was discarded and cell pellets from 6-10 liters of cell

culture were combined for extraction. Pigment extracts were obtained by soaking cell
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pellets in approximately 100 mL of acetone for several hours with occasional stirring.
The colored solvent was passed through cheesecloth to remove cell debris. Acetone
extractions were repeated until the solvent was no longer colored after exposure to the
cells. Between extractions the cell pellets were stirred with deionized water, as
extraction yield was higher from wet cells. Extractions were combined and dried by
first partitioning with brine, followed by use of magnesium sulfate or sodium sulfate,
removal of salts by passing through a filter, and finally dried in vacuo.

3.4.3 Derivitization of the crude extract

The crude pigment extracts were acetylated to improve stability during the
purification steps. The dry extracts were resuspended in 1-3 mL dichloromethane
(DCM). For each mL of DCM, 250 pl triethylamine (Et3N), 250 pl acetic anhydride,
and 0.1 mg of 4-dimethylaminopyridine were added. The reaction was allowed to sit at
room temperature for at least four hours. The pigments were extracted from the DCM
solution using ethyl acetate and partitioning with brine. The ethyl acetate was
transferred and dried with sodium sulfate. Salts were removed by passing the solution
through a glass wool filter and the resulting solution was dried under nitrogen. The
conversion was checked by resuspending the extract in acetonitrile and analyzing the
solution on HPLC. The new major peak had a longer retention time, indicating a less
polar compound, and the wild-type compound peak had been eliminated, suggesting
complete conversion.
3.4.4 Purification of the S. tropica carotenoid

Purification of the primary pigment required two rounds of HPLC peak isolation

using a Hewlett Packard Series 11 1090 Liquid Chromatograph. HPLC traces were
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monitored at 450 nm and major carotenoid peaks were confirmed by examining the
UV/Vis spectrum. Care was taken to keep the samples in low light conditions, in cool
temperatures and under nitrogen, where possible. Crude extracts were first purified on
a reversed-phase system using a Phenomenex Luna 5 um C18 100A 250 x 10mm
column. The solvent used for the wild-type and most mutant extracts was 94.05%
methanol, 5% DCM, 0.05% Et;N, and 0.05M ammonium acetate run under isocratic
conditions at 3 mL/min. The conditions were slightly altered for better separation of the
strop3246 mutant extracts and consisted of 85.45% methanol, 9.5% acetonitrile, 5%
DCM, 0.05% Et3N, and 0.05M ammonium acetate, also under isocratic conditions. The
major HPLC peak of each crude extract was collected and dried under nitrogen.

Semi-pure extracts were then re-injected on the same instrument under normal
phase conditions. Samples were separated on a Phenomenex Luna 5 pum Silica (2)
100A 250 x 10 mm column. The solvent system was run isocratically with a flow rate
of 3 mL/min and for most samples consisted of the following: 93% hexanes, 5% DCM,
2% isopropanol. The one exception was the strop2408 mutant extract which used a
solvent system of 91% hexanes, 5% DCM, and 4% isopropanol. Purified samples were
dried under nitrogen and stored at -20° C. Sample purity was confirmed via *H NMR.
All solvents were of HPLC grade purity.
3.4.5 Structure elucidation of the carotenoid compounds

Purified compound was analyzed by NMR at the UC San Diego Skaggs School
of Pharmacy and Pharmaceutical Sciences NMR Facility on a VVarian NPA600 MHz
NMR fitted with a 1.7 mm inverse detection triple resonance (H-C/N/D) cryoprobe.

The wild-type sample in CDsCN was analyzed by *H NMR as well as COSY, TOCSY,
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NOSY, HMBC, and HMQC spectroscopy. Mutant samples were analyzed by *H NMR.
High resolution mass spectrometry was performed at the UCSD Chemistry and
Biochemistry Molecular MS Facility using an Agilent 6230 APCI-TOFMS in positive
mode. UV/Vis was determined on the HPLC and confirmed on an Agilent Cary60 UV-Vis
in methanol. Circular dichroism was performed in distilled methanol on a Jasco 810
spectropolarimeter in quartz cells with a 1 mm path length and scanning from 220-400 nm.

Optical rotation was measured on a Jasco P210 polarimeter in distilled methanol.

3.5 Supplemental Information
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4 Carotenoid biosynthesis gene clustering and evolutionary history of sioxanthin
4.1 Introduction

The increased availability of sequenced bacterial genomes has furthered the
investigation of secondary metabolite biosynthetic genes and their organization in
bacterial genomes. Secondary metabolic genes in bacterial genomes are typically
organized into clusters, in which genes in a common pathway occupy neighboring space
in the genome™?. Gene clustering is thought to confer several advantages for the
regulation, maintenance, and exchange of these accessory pathways*?. Similarly, with
the exception of cyanobacteria, gene clustering is the common organization for
carotenoid biosynthetic genes in bacterial genomes (Figure 4.1)%. As shown in Chapter
2, the arrangement of carotenoid biosynthetic genes in S. tropica does not fit this

standard.
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Figure 4.1: Examples of genome arrangements of various carotenoid biosynthetic pathways and
their products. It shows the Salinispora tropica architecture in comparison to two clustered
pathways and two non-clustered pathways. Gene color corresponds to region of the region of the
structure that the gene is responsible for. Gray genes in Rhodobacter sphaeroides are responsible for
the biosynthesis if bacteriochlorophyll*.

Only two examples have been shown in which genes required for carotenoid
biosynthesis are dispersed throughout the genome®® (Figure 4.1). This makes the
arrangement in Salinispora unusual, though not unique. In both of these published
cases, gene assignment is based on bioinformatics predictions, without biochemical
characterization, and both pathways are missing a gene responsible for 2,2’-

hydroxylation as is the case in S. tropica.
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Mechanisms that contribute to genome architecture have long been of interest in
bacteria, and have been a focus of study in the genus Salinispora. The Salinispora
genome, and in particular its secondary metabolic arsenal, is the result of frequent
horizontal gene transfer”®. The majority of secondary metabolic pathways are localized
in genomic islands, regions of divergence between species genomes’. These genomic
islands are also enriched in mobile genetic elements, suggesting that these regions are
hot spots for genetic exchange and rearrangement’. Even outside of the genomic
islands, Salinispora genomes contain CRISPR regions, remnants of phage integration,
that implicate transduction as a mechanism of genetic acquisition’.

