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Shock waves, where supersonic and subsonic plasma flows meet, are primiary sites for charged

particle acceleration in various space plasma environments, including astrophysical and plan-

etary bow shocks. Earth’s bow shock is the most accessible site for experimental investiga-

tions of this acceleration process with in-situ measurements. Relativistic electrons, which

are often observed near planetary bow shocks, show energy levels significantly higher than

those of solar wind electrons, by at least four orders of magnitude. However, present elec-

tron acceleration mechanisms, viewed individually, fail to explain the full energization that

electrons undergo in such settings. This thesis presents a compound scenario for such ac-

celeration. Specifically, it investigates the combined role of electromagnetic whistler-mode

waves and other plasma wave modes in electron acceleration and scattering in the foreshock

region, studied in conjunction with Fermi and betatron acceleration, and applied in a realis-

tic setting, as informed by multi-satellite observations. Whistler-mode waves are known for

their role in electron scattering and acceleration in the inner magnetosphere, facilitating our

studies of their role under the plasma conditions found in the foreshock. Statistical stud-
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ies using in-situ observations from the THEMIS and MMS missions are utilized to reveal

the properties of whistler-mode waves and their resonant interactions with electrons near

Earth’s bow shock and foreshock. Theoretical approaches are then developed to describe the

effects of these waves on electron dynamics. Finally, a comprehensive acceleration model is

constructed, which successfully replicates the observed near-relativistic electron energy spec-

tra. The model assumes that acceleration to energies up to several hundred keV involves

a complex, compound process, including shock acceleration, adiabatic heating, and reso-

nant scattering by multiple plasma wave modes - a phenomenon previously underexplored.

The model not only reproduces the observed power-law electron spectrum of ∼ E−4 but

also addresses the longstanding challenge of generating energetic and relativistic electrons at

planetary shocks. This extends the theoretical framework of electron-wave interactions from

the inner magnetosphere to the foreshock and opens new avenues for numerical simulations of

electron acceleration in astrophysical shocks, potentially revolutionizing our understanding

of particle acceleration in space plasmas.
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Take courage. Let me tell you all I know.

– Homer’s Odyssey
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CHAPTER 1

Introduction

1.1 Summary

When the supersonic solar wind meets an obstacle, such as a planet’s magnetic field, it slows

from supersonic to a subsonic speed and flows around the barrier. This interaction creates

a collisionless shock wave, known as the bow shock, where there are sudden changes in

speed, temperature, and plasma density. These changes occur as a result of processes such

as charged particle acceleration, shock-crossing, and shock-reflection. Reflected particles

generate a foreshock region upstream of the bow shock. The foreshock is dynamic, marked

by numerous large-scale transient plasma and magnetic field structures and various wave

modes. The primary interest in the bow shock and foreshock regions stems from their

crucial role in charged particle acceleration.

Shock acceleration is a key process for generating energetic charged particles, especially

electrons, in astrophysical systems. However, for this process to operate efficiently, it re-

quires seed electrons with energies above a minimum “injection” level. The injection prob-

lem concerns how these high-energy seed particles emerge from the predominantly thermal

population in the upstream plasma flow. Solving this problem is a challenge in space plasma

physics and astrophysics, as it is essential for uncovering the origins of the universe’s most

energetic particles. However, investigating astrophysical shocks is challenging because of

the lack of direct observations on plasma, waves, and magnetic field configurations at these

distant locations. In-situ spacecraft measurements at interplanetary shocks [Dresing et al.,
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2016] and planetary bow shocks [Wilson et al., 2016a, Masters et al., 2013] within the he-

liosphere provide a natural way of testing and exploring particle acceleration models and

hypotheses. Earth’s bow shock is mostly accessible for such in-situ measurements. Ob-

servations suggest that Earth’s foreshock, the region upstream of the bow shock, plays an

important role in pre-accelerating electrons to seed-electron energies and thus contributes

significantly to shock acceleration. However, the precise mechanism by which electrons are

pre-accelerated to these seed-electron energies remains an open question.

Although basic theoretical concepts suggest that plasma waves may contribute to elec-

tron pre-acceleration, the contribution of foreshock plasma waves on the electron scattering

and acceleration process remains relatively unexplored. Foreshock plasma waves exhibit

diverse characteristics which complicates their analysis. However, the extensive theoreti-

cal and observational knowledge gained on electron resonant interactions with similar wave

modes at Earth’s inner magnetosphere can provide a solid foundation for investigating sim-

ilar processes at the foreshock region. An important difference between the bow shock and

foreshock transients compared to Earth’s inner magnetosphere is the abundance of large-

scale field and plasma fluctuations. These render the bow shock and foreshock randomly

inhomogeneous, making studies of wave-particle interactions challenging for investigating

wave-particle interactions in such environments.

This thesis expands on the role of one of the most widespread wave emissions, electromag-

netic whistler-mode waves, in electron acceleration and scattering. Besides whistler-mode

waves, this thesis also discusses the effects of other wave modes observed in the foreshocks.

The overall goal is to understand how the electrons are accelerated in planetary foreshocks.

Towards this goal, we incorporate in-situ observations with theoretical analysis: utilizing

in-situ observations we (1) investigate the wave properties in the foreshock region and deter-

mine regimes of resonant interactions of electrons and whistler-mode waves, thereby deepen-

ing our understanding of their effects on electron dynamics; we then (2) develop a theoretical

framework to study these resonant interactions using realistic whistler waves found in the

2



foreshocks; and finally we (3) build a model to simulate solar wind electron acceleration,

incorporating the observations and theoretical model, and considering the effects of differ-

ent plasma waves, to explain the origin of high-energy (relativistic) electrons observed at

planetary foreshocks.

1.2 Background

1.2.1 Shock Acceleration

In collisionless space plasmas, shocks have the capacity to heat and energize charged parti-

cles [Jones and Ellison, 1991, Giacalone, 2005, Perri et al., 2022]. Astrophysical collisionless

shocks are among the most powerful particle accelerators in the Universe [Koyama et al.,

1995, Aharonian et al., 2004, Masters et al., 2013]. Shocks resulting from supernova explo-

sions propagating through the interstellar medium are believed to contribute significantly

to the acceleration of galactic cosmic rays [Blandford and Ostriker, 1978, Blandford and

Eichler, 1987]. High-energy particles in the vicinity of a shock are scattered by Alfvén waves

carried by the converging fluid flow, leading to a first-order acceleration process in which

the escape time is comparable to the acceleration time. Emissions associated with ultrarel-

ativistic electrons produced at supernova shocks have been extensively studied using both

Earth-based and space-based telescopes [Aharonian et al., 2004]. Galaxy cluster shocks have

also been demonstrated to be capable of accelerating electrons [van Weeren et al., 2017].

Galaxy clusters grow through accretion from large-scale filaments and mergers with other

clusters and groups. In galaxy clusters, radio sources, also known as radio relics, have been

discovered. These regions of diffuse radio emission are believed to be tracers of relativistic

electrons in the intracluster plasma, accelerated by low-Mach-number shocks cluster-cluster

merger events. Figure 1.1 depicts an observation of galaxy cluster Abell 3411–3412, where

radio emission, shown in red, can be used to infer relativistic electrons, and a weak shock

with a Mach number below 1.7 is also observed. The discovery of a direct connection between
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Figure 1.1: Colour image of the merging cluster Abell 3411–3412. Radio emission at 610

MHz is shown in red. The 0.5–2.0 keV Chandra X-ray image is shown in blue. The galaxy

distribution is shown with white contours (Figure after [van Weeren et al., 2017])

a radio relic and a radio galaxy in this merging galaxy cluster indicates that radio galax-

ies in clusters provide seed electrons that can be accelerated and revived (re-accelerated to

relativistic energies and able to radiate again through Bremsstrahlung radiation) by shocks

[van Weeren et al., 2017].

Studying distant shocks is challenging due to limitations in observations and understand-

ing the details of the shock structure conditions [Treumann, 2009]. Therefore, laboratory

experiments can help better analyzing shock acceleration. A study by [Fiuza et al., 2020]

utilized results from laser-driven plasma flow experiments, which probe the formation of tur-

bulent collisionless shocks under conditions relevant to young supernova remnants, to study

the acceleration process. They generated the shock using laser plasma flow and measured

the time-integrated electron spectrum. Figure 1.2 illustrates that when the two flows collide

at high Mach numbers, electrons are accelerated up to 500 keV, exceeding the thermal en-

ergy of the shocked plasma by more than a factor of 100. Conversely, when only one of the
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Figure 1.2: Comparison of the measured time-integrated electron spectrum in double-flow

(solid and dotted red lines) and single-flow (dashed blue line) experiments indicates that

when a shock is formed electrons are accelerated up to 500 keV. N is the number of electrons.

(Figure after [Fiuza et al., 2020])

flows is produced (the case of a low Mach number), the measured electron spectrum differs

significantly, with electrons exhibiting energies below 200 keV [Fiuza et al., 2020]. This

result indicates that shocks with varying Mach numbers exhibit differences in their particle

acceleration efficiency. Planetary shocks in the solar system exhibit various Mach numbers

and are accessible to in-situ observation for studying shock acceleration.

Planetary shocks form due to the interaction between the solar wind and planetary

magnetic fields. Observations made by spacecraft during encounters with collisionless shocks

in the solar system can offer valuable insights into the physics of the particle acceleration

of shocks. Specifically, planetary shocks have been implicated in electron acceleration up to

relativistic energies. The Mach number of shocks typically increases with distance from the

Sun. Electrons in Saturn’s high Mach number (∼ 25) quasi-parallel shock can be accelerated

to relativistic energies observed by Cassini spacecraft [Masters et al., 2013, Masters et al.,

2016]. Figure 1.3 shows the electron spectra obtained from in-situ observations [Masters

et al., 2013], indicating that the electrons can be accelerated up to several hundreds of keV
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Figure 1.3: Grey rectangles indicate the range of each energy channel. Power-law fits are

shown as straight lines. (Figure after [Masters et al., 2013])

with a power-law distribution around the shock. However, in-situ measurements around

Earth’s bow shock, with a Mach number around 4, also show observations of relativistic

electrons with a power-law distribution [Wilson et al., 2016a]. The formation of such a power-

law distribution remains to be fully understood. A well-known difficulty is the so-called

“injection problem”: the effective shock acceleration requires exceeding an energy threshold

(well above the electron thermal energy) for electron acceleration [Balogh and Treumann,

2013]. This makes it challenging to explain how thermal electrons can be accelerated to such

high threshold energies required to participate in the shock acceleration. The remainder of

Section 1.2.1 will discuss the standard mechanism for shock acceleration.

1.2.1.1 Shock Drift Acceleration

Shock drift acceleration (SDA), is due to the drift of particles along the shock surface when

they encounter a compressive, collisionless shock. This acceleration results from particles

experiencing magnetic drift due to an increase in magnetic field strength across the shock.

This drift is aligned with the direction of the convection electric field (in the normal incidence
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Figure 1.4: Cartoon illustrating shock drift acceleration across a fast mode shock. (Figure

after [Ball and Melrose, 2001].)

frame). Consequently, particles can gain kinetic energy as they traverse the bow shock,

converting electric potential energy into kinetic energy [Sonnerup and Su, 1967, Terasawa,

1979]. Figure 1.4 illustrates the SDA mechanism: as depicted, the magnetic field, coming

out of the page, intensifies from upstream to downstream, thereby reducing the gyroradius

of the incoming particle. The particle continues to drift downstream during its repeated

encounters with the shock front, until eventually escaping downstream (upstream reflection

is also possible). The bottom panel of the figure displays the kinetic energy of the particle

over time, demonstrating how energy gain occurs in several discrete steps, coinciding with

each shock encounter.

It is commonly understood that the thickness of the collisionless shock transition layer

is approximately determined by u0/Ωci, where u0 is the upstream flow speed parallel to the

shock normal direction, and Ωci is the ion cyclotron frequency calculated with the upstream

magnetic field strength [Leroy et al., 1982]. For both thermal and suprathermal electrons

with gyroradii much smaller than the shock thickness, the adiabatic theory is often considered
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a reasonable approximation for electron dynamics. This is because from the perspective of

such electrons, the shock appears not as a discontinuity but as a smooth magnetic field

gradient. Under this assumption, the first adiabatic invariant M = mev
2
⊥/2B (defined with

the perpendicular velocity v⊥ and the magnetic field strength B) is constant during the

electron interaction with the shock.

