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   ABSTRACT OF THE THESIS 
 

Analysis of intracranial electrophysiology 
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 Speech is the basis of human communication and yet, the neural foundation of speech 

production and perception are still far from understood. Multiple proof of concept studies have 

demonstrated the potential to provide a fully closed loop speech prosthesis for people suffering 
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from anarthria and other speech disabilities. In this thesis, we explore the value of intracranial 

electrophysiology to capture the variability of neural signals during vowel production and 

perception for speech prosthesis design. Using stereotactic electroencephalography, we analyze 

neural recordings to investigate how vowels are encoded in different brain regions and how vowel 

production correlates to neural activity. To enable these analyses, we first design audio signal 

processing algorithms and develop metrics to detect speech onset and to extract the first two 

formant frequencies from an input audio signal. We confirm that these two extracted formant 

frequencies can be used to uniquely identify vowels in the formant space. Second, we investigate 

the behavior of neural activity related to speech production by comparing it to that of silence and 

conclude that there exist significant differences between neural activity during speech and silence. 

Furthermore, we show that different brain regions respond differently to speech production 

revealing that there exists a spatially specific modulation relative to vowel production in the brain. 

This spatially distinct modulation has dynamics that correspond to vowel production onset time. 

In the final section of this work, we investigate the neural correlation to specific phoneme 

production and start to implement a classifier to decode vowel identity based on neural activity. 
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Chapter 1 INTRODUCTION 

1.1 Brain Computer Interface 

In literature, brain computer interfaces (BCI) are defined as the direct connection between 

the brain and external devices aimed at enhancing human cognitive and sensory-motor capabilities 

by translating brain signals into commands. This technique holds promise for circumventing 

normal pathways that may be dysfunctional due to brain or spinal cord injuries or diseases. BCI 

usually involves multiple stages for brain-computer interactions. [1-3] The first stage involves 

signal recording using various techniques such as EEG, ECoG, fMRI, … depending on the 

application. In the second stage, the recorded signals are processed for feature extraction, 

dimensionality reduction, and classification. This stage also incorporates pre-processing strategies 

such as denoising and signal segmentation or trialization. Features can be extracted in either the 

time domain or frequency domain, depending on the application. Dimensionality reduction 

methods involve techniques such as Principal Component Analysis (PCA), while classification 

methods involve Support Vector Machine (SVM), Artificial Neural Networks (ANN) or Hidden 

Markov Models (HMM). In the third stage, these classified signals are translated into control 

signals for various devices, interfaces, prosthetics, … .  

BCI technologies are advancing rapidly and finding applications in various fields such as 

healthcare and rehabilitation. Traditional BCIs use motor imagery [4] to control a cursor or to 

choose between a selected number of options, while others leverage event-related potentials 

(ERPs) [5] or steady-state evoked potentials [6] to spell out texts.  However, traditional BCI face 

challenges when it comes to accuracy, usability, and efficiency. Emerging trends such as AI and 

machine learning hold promise for enhancing BCI performance.  
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1.1.1 Neural Recording Technologies 

Advancements in medical devices, nanomaterials and microfabrication techniques have 

enabled neuroscientists to record from the brain with increasingly higher spatial and temporal 

resolutions [7]. The miniaturization of the electrodes and the use of novel flexible materials are 

making these devices more conformable to the brain surface and easier to implant in the cortex, 

thereby reducing tissue scarring and immune response for long-term studies.  

The technologies currently in use for neural recordings advance our understanding of the 

brain and provide a means to interface machines with humans. They can be broadly categorized 

into two groups : non-invasive and invasive, as shown in figure 1.1.  

Non-invasive BCIs collect information from the brain without requiring brain surgery, 

utilizing methods such as EEG, Magnetoencephalography (MEG), fMRI and functional near-

infrared spectroscopy (fNIRS). Among these, scalp EEG is particularly popular in BCI research 

due to its attractive features including fine temporal resolution, ease of use, portability, and lower 

cost. 

Invasive neural recording technologies, such as ECoG, iEEG or sEEG, require 

neurosurgery and clinical care during and after monitoring but are crucial for targeted therapy (e.g., 

in epilepsy patients) and clinical localization of impaired brain regions [8, 9]. ECoG uses 

electrodes placed on the brain surface after a craniotomy, whereas sEEG uses burr holes to insert 

the electrode’s shaft into deep regions of the cortex, allowing recordings from different brain 

regions not accessible by EEG and ECoG.  
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Intracranial recordings have offered an unprecedented venue for studying the fundamental 

neural processes underlying human behavior. Significant advances in human neuroscience have 

been made at various scales, from single neurons to field potentials, to elucidate diverse human 

behaviors encompassing perception, action, and cognition. Nevertheless, it is increasingly evident 

that there are notable gaps in current technologies, not only in electrode density, but also, and just 

as critically, in the extent of  brain coverage and sampling. [10]  Depending on the application, the 

measured signal and the required spatio-temporal resolution, different recording technologies can 

be used, as depicted in figure 1.2.   

 

 

 

 

 

Figure 1-1 : Location of EEG, ECoG and sEEG electrode relative to the brain surface. 
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1.1.2 Stereotactic Electroencephalography 

Most recent studies on speech neuroprostheses use ECoG, an invasive neural recording 

technology that offers high temporal and spatial resolutions, high signal-to-noise ratio [12] and 

low sensitivity to movement artifacts. Intracortical electroencephalography (iEEG) has also been 

employed successfully for decoding speech [13, 14] and synthesizing formant frequencies. [15] 

An alternative method for measuring intracranial neural activity is stereotactic 

electroencephalography (sEEG), first developed by Talairach and Bancaud in Paris in the late 

1950s. [16] Depth electrodes typically used for sEEG have 4–18 contacts spaced 2–10 mm apart 

and a diameter of 1 mm or less, giving millimeter and sub-millimeter resolution. [17]. These 

electrodes are either semi-rigid or flexible with a removable rigid stylet for insertion. Electrode 

shafts are implanted into the brain through small burr holes as shown in figure 1.3 [18,19]. sEEG 

Figure 1-2 : Spatiotemporal domain of neuroscience and of the main methods available for the 
study of the nervous system. 
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is minimally invasive, allowing extensive coverage of both hemispheres without performing a 

large craniotomy, mainly targeting deep structures with anatomical precision, and obviating the 

need for a second surgery to remove the electrodes.  Similar to ECoG and unlike EEG, sEEG has 

the capability to identify two crucial aspects of intracranial recordings : broadband gamma activity 

and low-frequency oscillatory activity. Numerous investigations have indicated that broadband 

gamma activity (signal amplitude at frequencies exceeding 60 Hz) serves as a reliable marker of 

cortical activity at the population level, particularly in response to various motor, sensory, or 

cognitive tasks [20]. The primary drawback of sEEG is its limited functional mapping capabilities 

due to sparse recordings of contiguous cortical regions. In contrast to ECoG, which provides high-

density coverage of specific regions, sEEG offers sparse sampling across multiple regions. This 

feature holds great potential for various BCI applications, not only because it targets sub-cortical 

brain regions but also because it allows the simultaneous recording of multiple regions. 