Carotenoid biosynthetic genes in Salinispora are dispersed throughout the
genome, occupying at least four independent regions. These regions include two gene
clusters, two non-clustered genes, and one gene whose identity remains unknown.
While there are many hypotheses pertaining to the benefits of development and
maintenance of gene clusters in secondary metabolism?, there is a lack of understanding
of this alternative, dispersed genome arrangement. As sioxanthin biosynthesis appears
to be constitutive, there is no requirement of coordinated regulation driving the
maintenance or formation of a single cluster. There are two main hypotheses regarding
the development of this arrangement: that the sioxanthin gene cluster was unified in the
past and spread apart over time, or that the different regions of the pathway were
acquired separately through horizontal gene transfer. Horizontal exchange of
biosynthetic genes is known to play a role in the diversification of carotenoid chemical
structure, particularly among the Actinobacteria®**. Even outside of bacteria,

horizontal exchange of genes is an important mechanism in the expansion of carotenoid
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biosynthesis. Recent studies have identified a few species of arthropods with
carotenoid biosynthetic genes in their genomes inherited from fungi, providing an
example of HGT of these genes and making them the first known animals capable of
carotenoid biosynthesis***3. Carotenoid biosynthesis genes are known to be
horizontally transferred as whole clusters, either as standalone carotenoid pathways or
as a part of gene clusters encoding for photosynthesis machinery****. Few studies have
looked at the history of individual genes within a carotenoid biosynthetic gene cluster
and have indicated that at times, only particular components of pathways are
transferred®*.

In this chapter, the role of horizontal gene transfer in the sioxanthin biosynthetic
pathway genome arrangement is explored. The prevalence of this genome arrangement
in carotenoid biosynthesis beyond S. tropica is investigated to determine the uniqueness
of this system. Furthermore, the phylogenetic history of each region is examined to
explore the evolution of the sioxanthin molecule which enables a discussion of the role
of horizontal gene transfer in the expansion of chemical diversity.

4.2 Results and Discussion
4.2.1 Sioxanthin biosynthesis outside of Salinispora

The sioxanthin biosynthetic pathway and genome arrangement are not localized
to the genus Salinispora. Other bacteria in the bacterial family Micromonosporaceae
produce an orange pigment, likely associated with carotenoid biosynthesis. However,
no work has been done to identify the particular compound. The sioxanthin pathway
genes, as they are found in Salinispora, are also present in the genera Micromonospora,

Verrucosispora as well as some species in the genus Actinoplanes (Figure 4.2, Figure
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4.3, Figure 4.4). Itis difficult to predict the biosynthesis of sioxanthin in these bacteria
with certainty, as there is still an unidentified gene in the pathway and the presence of a
gene does not necessitate its transcription. However, the high degree of pathway
synteny between these genera (Figure 4.3, Figure 4.4) provides some confidence that
sioxanthin contributes to their orange pigmentation. The Hamadea and Longispora
contain genes for both clusters, though usually in a different conformation than what is
found in Salinispora (Figure 4.3, Figure 4.4). As neither of these genera harbors
lycopene cyclase or 3-carotene desaturase genes, they are not predicted to produce
sioxanthin (Figure 4.2). Sioxanthin biosynthesis appears to be a feature of Salinispora
and closely related genera, though not of Micromonosporaceae as a whole. This
suggests that the sioxanthin pathway developed in a common ancestor of a few genera,

but after the split of the Micromonosporaceae family.

Terpl Terp2 Lycopene Desaturase
cyclase
L. Yes Yes Yes Yes
Sali nispora Syntenic Syntenic
Yes Yes Yes Yes

Micromonospord Syntenic Syntenic

Yes Yes Yes Yes

Verrucosispora Syntenic Syntenic

Yes Yes Some Yes
Actinoplanes Syntenic Syntenic

Yes Yes

Hamadaea Not Syntenic

syntenic

y

Catelliglobospor

Yes Yes

Longispora Not Not

syntenic Syntenic

Figure 4.2: Summary of the presence of sioxanthin pathway genes in other Micromonosporaceae
genera. The dendrogram shows relative relationships of the Micromonosporaceae genera while the
table describes the presence of genes in the region and whether they are syntenic. Green shows
complete and syntenic gene regions, red shows absence of genes, and yellow shows either genes
present but not syntenic or genes not present in all species.
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Figure 4.4: Comparison of the gene cluster responsible for sioxanthin glycosylation and 3°, 4°-
desaturation in members of the Micromonosporaceae. Genes of a with a similar COG function are
colored alike. The blue box highlights the portion of the terpl cluster (strop3246-strop3248)
necessary to sioxanthin biosynthesis in Salinisipora and genera for which this cluster is syntenic.

The potential for sioxanthin production was explored in other actinomycetes.

No actinomycetes outside of the Micromonosporaceae contained the full suite of

carotenogenesis genes as found in Salinispora. Three actinomycete genera (Gordonia,

Amycolatopsis, and Nocardia) possess a complimentary set of genes that could code for

sioxanthin biosynthesis (Figure 4.5). They contain an alternative lycopene cyclase and

multiple desaturases, which may be involved in desaturation of the 3”,4” and the B-cycle

desaturation steps. Two of these genera, Gordonia and Nocardia, also have a gene for

carotenoid ketolation. Ketone-containing carotenoids have been confirmed in

Gordonia*®, making it unlikely that sioxanthin is produced in these other genera.
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Figure 4.5: Neighbor-joining tree of 16S rRNA sequences showing the presence or absence of
sioxanthin biosynthesis genes elsewhere in the actinobacteria. elect genera are labelled on the tree.
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This investigation of sioxanthin biosynthetic genes reveals interesting trends
regarding carotenoid biosynthesis among the actinobacteria. For example, it confirms
that structural features such as glycosyl groups are more common among the
actinomycetes than originally anticipated and the distribution may be the result of
horizontal gene transfer. In actinomycetes, nine glycosylated carotenoids have been

identified from eight genera'®*’

, Including sioxanthin biosynthesis in Salinsipora. Most
of these carotenoids are found in single species or single strains that do not currently
have sequenced genomes, so biosynthetic genes are not known. The glycosylated end
of sioxanthin most closely resembles that of phleixanthophyll, isolated from
Mycobacterium phlei strain Vera. No glycosylated carotenoids have been found or are
predicted to be made in any other strain of this genus. In addition to the occasional
glycosylated carotenoid isolated from actinomycetes, a search for sioxanthin
biosynthetic gene homologues identified other bacteria with a predicted capacity to
biosynthesize glycosylated carotenoids. In many cases, the genes responsible for
glycosylation were overlooked by earlier bioinformatics predictions®. An analysis of
patterns in the ecological niche of these diverse bacteria could aid in the prediction of a
biological role for the addition of a glucose functional group, as well as other structural
features, of carotenoid molecules.