The energy increase is most significant for particles that undergo reflection, though par-

ticles that pass through the shock can also experience energy gain. To estimate the energy

gain from shock drift acceleration, we use the de-Hoffmann–Teller frame (HTF), where the

electric field vanishes (E⃗ = −u⃗× B⃗ = 0) both upstream and downstream and the particle’s

kinetic energy is also conserved. For electrons that escape downstream, the energy gain can

be calculated using the conservation of M = mev
2
⊥/2B (the energy gain is proportional to

the magnetic field increase downstream, which is about a factor of 4). For electrons that

can be reflected from the shock due to the mirror force, their pitch angles should be greater

than the loss-cone angle. This reflection results in a finite velocity increase which can be

expressed as ∆v = 2ush, where ush = u0 cos θBn is the upstream plasma flow speed measured

in the HTF. This acceleration preferentially increases the parallel energy (the direction along

the magnetic field line) of a reflected particle, and therefore, leads to a decrease in the pitch

angle. A more precise analysis of the particle energy gain predicts that for a magnetic field

increasing by a factor of four, the maximum value of the energy ratio after reflection to

initial energy (Er/Ei) is around 14 [Ball and Melrose, 2001]. Figure 1.5 illustrates a plot

of the energy ratio of the reflected particles, indicating that the maximum energy gain is

around 14, with a small portion of particles in the phase space being able to achieve such a

significant energy increase.

Although SDA can lead to an increase in energy, the energy gain is limited by a maximum

factor of 14 [Ball and Melrose, 2001], and the observed fluxes and spectra of energetic

electrons cannot be quantitatively explained by SDA alone. Also, the field perturbations

near the shock can cause electron pitch-angle scattering, which breaks the assumption of
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Figure 1.5: Energy ratio for particles reflected upstream from a shock with Bdown/Bup = 4,

as a function of pre-shock velocity with vpar the normalized parallel velocity and vperp is

the noramlized perpendicular velocity. The lowest contour shown corresponds to an energy

ratio of 2, and the contour values increase in units of 2. (Figure after [Ball and Melrose,

2001].)

the first adiabatic invariant. Such pitch-angle scattering may confine a portion of electrons

within the shock acceleration region for a longer time and result in an enhancement of

energy gain [Vandas, 2001]. This pitch-angle scattering effect is considered in diffusive shock

acceleration (DSA) and stochastic shock drift acceleration (SSDA).

1.2.1.2 Diffusive Shock Acceleration and Stochastic Shock Drift Acceleration

The DSA assumes that the particles are scattered by magnetohydrodynamics (MHD) tur-

bulence around the shock front [Blandford and Eichler, 1987]. Efficient resonant pitch-angle

scattering, which determines the threshold energy for injection, occurs under certain con-

ditions. Since MHD turbulence has large spatial scales, resonance can occur only when

particles gyroradii are comparable to the MHD wavelength. Though pitch-angle scattering

via cyclotron resonance with MHD turbulence may occur relatively easily for protons, low-

energy (non-relativistic) electrons face challenges in satisfying the resonance condition due
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to their small gyroradii. Theoretical considerations suggest that electron acceleration via

DSA is inefficient, as low-energy electrons lack opportunities to be scattered.

Stochastic shock drift acceleration (SSDA) overcomes the limitation of DSA by assuming

electrons interact with electromagnetic or electrostatic waves (which have a wavelength much

smaller than that of MHD turbulence) and the pitch-angle scattering of electrons is confined

within the shock transition layer [Amano et al., 2022]. This allows electrons around the

transition layer to spend sufficient time near the shock to be accelerated to high energies. The

efficiency of SSDA depends on the effectiveness of pitch-angle scattering of electromagnetic or

electrostatic waves. Figure 1.6 shows schematics that illustrate the relationship between the

DSA and SSDA models [Amano et al., 2020]: Particle acceleration through DSA occurs over

a spatial extent much larger than the shock’s thickness. Conversely, electrons accelerated

by SSDA are confined within the shock transition layer, typically of the order of the ion

gyroradius. SSDA has the potential to accelerate subrelativistic electrons due to the presence

of intense whistler waves within this transition layer, and these electrons could potentially

serve as a seed population for DSA.

Figure 1.7 shows the acceleration of electrons by SSDA in velocity space [Katou and

Amano, 2019]. The red curves represent the expected particle trajectory according to

the standard SDA. Pitch-angle scattering induces particle diffusion along the blue diffu-

sion curves. The schematic trajectory of an electron accelerated by SSDA is represented

by the thick arrows. The contours show the velocity distribution function of the upstream

population. Mirror reflection occurs only for particles outside the loss cone, depicted by

the gray-hatched area. The work from [Amano et al., 2020] shows that the magnetosonic

whistler-mode waves around the shock transition region can scatter electrons via the cy-

clotron resonance, which leads to electron pitch-angle changes and makes electrons spend

longer time in the acceleration region. As the energy increases, the electrons start to in-

teract with lower-frequency larger-amplitude MHD waves. Although SSDA can explain the

source of high-energy seed population needed for DSA acceleration, it is mainly effective

10



Figure 1.6: Schematics illustrating the relation between conventional diffusive shock accel-

eration and stochastic shock drift acceleration models. (Figure after [Amano et al., 2020].)

for electrons with ≥ 10 keV, which still significantly exceeds the thermal energy of solar

wind electrons. Therefore, additional mechanisms are required to accelerate thermal energy

electrons.

1.2.2 Bow Shock and Foreshock Transients

Electron acceleration has been observed at planetary bow shocks and their upstream regions.

The bow shocks of planetary magnetospheres exhibit curvature, causing variations in shock

geometry across its surface even under uniform upstream conditions. The orientation of the

interplanetary magnetic field (IMF) significantly influences bow shock physics. In quasi-

perpendicular conditions, where the angle between the IMF vector and the shock normal

(ΘBn) exceeds 45◦, ions from the incident solar wind are reflected from the shock front

and subsequently drift along the IMF to the magnetosheath region behind the shock wave.

Under quasi-parallel conditions (ΘBn < 45◦), ions and electrons can drift along the IMF in
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Figure 1.7: Schematic illustration for the particle trajectory accelerated by the SSDA in

velocity space.(Figure after [Katou and Amano, 2019].)

Figure 1.8: Geometry of the bow shock and foreshock from [Eastwood et al., 2005]

the direction opposite to the incident solar wind flow. These suprathermal particles create

an extended region in front of the bow shock, known as the foreshock [Eastwood et al., 2005].

Figure 1.8 shows an illustration of a bow shock and its foreshock. In the foreshock, kinetic

instabilities develop in the solar wind plasma, generating numerous transient structures and

waves that lead to additional particle scattering.

Observations of foreshock transient structures have been reported at different planets,

including Mercury [Slavin et al., 2007], Venus [Erickson and Wolf, 1980], Earth [Turner

et al., 2013], Mars [Penz et al., 2004], and Saturn [Kivelson and Pu, 1984]. Among these,
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Earth’s foreshock has been extensively studied due to ample in-situ measurements. The

largest transients observed in Earth’s foreshock include foreshock bubbles [Omidi et al.,

2010, Turner et al., 2013], large-scale kinetic structures resulting from interactions between

solar wind discontinuities and suprathermal particles reflected from the shock wave, and

hot flow anomalies (HFAs) [Schwartz et al., 1985], which arise from interactions between

tangential discontinuities in the interplanetary magnetic field and quasi-parallel bow shocks.

Figure 1.9 shows the result of a hybrid simulation of a foreshock bubble located in Earth’s

foreshock. The formation of the core of the foreshock bubble depends on discontinuities

in the interplanetary magnetic field, in which the ions emanating from the bow shock are

located. The shock wave is also part of its structure, and the entire structure drifts along

with the solar wind approximately in the antisolar direction.

Foreshock bubbles, along with hot flow anomalies, both have a hot, tenuous core asso-

ciated with strong plasma deflection and are surrounded by compressional boundaries or

a shock with a spatial scale of several RE. The dynamic pressure within the core regions

of foreshock transients is significantly lower compared to the surrounding solar wind, and

consequently, they can disturb not only the bow shock itself, but also the magnetosheath,

magnetopause, and the entire magnetosphere-ionosphere system [Archer et al., 2015]. An

example of a foreshock bubble (FB) observed by THEMIS is illustrated in Figure 1.10, re-

vealing a heated and tenuous core with significant flow deflection. As a result of the superfast

sunward magnetosonic expansion, a shock forms upstream of the core, and the size of FB

in the expansion direction can reach 5 − 10RE. In addition to their significant dynamic

pressure perturbations, foreshock transients also serve as efficient particle accelerators due

to the presence of the shock (e.g., shock drift acceleration and Fermi acceleration as the

shock converges towards the bow shock).

Observations have shown that particles can be accelerated inside foreshock transients

[Liu et al., 2017b, Wilson et al., 2016a]. Figure 1.11 shows three examples of relativistic

electrons produced by foreshock disturbances upstream of Earth’s bow shock. Energetic
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Figure 1.9: Result of hybrid simulation [Omidi et al., 2010] of a foreshock bubble, color

indicates proton number density normalized by the solar wind, white lines are magnetic field

direction. FB is foreshock bubble, BS is bow shock, and MP is magnetopause. Units of X

and Z axes are in skin depth c/ωp (c is the speed of light, ωp is plasma frequency). The

white circle around Earth indicates the simulation’s inner boundary. RD is the position of

rotational discontinuity in interplanetary magnetic field.
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Figure 1.10: A foreshock bubble observed by THEMIS C upstream from the bow shock.

From top to bottom: components of the magnetic field in the GSM coordinate system,

magnetic field magnitude, plasma ion and electron density, ion temperature, components

and magnitude of plasma flow in the GSM coordinate system, plasma ion spectrum, plasma

electron spectrum with 3 s time resolution [Turner et al., 2013].
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Figure 1.11: Three example foreshock disturbances with energetic electron enhancements

from [Wilson et al., 2016a].

(≥ 30 keV) electron enhancements are observed as short-duration (tens of seconds to a few

minutes) enhancements in the electron fluxes above the background by factors of ∼ 10–200.

The electron spectra (Figure 1.12) show a power-law form (with f(E) ∝ E−4) from as low

as ∼ 0.25 keV up to the highest energies observed during each enhancement (Figure 1.12 (a-

c)). The distributions observed outside the enhancements (Figure 1.12 (d-f)) show far more

variability, with only noise > 12 keV, and in some cases significant anisotropies. Several

mechanisms are proposed for this observed electron acceleration. For example, as a foreshock

transient boundary convects earthward towards the bow shock, particles inside the core could

bounce between the converging boundary and the bow shock and gain energy through Fermi

acceleration [Liu et al., 2017b, Turner et al., 2018]. Other than Fermi acceleration, electrons

can also be energized through adiabatic betatron acceleration, caused by the change in

magnetic field strength in the foreshock region. [Liu et al., 2019]. However, shock acceleration

or adiabatic acceleration (Fermi and betatron) alone cannot explain the generation of near-
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Figure 1.12: Combined low and high energy electron spectra from [Wilson et al., 2016a].

(a)–(c) Distributions during the peak energetic electron enhancements in Figure 1.11. (d)–(f)

Distributions in upstream region in Figure 1.11.

relativistic electrons.

Inside foreshock transients, many field fluctuations typically occur. Efficient electron

pitch-angle scattering caused by these fluctuations is assumed in the aforementioned Fermi

and betatron acceleration models. However, no detailed study has been conducted to analyze

the properties of such field fluctuations and exactly how they interact with electrons to affect

the acceleration processes. One of the most effective wave modes for electron scattering and

acceleration is electromagnetic whistler-mode waves [Gary, 2005, Gurnett and Bhattacharjee,

2005]. These waves can be generated by the heat flux anisotropy [Gary and Feldman, 1977] or

the temperature anisotropy of electron distributions [Sagdeev and Shafranov, 1961, Kennel,

1966]. There is good evidence that both types of anisotropy can arise when solar wind

electrons interact with the bow shock and foreshock transients [Vasko et al., 2020, Page

et al., 2021]. The importance of whistler-mode waves for electron scattering and acceleration

has been extensively investigated and discussed in the inner magnetosphere [Horne and
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Thorne, 1998, Meredith et al., 2001]. The role of these waves on electron energization

around foreshock transients, however, has not been adequately explored or quantified.

1.2.3 Plasma Waves

In collisionless plasmas, various wave modes are generated and have the ability to transfer

energy and momentum between waves and particles. These interactions can result in changes

in particle energies and pitch angles. We focus on wave modes that interact with electrons,

which can include those generated by electron populations themselves or high-frequency

waves generated by ions [Sagdeev and Shafranov, 1961, Kennel, 1966]. Extensive research

has been conducted on plasma waves in the inner magnetospheric environment, where waves

play a significant role in the interactions with radiation belt electrons [Thorne, 2010]. Based

on the knowledge obtained from studies in the inner magnetosphere, we can extend our

understanding to the foreshock region to investigate waves effects on electron acceleration.