sEEG has yielded valuable insights into the distributed neural representations of speech 

and language functions. By targeting specific lateral, medial, and ventral cortices, recent sEEG 

studies have been able to integrate data across large cohorts and thoroughly map speech production 

during cued word production and reading [21-24].  
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1.1.3 Speech Brain Computer Interface 

Brain-computer interfaces (BCIs) represent cutting-edge technology with immense 

promise for restoring speech communication in individuals with speech impairments or 

disabilities. These interfaces establish a direct link between the brain and external devices, 

translating neural signals associated with speech production, comprehension, or perception into 

actionable commands for speech synthesis or recognition systems. By leveraging advances in 

neuroscience, signal processing, and machine learning, BMIs offer a unique pathway to decode 

the complex patterns of neural activity underlying speech processes. This interdisciplinary field 

not only seeks to understand the fundamental mechanisms of brain activity during speech but also 

aims to develop innovative solutions that can bridge the gap between neural signals and intelligible 

speech output. Through the integration of neural decoding algorithms and advanced hardware 

Figure 1-3 : A schema illustrating the concept of sEEG. 
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technologies, speech BMIs hold great potential for revolutionizing assistive technologies and 

enabling individuals with speech disabilities to communicate effectively and autonomously.  

Previous neuroscientific studies provided evidence for neural representations of speech, 

such as phones and phonetic features during speech perception [25-27] and production [28, 29]. 

Most studies to date employ a whole-word approach, classifying cortical activation patterns 

primarily based upon the differences between full words [30]. In a study, Kellis et. al successfully 

identified at best less than half of ten words in one patient using micro-ECoG electrodes over facial 

motor cortex [31]. Although these whole-word studies show some preliminary success in speech 

decoding, these success rates cannot be extrapolated to more complex speech. Moreover, the 

current most efficient BCI for communication reports information rates of 2.1 bits s−1 [32], much 

lower than the average natural efficiency of human speech production at 25 bits s−1 [33].  

One strategy to enhance information rates could involve focusing on decoding the smallest 

isolated segments of speech,  known as phonemes. This approach would use phonemes, rather than 

words, as the 'events' around which to analyze changes in brain signal. Speech BCIs using 

intracortical recordings to decode phonemes have achieved up to 21% classification success of all 

phonemes [15]. Similar studies using ECoG succeeded in classifying four [34] and two [35] 

phonemes, isolated from the context of words. These approaches demonstrate the potential to 

decode phonemes from cortical signals, which can be used to enhance speech BCIs.  

Great advances have been made in the field of speech neuroprostheses where the decoding 

of a textual representation by decoding phonemes [36,37], phonetic [38] and articulatory [39] 

features, words [31] and sentences [40-43] is possible from neural recordings during actual speech 

production.  

 



  
 

8 

1.2 Speech Production and Feedback Control 

1.2.1 Anatomy of Articulators 

Speech is a dynamic process involving both a speaker and a listener. At the physiological 

level for the speaker, the brain generates electrical signals that activate muscles in the vocal tract 

and vocal cords. These muscle movements produce pressure changes at the lips, initiating a sound 

wave that propagates through air to the listener’s eardrum. The vibration of the eardrum triggers 

electric signals that travel along sensory nerves to the listener’s brain, where speech recognition 

and understanding take place. In the listener’s speech pathway, feedback through the ear allows 

for monitoring and correction of one’s own speech.  

 

 

 

Human speech consists primarily of two classes : vowels, also called phonemes, and 

consonants, each characterized by specific acoustic and spectral properties. During vowel 

production, air is expelled from the lungs through muscle contraction, leading to airflow through 

Figure 1-4 : Key speech articulators in the human vocal tract. 
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the vocal cords. This results in the periodic vibration of the vocal cords, whose rate gives the pitch 

of the sound.  

Articulation is well described as a source–filter model of speech production, where the 

vocal cords (the source) vibrate to generate sound, which is then modulated by the positions of the 

articulators (the filter) over time to produce phonetic sounds. Different production models can be 

built for the different phonemes.  

Historical studies using functional lesioning and various neuroimaging techniques have 

mapped the brain areas responsible for processing different aspects of speech and the overall 

dynamics of their interactions. Indefrey's model [44], delineates speech production into six distinct 

stages: conceptual preparation, lemma retrieval, phonological code retrieval, phonological 

encoding, phonetic encoding, and articulation.  

This sequence of processes can be conceptualized as the successive conversion of speech 

information through a continuous "speech pathway." However, in natural speech, this 

transformation along the pathway is cascading rather than strictly sequential, characterized by 

significant temporal overlap, parallel processing, and cortical network feedback.  Nevertheless, the 

functional-anatomic compartmentalization of the neural speech pathway suggests that neural 

speech decoding could intercept this stream at many different points along the pathway with 

different tradeoffs. 

The analysis and presentation of speech signals in the frequency domain are crucial for 

studying the characteristics and acoustic properties of speech. A significant aspect of the speech 

signal spectrum comprises formants, which align with the resonant frequencies of the vocal tract 

and represent peaks in the vowel spectra. These frequencies correspond to where the concentration 

of acoustic power is the largest. The accurate determination of formant frequencies greatly impacts 
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the performance of key systems in speech recognition, speech identification, and formant-based 

speech synthesis. For vowels, the tongue varies in height as the jaw is raised/lowered, which 

correlates inversely with the center frequency of the lowest-frequency resonance of the vocal tract, 

called the first formant (F1). (Fi means the center frequency of the i th resonance.) Lateral tongue 

position affects all formants but correlates primarily with the second formant (F2). To handle 

possible difficult environmental conditions, the frequency ranges with strongest energy are likely 

acoustic aspects to aim for, as they stand out amid distortions and have strong correlations to the 

vocal tract’s shape.  

Literature has shown that formant values, especially the first and second formants, can be 

used to uniquely identify vowels, as shown in figure 1.5. [45] The formant values for the vowels 

vary across languages depending on their phonetic structures. 

 
 

Figure 1-5 : a) Sketches taken from x-rays of the head during the production of the vowels ‘a’, ‘i’ 
and ‘u’ and b) corresponding vowel spectra [46] c) American English vowels in the F1/F2 formant 
space. [45] 



  
 

11 

1.2.2 Feedback Control 

The speech network is divided into two separate anatomical streams that arise from the 

posterior superior temporal gyrus and appear to be specialized in complementary functions [39]. 