It should be noted that it is difficult to predict carotenoid production without
fine-scale analyses of individual genomes due to errors in assigning genes with related
functions and overlooking genes necessary to the pathway due to low sequence

homologies. This is evident in the early predictions made regarding carotenoid

biosynthesis in Salinispora, which overlooked the contribution of many of the terpl
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genes9 and misannotated the function of the 3’,4’-desaturase. Furthermore, as this work
has reiterated, there remain carotenoid biosynthetic enzymes whose gene identity is
unknown reaffirming the need for more work in understanding carotenoid biosynthesis.
4.2.2 Non-clustered carotenoid biosynthetic genes in bacteria is more common than
anticipated

Gene clustering is considered to be the standard configuration of bacterial
secondary metabolic genes in the same pathway®. Carotenoid biosynthesis falls in to
this category to the point that textbooks describing carotenoid biosynthesis state that the

pathways are clustered in all bacteria outside of cyanobacteria®*®.

Three examples are
now known in bacteria in which genes for the biosynthesis of a single carotenoid are
arranged in subclusters and scattered throughout the genome. These bacteria are from
three distantly related phyla, Gemmatimonas aurantiaca (Gemmatimonadetes)®,
Deinococcus radiodurans (Deinococcus-Thermus)®, and now Salinispora tropica
(Actinobacteria). This observation shows that the non-clustered phenomenon is
phylogenetically widespread, though the prevalence is unknown.

As published studies of carotenoid biosynthesis have overwhelming uncovered
clustered genomes, attention was focused on bacterial genomes in which carotenoid
biosynthesis has not been studied. This was accomplished by searching for carotenoid
biosynthesis genes in publically available bacterial genome sequences. In most of the
cases, a carotenoid compound has not been identified, meaning that all of the genes in
the biosynthetic pathway were unknown. Therefore, two carotenoid biosynthesis genes

were used as a proxy for the pathway. Genomic locations of phytoene synthase genes,

which encode the first dedicated step in carotenoid biosynthesis and are vital to the
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production of these compounds, were compared with the locations of lycopene cyclase
genes, responsible for the most common modification in carotenoid biosynthesis and a
gene that is not clustered in Salinispora. Only bacteria with both of these genes were
investigated giving a total of 86 pathways from 75 genomes in 5 bacterial classes. The
sequences were a mixture of closed and draft genomes, but the genome completion
status had no impact on the clustering of genes. The results showed that these two
genes were clustered in only about half of these genomes (Figure 4.6). This observation
could not be explained by phylogeny, as the pattern held true for individual classes with
the exception of the gammaproteobacteria, where only five genomes were investigated
(Figure 4.6). Some genome sequences had multiple gene copies. In these cases, there
were no patterns to clustering -- two genomes had no clustering in these two genes, one
genome (Streptomyces griseus subsp griseus) had three sets of clustered genes, while

the others contained a mix of clustered and non-clustered genes.

100% -

90%

80%

70%

60%

50%

40%

% of genomes

30% -

20%

10%

T T T T T
Actinobacteria (36) Flavobacteria (13) Sphingobacteria (5)
All (86) Alphaproteobacteria (16) Gammaproteobacteria (5)

Genome source

Figure 4.6: Chart of percentage of clustered (solid) and non-clustered (hashed) carotenoid
biosynthetic pathways in selected bacterial genomes. Total genomes and individual phylogenetic
grouping is shown, total number of genomes in each category is in parenthesis.
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The gene clustering pattern could also not be explained by environment, where
both clustered and non-clustered arrangements were found in marine, freshwater, soil,
and host-association environments as well as in both high and low temperature extremes
(Figure 4.7). Though it cannot yet be shown that all of these genes are active in their
predicted biosynthetic pathways, these results do suggest that clustering of carotenoid
biosynthetic genes is greatly overestimated. The mechanisms for development and
maintenance of this genome architecture are not yet known, but may provide insights

towards bacterial genome organization and evolution.
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Figure 4.7: Chart of number of genomes with clustered (solid) and non-clustered (hashed)
carotenoid biosynthetic genes arranged by environment in which the host organism was isolated.

4.2.3 Patterns of organization within the non-clustered arrangement

The observation that single gene clusters are not required in carotenoid
biosynthesis led to questions regarding the patterns of subclustering in these pathways.
In sioxanthin biosynthesis, the pathway has a pseudomodular arrangement in which

individual genomic regions are responsible for different carotenoid structural features.
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Modules refer to a set of standardized, individual units that can be combined to create a
more complex structure. In secondary metabolism, modularity is common in polyketide
synthases (PKS), in which a relatively small number of enzymes can be combined and
rearranged to produce a large chemical diversity'®. Modularity has also been implicated
in carotenoid biosynthesis, as a means of explaining the large chemical diversity and the
relatively low number of known biosynthetic genes®. It has been shown that exchange
and extension of genes in bacterial carotenoid pathways result in the biosynthesis of
new compounds?®?*. This observation suggests that carotenoid biosynthetic pathways
have the flexibility to alter their final product in response to changes in their gene
composition, and that, like PKS systems, carotenoid structural diversity may arise from
the exchange or addition of modules.

In S. tropica, the functional role of the carotenoid biosynthetic genes are
somewhat correlated with their genomic arrangement. As shown in Scheme 2.1, the
genes in terp2 work together to produce lycopene, which provides the backbone for
further modification. The terpl genes encode enzymes that modify only the right side
of the molecule, contributing the glycosylated functional group as well as the additional
desaturation. The left side of the molecule, the result of cyclization and aromatization,
are encoded in the non-clustered genes. This pattern is suggestive of horizontally
transferred genes in which each gene or cluster of genes were added to the genome
separately and were then incorporated in to the biosynthesis.

However, this pseudomodular pattern is not found in the other two known non-
clustered pathways (Figure 4.1) from Deinococcus and Gemmatomonas. In these cases,

the genes associated with particular parts of the molecule are not co-clustered. Rather
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they are mixed together in small clusters that are dispersed throughout the genome.
More work would need to be done to understand the mechanisms driving the genomic
architecture in these cases and the impacts on regulation. It is worth pointing out that
these analyses of genome architecture fail to account for the three-dimensional
confirmation that a bacterial chromosome occupies in nature. Work in E. coli
transcriptomes has demonstrated a periodicity in the bacterium’s genome showing that
co-transcribed genes occupy neighboring regions in a folded genome, even though they
do not physically reside adjacent to one another?®. Finding periodicity in these bacteria
with non-clustered carotenoid pathways would require extensive transcriptome analyses
and understanding of primary metabolism.