In this section, we discuss various wave modes present in the magnetosphere and their impact

on electron dynamics. Additionally, we compare the plasma conditions between the inner

magnetosphere and foreshock regions.

There is a wide variety of waves in the inner magnetosphere, including whistler mode

waves, electrostatic waves, and other nonlinear waves, which can interact with radiation belt

electrons and change their dynamics [Thorne, 2010, Li and Hudson, 2019]. These plasma

waves are typically generated by plasma injections during geomagnetically active periods

[Cornwall et al., 1970, Jordanova et al., 2012, Kennel and Petschek, 1966, Kozyra et al.,

1997, Li et al., 2008, Meredith et al., 2013, Malaspina et al., 2015]. Figure 1.13 shows an

observation of an injection event and waves associated with the injection [Malaspina et al.,

2018]. Panels (a-c) show a plasma injection that transports unstable ion and electron pop-

ulations around 20:50 UT. Various types of waves are observed near the injection front:

electrostatic electron cyclotron harmonics (ECH) generated by loss-cone or beam instabili-

ties, with frequency larger than electron cyclotron frequency [Zhang et al., 2021] (panel (c));
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Time domain structures (TDS), electrostatic waves that form nonlinear structures (electron

holes, solitary waves) [Mozer et al., 2015] (panel(c)); Electromagnetic whistler-mode waves

with frequency smaller than electron cyclotron frequency, are generated by the instability of

transversely anisotropic electron population [Zhang et al., 2018a] (Panel (d)); and Kinetic

Alfvén waves (KAW), with frequency smaller than ion gyrofrequency, are generated by ion

flows and carry a finite field-aligned electric field due to a finite gyroradius effect [Chaston

et al., 2012].

Among these wave-modes, the whistler-mode waves are particularly significant in inter-

acting with electrons. Their key role in accelerating and scattering radiation belt electrons

during magnetic storms has long been appreciated [Horne and Thorne, 1998, Meredith et al.,

2001, Thorne et al., 2013]. In the inner magnetosphere whistler-mode waves are generated

by anisotropic electrons injected from the magnetotail [Tao et al., 2011, Fu et al., 2014].

The frequency (ω) of whistler-mode waves is in the range of (Ωci,Ωce) where Ωci is the ion

cyclotron frequency and Ωce is the electron cyclotron frequency; note that the whistler-mode

waves with frequency between Ωci and the lower hybrid frequency ωLH =
√
ΩciΩce are also

called magnetosonic waves. Plasma waves have two key characteristics: wavevector (k) and

frequency (ω). The dispersion relation links k and ω via a single equation, offering infor-

mation about the phase and group velocities that define wave propagation. The dispersion

relation under the high-density assumption for whistler-mode waves has been derived as:

ω2 =
ω2
ce cos

2 ψ

(1 + (ωpe/kc)2)2
+

ω2
LH

1 + (ωpe/kc)2
(1.1)

where ωpe is the electron plasma frequency, c is the speed of light, and ψ is the wave normal

angle which denotes the angle between wave vector k and the background magnetic field.

For parallel propagating high-frequency whistler-mode waves, Equation 1.1 can be simplified

as:
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Figure 1.13: Overview of an injection event observed by Van Allen Probe B on 21 December

2016. (a–c) Omnidirectional electron energy flux as a function of electron energy and time

from the REPT, MagEIS, and HOPE instruments, respectively. (d) Fluxgate magnetometer

data in GSM coordinates. (e) Electric field wave power spectra. (f) Magneticfield wave

power spectra. (Figure after [Malaspina et al., 2018]).
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ω2 =
ω2
ce

(1 + (ωpe/kc)2)2
(1.2)

Theoretical and observational investigations have demonstrated effective interactions be-

tween whistler-mode waves and electrons [Lyons and Williams, 1984, Schulz and Lanzerotti,

1974, Millan and Baker, 2012]. These waves, operating at electron scales, exhibit right-

hand circular polarization. When these waves are Doppler-shifted such that the electron

gyrofrequency aligns with the shifted wave frequency, cyclotron resonance can occur be-

tween electrons and whistler-mode waves. The effects of such resonant interactions have

been widely studied in Earth’s radiation belt for decades.

Whistler-mode waves in the inner magnetosphere can be classified into several categories,

including hiss waves, chorus waves, and low-frequency magnetosonic waves. Figure 1.14

demonstrates the spectrogram of these waves, showing various magnetospheric waves that

resonate with energetic electrons [Kletzing et al., 2013]. Chorus waves, a type of whistler-

mode wave, are commonly observed in the low-density region outside the plasmapause, which

marks the outer boundary of the plasmasphere. They often exhibit coherent and discrete

elements [Burtis and Helliwell, 1969, Koons and Roeder, 1990, Santoĺık et al., 2014], with

a frequency range typically spanning from 0.1Ωce to 0.8Ωce and occur in two distinct bands

above and below one-half the electron cyclotron frequency. Chorus waves are recognized

for their dual role in radiation belt electron dynamics. They contribute to electron accel-

eration by facilitating efficient energy diffusion and can also lead to electron precipitation

into the upper atmosphere through pitch angle scattering [Bortnik and Thorne, 2007, Ni

et al., 2016]. Within the plasmasphere, broadband whistler mode waves, known as plas-

maspheric hiss, are prevalent, typically spanning frequencies from 20 to 4000 Hz [Meredith

et al., 2004, Meredith et al., 2018]. Hiss waves play a critical role in modulating radiation

belt electron dynamics within the plasmasphere by inducing electron precipitation into the

upper atmosphere through pitch angle scattering [Meredith et al., 2007, Ni et al., 2013]. In

particular, plasmaspheric hiss is crucial for forming the slot region, which lies between the
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Figure 1.14: Spectrogram of waves observed on Combined Release and Radiation Effects

Satellite (CRRES), showing various magnetospheric waves which resonate with energetic

electrons (Figure after [Kletzing et al., 2013]).

inner and outer electron radiation belts. Equatorial magnetosonic waves, which fall within

the frequency range of ωce to ωLH , are highly oblique whistler mode waves. These waves are

observed in both inner and outer regions of the plasmasphere [Němec et al., 2005, Santoĺık

et al., 2004]. Magnetosonic waves have been proposed as another mechanism for accelerating

radiation belt electrons, potentially through Landau resonance and transit-time scattering

[Bortnik et al., 2015].

The foreshock and bow shock region also contain various types of plasma waves, including

whistler-mode waves, electrostatic waves, and ultra-low-frequency perturbations. Whistler-

mode waves have been observed within and upstream of Earth’s bow shock [Hull et al.,

2012, Oka et al., 2017, Oka et al., 2019]. Because some of them are close to 1 Hz in the

spacecraft frame, they are a type of magnetosonic waves, which are often referred to as “1-Hz

waves”. These waves propagate obliquely and are either left-hand or right-hand polarized
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in the spacecraft frame. The source of these waves was believed to be shock-reflected ions

[Hoppe and Russell, 1980] or electron beams[Tokar et al., 1984]. Some whistler waves at

higher frequencies (> 10 Hz) have also been observed at Earth’s bow shock [Lalti et al.,

2022b] and in the foreshock region [Shi et al., 2020]. These waves propagate either parallel or

obliquely to the magnetic field and tend to become more parallel as their frequencies increase.

The whistler-mode waves may play an important role in the scattering and acceleration of

electrons in the foreshock region. Other than whistler-mode waves, ultra-low-frequency

perturbation, and electrostatic waves are also frequently observed in the foreshock region

[Zhang et al., 2022, Kamaletdinov et al., 2022]. These waves may also play a role in electron

scattering and acceleration. We will discuss the combined effects of different wave modes in

Chapter 5.

Table 1.1: Comparison between foreshock and radiation belt

Foreshock transient Outer radiation belt

Backgroud field strength ∼ 5− 50 nT > 100 nT

ωpe/ωce ∼ 100 < 10

Electron energy 10− 100s eV 10s− 1000s keV

Plasma conditions in the foreshock differ from those in the inner magnetosphere. The

foreshock is characterized by backstreaming solar particles with considerably lower energy

compared to those in the radiation belt, and the magnetic field in this region is also weaker.

Table 1.1 presents a comparison of plasma parameters between foreshock transients and the

outer radiation belt. Despite these differences, extensive theoretical and observational studies

on electron resonant interactions with plasma waves in the Earth’s inner magnetosphere

provide a solid basis for exploring how these interactions facilitate electron acceleration in

the foreshock. Detailed observations and theoretical analyses of whistler mode waves in

foreshock regions, and their impact on electron acceleration, will be discussed from Chapter

2 to Chapter 4.
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1.3 Thesis Organization

The overall goal of this thesis is to understand how electrons are accelerated in planetary

foreshocks and the role of waves in electron acceleration. To that end, this work is organized

into the following 6 chapters.

Chapter 1 begins by contextualizing the injection problem of shock acceleration and

addresses why studying resonant wave-particle interactions between waves and electrons

is important for electron acceleration in planetary foreshocks. Particle acceleration has

been observed around astrophysical shocks, laboratory shocks, and also planetary shocks.

Accessible in-situ measurements for planetary shocks, especially at Earth’s bow shock and

foreshock regions, provide ample observational dataset to study one of the most mysterious

parts of shock acceleration, the injection problem. Current models can partially resolve the

injection problem but still cannot fully explain the observed acceleration from thermal energy

up to relativistic energies. This thesis examines the impact of plasma waves in the foreshock

region on electron scattering and acceleration, which play a crucial role in the formation of

near-relativistic electrons observed in foreshock regions.

Chapter 2 and Chapter 3 discuss one of the most important wave modes, the whistler

mode. Chapter 2 shows the observations and statistical characteristics of whistler-mode

waves in the foreshock region. It also shows the efficiency of wave-particle interactions

and the potential of nonlinear interactions between waves and particles due to the intense

whistler wave activities. Chapter 3 focuses on the theory of nonlinear effects by deriving

the equations of motion for nonlinear resonant wave-particle interactions. Importantly, wave

packet sizes can affect the efficiency of nonlinear interactions, and the observed waves mostly

propagate in short wave packets. We conduct test-particle simulations including the size of

wave packets to show that electrons can be accelerated by nonlinear interactions with waves.

Although test particle simulations can trace the electron dynamics, they require a large

amount of computational time, especially when studying the dynamics of a large population
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of electrons in realistic plasma conditions, including varying initial energies, frequencies, and

distributions of wave amplitudes. Therefore, Chapter 4 discusses a theoretical probabilistic

approach and a mapping technique that can reproduce electron dynamics in an analytical

way without time-consuming test-particle simulations. The probabilistic approach uses the

Monte Carlo method to trace electron dynamics, allowing for the incorporation of realistic

distributions of wave characteristics and background plasma conditions. We further develop

the probabilistic approach in Chapter 5 to include multiple components that influence elec-

tron dynamics during the acceleration process. Chapter 5 proposes a compound acceleration

mechanism by including the effect of waves, shock acceleration, and adiabatic heating to

reproduce the high-energy tail observed in the foreshock region.

Chapter 6 summarizes the topic and discusses the future direction of including the effects

of magnetic pumping and oblique whistler-mode waves.
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CHAPTER 2

Whistler-Mode Wave Properties in Foreshock

Transients

2.1 Introduction

Recent observations of energetic electrons in Earth’s foreshock transients [Wilson et al.,

2016b, Liu et al., 2017a] suggested that such transients can accelerate electrons and may

provide a seed population for further acceleration at the bow shock – the main source of

energetic particles at the dayside. Around the bow shock and inside foreshock transients

there are many field fluctuations and waves that could either directly accelerate electrons

or modulate other acceleration processes (e.g., Fermi and betatron acceleration) [Oka et al.,

2019, Lichko and Egedal, 2020]. Foreshock transients also exist at other high Mach number

quasi-parallel shocks (e.g., at outer planets, where the solar wind Mach number is high, or

occasionally even at Mars, [Collinson et al., 2015]). The studies of these waves are there-

fore, by analogy, likely common and significant for electron acceleration inside foreshock

transients in planets and in other astrophysical contexts (such as at supernova shocks which

can produce cosmic rays). One of the most effective wave modes for electron scattering and

acceleration is electromagnetic whistler-mode waves [Gary, 2005, Gurnett and Bhattachar-

jee, 2005]. They can be generated by heat flux anisotropy [Gary and Feldman, 1977] or

temperature anisotropy [Sagdeev and Shafranov, 1961, Kennel, 1966] that arises when solar

wind electrons interact with the bow shock and foreshock transients [Vasko et al., 2020, Page

et al., 2021]. Whistler-mode waves are frequently observed around the bow shock [Hull et al.,
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2012, Oka et al., 2017, Oka et al., 2019, Amano et al., 2020]. However, the role of these

waves on electron energization in foreshock regions remains to be fully understood.