On one hand, the dorsal stream oversees translation of sensory/acoustic speech signals into motor-

articulatory representations, known as auditory-motor integration that is required for speech 

production and verbal repetition [48]. On the other hand, the ventral stream is mainly involved in 

the mapping of sensory speech signals into conceptual and semantic representations for speech 

comprehension, as shown in figure 1.6. Neural signals are continuously integrated with sensory 

feedback, including proprioceptive and auditory information, allowing real-time adjustments in 

speech production.  

 

 

While most motor acts aim to achieve goals in three-dimensional space (e.g., reaching, 

grasping, throwing, walking), the primary goal of speech is to transmit an acoustic signal to a 

Figure 1-6 : Division of labor of the ventral and dorsal pathways for language. 
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listener via the auditory system. When a movement results in error, the nervous system amends 

the motor commands that generate the subsequent movement. This error is determined by visual 

feedback of the subject and plays an important role in monitoring performance and improving skill 

level [47]. Similarly, auditory feedback plays an important role in monitoring vocal output, 

achieving verbal fluency and correct speech production. In the early 1900s, Lombard showed 

evidence of the influence of auditory feedback on speech by conducting a study demonstrating that 

speakers modify the intensity of their speech in noisy environments [52] 

Auditory feedback influences human speech production, as demonstrated by studies using 

rapid pitch and loudness changes [53]. Feedback has also been investigated using the gradual 

manipulation of formants for speech perception tasks [54]. These compensatory responses act to 

steer vocal output closer to the intended auditory target. Understanding the complex interplay of 

neural signals in speech production is fundamental for exploring speech disorders, enhancing 

interventions, and developing neuroprostheses technologies aimed at improving communication 

abilities.  

1.3 Thesis Overview  

 
We hope that this thesis offers an understanding for people who want to investigate 

phoneme and speech representation in neural data. We separate the body of this thesis into two 

main chapters investigating the following : 

In Chapter 2, we show that the formants can be extracted from audio signals using Linear 

Predictive Coding. These formants can then be used to uniquely identify each vowel in the 

formant-space.  

In Chapter 3,  we start investigating the neural correlates of speech production. We start by 

showing that the brain states corresponding to periods of speech and silence are different. Then, 
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based on these results, we start investigating what are the specific neural signals and brain regions 

involved in the perception/production of speech sounds, and how do these signals vary across 

different vowels. For that we used the Hilbert transform and z-score to show different behaviors 

around speech onset for the different vowels across the brain. Lastly, we start implementing a 

State-Vector Machine (SVM) to try and decode the vowels based on the neural activity.  
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Chapter 2 BEHAVIORAL ANALYSIS OF SPEECH PRODUCTION 

2.1 Introduction 

Speech recognition involves capturing speech patterns from a person's voice, processing 

them through a computer, and identifying their content. This interdisciplinary field draws upon 

various disciplines, including artificial intelligence, phonetics, linguistics, signal processing, and 

information theory.  

Speech recognition technology is widely integrated in our daily lives through applications 

like iOS Siri, Google, Amazon Alexa, etc. However, challenges persist in developing speech 

prosthetics due to diverse language dialogues and human speech accents. Many academics have 

worked on voice recognition technologies over the last few decades. Through years of research 

and trials, vowel recognition has emerged as one of the most efficient speech recognition method, 

given that vowel’s formant frequencies are the most identifiable in spectrogram observations [1]. 

Speech production is a complex motor function that involves the coordination of various 

anatomical structures and physiological processes. In human speech, formant frequencies are key 

acoustic features that characterize the resonant properties of the vocal tract during the production 

of vowels. When we articulate vowels, the vocal tract shapes and filters the airflow from our lungs, 

resulting in specific resonances that correspond to formant frequencies. The first two formants, 

denoted as F1, F2, are particularly important in vowel perception and classification. Each vowel 

in speech is characterized by a unique combination of formant frequencies, which allow us to 

distinguish and identify different vowels. Formant frequencies are crucial in speech recognition 

and synthesis systems because they provide essential acoustic cues for decoding spoken language.   

A vowel extraction system comprises two important components : formant extraction and 

classification. Formant extraction is a key step in visualizing vowel behaviors. Current research 
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predominantly utilizes two approaches for formant extraction: Linear Prediction Coefficient 

(LPC)-based formant extraction and Mel-frequency cepstral coefficients (MFCC)-based formant 

extraction [2].  

Speech signals are non-stationary, meaning their characteristics vary over time based on 

the speaker’s vocal tract. Short-Time Fourier Transform (STFT) has been widely used in literature 

to study speech in the frequency domain, since it has been shown that a frame of 20 - 30 ms could 

be considered as time invariant for analysis [3]. Linear prediction coding (LPC) is a time-domain 

based signal-source modeling, which makes it a powerful tool to characterize vowels behavior 

during the speech signal [4].  

 

2.2 Dataset Description 

This work is conducted in collaboration with Prof. Christian Herff at Maastricht University, 

whose team conducts the experiments and provides us with the recordings. In this study, the dataset 

includes recordings from three subjects with pharmaco-resistant epilepsy with hospital ID codes 

corresponding to KH28, KH30, and KH31. During the experiment, participants are presented with 

a randomly selected vowel displayed on a screen from a set of six predetermined Dutch vowels, 

and instructed to produce it after a cue is given to them. Each session consists of a total of around 

70 trials, where one trial is one vowel production and two consecutive trials are separated by 2 

seconds.  

These subjects have been implanted with sEEG electrodes in different brain regions and 

audio recordings are captured synchronously with the sEEG data, sampled at 1024 Hz. The number 

of trials for each vowel ranges from 5 to 8 trials per subject, varying between subjects, as shown 

in table 2.1. Although the duration of vocalization differs across trials, the subject and the vowel 
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produced remain consistent across all trials for a specific vowel. Individual formant values and 

pitch are specific to each participant. Given the consistency of the subject across trials, we observe 

that the pitch remains constant across trials, and we expect minimal variation the extracted formant 

values for a specific vowel across trials.  

Table 2-1 : Dataset Description 

Subject Identification Total number of trials in 

audio recording 

Total number of electrodes in 

sEEG recordings 

KH-28 74 97 

KH-30 71 127 

KH-31 70 130 
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2.3 Experiment Design 

The goal of the project is to design a perturbation task to gain insight about neural 

mechanisms underlying  auditory feedback and error propagation in vowel production. This 

includes three main tasks summarized in figure 2.2. 

In the first task, baseline task, we want to study vowel production. In particular, we want 

to first extract the vowel parameters, i.e. the formants and estimate the production variability in 

each subject. The second task is focused on perception, where the goal is to understand how 

sensitive individuals are to errors introduced in vowel production space. Specifically, we're 
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Figure 2-1 : Experimental Setup 



  
 

23 

interested in errors that lead to confusion between two vowels. To achieve this, we will take pairs 

of vowels that subjects produced in the first task and morph them at different percentages.  