4.2.4 Insights in to the development of the terpl gene cluster

Patterns in the Salinispora gene clustering were further investigated through
MultiGeneBlast analysis of the terpl cluster. This cluster is particularly interesting
because it includes genes that are not involved in sioxanthin biosynthesis, despite the
fact that some have a predicted role in carotenogenesis. It seemed possible, then, that
this cluster has an alternative function in another bacterium, in which all of the genes
are required. To investigate this idea, the terpl sequence was used as a query in a
MultiGeneBlast against the NCBI bacterial genome database. The results show that the
terpl cluster is not found outside of the Micromonosporaceae. However, the
constituent genes are found dispersed throughout another gene cluster with unknown
function in several Frankia genomes (Figure 4.8).

The MultiGeneBlast results do suggest that there are common groupings of

genes found within the terpl cluster. Homologs of strop3246 (cruF), strop3247 (cruC)
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and strop3248 (crtD) are commonly found together as part of other carotenoid
biosynthesis pathways (Figure 4.8). In other genomes, homologs of strop3245
(acetyltransferase), strop3250 (tetrahydrofolate reductase) and strop3251 (putative crtE)
are found together without associations with other carotenoid biosynthetic genes (Figure
4.8). In fact, in some genomes a variety of additional genes are found between the
acetyltransferase and the tetrahydrofolate reductase, suggesting that this region is a
common location for the transfer of genes (Figure 4.8). Itis likely, then, that the terpl
cluster in Salinispora is, in fact, a composite of multiple gene transfers in this genomic
region. This is most apparent in the Actinoplanes, which contains the complete terpl
cluster, in addition of a succinate metabolism gene cluster which has been inserted
upstream of the tetrahydrofolate reductase (Figure 4.8). The hypothesis that this gene
cluster is a composite of multiple sub-clusters is further supported by the differing gene

trees of strop3245 and strop3247 (Figure 4.17 and Figure 4.18).
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Figure 4.8: Results of the MultiGene BLAST of the S. tropica terpl cluster.

4.2.5 Evolutionary history of each region of the sioxanthin biosynthetic pathway
One explanation for the distributed genomic organization of the sioxanthin
biosynthetic pathway is that each portion transferred to the genome from different
places and/or at different times in Salinispora evolution. Character trees showing the
presence and absence of sioxanthin gene homologs were analyzed to show the gene
traits of ancestral species. Two genes from each cluster (strop4440 and strop4441 from
terp2 and strop3245 and strop3247 from terpl) as well as each of the non-clustered
genes were used as character traits. The trees show that these genes do have different
distributions among the actinomycetes and that there is a differential appearance of
these genes in Salinispora ancestors. This relationship suggests complexity among
carotenoid biosynthesis in actinomycetes and, particularly, the development of the

sioxanthin biosynthetic pathway that cannot be explained purely by vertical
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transmission of genes. The non-clustered genes crtU (strop0241 homologs) and crtY
(strop2408 homologs) have different distributions throughout actinomycetes, with crtU
being much more prevalent (Figure 4.9 and Figure 4.10). Lycopene cyclases appear to
be rare in actinomycetes, but several types of lycopene cyclase are known and this
analysis covers only the crtY-type, the homolog found in the sioxanthin pathway. In
both cases, the parsimony suggests that the distribution of these genes is due to the
acquisition of genes at different points in actinomycete evolution. This includes a
single instance of gene gain within the Micromonosporaceae. Neither crtU nor crtY is
universal within the Micromonosporaceae, as the genera Longispora and
Catelliglobospora are both lacking these genes. Furthermore, there appear to be
instances of gene loss of the crtY homolog within the Actinoplanes, as there is a mixture

of species that do and do not have this homolog.
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Figure 4.9: Character tree (maximum-likelihood using rpoB sequences) showing the distribution of crtU
homologs among the actinomycetes as well as the predicted traits of ancestral species. A cyanobacterial

outgroup is shown in green. Presence of a gene is indicated by a black circle and likelihood of presence

in an ancestral species is shown in the proportion of black in an ancestral node. Red arrow indicates

ancestor that likely acquired the gene.
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Figure 4.10: Character tree (maximum-likelihood using rpoB sequences) showing the distribution of
crtY homologs among the actinomycetes as well as the predicted traits of ancestral species. A
cyanobacterial outgroup is shown in green. Presence of a gene is indicated by a black circle and
likelihood of presence in an ancestral species is shown in the proportion of black in an ancestral
node. Red arrow indicates ancestor that likely acquired the gene.

Genes from the terpl cluster also showed different distributions among the
actinomycetes. Though both strop3245 (an acetyltransferase) and strop3247 (cruC)
were predicted to be part of the same cluster, only strop3247 is active in the sioxanthin
biosynthetic pathway, serving as the glycosyl transferase. The acetyltransferase gene
was likely present in an early ancestor of the actinomycete order and experienced loss
from a few families over time (Figure 4.11). The glycosyl transferase, on the other

hand, was acquired late in the development of a few families, including within the

Micromonosporaceae (Figure 4.12). The differing distribution of these two genes is
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evident of independent evolutionary histories. This is particularly interesting

considering that these genes are co- clustered.
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Figure 4.11: Character tree (maximum-likelihood using rpoB sequences) showing the distribution of
acetyltransferase homologs among the actinomycetes as well as the predicted traits of ancestral
species. A cyanobacterial outgroup is shown in green. Presence of a gene is indicated by a black
circle and likelihood of presence in an ancestral species is shown in the proportion of black in an
ancestral node. Red arrow indicates ancestor that likely acquired the gene.
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Figure 4.12: Character tree (maximume-likelihood using rpoB sequences) showing the distribution of
cruC homologs among the actinomycetes as well as the predicted traits of ancestral species. A
cyanobacterial outgroup is shown in green. Presence of a gene is indicated by a black circle and
likelihood of presence in an ancestral species is shown in the proportion of black in an ancestral
node. Red arrow indicates ancestor that likely acquired the gene.