In this chapter, we statistically evaluate the properties of whistler-mode waves and deter-

mine the regimes of resonant interactions between waves and electrons. In-situ measurements

around Earth’s bow shock allow us to examine these waves in great depth, facilitating the

extension of findings to other planetary foreshocks with similar plasma conditions.

2.2 Observations

2.2.1 Data and Instrument

For observations, we used the dataset from the Time History of Events and Macroscale

Interactions during Substorms (THEMIS) mission [Angelopoulos et al., 2008] and the Mag-

netospheric Multiscale (MMS) mission [Burch et al., 2016]. THEMIS mission contains five

identically instrumented probes (TH-A, TH-B, TH-C, TH-D, and TH-E) launched in 2007.

We examined TH-C data from 2008 to 2009 when TH-C was within the foreshock during

the dayside phase. We analyze magnetic field data from its fluxgate magnetometer (FGM)

[Auster et al., 2008], plasma data from its electrostatic analyzer (ESA) [McFadden et al.,

2008], electric field data from its electric field instrument (EFI) [Bonnell et al., 2008], and

magnetic fluctuation data from its search coil magnetometer (SCM) [Roux et al., 2008]. We

selected events with foreshock transients from 2008 to 2009 and focused on those encom-

passing onboard triggered wave burst mode data (SCM data up to 4 kHz). MMS mission

consists of four identical satellites in a tetrahedral configuration. The low-frequency mag-

netic field is measured by the fluxgate magnetometer (FGM) [Russell et al., 2016] and the

high frequency by the search coil magnetometer (SCM) [Le Contel et al., 2016] at a rate of

128 S/s and 8192 S/s, respectively, while in burst mode (as is the case here). The fast plasma

investigation (FPI) [Pollock et al., 2016] instrument provides ion and electron measurements

at a resolution of 150ms and 30ms, respectively (also in burst mode).
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We focus on whistler-mode waves observed around HFAs and FBs, two types of foreshock

transients with the most significant plasma and field fluctuations. Whistler-mode waves oc-

cur regularly within and around them. Such transients occur at least ten times per day,

particularly during conditions of above-average solar wind speed [Lu et al., 2022, Chu et al.,

2017a]. Both transient types have a hot, tenuous core associated with strong plasma de-

flection. HFAs are surrounded by compressional boundaries on either side, while FBs have

an upstream compressional boundary bounded by their own mini-shock. They have a scale

of one to several Earth radii (RE). Figure 2.1 (a) shows a sketch of an HFA that forms in

response to an approaching solar wind discontinuity. The hot plasma generated in the core

expands and the large-gyroradius hot foreshock ions at its edge form the core compressional

boundaries at its two sides. Whistler-mode waves are observed in the core and compressional

boundaries. The HFA moves anti-sunward along the bow shock (downward in the figure);

the dashed blue line shows the spacecraft trajectory relative to the HFA.

We identified HFA and FB using the following criteria: (1) they have a hot core with

one or two compressional boundaries; (2) inside the core, density, velocity, and field strength

are reduced, but temperature is increased; (3) compressional boundaries are accompanied

by a sharp increase in magnetic field strength and density. Figure 2.1(b-f) represents an

observation of a typical HFA with two compressional boundaries. Quasi-parallel propagating

whistler waves, evidenced by an increase in wave power are observed within the compressional

boundaries and on the edge of the core (Figures 2.1i-j). The observed whistler waves coincide

with increases in the electron perpendicular temperature anisotropy (Figures 2.1 (g) and (h)).

2.2.2 Wave Analysis Technique

For whistler waves analyzation, we use the power spectral density (PSD) to determine the

mean frequency (⟨f⟩) and the frequency width (∆f) of whistler waves:
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Figure 2.1: (a) Sketch of an HFA cross-section in the HFA reference frame, at an instant in

time as it moves along the shock, past a spacecraft (down). The HFA’s hot plasma core is

flanked by compressional boundaries (CB). Whistler waves are observed around the edge of

the core. The blue dashed line shows the spacecraft trajectory (up) relative to the HFA in

this frame. (b) Magnetic field, (c,d) Energy flux of electrons and ions, (e) Electron density,

(f) Plasma velocity, (g) Electron perpendicular temperature and parallel temperature, (h)

Electron temperature anisotropy (T⊥/T∥), (i) Magnetic field power spectral density (red

crosses depict mean frequency determined as discussed in the text), and (j) Wave normal

angle. The core of the HFA is demarcated by the orange-shaded region.
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⟨f⟩ =
∫ fce
flow

PSDwfdf∫ fce
flow

PSDwdf
(2.1)

(∆f)2 =

∫ fce
flow

PSDw(f − ⟨f⟩)2df∫ fce
flow

PSDwdf
(2.2)

where PSDw(f) = PSD(f)− PSDb(f), and flow = max{4Hz, flh}. PSD is averaged over

every 0.5s and PSDb is the background power spectrum (partly due to instrument noise),

subtracted here in order to detrend the spectrograms and better reveal the waves. This

background spectrum was obtained at each frequency by averaging all times when the PSD

fell to < 30% of its average in each event. We used the 0.5-s (corresponding to 2 Hz) time

interval for PSD, and therefore, we used 4 Hz (2 × 2Hz) as the lower frequency limit.

Using the wave frequency ⟨f⟩ and the frequency width ∆f , we compute the average wave

amplitude (⟨Bw⟩) and maximum wave amplitude (Bw) from band-pass filter data in each

0.5s wave interval.

Using timing and MVA (minimum variance analysis, see [Sonnerup and Cahill, 1968,

Sonnerup and Scheible, 2000]) methods to determine the magnitude and direction of the wave

vector (k⃗), we then calculated the wave normal angle and the wave frequency in the plasma

frame by correcting for its Doppler-shift relative to the spacecraft frame (note that all wave

properties have been averaged at each wave measurement which is defined as the consecutive

series of time points when
∫ fce
flow

PSDwdf > 0). MMS provides four-point observations from

close separations. As the plasma frequency (fpe) in foreshock transients is usually around

104Hz, the wavelength (λ = 2π/k ∼ 10s km) is comparable to the average separation between

the MMS satellites. Therefore, the timing method can be applied to directly obtain the value

and direction of k⃗ [Paschmann and Schwartz, 2000a, Turner et al., 2017]. For a coherent

wave signal, k⃗ obeys the following linear equations:
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
R12x R12y R12z

R13x R13y R13z

R14x R14y R14z



kx

ky

kz

 =


∆ϕ12

∆ϕ13

∆ϕ14

 (2.3)

where R is the separation between two satellites; ∆ϕ = 2πδt/T is the phase difference

between two satellites, where δt is the lag time corresponding to the peak cross-correlation

and T is the observed period of the wave. The peak cross-correlations between the wave

fields observed by four satellites allow us to assess the accuracy of the results. We applied the

timing method at each wave measurement. For measurements with cross-correlation > 0.8

we then calculated the mean wave frequency in the plasma frame: 2πf = 2π⟨f⟩ − k⃗ · v⃗p,

where v⃗p is the plasma (ion) velocity. If the cross-correlation is smaller than 0.8, we applied

an alternative method (MVA) to calculate the wave vector.

While the timing method, used above, can directly measure the magnitude and absolute

direction of k⃗, it requires coherent four-point measurements of the wave fields. For this

reason, we also used the one-point MVA technique to estimate the orientation of k⃗ when

the timing method is not applicable. The MVA method calculates the principal variance

directions and their associated eigenvalues [Paschmann and Schwartz, 2000a]. The direction

of k⃗ is the minimum variance direction. To ensure that the minimum variance direction

is well determined and the waves are circularly polarized, we only kept the points with

λint/λmin > 10 (referring to the ratio of intermediate to minimum eigenvalues). We then

used the wave dispersion relation to compute the wave number (|⃗k|) for the waves of interest

[Wilson et al., 2013]. The 180◦ ambiguity in the k⃗ direction in the MVA method can be

eliminated by using the Poynting vector S⃗ to determine the direction of k⃗ even for oblique

waves [Verkhoglyadova et al., 2010, Verkhoglyadova et al., 2013] – we computed S⃗ using

both electric and magnetic field data [Wilson et al., 2013] for all our events and determined

the sign of wave propagation for MVA-computed k⃗ values. We then used this k⃗ to compute

the Doppler-shifted wave frequency in the plasma frame from the MVA method.
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2.2.3 Statistic Characteristics

Whistler waves were observed in 85% of all foreshock transient events in our database. The

wave spatial distribution within the foreshock transients (in the core or the compressional

boundary) is important because it highlights where the waves are preferentially generated

and where they may interact with electrons. To reveal the spatial distribution of whistler

waves, we normalized the time interval of the core region to [0, 1], based on crossing times

specific to each event. The leading and tailing boundaries were located at normalized times

≤ 0 and ≥ 1, respectively. As mentioned previously, the compressional boundary forms

along the edge of the foreshock and is characterized by the enhanced magnetic field and

plasma density. We defined the edge of the boundary by where the magnetic field magnitude

equals the background value, where the background field was calculated by averaging the

magnetic field strength in the relatively quiescent region upstream of each foreshock transient.

(For example, in Figure 2.1 (b), the edges of the compressional boundary are shown by

vertical lines.) Note that FBs usually only have one trailing boundary. Therefore, the

normalized FB event cores starting at position 0 are typically not preceded by a foreshock

compressional boundary. Figures 2.2 and 2.3 depict the superposed epoch analysis of whistler

wave properties and their spatial distribution in foreshock transients versus the normalized

time (to be interpreted as the spatial location within the core, or relative distance from the

core boundaries).

Figures 2.2(a,b) show the number histograms of the normalized mean frequency (⟨f⟩/fce)

in the core and in the compressional boundary regions of our events, respectively. The median

frequency in both regions is around 0.2fce. The spatial distribution (versus normalized time)

of ⟨f⟩/fce is shown in Figure 2.2(c). The solid and dashed black lines are the mean and

median values of ⟨f⟩/fce; they are ∼ 0.2fce at all locations, despite the sharp change of

the background magnetic field strength and density at the compressional boundary. This

indicates a local generation mechanism for most of the observed waves.
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Figure 2.2: The number histograms and spatial distribution of (a-c) wave frequency; (d-f)

wave frequency width normalized to mean frequency; and (g-i) wave normal angle. The

left and middle columns show histograms in the core and in the compressional boundaries,

respectively. Dashed red lines are medians. The right column shows average and median

values, in solid black lines and dashed black lines, respectively; the lower and upper bound

of the shaded region represents the 25th and 75th percentile of the data, respectively; the

dashed blue line in Panel (c) is the number of whistler waves observed at different locations.
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There are more waves with ⟨f⟩/fce ≥ 0.3 observed in the core, than in the boundary

(compare Figures 2.2(a) and (b)). Although this difference between the core and boundary

⟨f⟩/fce distribution is not large (less than 15% of total number of observations), it may imply

that some fraction of the waves observed in the core, especially with ⟨f⟩/fce ∈ [0.3, 0.5], may

be generated within the boundaries and then propagate to the core region. Because the core

region is characterized by smaller background magnetic fields, when whistler waves propagate

into it, their relative frequency (⟨f⟩/fce) increases.

The dashed blue line in Figure 2.2(c) shows the number of events with whistler waves

as a function of position. It is equivalent to the spatial statistical distribution of the waves

as a function of location within the foreshock transient. It shows that whistler-mode waves

are most probable near the edge of the core where the magnetic field gradient is large. More

events are located near position=1 versus position=0 mainly due to the following reason: the

trailing boundary (at ≥ 1 region) is usually stronger (with higher magnetic field strength)

than the leading one for foreshock transients. This feature has been shown in previous

observations and simulation studies [Liu et al., 2016, Vu et al., 2022a], and Figure 2.1 is also

an example. As a result, the change of the magnetic field strength is sharp at the region

around 1 but smoother around 0. The wave generation is favorable in the region with a

large field gradient where magnetic field compression drives the transverse electron heating

required for wave generation, and therefore, is more likely to be observed around position

∼1.

Figures 2.2 (d-f) show the number histograms and spatial distribution of the normalized

wave frequency width (∆f/⟨f⟩) in a similar manner as the frequency panels, Panels (a-c)

above. The median value of ∆f/⟨f⟩ is ∼ 0.2 in the core and in the compressional boundaries.