Now human audio perception of vowels doesn't follow a linear pattern but rather a sigmoid 

function. So, our objective is to estimate subject-specific psychometric curves for recognizing 

these perceptually relevant errors. This helps us gain insights into the perturbation boundary for 

the third task, the perturbation task, that is still being prepared in the EMU at UCSD. Here, we 

want to introduce errors into the audio recording extracted in tasks 1 and 2 and play it back to the 

subject. The goal here is to gain insight into the neural mechanism underlying auditory feedback 

and error propagation to construct more informative loss functions that enable richer neural 

decoder representations that more closely correlate to naturally perceived error.  

The work in this thesis relates to task 1 and start of task 2, where the goal is to investigate 

how neural signals control speech production and try to identify specific neural markers for speech 

production.    

 

 
Figure 2-2 : Experiment Design Blocks 
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2.4 Audio Feature Extraction 

2.4.1 Speech Onset Detection  

To reduce the processing time and errors in formant extraction, I developed a way to detect 

the onset of speech production. By doing so, the extraction algorithm can be run only on the voiced 

part of the input signal (speech part), which will resolve the issue of detecting random formant 

values in the silence part.  

The detection algorithm is based on the energy and zero-crossing rate of the input signal. 

First, during speech, the energy of the signal is high compared to periods of silence and by setting 

a threshold, the onset of speech production can be detected. 

Average energy can be defined as:  

𝐸 = 	∑ [𝑤(𝑚)𝑥(𝑛 − 𝑚)]!	,			0 ≤ 𝑚	 ≤ 𝑁 − 1"#$
%&'  (1) [5] 

where x(n) is the speech signal, N the length of frame, m is the frame shift and w(m) is the window 

function.  

For the purpose of this work, we compared two windowing methods : Hamming window 

and Hanning window. The Hamming window can be described as follows :  

𝑤(𝑛) = 	 30.54 − 0.46 ∗ cos
!()
"#$

	 , 0 ≤ 𝑛 ≤ 𝑁 − 1	
0,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	  (2) [6] 

The Hanning window can be described as : 
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 𝑤(𝑛) = 	30.5 − 0.5 ∗ cos
!()
"#$

	 , 0 ≤ 𝑛 ≤ 𝑁 − 1	
0,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)[6] 

The length of the window is crucial for frequency analysis since if the window is large in 

the time domain, it will be narrow in the frequency domain and vice versa. After comparison, it 

was concluded that both windows have the characteristics of low pass and symmetry. The main 

lobe of Hamming window is the widest, has the lowest side lobe level, has relatively stable 

spectrum for speech signal, and helps to enhance the characteristics of the central section of signal. 

So the Hamming window was used for speech onset detection.  

Another metric that has been used to identify the onset of speech is zero-crossing rate 

(ZCR). It shows how many times the x-axis is crossed by a frame of voiced signal. One of the most 

straightforward techniques for time domain speech analysis is zero crossing analysis.  

ZCR can be defined as [7] :  

𝑍𝐶𝑅 = 	 $
!
∑ |𝑠𝑔𝑛[𝑥(𝑚)] − 𝑠𝑔𝑛[𝑥(𝑚 − 1)]| ∗ 𝑤(𝑛 − 𝑚)"#$
%&'  (4) 

 During speech, the ZCR of the speech signal is low compared to periods of silence as 

shown in figure 2.3. So, by combining these two metrics, I was able to extract the speech frames 

from the input audio signal and classify each frame as voiced or silence and extract the time indices 

for speech onset and offset that will be used later in the neural signal pipeline. Once a frame is 

detected to be voiced, i.e. speech, the formant extraction algorithm will then run on this specific 

frame.  
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2.4.2 Formant Extraction  

One of the most significant and popular speech analysis approaches is linear predictive 

analysis. This method's significance is rooted in both its relative speed of computation and its 

capacity to deliver precise estimates of the speech parameters. It is an all-pole model in the Z 

transform domain since the linear predictive analysis method assumes that the speech can be 

described by a predictor model that only considers previous values of the output. It is a time-

domain based signal-source modeling where the source, e(n), models the vocal cords, while the 

Figure 2-4 : LPC method diagram and resulting spectrum for one voiced frame 

Figure 2-3 : Energy, ZCR and Classification results. 
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resonant filter, h(n), models the vocal tract. This makes it a powerful tool to characterize vowels 

behavior during the speech signal. Due to the error minimized by LP, spectral peaks are 

emphasized in the envelope, as they are in the auditory system and correspond to the formant 

frequencies. The order of the LPC model is crucial to get detailed coefficients of the input signal 

and be able to accurately extract the frequency components. Multiple orders of LPC were 

compared, ranging from order 3 to 50, and it was concluded that an LPC model of order 50 

approximated the speech signal best and was able to extract formant values fast and accurately. 

After running the algorithm, we get an LPC spectrum for each voiced frame as shown in figure 

2.4, where each peak represents a formant frequency.  

Figure 2-5 : Extracted vowel identity results in the formant space for subject kh-28 
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Using this algorithm, the first two formants, F1 and F2 were extracted for each trial and 

each subject. Figure 2.5 represents the resulting values in the formant space for one subject and 

shows that the vowels can be uniquely identified. In the remaining parts of the project, I only 

focused on the following six vowels : /o/, /u/, /eu/, /ie/, /e/, /oe/. This is because, for the other 

subjects, vowels /a/ and /ae/ were not present.  

2.5 Structured Perturbation for Speech Production 

Miller et. al. [8] explain the notion of perceptually relevant error, divinding it into two 

approaches.  The first one is quantifying the quality of synthesized speech, by quantifying distance 

between true and synthesized audio with distance metric on spectrogram or spectral feature 

including but not limited to L2, L1, cc. However, one problem with this approach is that there are 

no established metrics for quantifying decoded speech when the ground truth is not known – that 

is, when the BCI user can’t speak as is the case with anarthria. The second approach, which is 

applicable to a synthesized-only situation, is to have human listeners report if they understood the 

speech. However, this is imprecise, labor-intensive, and cannot be used as a cost function for the 

BCI. The ASR assessment is also problematic since the synthesized speech is often unintelligible.  

For the third task, our approach is to raise and decrease formant values towards another 

vowel, method called vowel morphing, and add random noise, as control condition. We are interest 

in how behaviorally human adapt to those errors and how error is perceived and integrated into the 

speech production neural pathway. In this work, vowel morphing strategies have been 

implemented as a first step towards completing these tasks.  