The two genes from the terpl cluster, unsurprisingly, have a similar phylogentic
distribution and history. The crtE (strop4440) gene encodes a polyprenyl synthetase.
This gene is vital to all carotenoid biosynthetic pathways and is closely related to
enzymes that are involved in other isoprenoid biosynthetic pathways, making it widely
distributed. Polyprenyl synthetase genes are clearly common and deeply rooted within
the actinomycetes (Figure 4.13). Similarly, crtB (strop4441) encodes a phytoene
synthase, another necessary step in carotenoid biosynthesis. Homologs of this gene are

expected in every carotenoid-containing bacterium, thus explaining its wide distribution

and its long history within the actinomycetes (Figure 4.14). Some families, however,
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appear to be missing this gene. The Micrococcaceae, for example, are known to
produce carotenoids but are missing this gene homolog, suggesting that they have a

more divergent enzyme providing a similar function®
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Figure 4.13: Character tree (maximume-likelihood using rpoB sequences) showing the distribution of
crtE homologs among the actinomycetes as well as the predicted traits of ancestral species. A
cyanobacterial outgroup is shown in green. Presence of a gene is indicated by a black circle and
likelihood of presence in an ancestral species is shown in the proportion of black in an ancestral
node. Red arrow indicates ancestor that likely acquired the gene.
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Figure 4.14: Character tree (maximume-likelihood using rpoB sequences) showing the distribution of
crtB homologs among the actinomycetes as well as the predicted traits of ancestral species. A
cyanobacterial outgroup is shown in green. Presence of a gene is indicated by a black circle and
likelihood of presence in an ancestral species is shown in the proportion of black in an ancestral
node. Red arrow indicates ancestor that likely acquired the gene.

To further investigate the origins of these genes, the phylogenies of the
individual genes were compared to the species trees in which the genes are found, built
from the rpoB sequences. Gene trees built from rpoB sequences alone are imperfect
measures of phylogeny, making these trees most useful for analyses at the family level.
rpoB was chosen over 16S because of its greater phylogenetic reliability in closely
related species®®, such as actinomycetes. All of the gene trees diverge from the species
tree, though they do so to varying degrees. The crtU homolog shared by the
Micromonosporaceae and other members of the actinomycetes (Pseudonocardia and
Actinomycetospora) is more closely related to homologs found in the cyanobacteria and

proteobacteria, a large divergence from the phylogenetic relationship of these groups in
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the species tree (Figure 4.15). This divergence further supports the idea that this gene
was horizontally transferred, likely by a member of the cyanobacteria or proteobacteria.
Similarly, the crtY tree shows a great deal of divergence from the species tree, with a
great deal of exchange between and within bacterial families (Figure 4.16). In this case,
the crtY gene is shared among the actinobacteria, though the gene tree suggests that this
gene originated in the Bacteriodetes (such as Pedobacter) and was then shared
throughout actinomycetes. The acetyltransferase gene (strop3245) shows a great deal
of exchange among bacteria in general and there have been several points of acquisition
within actinobacteria. Within Micromonosporaceae and related actinomycetes, there is
little variation in this gene, though the tree does suggest some early exchange with a
member of the proteobacteria, and later with cyanobacteria (Figure 4.17). Glycosyl
transferases in Salinispora are most closely related to other actinobacterial homologs,
however, these are most closely related to the Chloroflexi (green non-sulfur bacteria)
than vertical transmission would predict (Figure 4.18). Perhaps unsurprisingly, the gene
trees of those from the terp2 gene cluster diverge the least from their species trees
(Figure 4.19, Figure 4.20). They are not, however, identical and it appears that most of
the divergence happens within the actinomycetes themselves. It is interesting to note
that genes that show the lowest incidence of horizontal gene exchange (strop4440 and

strop4441 in terp2) are the only ones that are located within a genomic island’.
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Figure 4.15: Comparison of the crtU maximum-likelihood gene tree (left) to the corresponding rpoB
tree (right). Blue arrows show the location of Salinispora tropica. Colors on the tree correspond to
bacterial phyla and are as follows: Firmicutes in red, Deinococcus-Thermus in blue, Actinobacteria
in black, Chloroflexi in green, Armatimonadetes in gray, Cyanobacteria in dark green, Spirochaetes
in brown, Proteobacteria in purple, Acidobacteria in pink, Bacteriodetes in orange, Chlorobi in light

blue, and Planctomyces in dark blue.
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Figure 4.16: Comparison of the crtY maximum-likelihood gene tree (left) to the corresponding rpoB
tree (right). Blue arrows show the location of Salinispora tropica. Colors on the tree correspond to
bacterial phyla and are as follows: Firmicutes in red, Deinococcus-Thermus in blue, Actinobacteria
in black, Chloroflexi in green, Armatimonadetes in gray, Cyanobacteria in dark green, Spirochaetes
in brown, Proteobacteria in purple, Acidobacteria in pink, Bacteriodetes in orange, Chlorobi in light

blue, and Planctomyces in dark blue.
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Figure 4.17: Comparison of the strop3245 maximum-likelihood gene tree (left) to the corresponding
rpoB tree (right). Blue arrows show the location of Salinispora tropica. Colors on the tree
correspond to bacterial phyla and are as follows: Firmicutes in red, Deinococcus-Thermus in blue,

Actinobacteria in black, Chloroflexi in green, Armatimonadetes in gray, Cyanobacteria in dark green,
Spirochaetes in brown, Proteobacteria in purple, Acidobacteria in pink, Bacteriodetes in orange,

Chlorobi in light blue, and Planctomyces in dark blue.
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Figure 4.18: Comparison of the cruC maximum-likelihood gene tree (left) to the corresponding rpoB
tree (right). Blue arrows show the location of Salinispora tropica. Colors on the tree correspond to
bacterial phyla and are as follows: Firmicutes in red, Deinococcus-Thermus in blue, Actinobacteria
in black, Chloroflexi in green, Armatimonadetes in gray, Cyanobacteria in dark green, Spirochaetes
in brown, Proteobacteria in purple, Acidobacteria in pink, Bacteriodetes in orange, Chlorobi in light

blue, and Planctomyces in dark blue.
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Figure 4.20: Comparison of the crtB maximum-likelihood gene tree (left) to the corresponding rpoB
tree (right). Blue arrows show the location of Salinispora tropica. Colors on the tree correspond to
bacterial phyla and are as follows: Firmicutes in red, Deinococcus-Thermus in blue, Actinobacteria
in black, Chloroflexi in green, Armatimonadetes in gray, Cyanobacteria in dark green, Spirochaetes
in brown, Proteobacteria in purple, Acidobacteria in pink, Bacteriodetes in orange, Chlorobi in light
blue, and Planctomyces in dark blue.
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Comparisons of the gene trees to species trees confirm what is seen in the
ancestral traits regarding the evolutionary history of the sioxanthin biosynthetic
pathway. The genes responsible for carotenoid biosynthesis are common in
actinomycetes and were introduced early in their evolutionary history. The genes
required for modifications, responsible for the structural diversity among carotenoids,
arrived in the genome much later, following the divergence of the
Micromonosporaceae. Furthermore, the crtU, crtY, and cruC genes all have different
phylogenetic histories that suggest horizontal gene transfer from different hosts. This
utilization of genes from different sources is likely what contributed to the unusual
biosynthetic pathway and unique chemical structure demonstrated by sioxanthin.