A large portion of the observed waves are quite narrow-banded, which suggests a narrow

resonance energy range of electrons responsible for wave generation, i.e. the anisotropic

electron population is bounded below and above in energy by isotropic cold and hot electrons,

respectively [Fu et al., 2014, Page et al., 2021, Frantsuzov et al., 2022].
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The number histograms and the spatial distribution of wave normal angles are shown

in Figures 2.2(g-i) in a similar format as the panels above. Most whistler waves are quasi-

parallel propagating, and the waves tend to be more oblique in the core region: the medians

increase from 12◦ in the boundary to 16◦ in the core (Panels (h) and (g)), and this is also

evident in the spatial profile of both the medians and means in Panel (i). This is likely a result

of (1) wave propagation to the core region from the boundaries (whistler wave propagation

in the inhomogeneous magnetic field and plasma results in a wave normal angle increase,

see [Shklyar et al., 2004, Chen et al., 2013, Gu et al., 2021]) or (2) oblique wave generation

within the core by either cyclotron or Landau resonance thanks to the suppression of Landau

damping by the large parallel temperature often observed in that region (see discussion of

such oblique wave generation by, e.g., [Li et al., 2016]).

Number histograms and spatial distribution of the normalized maximum wave amplitude

(Bw/B0) in our events are shown in Figures 2.3(a-c), in a format similar to Figure 2.2. Here,

B0 is the background magnetic field strength - typically ∼ 5 − 10s nT in HFAs and FBs.

The median value for Bw/B0 in both core and compressional boundaries is larger than 0.01.

Thus, the maximum wave amplitude can reach 10s− 100s of pT. The mean wave amplitude

(not shown here) is about 3 times smaller than the maximum value in statistics.

2.3 Wave-Particle Interactions

2.3.1 Resonant Interactions

Once we have established the primary whistler wave properties, our next step is to investigate

the interactions between these waves and electrons. When the waves are Doppler-shifted (i.e.

electron parallel velocity is modified) such that the electron gyrofrequency can resonate with

the wave frequency in the electron rest frame, energy is transferred between waves and

electrons. This resonance condition is defined as:

35



10 3 10 2 10 1

Bw/B0

0

10

20

30

40

nu
m

be
r o

f e
ve

nt
s

(a)

10 3 10 2 10 1

Bw/B0

0

25

50

75

100

125

150
nu

m
be

r o
f e

ve
nt

s

(b)

0 1 2
position

10 3

10 2

10 1

B w
/B

0

(c)

100 101 102 103

ER (eV)
0
5

10
15
20
25
30
35

nu
m

be
r o

f e
ve

nt
s

(d)

100 101 102 103

ER (eV)
0

20

40

60

80

100

120

nu
m

be
r o

f e
ve

nt
s

(e)

0 1 2
position

100

101

102

103

E R
 (e

v)

(f)

Figure 2.3: Number histograms and spatial distribution of (a-c) maximum wave amplitude,

and (g-i) minimum resonance energy for the mean wave frequency. Dashed red lines show

the median value.
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ω − k∥v∥ = nΩce, n = 0,±1,±2, ... (2.4)

where ω = 2πf is the wave angular frequency, k∥ is the component of the wave vector

parallel to the ambient magnetic field and Ωce = 2πfce is the angular electron gyrofrequency.

Landau resonance occurs at the zeroth order resonance (n = 0), which describes when

electrons travel along the ambient magnetic field with wave parallel phase speed, allowing

for significant and continuous energy exchange in the parallel direction. The case of n = 1

describes a first-order cyclotron resonance when the phase velocity of the wave is Doppler-

shifted upwards enough to equal Ωce/k∥, which happens for k∥v∥ < 0. The electron parallel

velocity at first-order cyclotron resonance is vr = −(Ωce − ω)/k∥. Higher-order resonance

(|n| > 1) is less important for field-aligned waves but can become significantly more effective

with more oblique waves. For Landau resonance, as the whistler waves were quasi-parallel

propagating, the resonance energy was typically below 1 eV. Therefore, we focus on the

first-order cyclotron resonance.

Figures 2.3 (d-f) show the distribution of electron parallel resonance energy (ER =

1/2mev
2
r). Whistler waves are mainly resonant with electrons with 10s − 100s eV paral-

lel energy. This is the hot solar wind electron halo population, having energies larger than

the typical solar wind temperature.

2.3.2 Regimes of Wave-Particle Interaction

Equipped with an understanding of whistler wave characteristics and resonance conditions,

we proceed to delve deeper into the resonant interactions between electrons and whistler

mode waves. As is known in the radiation belt, there are two regimes of wave-particle

interaction, linear and nonlinear regimes, requiring different approaches to study their ef-

fects. The desired statistical study of wave properties would ideally distinguish the dominant

regime of wave-particle resonant interactions. In this context, we describe the criteria for
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distinguishing between these two regimes and examine how whistler waves in the foreshock

region are distributed across these interaction domains.

Low amplitude, broad-band waves scatter electrons in the diffusive regime of resonant

interactions [Kennel, 1969, Lyons et al., 1972, Veltri and Zimbardo, 1993, Amano et al., 2020],

commonly observed in the solar wind [Tong et al., 2019a, Verscharen et al., 2022]. Sufficiently

intense, narrow band (coherent) waves may resonate with electrons in the nonlinear regime

of resonant interactions [Shklyar and Matsumoto, 2009, Albert et al., 2013, Artemyev et al.,

2018a]. Nonlinear resonant interactions include the phase trapping mechanism [O’Neil, 1965,

Nunn, 1971], which is quite effective for electron acceleration in Earth’s outer radiation

belt [Chernikov et al., 1992, Ucer and Shapiro, 2001, Kuramitsu and Krasnoselskikh, 2005].

Once the regime of resonant interactions with electrons can be statistically established for the

whistler-mode waves of interest at foreshock transients, their investigation can proceed using

the formalism developed (and statistical studies conducted) in a similarly inhomogeneous

magnetic field environment, such as Earth’s inner magnetosphere [Karpman et al., 1974, Inan

and Bell, 1977, Solovev and Shkliar, 1986, Albert, 1993].

The electron resonant interaction with whistler-mode waves is controlled by the wave

amplitudes, wave spectral width ∆f , and the background field inhomogeneity ∂B0/∂s. Note

that s is the distance along the field, starting from the equator (in our context the equator

denotes the location of minimum field magnitude). The same quantity is also used to denote

the location of the interaction along the field-line direction. If the wave amplitude is low

the waves cannot alter the electron orbit significantly during a single resonant interaction

and the interaction remains first-order (linear) and can be described well by zero-order orbit

perturbation theory [Kennel and Engelmann, 1966]. If the wave spectral width is too broad

relative to the resonance width, nonlinearity from that resonance can also be evaded. These

two conditions can be expressed as two criteria for nonlinear interaction. The first assesses

the nonlinearity for a pure mode using the inhomogeneity parameter, S, a function of the

normalized wave amplitude Bw/B0 and ∂B0/∂s. The second criterion for the spectral width
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∆f addresses the spectral purity (the monochromatic nature) of the wave.

For highly coherent (approximately monochromatic, or pure mode) waves in an inhomo-

geneous magnetic field, the nonlinearity criterion for S ∝ (∂B0/∂s)/(Bw/B0) [Omura et al.,

2008] is:

S =
1

2

N2

N2 − 1

(
kv⊥
fce

−
(
3− 1

N2

)
vR
v⊥

)
·
(

1

kB0

∂B0

∂s

)
· B0

Bw

, (2.5)

with k being the value of wave vector, N = kc/ω the wave refractive index, v⊥ =√
v2 − v2R the electron transverse velocity, vR = 2π(f − fce)/k the resonant velocity in km/s

(k in this equation is in rads/km), and ∂/∂s the gradient along magnetic field lines. The inho-

mogeneity of the background magnetic field (∂B/∂s) is computed using the linear estimation

of the gradient method from four-satellite observations (see Chapter 14 of [Paschmann and

Schwartz, 2000b]). When |S| < 1 the wave is sufficiently strong to locally overcome the

mirror force ∼ ∂B0/∂s and alter the electron trajectory significantly. This is the regime of

nonlinear resonant interactions. S depends on the electron energy and pitch angle (linked by

the resonance condition). For ∂B0/∂s ̸= 0, S is finite and can be evaluated in two limits: (1)

in the local limit, Slocal evaluated explicitly shows if electrons with a given energy and pitch

angle will interact with waves nonlinearly, and (2) in the global limit, Sglobal can be evaluated

by projecting the electron pitch angle (α) from the location s of the wave measurements to

the location where B0 reaches its minimum. In the global limit, Sglobal captures how often

along their zero-order, adiabatic trajectory (sin2 α/B0 = const) electrons will interact with

the waves nonlinearly.

For each wave event in our database, we obtained the 0.5-second averaged value of

the wave properties (k⃗, ⟨f⟩, Bw), electron cyclotron frequency fce, background field B0,

background inhomogeneity ∂B/∂s, and electron parallel resonant velocity vR. To compute

S, we also need v⊥. Cyclotron resonance happens when the electron parallel velocity is

v∥ = vR. Therefore, v⊥ =
√
v2 − v2R = v sinα is a function of the (total) resonance energy
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(E = 1/2mev
2) and α. (Note that the total energy and α are connected by cosα = vR/v).

We used this to compute S in the local limit, and from it S in the global limit.

We computed Slocal at different energies using the (local) measurements. Combining all

local measurements, we can arrive at the number distribution and the value of Slocal versus

energy and pitch angle in our dataset. Figure 2.4(a) shows the distribution of the number of

measurements used for this computation. The black contour shows the number of samples

per bin below which lie just 5% of all observations. The region outside this contour denotes

the parameter space where the number density of measurements is rather low (interpreted

as insignificant) compared to the rest of the parameter space, inside that contour. Figure

2.4(c) shows the fraction of measurements with |Slocal| < 1; it represents the probability

distribution for electrons to interact with waves nonlinearly in the local limit. The 5%

contour of the number of measurements is transferred here from the counts per bin panel

above it. It demarcates the region within which the probability distribution is trustworthy.

We see that in the region of α > 45◦ and E ∈ [300, 1000] eV the fractions are high: They are

> 30% and can get up to ∼ 60%. In this region of (E,α) space where a sufficient number of

measurements exist, there is a large enough probability for |Slocal| to be < 1 (for the observed

waves to be sufficiently intense) such that the waves interact with electrons nonlinearly.

The global limit is obtained under the assumption that electrons are bouncing within

a local magnetic field trap. In each event, we projected the local electron pitch angle to

the location where B0 reaches its minimum (around the center of the core region), and

then obtained Sglobal by mapping Slocal to a new pitch angle corresponding to that minimum.

Such mapping also removes the direct connection between the electron energy and (mapped)

pitch-angle through the resonant condition. The number of measurements in energy versus

mapped pitch-angle space is shown in Figure 2.4(b) in a format similar to that of Figure

2.4(a), including the contours. The resultant fraction of |Sglobal| < 1 is shown in Figure

??(d), with contours transferred from the panel above it. It shows that α < 45◦, and > 100

eV electrons will resonant with whistler-mode waves nonlinearly (note measurements outside
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of 25% contour are considered not statistically representative).

Overall, Figures 2.4(b,d) demonstrate that in the foreshock transients of our database,

quite often the whistler waves are strong enough to cause nonlinear resonant interaction with

electrons; the background magnetic field inhomogeneity is too weak to suppress this nonlinear

behavior. However, the wave spectral width ∆f also influences the resonant interactions.