Current theoretical models of speech production suggest that vowel production is strongly 

reliant on internally represented speech goals [9]. Although the exact nature of the speech goals is 

unclear, it has been suggested that the speech motor system (SMS) may use perceptual goals (e.g., 
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auditory goals) to determine errors in its motor output. These models posit that during production, 

the SMS compares auditory feedback of the produced speech with its auditory goals; when the 

auditory feedback resides outside the auditory goals (i.e., auditory error), the SMS generates 

corrective motor responses to reduce the perceived error. It has been showed that real-time auditory 

feedback perturbations (shifts in formant frequencies) of productions that were closer to the edge 

of the vowel category elicited larger compensatory responses relative to identical perturbations of 

productions closer to the center of the vowel. These results suggested that the SMS may use the 

perceptual boundary between two adjacent vowels to determine errors in its output. 

As a first step to implement this method, I used linear interpolation in the formant space 

between two vowels, as shown in figure 2.6, to get new F1 and F2 values for different degrees of 

morphing. In order to synthesize a morphed vowel with the given morphed formant values, I used 

the Klatt formant synthesizer. It is an online tool that, given the values of the first two formants, 

can synthesize and audio signal of the desired vowel. The next steps are, first to investigate other 

techniques for vowel morphing, and second to use these audio recordings and play the morphed 

vowels to the subjects in the EMU and see how sensitive individuals are to errors introduced in 

vowel production space and get the CPB for the third task.  
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2.6 Discussion and Conclusion 
 

Human listeners deal easily with variability in speech and can classify almost all vowels 

from any speaker of their native language correctly by perceptually “evening-out” differences 

between speakers. However, formant measurements show considerable variation related to 

anatomical/physiological differences between speakers, which becomes apparent when the first 

two formants, F1 and F2, corresponding to vowels produced by different speakers are plotted on 

the same formant-space plot.  

It has been shown in literature that different vowels show different spectral characteristics 

[10]. A lot of phonetic studies thus model vowels as points sampled at steady state [11]. By 

contrast, vowel inherent spectral changes (VISC) refer to the changes in spectral properties over 

time of a specific vowel and are a characteristic of vowel identity [12]. However, VSIC focuses 

on the shape of formant contours throughout production rather than on static formant values. Thus, 

some changes in the vowel spectrum are not inherent but unplanned.  

Morph 1 

Morph 2 

Figure 2-6 : Vowel morphing results and Klatt Synthesizer interface. 
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Rose (2002) states that speakers differ from each other in their voices (inter-speaker 

variation), but their voice also overlap considerably [13]. Also, speakers show variations within 

their own voice (intra-speaker variation). Speakers never produce the same vowel or utterance in 

the exact same way twice, thus acoustic differences between trials of specific vowel productions 

are always present [14]. Niziolek et. Al. proved that individuals correct their speech when a vowel 

perception is deviant from what is expected, based on the extent and direction of formant 

movement [15]. The findings suggest that vowels have static auditory targets in steady state.  

Dutch vowels are generally voiced [16]. Formants have been shown to provide relatively 

high speaker-dependent information. McDougall et. al. showed that F2 provided more speaker-

specificity than F1 [17].  They showed that F1 was not affected much by the intra-speaker 

variability whereas F2 was. 

This is in accordance with our results where the range of frequencies for F1 around the 

mean value is smaller than that of F2 for a given vowel per subject, as shown in figure 2.5. Also, 

as shown in figure 2.7, F1 values remain consistent across time for a single trial whereas F2 values 

show more variations. We observe that it is more difficult for the subject to sustain constant F2 

values for complex vowels like /oe/, /eu/ and /ie/, which emphasizes the fact that F2 is more 

susceptible to intra-speaker variabilities than F1. However, even with these intra-speaker 

variabilities, we are still able to uniquely identify vowels in the formant space, as shown in figure 

2.5. 
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 In conclusion, our pipeline was able to extract formant values from the input audio signal. 

These values show that we can uniquely identify vowels in the two-dimensional formant space, 

where each vowel is characterized by unique range of pair of F1-F2 values, even if we observe 

intra-speaker variabilities.  

 

  

Figure 2-7 : Raw audio recording with corresponding energy plot and formant values across 
time 
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Chapter 3 NEURAL ANALYSIS OF SPEECH PRODUCTION 
 
3.1 Introduction 
 

Perception and production of speech in the human brain requires the tightly coordinated 

activity of neurons across large portions of frontal and temporal cortices. This allows humans to 

produce a remarkably wide array of sounds that, when arranged together, make up words. These 

processes occur rapidly during normal speech and have been shown to recruit prefrontal regions 

known to be involved in word planning [1-9] and sentence construction [10-13]. Damage to one 

or more areas within this network can result in aphasia, dysarthria, or apraxia of speech. Bouchard 

et. al. demonstrated that phonetic features may be regionally organized and decoded from neural 

activity [14], suggesting the existence of an underlying cortical structure for phoneme production.  

Previous studies on animals [15-17] and humans [18,19] showed how primary motor areas 

relate to vocalization movements and production of sound sequences such as songs. However, they 

do not reveal the neural processes involved in individual word production during natural speech. 

Other studies found a large regional overlap in areas involved in speech articulation and production 

[20-23]. In their study, Mugler et. al. were able to decode the entire set of phonemes from 

American English using ECoG [24] and successfully analyze and classify individual phonemes 

within word production, with 20.4% of all phonemes classified correctly. However, this study was 

only conducted over the primary motor cortex. Addition of more electrodes over other brain areas 

could improve the classifier performance.  

All these studies show that there are strong neural correlates between phoneme production 

and neural activity. In this work, we investigate these correlations on a set of 6 Dutch vowels to 

see if we can find phoneme specific neural markers during speech production.  
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3.2 Dataset Description 
 
3.2.1 Brain Areas Coverage 
 

A thorough knowledge of the brain's speech production process, the specific timing of the 

brain areas involved, and the optimal locations for decoding them is necessary for the development 

of a speech neuroprostheses. A speech-BCI that relies on numerous areas within the speech 

production network, spanning both frontal and temporal cortices, may provide a robust basis for 

neuroprostheses applicable with broader indications. A recent proof of concept study illustrated 

that sEEG recordings are capable of decoding acoustic aspects of both overt and imagined speech 

[25]. Even when speech is silently 'imagined', it triggers activity across a broad network of brain 

areas despite the absence of audible sound. The decoding models identified activations from 

various regions within the frontal and temporal lobes and showed that the ventral portion of the 

sensory-motor cortex (vSMC) is a key brain area in the neural control of articulation [26]. Principal 

component analysis was utilized by Bouchard et al. [14] to convert the population brain activity 

into a "cortical state-space" offering a comprehensive representation of the cortical patterns linked 

with the produced syllables. Leveraging the superior temporal resolution of ECoG, they 

successfully distinguished the temporal aspects of cortical activity related to consonants and 

vowels. An analysis of the arrangement of both consonants and vowels within this cortical state-

space unveiled that distinct phonemes were grouped based on the primary oral articulators 

involved in their production. Consequently, the spatial configurations of cortical activity across 

various speech articulators were utilized to elucidate the arrangement of phoneme representations 

throughout the vSMC network. Previous studies using ECoG and MEA showed that certain 

cortical regions contain representations for specific speech components. A somatotopic 

organization of place of articulation (POA), was shown in ventral sensorimotor cortex [14, 28-29], 
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while representations of manner of articulation (MOA) and phonemic components were localized 

more in lateral temporal cortex [29-32].  