The sioxanthin genes were not listed in the Darkhorse database as being the
product of horizontal gene transfer?®. However, this could be a result of the fact that
Darkhorse does not predict horizontally transferred genes more ancient than the genus
level. Several genes near the lycopene cyclase (strop2408) do appear in the Darkhorse
database showing horizontal gene transfer from several bacterial phyla (Table 4.1),

implying that it is a region of frequent gene exchange.

Table 4.1: Darkhorse database matches to predicted horizontally transferred genes near sioxanthin
biosynthetic genes.

Salinispora Gene function Best match Best match

gene locus genus phylum

Strop_2401 Hypothetical Opitutus Verrucomicrobia

Strop_2402 ABC transferase Oceanolica Proteobacteria

Strop_2403 Hypothetical Nostoc Cyanobacteria

Strop_2404 Membrane Roseoflexus Chlorofilexi
transporter

Strop_2415 Hypothetical Anabaena Cyanobacteria
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The evolution of the sioxanthin biosynthetic pathway can be summarized as

shown in Figure 4.21. Three of the genes investigated (crtE and crtB of terp2 and the
acetyltransferase of terpl) have a long history within this group of bacteria and were
vertically inherited from a common ancestor of the Order Actinomycetales. The other
three genes (cruC of terpl and the unclustered crtU and crtY) are much more recent
additions, having been acquired after the split of the Micromonosporaceae from other
bacterial families, but before the divergence of the Salinispora, Micromonospora,
Verrucosispora, and Actinoplanes genera. This acquisition was then likely followed by

gene loss of crtY homologs in several of the Actinoplanes species.

crtU
crtY
cruC

Salinispora
\ Micromonospora
Verrucosispora

ry Actinoplanes

— 04
Family Micromonosporaceae crtY

Catelliglobospora

acetyltransferase
crtk
crtB

Longispor

Order Actinomycetaleg

Other actinomycete families

Figure 4.21: Tree showing relative relationship of the Micromonosporaceae genera and other
actinomycetes, highlighting the time of entry of sioxanthin genes in to the genomes. Three genes
were present prior to the subdivision of the order actinomycetales. Three others entered later (blue
arrow) followed by some gene loss (red arrow).

4.3 Conclusions
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Gene clustering of carotenoid biosynthetic genes is believed to be the standard
arrangement in bacterial genomes. However, despite the abundance of studies that
reveal this architecture, a search of bacterial genome databases show that sub-clustering
or non-clustering of genes may be just as common. The sub-clustering of genes in a
secondary metabolic pathway may have implications on the ability to identify chemical
compounds associated with orphan pathways, as it may lead to overlooking important
parts of a pathway. This non-clustered arrangement may be the result of differential
horizontal gene transfer in which partial pathways are exchanged, potentially leading to
novel compounds. Sioxanthin biosynthesis is an example of this phenomenon. Not
unique to Salinispora, the sioxanthin pathway was found in other closely-related genera
of the bacterial family Micromonosporaceae. Actinomycetes have long had the
capacity to produce carotenoids, but members of the Micromonosporaceae likely
obtained additional genes that enabled a specific suite of carotenoid modifications.
Sioxanthin biosynthesis, then, may be the result of the acquisition of genes from three
separate sources that altered the carotenoid pathway already present.
4.4 Materials and Methods
4.4.1 Analysis of sioxanthin biosynthesis genes in the Micromonosporaceae and
other actinobacteria

Gene neighborhood and syntenty analyses in the Micromonosporaceae were
performed using Integrated Microbial Genomes Expert Review (img.jgi.doe.gov) where
the newly sequenced actionmycete genomes were deposited. Excluding the Salinispora
there were 15 genomes from the Micromonosporaceae family. Genes were found by

running a BLAST analysis of the sioxanthin genes against the Micromonosporaceae
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genomes. The BLAST hits were then used to explore the gene neighborhoods with the
same top COG (Cluster of Orthologous Genes) hit.

The potential for sioxanthin production in other actinomycetes was investigated
by searching for the required genes within actinomycete genomes. The 16S rRNA gene
sequences were gathered from 200 actinomycete species and used to build a neighbor-
joining tree in the program Geneious version 5.1.7 (Biomatters, www.geneious.com).
The tree gives relative relationships of actinomycete families. BLASTXx searches were
performed to identify the sioxanthin biosynthetic gene homologs in each genome.
Protein sequences with a greater than 35% identity over 75% of the length of the query
sequence were considered homologous.

4.4.2 Carotenoid biosynthesis gene cluster analysis in sequenced bacteria

The Salinispora tropica lycopene cyclase protein sequence (strop_2408) was
used as a BLASTp query sequence against the nr database to find bacterial genomes
with crtY-type lycopene cyclase genes. The genome and gene locus were noted for
each hit. The genomes were then reanalyzed with BLAST to using strop_4441 as a
query sequence to find the locations of the phytoene synthase genes. Genes were
determined to be clustered if they were in close proximity to each other and were
separated by no more than ten genes unrelated to carotenoid biosynthesis genes. Graphs
were made in Excel to show the proportion of pathways in each category with a
particular genome architecture. The NCBI database provided phylogenetic information
for the bacterial genomes, and literature searches were done to identify the natural
environment.