The above considerations assume that the waves are sufficiently monochromatic, i.e., ∆f is

small enough. The criterion for small ∆f can be derived from [Karpman, 1974, Le Queau

and Roux, 1987]:

∆f

⟨f⟩
<

(
Bw

B0

vfpe
cfce

)1/2(
f/fce

1− f/fce

)1/4

(2.6)

where v is electron velocity determined by the resonance condition (v = vR/ cosα). If this

criterion is not satisfied, the wave spectrum is broadband (random phase approximation is

valid) to break nonlinear resonance effects. If the criterion is satisfied, the phase of waves

in the wave packet can be coherent and prevent random phase mixing. Similar to the Slocal

treatment, we statistically collected the distribution of RHS/LHS versus energy and pitch

angles for each local measurement, where RHS and LHS are the right-hand side and left-

hand side terms of Eq.(5). Then we rearranged the data to get the distribution of the wave

measurements versus (|Slocal|, RHS/LHS) (shown in Figure 2.4(e)). The region |Slocal| < 1

and RHS/LHS > 1 corresponds to that of nonlinear resonant interactions. The requirement

of a narrow wave spectrum halves the number of observed waves resonating with electrons

nonlinearly, i.e., ∼ 30% of observed waves have |Slocal| < 1, but only half of these waves have

RHS/LHS > 1. But even∼ 15% of waves populating |Slocal| < 1 and RHS/LHS > 1 region

provides a sufficiently large occurrence rate of nonlinear wave-particle interactions. This

occurrence rate is comparable to (or even larger than) that of electron nonlinear resonance

with whistler-mode waves in Earth’s radiation belts [Zhang et al., 2019] and is much larger

than the occurrence rate of electron nonlinear resonance with whistler-mode waves in the

solar wind [Tong et al., 2019a].
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To identify the possible source of such intense whistler-mode waves interacting with

electrons nonlinearly, we examined the electron distribution function (DF) anisotropy by

evaluating the transverse-to-parallel phase space density ratio, otherwise referred to as the

transverse anisotropy: DF⊥/DF∥. For each local measurement, we computed this quantity

at all different energies. We also computed the Slocal value assuming a fixed, representative

value for α = 50◦ (corresponding to a significant fraction of waves with |Slocal| < 1, based

on Figure 2.4(c)). Figure 2.4(f) shows the median of the aforementioned electron transverse

anisotropy as a function of normalized energy E/ER and |Slocal| value. Near the resonance

energy, E/ER ∈ [0.1, 10], the electron anisotropy for intense waves (those with |Slocal| < 1)

maximizes and reaches ∼ 2. Such a high electron anisotropy should result in large whistler-

mode wave growth rates and large wave amplitudes. Although the quantity DF⊥/DF∥

cannot uncover an electron heat flux anisotropy (one of the important free energy sources

for whistler-mode waves via the heat flux instability [Gary and Feldman, 1977, Tong et al.,

2019b]), a large value of this transverse anisotropy can either result in amplification of waves

generated by the heat flux instability or it may signify that the anisotropy is itself the primary

source for wave generation [Vasko et al., 2020]. Thus, Figure 2.4(f) shows that intense

whistler-mode waves amplified (or directly driven) by a large electron transverse anisotropy

(up to 2) may resonate with electrons nonlinearly (|Slocal| < 1). However, it is noteworthy

that some of the large transverse anisotropies observed at high energies (E/ER ∼ 10) may

also be generated by electron nonlinear resonant acceleration by whistler-mode waves.

With such a significant population of whistler-mode waves resonating nonlinearly with

electrons, we anticipate the electron distributions to exhibit signatures of these interactions.

Motivated by the discussion above, we separated the linear and nonlinear wave-particle inter-

actions as follows: (1) linear regime with |Slocal| > 1 or RHS/LHS < 1, and (2) nonlinear

regime with |Slocal| < 1 and RHS/LHS > 1. For each wave measurement, we obtained

the concurrently measured electron distribution function DF (E,α). We separated these

DF measurements into three categories according to the wave properties: DFs associated
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Figure 2.4: Panel (a, b) shows the distribution of samples for Slocal and S+global calculation,

respectively. The black contour shows the 95% of total samples. Panel (c) shows the sample

fraction of whistler waves resonating with electrons in the nonlinear regime (|Slocal| < 1).

Panel (d) repeats panel (c), but for the measurements with pitch-angle adiabatically pro-

jected to the minimum of the background magnetic field from the wave observation location

(Sglobal). Panel (e) shows the number of wave observations versus (|Slocal|, RHS/LHS),

where RHS and LHS refer to the right-hand side and left-hand side of Eq (5), respectively.

|Slocal| < 1 and RHS/LHS > 1 define the region of nonlinear wave-particle interactions (see

text for details). Panel (f) shows the distribution of electron flux anisotropy versus |Slocal|

and energy. The energy is normalized to the resonance energy for the observed waves.
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with linear (DFL) wave-particle interactions, DFs associated with nonlinear (DFNL) inter-

actions, and no-wave DFs (DFNW ), those without significant whistler-mode waves observed.

All electron distribution functions were normalized to the local plasma density to suppress

any effects related to the strong density variations across the foreshock transients. In each

transient event, we first calculated the median values of DFNL, DFL, and DFNW , and their

ratios (DFL/DFNW and DFNL/DFNW ). Then we calculated the median values of these

ratios. The results are shown in Figure 2.5(a,b); they are plotted against energy (normalized

to ER) and pitch angle. There is a clear phase space density increase around and above the

resonance energy and α ∼ 90◦ for DFL. This increase may be due to a combination of an ini-

tial electron anisotropy driving whistler-mode wave generation and electron acceleration by

waves. A similar increase in phase space density is also evident for DFNL, except it is much

more localized in energy (around ER) and over a wider α range. If the strong DFNL peak

around α ∼ 90◦ is due to the strong initial anisotropy needed for intense wave generation,

the DFNL increase at small pitch-angles (α < 45◦ and α > 135◦) is most likely due to the

effective electron mixing by nonlinear resonance with waves [Vainchtein et al., 2018]. A weak

decrease of DFL/DFNW and DFNL/DFNW at energies well below the resonance energy is

unlikely to be related to wave-particle resonant interactions but could be due to preferential

wave generation within hot plasma regions where the cold electron density is reduced. The

black lines in Figure 2.5(a,b) show the contours of DFNW . Results with DFNW < 10−5 are

not statistically significant because such a small phase space density may lead to large errors.

To further investigate the difference between the distributions of phase space density as-

sociated with weak and intense waves, we plot the probability distributions ofDFL/DFNW >

n∗ (for weak waves) and DFNL/DFNW > n∗ (for intense waves) overall pitch angles, where

n∗ stands for the value of the ratio. Figures 2.5(c,d) show the percentage of events with

DFL/DFNW > n∗ and DFNL/DFNW > n∗ at different energies, respectively. There is a

clear difference between weak and intense waves. For DFL/DFNW > n∗ around the reso-

nance energy (E/ER ≈ 1) the probability distribution is reduced significantly for n∗ > 2,
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i.e. there is nearly negligible probability of observing a phase space density increase by a

factor of > 2 in association with weak waves. Conversely, for DFNL/DFNW > n∗ around

the resonance energy the probability distribution remains large even for n∗ ∼ 3, i.e., there

is a significant probability of observing intense waves in association with the resonant phase

space density increase by a factor of ∼ 3. Moreover, Figure 2.5(d) shows that the probability

distribution has a local maximum around the resonance energy. These results are consistent

with our assertion that nonlinear resonant interactions contribute significantly to electron

acceleration.

2.3.3 Quasi-linear Theory for Wave-Particle Interactions

Although nonlinear interactions can effectively alter electron trajectories and may contribute

significantly to electron acceleration, the majority of observed whistler waves interact with

electrons in the linear regime. In this subsection, we elucidate the theory of quasi-linear

interactions. Detailed discussions on nonlinear interactions is provided in Chapter 3 and

Chapter 4.

Resonant interactions with hundreds of eV electrons can lead to diffusion in both the

electron’s pitch-angle and energy, amplifying or damping waves in the process. Such diffusion

smooths the gradients of the electron distribution function along so-called “diffusion curves”

[Lyons and Williams, 1984]:

(v∥ − ω/k∥)
2 + v2⊥ = const (2.7)

The diffusion curves define a diffusion surface by which the phase space density gradient

determines the preferential direction of diffusion. To determine the net energy and pitch-

angle diffusion direction, one must analyze the particle diffusion direction to the constant

energy curves in the velocity space. Figure 2.6 shows an example of the comparison between

the diffusion curves of the whistler waves and the electron distribution contours. Figure
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Figure 2.5: Electron distribution functions (DFs) collected during times when waves were

observed, normalized to those collected in the absence of waves. Panels (a) and (b) show

electron DFs associated with weak (a) and intense (b) wave observations normalized to the

background (measured in the absence of waves; subindex NW ) electron spectra. Panels (c)

and (d) show the probability distributions of DFL/DFNW > n∗ and DFL/DFNW > n∗,

respectively. Weak waves correspond to |Slocal| > 1 or RHS/LHS < 1 and are marked by

subindex L, whereas intense waves correspond to |Slocal| < 1 and RHS/LHS > 1 and are

marked by subindex NL.
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2.6 (a-g) shows a foreshock transient observation from THEMIS-C and the shaded region

indicates the time when wave-burst data are available. Figure 2.6 (h) shows the electron

velocity distribution in the BV plane (a 2D slice) from 16:26:38 to 16:26:41 UT. During this

period, the observed whistler frequency is from ∼ 30 to 170 Hz, and the electron minimum

resonant energy is around 26–328 eV. For each THEMIS energy channel in this energy range,

we calculated a diffusion curve (red curve). To quantify how well they match, we calculated

the normalized phase space density (F ) gradients along the diffusion curves. The normalized

F gradient is calculated by multiplying dF/Fdv by the typical resonance velocity. To facil-

itate comparison along the diffusion curves, we averaged the F gradients over pitch angles

to suppress fluctuations due to measurement uncertainties. In this event, the normalized

gradients are ∼ 0.04 and the typical resonance velocity is 870 km/s, indicating that dF/F

changes by 4% per 870 km/s. This confirms that the diffusion curves match the distribution

contours and suggests that the electrons are scattered by the whistler waves.

To further confirm this, we also need to estimate the pitch-angle diffusion coefficients of

the whistler waves at various resonant energies. A general expression for the diffusion of

particles by wave-particle interactions using quasi-linear theory was derived by [Kennel and

Engelmann, 1966, Lyons and Williams, 1984]. The quasi-linear diffusion equation can be

written as [Lyons and Williams, 1984]:

∂f0
∂t

=
1

p sinα

∂

∂α
sinα

(
Dαα

1

p

∂f0
∂α

+Dαp
∂f0
∂p

)
+

1

p2
∂

∂p
p2

(
Dpα

1

p

∂f0
∂α

+Dpp
∂f0
∂p

)
(2.8)

where α is the electron pitch-angle, p is momentum, and f0 is the zero-order spatially

uniform electron distribution function. Dαα, Dαp, and Dpp are the local diffusion coefficients

that describe the electron energy/pitch-angle changes per unit time. The expressions for the

pitch-angle diffusion coefficients, Dαα, have been derived by [Lyons, 1974]:

Dαα =

n=nh∑
n=nl

∫ Xmax

Xmin

XdXDnX
αα (2.9)
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Figure 2.6: THC observations of a foreshock transient (left) and an enlarged plot of the

compressional boundary during the wave burst mode (right). Left panel: (a) magnetic

components in GSE coordinates (X, Y, Z, and total in blue, green, red, black, respectively);

(b) ion bulk velocity in GSE coordinates (X, Y, and Z in blue, green, and red, respectively);

(c) total ion density; (d) electron ESA energy spectra; (e) ion ESA energy spectra; (f)

power spectra of magnetic field; (g) power spectra of electric field. (h) Electron velocity

distribution in the BV plane during the wave burst mode and whistler diffusion curves (red

lines) at various resonant energies; (i) normalized F gradients (red circles), anisotropy ratios

of observations to theory (black dots), and pitch angle diffusion coefficients of whistler waves

(blue plus) at various resonant energies.
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DnX
αα =

∑
i

B2(ωi)g(X)e2ω2
i

4π(1 +X2)N(ω)

(
−nΩce/ω − sin2 α

cosα

)2( |Φn,k|2

|v∥ − ∂ω/∂k∥|

)
k∥,i

(2.10)

where g(X) is the distribution of wave power with wave normal angle ψ (X = tanψ),

B2(ω) is the distribution of wave power with frequency, N(ω) is a normalization factor,

and |Φn,k|2 depends on the wave refractive index for the particular wave mode and is given

by [Glauert and Horne, 2005]. The blue crosses in Figure 2.6 (i) represent the pitch-angle

diffusion coefficients estimated through Equation 2.10 using the approximation of quasi-

parallel propagating and only including the first-order cyclotron resonance effect. They are

around 1.1–1.2 rad2/s. Because the thickness of the compressional boundary is ∼ 4, 000

km, electrons with energies about 300eV have a speed along the boundary normal as ∼ 600

km/s. Thus, electrons need at least a few seconds to transit the compressional boundary,

a time sufficient for the diffusion coefficients calculated above to produce significant pitch-

angle scattering. This indicates that the observed whistler waves are indeed strong enough

to cause electron distributions to follow diffusion surfaces within this transit time.

2.4 Summary

We showed a case study and a statistic study of whistler wave properties in foreshock tran-

sients, and we also investigated the regimes of wave-particle interactions and the effects of

nonlinear interactions on electron distributions. Specifically, we showed that:

1. Whistler waves exist in 85% of the foreshock transients examined. These waves are

most often seen around the edge of the core or the compressional boundary regions of

foreshock transients.