However, in a recent study, Thomas et. al. [33] showed that the decoding contributions of 

each speech component did not cluster within one specific cortical region. Instead, both 

articulatory and phonetic speech components were decoded using sEEG electrodes distributed 

across multiple areas known to play major roles in the speech production network. This may be 

due  to the fact that this widespread coverage of sEEG also targeted locations involved in processes 

that precede speech onset, such as conceptualization, lexical access, and phonological formulation. 

All these studies show that neural modulation of speech production is spread across a wide 

range of brain regions. sEEG is thus a good recording technology that can leverage this distribution 

and provide information about phonemic representation across neural populations. 

In this work, three patients suffering from pharmaco-resistant epilepsy, native and fluent 

Dutch speakers, were implanted with sEEG electrodes in different brain regions as part of the 

clinical therapy for their epilepsy. Electrode locations were purely determined based on clinical 

necessity. The experiment and recording were done by our collaborator at Maastricht University 

where experiment design and data recording were approved by the Institutional Review Boards of 

both Maastricht University and Epilepsy Center Kempenhaeghe.  

Participants were implanted with platinum-iridium sEEG electrode shafts (Microdeep 

intracerebral electrodes; Dixi Medical, Beçanson, France) with a diameter of 0.8 mm, a contact 

length of 2 mm and an inter-contact distance of 1.5 mm. Each electrode shaft contained between 5 

and 18 electrode contacts. Two patients had electrode coverage in both hemispheres and one only 

in the left hemisphere. The number of shafts range from 9 to 12, and total number of electrodes 
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from 93 to 113 channels and anatomical labeling was done as described in [34]. An example of 

the brain areas covered for subject kh-28 is shown in figure 3.1.  

 

 

3.3 Neural Signal Conditioning 

As stated in [34], neural data was recorded in Maastricht by Prof. Herff using two or more 

Micromed SD LTM amplifier(s) (Micromed S.p.A., Treviso, Italy) with 64 channels each. 

Electrode contacts were referenced to a common white matter contact. Data were recorded at either 

1024 Hz or 2048 Hz and subsequently downsampled to 1024 Hz. They used LabStreamingLayer 

[35] to synchronize the neural, audio and stimulus data. 

 

Figure 3-1 : sEEG brain regions coverage for subject Kh-28 
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3.3.1 Referencing Strategies  

First, we used signal-to-noise ratio (SNR) and detected movement artifact as inclusion and 

exclusion criteria for channel used towards analysis. The remaining channels were high pass 

filtered with a cutoff frequency of 1 Hz to remove any underlying DC signal and then notch filtered 

with center frequencies at 50, 100 and 150 Hz to remove line noise and its harmonics. 

 It has been shown that speech activity is strongly represented in gamma and high-gamma 

frequency bands. The process of identifying broadband gamma and oscillatory activity starts with 

referencing a signal at a specific site against the signal at one or two reference locations during 

recording. Subsequently, a particular re-referencing method is typically applied, often in post-hoc 

analyses. The choice for referencing locations usually follows specific guidelines [36]. The 

benefits and shortcomings of different re-referencing techniques have been determined for ECoG 

[37] but not yet for sEEG. The most effective re-referencing approach for sEEG may vary from 

that used for ECoG, primarily due to sEEG geometry of the sEEG electrodes. In comparison to the 

surface electrode, sEEG is a depth electrode that allow direct contact across various brain 

structures, such as the cortex and white matter. These structures may exhibit differences in 

amplitudes, impedance levels, or other characteristics. In this work, two methods of referencing 

were investigated : Common Average referencing (CAR) and Grey-vs-White Matter referencing 

(GWM).  

For CAR, the average neural activity was subtracted from each channel and done on a 

probe-by-probe basis. For GWM referencing, the white matter channels and grey matter channels 

were first separated into right-hemisphere and left-hemisphere channels. The average white matter 

activity of the corresponding hemisphere was subtracted from each grey matter channel, i.e. the 
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average activity of white matter channels in the right hemisphere was subtracted from every grey 

matter channel in the right hemisphere and the same for the left.  

 

3.3.2 Task Structure and Trialization  

As stated in section 2.3, each speech production trial was labeled with the corresponding 

vowel and all sEEG channels were labeled according to their location in the brain. The audio and 

sEEG recordings were conducted synchronously.  This allows us to translate the time indices for 

onset and offset of speech corresponding to individual phonemes for each trial that were extracted 

from the audio signal during the formant extraction phase onto the sEEG data. Neural data was 

then grouped based on speech vs silence periods for the first analysis in section 3.4 independent 

of vowel identity and then grouped per vowel label for the vowel decoding in section 3.5.  

 

3.4 Speech and Silence Decoding 

3.4.1 Frequency Domain Analysis (Power Spectral Density) 

The first step in the analysis of the neural data was to see if there was a difference between 

baseline, periods of silence, and periods of speech production independently of the vowel identity. 

For that, the pipeline shown in figure 3.2 was implemented.  

The raw neural data was first passed through a notch filter at 50 Hz and its harmonics (100 

Hz, 150 Hz, 200 Hz) to remove line noise. Then the pipeline was ran using both referencing 

Figure 3-2 : Pipeline for Power analysis 
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strategies, common average and grey-vs-white matter referencing, that will later be compared 

using a statistical t-test.  

The neural data was then divided into speech segments and silent segments as shown in 

figure 3.3. One silent segment was taken 250 ms after the end of the previous vocalization with a 

length of 500 ms whereas one speech segment was taken 50 ms before speech onset (to consider 

neural activity around onset of speech due to speech preparation) with a length of 500 ms. The 

average length of silent segments in one recording session was 2 seconds and that of a speech 

segment was 1.3 seconds, so none of our silence segments overlap with the next speech segments.  