4.4.3 Gene phylogenies and ancestral state
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Gene trees were developed for six genes (strop0241, strop2408, strop3245,
strop3247, strop4440 and strop4441) in the sioxanthin pathway. Homologues were
gathered through BLASTp searches first on the Phylogeny.fr website
(www.phylogeny.fr)?®. A second round of BLASTp searches were performed through
NCBI which excluded actinomycete genomes from the search, allowing for a greater
phylogenetic coverage. Gene sequences were determined to be homologs when they
had a sequence identity of greater than 35% over 50% of the sequence length and an e-
value less than 1*-20. Gene trees were pruned to reduce the number of species
represented in each genus that showed phylogenetic similarity. Species trees were built
using rpoB sequences of the genomes represented in the gene trees. All sequence
alignment and tree building were done on the phylogeny.fr website
(www.phylogeny.fr)?®. Sequences were aligned using MUSCLE ?’. Alignment
curation was done by Gblocks?® allowing for smaller final blocks, gap positions within
the final blocks, and less strict flanking positions. Maximum-likelihood trees were built
using PhyML 3.0 with an SH-like Approximate Likelihood-Ratio Test”®. Trees were
visualized and edited in MEGA 5.2%,

The species tree in the ancestral state was built by combining rpoB sequences of
all of the actinomycetes in the individual species trees. Cyanobacterial sequences were
used as an outgroup. The ancestral node was inferred using the trace character history
function implemented in Mesquite v2.75%. A character matrix was created for each
gene homolog and likelihood calculations were performed using an Mk1 model.
Likelihood scores of greater than 50% on the ancestral nodes were used to infer the

points of gene acquisition.


http://www.phylogeny.fr/
http://www.phylogeny.fr/
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4.4.4 MultiGene BLAST analysis of terpl cluster
The MultiGene BLAST program was obtained from the developer’s website
(http://multigeneblast.sourceforge.net/). Query sequences were Genbank files created
on the NCBI website (http://www.ncbi.nlm.nih.gov/) using S. tropica CNB-440 genome
region 3720230-3727993 for terpl and 5031196-5036389 for terp2 query sequences.
The query sequences were searched against the bacterial genome database, downloaded

from the NCBI website.


http://www.ncbi.nlm.nih.gov/
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5 Conclusions and future directions
5.1 Conclusions

Natural products provide a rich source of chemical diversity with potential
applications for human health and biotechnology. Perhaps equally important is the
knowledge that secondary metabolites provide regarding evolution and ecology of the
producer organism. In addition to the potential medical applications, analyses of natural
chemical structures are vital to understanding how an organism adapts to and interacts
with its surrounding environment. The genus Salinispora has been a prolific source of
secondary metabolites, thus providing new tools to combat disease as well as novel
insights in the biosynthesis, evolution, biological function, and biogeography of these
compounds®”.

This dissertation describes the identification and biosynthesis of a carotenoid
natural product responsible for the characteristic orange pigmentation of the genus
Salinispora. Using a variety of purification methods and comprehensive NMR
analyses, Chapter 3 discusses the complete structure elucidation revealed a novel
carotenoid molecule. The structure of this novel compound, now referred to as
“sioxanthin”, unmasked some surprising structural features, such as an aromatic ring
and an attached glucose residue.

The biosynthesis of this compound is similarly interesting, employing several
distant regions of the genome to produce a single compound. This is divergent from
what is commonly believed to be a standard arrangement for microbial carotenoid
biosynthetic genes, and indeed most secondary metabolites in general, in that

biosynthetic genes cluster together in a single genome neighborhood®**. In Chapter 2,
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carotenogenesis homologous genes were identified in four distinct genomic regions by
sequence homology to characterized genes. It was confirmed that all four regions of the
genome are required for sioxanthin biosynthesis through a series of gene inactivation
experiments and chemical analyses of the mutant bacterial chemotypes. Non-clustered
carotenoid clusters are poorly described in literature. Thus, Salinipsora provided a
special opportunity to apply genetic techniques to the study of this type of biochemical
pathway. The exploration of this pathway uncovered previously overlooked genes in
carotenoid biosynthesis in actinomycetes and may allow for improved structural
prediction in other species.

This project also provided an opportunity to explore the evolution of Salinispora
carotenoid biosynthesis through phylogenetic comparisons of the disjointed regions of
the pathway. Chapter 4, discusses the biosynthetic pathway for sioxanthin and its likely
evolution via the transfer of carotenoid biosynthetic genes from multiple sources at
different times in Salinispora evolution. This type of partial exchange in modular
pathways may be a driving force in the expansion of chemical diversity in secondary
metabolism.

5.2 Future directions
5.2.1 Biological function of sioxanthin

It is well known that the biological function of a chemical compound is
dependent on its structure**2. Much work has been done on the structure-function
relationships in carotenoids™®™®. Many of these studies have focused on the role of the
carotenoid, such as providing protection against oxidative and UV damage to non-

photosynthetic organisms'’?2. Similar functions were explored in Salinispora tropica,
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in which wild-type and pigmentless mutants were exposed to UV irradiation and
hydrogen peroxide. UV exposure, in both liquid and solid media, showed no apparent
impact on the growth of either the wild-type or the mutant strains. Thus, it seems likely
that protection against UV damage is not the primary function of carotenoids in
Salinispora. Similarly, as Salinispora is a primarily sediment-dwelling bacterial genus,
it is unknown how much exposure to UV it receives in the natural environment®2*,

Exposure of the wild-type and mutant strains to hydrogen peroxide did show a
differential response. Sterile filters with 0.1% and 0.2% hydrogen peroxide in water
(sterile water was used as a control) were placed on agar plates of either the wild-type
or pigmentless mutant bacteria. Pigmented S. tropica producing sioxanthin had a much
smaller zone of inhibition (Figure 5.1) suggesting that sioxanthin might serve a
protective role against oxidative stress. There are several known sources of oxidative
stress in nature. In addition to environmental sources, natural products produced by
neighboring microbes or by Salinispora itself may result in oxidative stress. It has been
shown that antibiotics induce a generalized oxidative stress in the target bacterium, in
addition to the more targeted response®>?®. Moreover, carotenoid production is itself
sometimes correlated with biosynthesis of other bioactive compounds?’. This led to the
hypothesis that via sioxanthin, Salinispora may be protecting itself from its own
secondary metabolites. However, there is no apparent change in growth between the
wild-type and mutant species. Analyses of changes in secondary metabolic profiles
with the loss of sioxanthin production did not correlate to the decreased production of
any other metabolites. A more in depth analysis may reveal a link between sioxanthin

production and the biosynthesis of any other secondary metabolites, but it is likely that
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protection from other Salinispora-produced secondary metabolites is not the primary

function of sioxanthin.

S. tropica wild-type Polyprenyl synthetase mutant

0.1%
H20;

0.2%

Figure 5.1: Bacterial lawns exposed to filter paper soaked in different concentrations of hydrogen
peroxide showing different zones of inhibition between pigmented and non-pigmented S. tropica.