2. Whistler waves can effectively scatter electrons. We use a case study to show that the

diffusion coefficient can reach 1.1–1.2 rad2/s, which is high enough to scatter electrons

within the transit time scale.
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3. The whistler waves in foreshock transients have frequencies around 0.2fce, regardless

of the abrupt change of the background magnetic field at their location. This indicates

that they are generated locally, i.e., they do not propagate to the satellite from a

distinctly different location in the transient or its vicinity. On average, the whistler

waves are quasi-parallel. However, the waves in the core region tend to be more oblique

than the waves in the compressional boundary.

4. Intense whistler waves are frequently observed. Their median amplitude is around

0.01B0 (∼ 10s − 100s pT). The resonance energy for electrons is around 10s − 100s

eV, and 15% of the observed whistler waves are sufficiently intense and narrow-band

to resonate with electrons nonlinearly.

5. Events with potential nonlinear wave-particle interactions show a clear increase in

phase space density around the resonance energy. This increase is larger than that for

observations associated with low-intensity waves. This suggests that nonlinear resonant

interactions can contribute significantly to electron acceleration.

Our statistical results on the whistler-mode wave intensity demonstrate that a significant

portion of the observed waves interact with electrons nonlinearly. The nonlinear interactions

can play an important role in electron acceleration processes in the following way:

First, nonlinear interactions have diffusion rates that are different from (often faster than)

those found in classical, linear theory. We have shown that intense waves can significantly

modify electron distributions, which indicates that they can alter electron trajectories. This

invalidates the approximation of unperturbed trajectories for classical scaling of electron

pitch-angle diffusion rates D ∝ ⟨Bw⟩2 [Kennel and Engelmann, 1966], and therefore, classical

pitch-angle diffusion theory does not apply in such cases. If the waves propagate in short

wave packets (containing only a few wave periods each; see, e.g., such wave packets in the bow

shock in [Hull et al., 2012, Oka et al., 2017, Oka et al., 2019]), then the main nonlinear effect

will be the change of the diffusion rate scaling, D ∝ ⟨Bw⟩1/2 [Artemyev et al., 2021b]. In
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that case, a simple extrapolation of quasi-linear theory scaling, D ∝ ⟨Bw⟩2, to high-intensity

waves would significantly overestimate the actual diffusion rate. The diffusion rate is an

important element of the stochastic shock drift acceleration model [Amano et al., 2020], and

therefore the change in the scaling of D may modify the efficiency of the resultant electron

acceleration in this model.

Second, intense waves propagating in long wave packets (each containing tens of wave

periods) may result in nonlinear resonant acceleration of electrons in an inhomogeneous

magnetic field via phase trapping [Shklyar and Matsumoto, 2009, Albert et al., 2013]. To

be effective, this acceleration mechanism should be combined with electron periodic motions

in magnetic field traps, i.e., electrons should experience multiple resonant interactions. The

magnetic field configuration of foreshock transients allows for such a trapping motion [Liu

et al., 2019]. However, such trapping can be provided by ultra-low-frequency compressional

magnetic field fluctuations [Oka et al., 2019, Lichko and Egedal, 2020] and by the transient-

bow shock magnetic field configuration [Liu et al., 2017b, Turner et al., 2018].

Therefore, foreshock transients embedding intense whistler-mode waves (resonating with

electrons nonlinearly) may serve as an effective electron accelerator if the interplanetary

magnetic field can trap electrons. Further theoretical analysis of nonlinear wave-particle res-

onances and observational analysis of energetic electron bursts and whistler waves associated

with foreshock transients may reveal the efficiency of such nonlinear resonant acceleration.

In Chapter 3, we further show the effect of nonlinear wave-particle resonances through test-

particle simulations.
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CHAPTER 3

Electron Acceleration via Nonlinear Resonant

Interactions

3.1 Introduction

Theoretical models suggest that nonlinear resonant interactions can effectively accelerate

electrons (especially around the bow shock where the background magnetic field has large

gradients [Artemyev et al., 2022a] or large-scale electrostatic fields exist [Kuramitsu and

Krasnoselskikh, 2005]), and we have shown in Chapter 2 that whistler-mode waves in the

foreshock region can be sufficiently intense to resonate with electrons nonlinearly. This

chapter aims to show observational evidence of electron acceleration by intense whistler-mode

waves at the strong magnetic field gradients around Earth’s bow shock. We demonstrate that

nonlinear wave-particle interactions can be sufficiently important to shape the distributions

of suprathermal electrons (i.e., those at energies around 50 − 500eV, much larger than the

solar wind electron with temperature of ∼ 10eV; see [Wilson et al., 2018]). Mechanisms

of whistler wave generation due to electron compressional heating and further formation of

such suprathermal electron populations are universal, and thus the study of whistler waves

at Earth’s bow shock is also applicable to astrophysical shocks [Amano et al., 2022].

To provide multiple resonant interactions with coherent (narrow-band) whistler-mode

waves, electrons should bounce within a magnetic field bottle (most of the results for non-

linear electron accelerations by whistler-mode waves were obtained for such magnetically

trapped electron motion) [Shklyar and Matsumoto, 2009, Albert et al., 2013, Artemyev
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et al., 2018a]. Around the bow shock, such a magnetic bottle can be provided by large-

amplitude compressional magnetic field fluctuations [Hull et al., 2012, Lichko and Egedal,

2020] or by foreshock transients [Lin, 2002, Omidi et al., 2009, Turner et al., 2013, Liu et al.,

2016]. Foreshock transients, such as foreshock bubbles and hot flow anomalies, have a hot

core associated with strong plasma deflections and are surrounded by compressional bound-

aries with enhanced magnetic field strength and density. Figure 3.1(a) shows the structure

of a magnetic bottle formed between a foreshock transient and the bow shock. Particles can

be trapped within the region of the transient’s core bouncing between the strong fields at

the bow shock on the one side and the transient’s boundary on the other side [Liu et al.,

2017b, Liu et al., 2018]. Such a magnetic bottle allows electrons to interact with whistler

waves multiple times. In such an environment, intense whistler waves can provide effective

electron acceleration via nonlinear resonant interactions, including the effect of phase trap-

ping. Phase trapping can provide a large energy gain for only a few interactions [Artemyev

et al., 2018b], which is quite important for dynamical foreshock transients where electrons

may quickly escape from the magnetic bottle (the acceleration region). To study this process,

we searched for and identified 16 foreshock transient events with strong whistler waves and

a magnetic topology consistent with a magnetic bottle. We also present an example from

one of these events, epitomizing the signatures common to all events. We further demon-

strate the generality of the conclusions drawn from this event with a statistical analysis of

all events and compare model results of wave-particle resonant interactions with observed

electron pitch-angle distributions.

3.2 Observations

The dataset used in this chapter is from the Magnetospheric Multiscale (MMS) mission

[Burch et al., 2016]. We used magnetic field data from the fluxgate magnetometer (FGM)

[Russell et al., 2016] and the search coil magnetometer (SCM) [Le Contel et al., 2016] at a
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Figure 3.1: (a) The structure of a magnetic bottle inside a foreshock transient: electrons are

bouncing between the compressional boundary and bow shock, and resonate with whistler-

mode waves. The nonlinear resonant interaction should result in electron acceleration, and we

would expect the formation of local maxima of electron fluxes (or phase space density, PSD)

at intermediate pitch-angles [Gan et al., 2020b, Peng et al., 2022]. Thus, the acceleration

should result in a transition between field-aligned electron phase space density distributions

(c) to butterfly distributions (b).
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rate of 128 S/s and 8192 S/s, respectively, in burst mode. We used plasma data from the

fast plasma investigation (FPI) [Pollock et al., 2016] instrument also in burst mode at a time

resolution of 30ms for electrons.

Figure 3.2 shows the observation of a foreshock transient characterized by compressional

boundaries with increasing magnetic field strength and density, and a core region with hot

electrons and low magnetic field strength. Panel (a) shows three components of the mag-

netic field in GSE coordinate. The leading and trailing compression boundaries are around

20:26:45 UT and 20:27:05 UT, respectively (see Panel (a) and the vertical lines). Panels (g)

and (h) show quasi-parallel whistler waves within the transient.

Figure 3.3 shows the magnetic field (in GSE and flow-aligned coordinates) and electron

pitch-angle distributions within the foreshock transient. Note that this transient structure

is transported by the solar wind and remains quasi-static during the crossing time (typical

time-scales of foreshock transient dynamics are longer than a minute) [Lin, 2002, Gedalin,

2015, An et al., 2020]. Before 20:26:55 UT, the solar wind flow v is mostly along x (see

Panel (e) in Figure 3.2) and the magnetic field is almost along the plasma flow direction

(B ∥ v, see Figure 3.3(b)). Around 20:26:55 UT, the magnitude of B∥ drops to zero, which

means that the spacecraft crossed the magnetic field almost transversely to the magnetic

field direction (see Panel (b)). Therefore, around 20:26:55 UT, the spacecraft crossed a

discontinuity separating different magnetic field directions. This discontinuity is an essential

part of the foreshock transient [Lin, 1997, Omidi et al., 2009, Vu et al., 2022b, Lin et al.,

2022] and can be best seen in electron pitch-angle distributions showing very different solar

wind electron populations (10− 50eV) before and after 20:26:55 UT (see Panel (d)).

To confirm this result, we consider electron populations across discontinuities found in

each foreshock transient of our statistics. We collected 32 foreshock transient events which

have clear signatures of the discontinuity in the core region, and analyzed the change of

electron fluxes crossed the discontinuity where B∥ reaches zero (indicated by the vertical

line). Figure 3.3 demonstrates that such a strong gradient in the electron distribution is
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Figure 3.2: (a) Magnetic field, (b,c) Energy flux of electrons and ions, (d) Electron density,
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normal angle. Black lines in Panels (g) and (h) from top to bottom are fce, 0.5fce,0.1fce,

and flh, respectively.
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typical for solar wind discontinuities (see also [Artemyev et al., 2019a]).

Thus, we may assume that the electron population is trapped between this discontinuity

and the magnetic field maximum at the trailing edge (interval 20:26:55–20:27:08 UT, the

orange shaded region in Figure 3.3). Around this B-maximum (20:27:02–20:27:08 UT) there

is a strong flux increase of hot electrons (see Panels (d-g)), which is likely due to electron

adiabatic heating caused by magnetic field compression. Sub-interval 20:26:55–20:27:00 UT

is within the transient core, where the electron population is not affected by magnetic field

compression. This sub-interval is characterized by intense whistler-mode wave activity (see

Panel (c)) and butterfly pitch-angle distribution of hot electrons (50 − 250eV). The latter

exhibits peak flux at ∼ 50◦ and ∼ 140◦ pitch-angles. It is unlikely that these peaks are caused

by adiabatic electron heating, because betatron acceleration would increase ∼ 90◦ fluxes,

whereas Fermi acceleration would increase field-aligned fluxes. Similar butterfly distributions

(with much higher electron energies) corresponding to resonance with whistler-mode waves

have been observed in Earth’s radiation belts [Fennell et al., 2015, Peng et al., 2022]. There,

test particle simulations have demonstrated that nonlinear resonant interactions with intense

whistler-mode waves may result in such distributions [Gan et al., 2020b, Saito and Miyoshi,

2022]. By analogy, in this chapter we examine the role of a similar mechanism in producing

the butterfly distributions shown in Figure 3.3.

3.3 Test Particle Simulations

3.3.1 Wave-Particle Interaction Model

To model electron (mass me, charge −e) resonant interactions with whistler-mode waves, we

adopt the gyro-averaged Hamiltonian system [Artemyev et al., 2022a]:

H =
p2∥
2me

+ µΩ (s) +

√
2µΩ (s)

mec2
eBw

k
cos (ϕ+ ψ) (3.1)

where (s, p∥) and (ψ, µ) are pairs of conjugate variables: s, p∥ are the field-aligned co-
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Figure 3.4: Electron fluxes change across the discontinuity within foreshock transients.

Panel (a) shows an averaged profile of B2
∥ − B2

∥,min (normalized to [0,1]). This profile traces

the location of the discontinuity. Panels (b-e) show the epoch analysis of pitch angle distri-

butions: time is normalized to [−0.25, 0] for the side with larger electron fluxes and [0, 25]

for the side with smaller electron fluxes, pitch-angle shifted to have α = 0 at maximum

fluxes for the energy in the range 10 − 200eV. This figure shows that discontinuity embed-

ded within foreshock transients separates two electron populations with different pitch-angle

distributions, and there is no electron transport across the discontinuity: no mixture of two

populations that otherwise would result in similar pitch-angle distributions on both sides.
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ordinate and momentum, ψ is the electron gyrophase, and µ is the normalized magnetic

moment. The background magnetic field configuration of an electron magnetic bottle is

assumed to be: Ω(s) = Ω0 · (1 + (9/2) · f(s/R)), where Ω(s) > 0 is electron gyrofrequency

at position s, Ωpe,0 and Ω0 are the electron plasma frequency and electron gyrofrequency

in the foreshock transient core (the position with minimum magnetic field strength), and

f(s/R) = 2 + tanh(s/R − 3) − tanh(s/R + 3) with R ∼ 500km ∼ 2.5 · 103c/Ωpe,0. The

spatial scale of the foreshock transient ∼ 10 · R is about 5000 km. This magnetic bottle

allows electrons to bounce between two magnetic field peaks with maxΩ(s)/Ω0 = 10, in

agreement with the observed B variation between ∼ 4 and ∼ 40nT (see Figure 3.2(a)).