 

After that, the Fast Fourier Transform (FFT) was computed using the Hanning window and 

power was calculated using (5) :  

																																			𝑃𝑜𝑤𝑒𝑟 = 	 $
"∗+,$

	 |𝑋|! (dB) (5) 

where N is the length of the signal, fs1 is the sampling frequency (here 1024 Hz), and X is the 

output of the FFT. The resulting power was then plotted in the log domain for visualization as 

shown in figure 3.4. These results are consistent across channels and trials, where power of neural 

Figure 3-3 : Segmentation of speech and silence 
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data during speech is higher than that of silence for alpha (9-11 Hz), gamma (35-55 Hz), and high 

gamma (90-110 Hz) bands but the inverse applies in the beta band (15-30 Hz).   

 

 

 

 

  

Figure 3-4 : Power Spectral Density of Speech and Silence in the log domain 
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3.4.2 Statistical Testing 

In order to show that the results in section 3.4.1 are statistically significant and to compare 

the two referencing methods used, a statistical two-sample t-test with false discovery rate 

correction was performed on the resulting data for the different frequency bands (alpha, beta, 

gamma and high-gamma). This test is a method used to test whether the unknown population 

means of two groups are equal or not. The corresponding function used in MATLAB is [h,p] = 

ttest2(x,y). This function first returns a test decision for the null hypothesis that the data in 

vectors x and y comes from independent random samples from normal distributions with equal 

means and equal but unknown variances, where h=1 indicates the rejection of the null hypothesis 

at the Alpha significance level, given as 0.05.  The second argument returned is p-value of the test, 

returned as a scalar value in the range [0,1]. p is the probability of observing a test statistic as 

extreme as, or more extreme than, the observed value under the null hypothesis. Small values 

of p cast doubt on the validity of the null hypothesis.  

The hypothesis we want to test here is if the sEEG data from speech and silence come from 

different distributions for the different frequency bands. So, our null hypothesis is that the two data 

samples are from populations with equal mean. For our results to be significant we need to look at 

p-values < 0.05 when h=1.  

The results show significance (p < 0.05) in the beta and  especially high-gamma frequency 

bands, where more than 70% of the channels for all three subjects are significant, when using 

CAR. GWM referencing shows less channels with significance for all subjects, noting that we 

have less channels in total since the analysis is done on the grey-matter electrodes alone. We cannot 

use the white matter electrode since they are used as reference, one limit of this referencing 
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method. Figure 3.5 shows the resulting p-values for the different frequency bands for subject kh-

28 for both referencing strategies.  

 

 
3.4.3 Neural Activity Around Speech Onset 
 

In this part, we will focus on the time domain to see if different brain regions had specific 

and timed responses around speech onset for speech production, independently of vowel identity.   

The raw neural data was first passed through a notch filter at 50 Hz and its harmonics (100 

Hz, 150 Hz, 200 Hz) to remove line noise. Then CAR was used, and the data was bandpass filtered 

in the high gamma frequency range (90-110 Hz) using a 4th order FIR Butterworth filter with zero 

phase. Using the time indices for onset and offset of speech, neural data corresponding to periods 

of speech were then passed through a Hilbert transform in the time domain and the power was 

calculated using : 

																																																														𝑃𝑜𝑤𝑒𝑟 = 𝐻𝑖𝑙𝑏(𝑥)! (6) 

Where Hilb(.) is the output of the Hilbert Transform and x is the filtered neural data.   

 

Figure 3-5 : T-Test p-value results after false discovery rate for subject kh-28 when using a) common 
average referencing, b) grey-vs-white matter referencing. The color bar indicates the p-values. 
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The last step was normalization using the z-score function (7) : 

 																																																														𝑍 = (𝑥 − 𝑚)/𝑠 (7) 

Where x is the power calculated in (6), m and s are the mean and standard deviation across 

time per channel respectively. 

  The goal here is to study the neural behavior of speech production around onset. For that, 

we computed the z-scored power of the high-gamma activity for each vocalization trial. We then 

observed three distinct behaviors and grouped the channel in three categories based on the time of 

the peak power relative to speech onset, i.e. if peak power occurs before speech onset, around 100 

ms after speech onset or late after speech onset as shown in figure 3.6a.  

 

Another interesting visualization was to see the distribution of these responses across the 

brain. Figure 3.6b shows cortical activity at different electrode to visualize spatiotemporal patterns 

across the implanted sEEG electrodes in a three-dimensional plot, where the z=0 plane is the top 

of the brain.  

Figure 3-6 : a) Z-scored power of High-gamma activity across time during speech production,  
b) Spatial organization of channels in three-dimensions representing the grouping of behaviors 
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3.4.3 Discussion 

 Our work demonstrated the feasibility and value of sEEG recordings in decoding speech 

production and enabled us to examine the spatial and temporal profiles of speech representations 

in the human brain. The frequency domain analysis first showed that the power of the neural signal 

in all brain regions covered in this work is different whether the subject is silent or producing 

speech. This shows that neural correlate for speech production exist across the brain, and we can 

decode speech production based on sEEG data.  

Second, the statistical significance of channels between speech and non-speech was 

explored using a two-sampled t-test for both referencing strategies. For each participant, the 

significant channels (p-value ≤ 0.05) were similar across the frequency bands, and we can see that 

using CAR yields more channels that are statistically significant compared to GWM referencing. 

Thus, we will use CAR as our referencing strategy for the remaining of this work. It was also 

observed that significant channels were in both grey and white matter, which warrants further 

investigation as to the role of white matter in speech production. 

Third, the t-test also showed that there are statistically significant differences in brain state 

associated with silence and speech production in both the beta band and high-gamma band. Since 

high-gamma band is more frequently employed as feature for speech BCIs in literature, this is the 

feature of our neural data that we will be using for vowel decoding in the next section.  

Finally, theories of speech motor control and phonology have speculated that there is a 

hierarchical organization of phoneme representations, given the anatomical and functional 

dependencies of the vocal tract articulators during speech production [37-39].  

Our results confirm that and seem to show that different brain regions respond not only 

differently but also at various stages of speech production, showing that cortical representations 
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are somatotopically organized, with individual sites tuned for a preferred phoneme and co-

modulated by others. Most of the channels show peak activity late after speech onset for all the 

vocalization trials. However, some channels exhibit early responses to production that may be 

linked to speech preparation, or late responses that may be linked to either preparation for the next 

vocalization or other inherent processes. Also interesting to note that the distribution of these 

responses across the brain vary across trials. This shows that the activity not only depends on 

production but also on the nature of the speech being produced. We saw that for different vowels, 

most channels that were responding late after speech remained unchanged. However, the channels 

responding before and around speech onset were localized in different brain regions depending on 

the vowel and were consistent across trials. This shows that specific phonemes are encoded in 

precise brain regions, and important phonetic properties can be observed qualitatively from the 

spatiotemporal patterns across the brain. [14].  

 

3.5 Vowel Identity Decoding 

In this part of our work, we focus solely on the speech segments of input data. The 

electrodes used are the ones that showed significance between speech and silence in the t-test of 

section 3.4, and we focused on the z-scored high-gamma power for the remainder of this work. 