The observation that sioxanthin protects Salinispora against oxidative stress is
not surprising, as it is a common function of highly conjugated molecules such as
sioxanthin'?. For a carotenoid to serve as an antioxidant, it only requires a
chromophore®?. Functionalization has been shown to alter the antioxidative efficiency
of carotenoid molecules, particularly those that alter the length of the chromophore®2.
This has not been tested in Salinispora, but could be done using the sioxanthin

intermediates made by pathway mutants generated during this study.
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Another possible role for the unique structural features of sioxanthin may relate
to their interaction with the cell membrane'?*®. Carotenoids can serve as structural
molecules, attaching themselves to proteins or, more commonly, integrating within lipid
membranes®?. Their interactions with lipid membranes are mediated by the presence of
functional groups that modify the compound’s polarity*?. Carotenes, made up entirely
of carbon and hydrogen atoms, are nonpolar and thus localize completely within the
hydrophobic region of the membrane, somewhat perpendicular to the lipid tails (Figure
5.2)". Xanthophylls that have oxygen-containing functional groups on both ends of the
molecule are able to span the lipid membrane, remaining parallel to the lipid tails and
exposing their hydrophilic functional groups to the lipid phosphate moieties (Figure
5.2). These carotenoid interactions with the lipid membrane have opposite effects on
membrane fluidity: carotenes increase membrane fluidity while xanthophylls with two
polar end groups increase membrane rigidity®. The sioxanthin structure presents an
unusual dilemma having one nonpolar end group comprising of the aromatic ring, and
the other end group being polar as it comprises a hydroxyl group and a glucose residue.
No studies were found which investigated the membrane interactions of carotenoids that
have one polar and one non-polar end. Sioxanthin allows such an opportunity to study
this unusual structural phenomenon. If carotenoids in Salinispora impact membrane
fluidity, this may be studied by the impact of temperature on the growth of the wild-
type and pigment mutant bacteria. Furthermore, membrane fluidity could be tested by

spectrometric analyses of the purified pigment in artificial membranes2*°.
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Lipid bilayer membrane

23

With apolar carotenoids With polar carotenoids

Figure 5.2: The orientation of polar and nonpolar carotenoids in lipid membranes °.

Glycosylation is an interesting structural feature that may provide insight to the
compound’s biological function. Glucosyl groups can assist in the structural role of
carotenoids. This has been demonstrated for cyanobacteria where glycosylated
carotenoids are common®. Studies have shown that glycosylated carotenoids are
localized to the thylakoid membrane and mutants that lack the glycosyl functional
groups show a loss of thylakoid structure?. It seems that the glycosyl moiety serves as
a binding motif that enables the proper folding and stacking of the thylakoid
membrane®. Salinispora are heterotrophic and, therefore, lack thylakoid®. It can be
presumed that sioxanthin is localized to the cell membrane; a hypothesis which could be
verified through partition of cell structures in density gradient centrifugation. However,
the role of the glycosyl residue in the cell membrane may be similar to that of
carotenoids in thylakoid membranes in that it extends beyond the membrane and serves
as some sort of anchor or attachment site. The 2’-hydroxyl may provide enough
polarity for that portion of the molecule to be imbedded in the phosphate groups leaving

the nonpolar portion of the molecule to rest in the hydrophobic region of the membrane.
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It is unknown whether the glycosyl group faces in the interior or the exterior of the cell,
or for what it would serve as an attachment site. Further studies exploring the role of
this functional group could be performed using the glycosyl transferase mutant
generated in this study that produces an aglycone intermediate of sioxanthin.
Glycosylated carotenoids are of interest to food and nutrition industries for their
increased uptake in mammalian tissues®

Though the Salinispora genus is undergoing extensive investigations regarding
its chemical potential, biogeography, and phylogeny, little is known about its growth in
nature or its role in their environmental niche. The biological function of sioxanthin
would give insight in how the Micromonosporaceae, and bacteria in general, experience
and interact with their environment.
5.2.3 Identification of the missing biosynthetic gene

The sioxanthin pathway, like that of carotenoids in the other known non-
clustered pathways, contains a 2’-hydroxylase whose genetic identity remains

1731 " |dentifying candidate genes for this role may be difficult, as a hydroxyl

unknown
at this position is rare in carotenoids outside of the cyanobacteria?®. The difficulty is
further compounded by the fact that related bacteria known to have similar carotenoid
structures (like Mycobacterium phlei strain Vera) are lacking a sequenced genome®.
Searches for this gene, however, may be possible through genome comparisons.
Cyanobacteria tend to have very highly divergent carotenoid biosynthetic genes®, but
domain searches may uncover candidate genes that could then be verified by gene

inactivation experiments in Salinispora.

5.2.2 Formation of gene cluster architecture
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It is plausible that multiple instances of horizontal gene transfer drive the

evolution of structural diversity in carotenoids and the development of compounds such
as sioxanthin. The possession of multiple gene clusters in the sioxanthin biosynthetic
pathway may be the result of such gene exchanges. However, it is unclear what drives
the maintenance of this genomic architecture over a single gene cluster, as is common
in secondary metabolite biosynthesis. There must be a lack of selective pressure on the
genomes of these non-clustered systems in areas such as regulation. Coordinated gene
regulation is suggested as one of the driving forces in the development and maintenance
of gene clusters™. In Salinispora, as well as the other known non-clustered pathway
containing bacteria, carotenoids appear to be continuously produced, implying that its
biosynthetic genes are constitutively expressed. S. tropica strains were grown in light
and dark conditions on a variety of media (including high and low nutrient) without
change in pigments. This eliminates the need for complex coordinated expression and
removes regulation as a driving force for the formation of a gene cluster. To explore
this hypothesis, Salinispora transcriptional data, ideally under multiple conditions,
would be necessary to confirm that the genes are indeed constitutively expressed.
Furthermore, the idea that gene clustering is related to regulation would need to be
explored in other systems in which the pathway architecture is compared to the
conditions under which carotenoids are expressed. In Streptomyces, for example,
carotenoid biosynthesis is the result of a single gene cluster that is light induced?".
While this dissertation briefly explored the relationship between gene clustering and
environmental niche, it would be interesting to expand such a search to include

carotenoid expression conditions related to gene clustering.
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5.3 Final thoughts

This work describes the discovery and elucidation of a new carotenoid
compound, sioxanthin, from Salinispora, an important marine bacterial genus for the
production natural products. | uncovered the sioxanthin biosynthetic pathway,
identifying genes in multiple distant regions of the genome and provide insight in to the
evolution of the biosynthesis and chemical structure. In addition, my work lays the
groundwork for further studies on the evolution of secondary metabolites, biological

function of carotenoids, and the ecology of Salinispora.
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