The same pipeline as section 3.4.3 was used here on each channel but now considering vowel 
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identity. We now want to push the analysis by adding vowel labels to vocalizations and see if we 

can decode individual vowels using neural high-gamma activity.  

 

As shown in figure 3.7, each vowel exhibits different neural responses not only across 

different brain regions but also when looking at a single channel. Just as focal stimulation is 

insufficient to evoke speech sounds, it is not any single region, but the coordination of multiple 

regions across the speech network that generates phonemes.  

The distributed organization of phoneme representations led us to propose that 

coordination of the multiple brain regions required for speech production would be associated with 

spatial patterns of cortical activity.  

 
3.5.1 Support Vector Machine Implementation 

The implementation of a phoneme decoder was started in this work where the focus was to 

work on a support vector machine (SVM). A SVM is a machine learning algorithm that employs 

supervised learning models to tackle complex classification, regression, and outlier detection 

Figure 3-7 : Z-Scored power of high gamma activity and standard error for three vowels (/eu/, /e/, 
/o/). Channel locations are Left Hippocampus (left) and Right Cortex Temporal Middle (right)  
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problems. It achieves this by optimally transforming data to determine boundaries between data 

points based on predefined classes, labels, or outputs. SVMs are widely used in fields such as 

healthcare, natural language processing, signal processing, and speech and image recognition. The 

primary objective of the SVM algorithm is to identify a hyperplane that distinctly separates data 

points of different classes. This hyperplane is positioned to maximize the margin between the 

classes, ensuring a clear distinction. The SVM can be divided into two categories: the SVM for 

multiclass classification and the SVM for two-class classification (or binary classification). In 

general, the multiclass SVMs are usually created using combinations of several two-class SVMs.  

Support vector machines can be categorized into linear and nonlinear models. A linear 

support vector machine is used when the data can be separated by a straight line or hyperplane in 

its original domain. Conversely, if the data cannot be linearly separated in the original domain but 

can be transformed into a feature space where linear separation is possible, it is termed a nonlinear 

support vector machine. In this work, we implemented a multiclass SVM with linear kernel.  

In this work, we want to see if we can decode the vowel label/identity based on the neural 

high gamma power extracted. In particular, we want to see if vowels are encoded in different brain 

regions and for that we are going to decode labels based on single channel activity.  

The first step was to divide the neural data into training and testing data. For each subject, 

we have a total of 5 to 7 trials per vowel, and 93 to 113 sEEG channels. For each channel, 75% of 

trials were used for training and 25% for testing. The second step was to implement the classifier. 

We used the SVM multi-class classifier in MATLAB where the inputs were one two-dimensional 

matrix containing neural activity, and one vector containing the true label of the vowels, 

represented using one encoding. The classifier was trained and then tested on the remaining trials 

for individual channels. We also included cross-validation, a robust technique used to assess the 
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performance and generalizability of SVM classifiers. It helps in evaluating how the results of a 

statistical analysis will generalize to an independent dataset and in detecting overfitting. Since we 

have a limited number of training and testing data, the cross-validation technique used was the 

leave-one-out (LOO) cross-validation.  

 

3.5.2 Results and Discussion 

Our classifier was able to decode vowel identity with accuracy above chance level. In some 

brain regions like temporal middle and temporal frontal, we got an accuracy as high as 55% for 

vowels /e/ and /o/. We observed different classification accuracies for specific vowels depending 

on the brain region of the electrode where some brain regions were selective to specific vowels.  

However, one limitation of this work is the amount of data that we are working with. In 

fact, the limited amount of training and testing data could be a reason for low performance of our 

classifier, where we only have three testing data per vowel per channel.  One way to get around 

this issue is to group all data from channels located in the same brain region in order to get more 

trials to train and test the classifier. However, there is no solid proof in literature around the 

generalization of neural behavior across specific brain regions. For that reason, we can not 

generalize that two channels should exhibit the same behavior solely based on the fact that they 

are in the same brain region.  

Another alternative would be to investigate non-linear kernels for the SVM classifier or 

even completely different machine learning algorithms for vowel decoding. One method used in 

literature for phoneme decoding was PCA analysis and LDA.  
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In conclusion, this work is a benchmark that shows different neural behaviors depending 

on the identity of vowel produced across the brain and shows promise for phoneme decoding using 

neural activity. 
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Chapter 4 CONCLUSION 
 
4.1 Conclusion  
 

The work presented in chapters 2 and three serves multiple purposes for future research in 

speech prosthesis. Hopefully, other researchers are now encouraged to investigate the use of sEEG 

recordings for phoneme decoding, that could further our understanding of speech representation 

in the brain and also serve in speech BCI applications.  

 We have shown that speech onset can be extracted from audio signals using energy and 

zero crossing rate. Also, we demonstrated that linear predictive coding is able to extract the 

formants from the vowel’s spectra with precision. By the end of chapter 2, our work showed that 

vowel identity can be uniquely identified by the first two formant frequencies.  

 In the second part of this work, we first showed that brain states correlated with periods of 

speech and silence are statistically different. We further concluded the different brain regions 

responded at different times around speech onset. This spatial-temporal distribution of neural 

activity across the brain proves the intricate work of different brain regions to give rise to speech 

production. Finally, we showed that there exists a correlation between the vowel being produced 

and the neural activity, and that we can decode with more than 50% accuracy the vowel identity 

from neural activity and that different brain regions are more selective to specific phonemes. 

Phoneme decoding can thus be the first step to construct a full speech decoding prosthesis.  

4.2 Future Work 
 
 Regarding the audio signal processing, future work should be targeted 2 words the 

completion of tasks two and three. For task 2, the first step was implemented in this thesis. The 

formant frequency is gathered using linear interpolation can be used to generate different sounds 

and be played to the subjects. This will help us gain insight into the psychometric curves of the 
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vowels. Other interpolation methods should be investigated and compared to see the effect on 

speech perception. For task 3, if we think of the sensory motor system for speech as a control 

system, one theory suggests that there is an afferent copy of the produced vocalization that could 

be compared against the perceived sound to result in a feedback error signal to the motor system 

to guide next production. One hypothesis is that the mechanism for perceiving error and generating 

feedback control signal during production (task 3) and replay (task 2) are the same. If true, we 

could leverage the model learned in task 2 to infer the error signal.  

 Regarding neural decoding of vowel identity, other machine learning algorithms should be 

investigated to improve the classification accuracy. More data should be collected so we can 

appropriately train and test the different models. Nonetheless, phoneme representation in the brain 

shows promise and should be further investigated another natural progression is to study the neural 

activity when producing words and sentences in order to develop a fully functional closed loop 

speech prosthesis.  

 

 

 

 

 

 

 

 

 

  