The corresponding loss-cone angle αLC = arcsin(1/
√
10) ≈ 20◦. Particles with pitch-

angles below αLC should escape from the bottle and cannot further resonate with waves.

Wave phase ϕ is determined by the wave frequency (ω = −∂ϕ/∂t) and the wavenum-

ber (k(s) = ∂ϕ/∂s), where the wavenumber is from the cold plasma dispersion relation

k(s)c = Ωpe(s) · (Ω(s)/ω − 1)−1/2 [Stix, 1962]. Based on plasma density measurement, we

set the constant Ωpe(s)/Ω(s) ≈ 100 (see Figure 3.1(f), subinterval 20:26:55–20:27:00 UT).

This parameter essentially controls the energy range for wave-particle resonant interactions,

as minimum resonance energy (for field-aligned electrons with µ ∼ 0) for the first cyclotron

resonance is ∼ mec
2(Ω0/kc)

2/2 ∼ 250keV · (Ω0/Ωpe)
2. Large (Ω0/Ωpe,0) ∼ 100 sets the min-

imum resonance energy to 25eV, whereas electrons with energy above minimum resonance

energy can resonate with waves at larger |s| and the resonance energy range is determined

by the background magnetic field configuration (i.e., the range of s where bouncing electrons

can resonate with waves).

To determine the regime of wave-particle resonant interaction, we shall analyze the prop-

erties of observed intense wave packets in our event. Figure 3.5 shows the observation of the

whistler-mode wave during 20:26:54–20:27:00 UT, when 50-250eV electrons exhibit butterfly

distributions. The whistler-mode waves are quasi-parallel propagating and circularly polar-

ized with a nearly constant frequency around 0.2fce, where fce = Ω/2π (see Figure 3.5 (a-c)).
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Therefore, we may consider a monochromatic wave approximation for the wave-particle res-

onant interaction model [Demekhov et al., 2006, Omura et al., 2015, Hiraga and Omura,

2020, Artemyev et al., 2023]. Figure 3.5(d) shows the wave packets of the whistler-mode

waves: waves are quite intense with the maximum amplitude reaching 0.5− 1% of the back-

ground magnetic field. Typical wave packets contain ℓ ∼ 20 wave periods. Such wave pack-

ets, exhibiting amplitude modulation can be modeled with Bw → Bw · exp (−5 cos2(ϕ/2πℓ))

[Zhang et al., 2020]. The nonlinearity of electron resonant interactions with whistler-mode

waves can be described by the inhomogeneity parameter, S, which compares two forces act-

ing on electrons: the Lorentz force of the waves and a generalized mirror force due to the

background field inhomogeneity (see [Omura et al., 2008] for the details of S parameter):

S ∝ (∂B0/∂s)/(Bw/B0), where ∂B0/∂s is the background magnetic field gradient obtained

using the linear estimation of the gradient method from four-satellite observations [Shi et al.,

2023b]. If |S| < 1 the wave is strong enough to locally overcome the mirror force ∼ ∂B0/∂s

and alter the electron trajectory significantly, i.e. this is a nonlinear regime of wave-particle

interactions. We calculated the S parameter for each wave packet during 20:26:54–20:27:00

UT and the results are shown in Figure 3.5 (e,f). The majority of wave packets can res-

onate nonlinearly with 200eV electrons (Figure 3.5(e)). Figure 3.5(f) shows the fraction of

measurements with |S| < 1 which represents the probability distribution for electrons to

interact with waves nonlinearly. Note that these estimates are provided for local wave and

electron characteristics, whereas electron bouncing within the B0 minimum should result in

the widening of the energy/pitch-angle range of resonant (as particularly nonlinear) interac-

tions with waves [Hsieh and Omura, 2017, Vainchtein et al., 2018]. Our analysis indicates

that nonlinear effects should be important in this event.

3.3.2 Simulation Results

We numerically integrate the Hamiltonian equations of motion (3.1) for 106 electrons initially

uniformly distributed in pitch-angle ∈ [αLC , 180
◦−αLC ] and energy ∈ [10, 103] eV. The total
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Figure 3.5: Whistler-mode wave power spectrum (a), wave normal angle (b), ellipticity
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integration time is ∼ 15 seconds of real-time (bounce period is ∼ 1.5s for ∼ 100eV electrons

and there are two resonant interactions per bounce period). For each bounce period of each

electron, we launch a new wave with a random frequency and random wave amplitude having

uniform distribution within [0.1, 0.4]fce and [0.0025, 0.01] of the background magnetic field.

Figure 3.6(top Panels) shows three examples of electron trajectories for different energies

and initial pitch-angles: 100eV electrons experience regular phase trappings with energy

jumps ≥ 5eV, whereas most often electrons are scattered with a random change of energy

(diffusive scattering without nonlinear resonant effects) or with energy decrease due to the

phase bunching. These three effects (nonlinear phase trapping and phase bunching, and

diffusive scattering) are comparable in magnitude for electrons with an initial energy of

300eV, and therefore such electrons mostly diffuse in energy space. However, this diffusion

is quite strong, providing energy variations up to ±30eV for 5 seconds of real time.

As we do not know the initial electron distribution function, we show results for three

different initial distributions: a uniform pitch-angle distribution g(E); a pitch-angle distribu-

tion with a smaller number of particles around the loss-cone g(E) sinα; and a field-aligned

pitch-angle distribution g(E) cosα. Function g(E) describes the energy spectrum corre-

sponding to the unperturbed electron population observed around the discontinuity. Figure

3.6(bottom panels) shows that regardless of the initial distribution, after ∼ 20 resonant inter-

actions electrons exhibit clear butterfly distributions with a peak around 50◦ for [50, 250] eV

energy range (all distributions are normalized to the integral
∫ 90◦

αLC
g(E) sinαdα). This peak

is much less pronounced for [300, 600] eV, in agreement with the energy-localized butterfly

distribution in spacecraft observations (see Figure 3.3(d-j)). The observed pitch-angle distri-

butions (likewise normalized) show a similar butterfly distribution for [50, 250] eV electrons,

see Figure 3.7(a).

To confirm this comparison with statistical results, we use our dataset of foreshock tran-

sients and select intervals with intense whistler-mode waves. Then we use the same format

as in Figure 3.6, and plot normalized pitch-angle distributions of electron measurements as-
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sociated with whistler-mode waves. Figure 3.7(b) shows that statistical events demonstrate

similar butterfly distributions for 50− 250 eV electrons as in simulation results.

Note that the enhancement of [50, 250] eV at high pitch angles (> 75◦; shown by the

dashed curve) is produced by low-energy electrons accelerated via multiple phase trappings

within a series of wave-packets [Hiraga and Omura, 2020]. The efficiency of such multiple

trapping strongly depends on the wave phase decoherence between wave packets [Zhang

et al., 2020], and can be well modeled only with detailed statistical analysis of wave phase

decoherence. The absence of such a strong > 75◦ peak in observational data suggests that

our model overestimates the multiple-trapping effect, and further investigation of wave de-

coherence would be needed for the model modification.

3.4 Summary

Intense whistler-mode waves are observed around interplanetary shocks [Wilson et al., 2013,

Davis et al., 2021] and Earth’s bow shock [Hull et al., 2012, Hull et al., 2020, Page et al., 2021,

Shi et al., 2023b]. Resonant interactions between electrons and such intense waves may result

in strong pitch-angle scattering [Oka et al., 2017, Oka et al., 2019, Shi et al., 2020], which

is important for electron participation in stochastic shock drift acceleration [Amano et al.,

2020, Amano et al., 2022]. Moreover, in the presence of ambient magnetic field gradients

and shock-related electrostatic fields, whistler-mode waves may directly accelerate solar wind

electrons [Kuramitsu and Krasnoselskikh, 2005, Artemyev et al., 2022b]. This important

role of whistler-mode waves for suprathermal electron dynamics drives many theoretical

investigations of wave-particle resonant interactions around shocks (see the discussions in

Ref. [Wilson et al., 2014, Amano et al., 2020]).

We have presented clear evidence that whistler-mode waves can contribute to the solar

wind electron acceleration within foreshock transients. Wave amplitudes are sufficiently

high to provide nonlinear resonant interactions with electrons, which would speed up this
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Figure 3.6: Model results for electron resonant interactions with whistler-mode waves.

Panels (a) show examples of test particle trajectories for two initial energies and different

pitch-angles. Time is normalized to the model time step, δt = RΩpe/cΩce ≈ 0.15 seconds.

Panels (b) show examples of the evolution of initial pitch-angle distributions after ∼ 10

resonant interactions (three initial cases are shown in three panels). Black and magenta

colors show different energy ranges (initial pitch-angle distribution is the same for both

energy ranges).
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(a) (b)

Figure 3.7: Statistical results of electron pitch-angle distributions for intervals with in-

tense whistler-mode waves. Panel (a) shows the normalized pitch-angle distribution during

20:26:55–20:27:00 UT for the event from Figure 1 of the main text. The flux of 50-250eV

electrons has a peak around 50◦ pitch angle, consistent with the model results. Panel (b)

shows the normalized pitch-angle distribution for 16 events (different foreshock transients).

Solid lines are medium values. The upper and lower boundaries of the shaded region are the

25th and 75th percentile of the normalized flux, respectively.
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acceleration. Such nonlinear resonant acceleration and formation of electron butterfly pitch-

angle distributions are typical in Earth’s inner magnetosphere [Fennell et al., 2015, Gan

et al., 2020b, Saito and Miyoshi, 2022, Peng et al., 2022], but this is the first time it has

been reported in the foreshock region.

Whistler-mode wave generation around the bow shock is a natural consequence of elec-

tron adiabatic heating that creates unstable electron distributions. Whistler-mode waves are

nearly always observed inside foreshock transients due to their compressive nature and 15%

are intense enough to nonlinearly interact with electrons [Shi et al., 2023b]. Whistler waves

transfer energy between the heated population and a small resonantly accelerated electron

population [Shklyar, 2011]. Thus, wave generation and resonant wave-particle interactions

enable the formation of a suprathermal electron population, which can be further injected

into the shock environment where it can undergo further diffusive shock acceleration [Amano

et al., 2020]. The upper energy limit of accelerated electrons should be determined by the

ambient magnetic field [Omura et al., 2015, Allison and Shprits, 2020]. Similar scaling for

solar wind electrons would result in an acceleration from 10− 100eV up to ≤ 100keV. Such

acceleration, therefore, acting together with adiabatic and diffusive shock acceleration mech-

anisms, might be commonplace and explain the formation of relativistic electron populations

commonly observed around Earth’s bow shock [Wilson et al., 2016a, Liu et al., 2019]. This

compound acceleration is discussed in more detail in Chapter 5.
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CHAPTER 4

Probabilistic Approach and Mapping Technique

4.1 Introduction

Chapter 3 demonstrates that whistler-mode waves can effectively interact with electrons

through nonlinear interactions. It also shows that test particle simulations can successfully

trace electron dynamics during these interactions. However, these simulations require sig-

nificant computational resources, especially when modeling a large population of electrons

necessary to replicate low-probability effects. Therefore, there is a need to develop theoretical

approaches that can reduce computational time. In this chapter, we explore two theoretical

approaches for describing wave-particle interactions. These approaches take into account

nonlinear resonant interactions, gradients of the background density and magnetic field, and

the fine structure of waveforms, typically characterized by short, intense wave-packet trains.

The basic theoretical approach for modeling wave-particle resonant interactions, the

quasi-linear theory [Vedenov et al., 1962, Drummond and Pines, 1962], can be used to es-

timate the electron scattering rates provided by whistler-mode waves [Veltri and Zimbardo,

1993, Amano et al., 2020]. However, the criteria for this theory (low wave intensity, broad

wave spectrum; see Ref. [Karpman, 1974, Shapiro and Sagdeev, 1997]) can be violated

around the shock, where the observed whistler-mode waves are very intense and sufficiently

narrow-band [Hull et al., 2020, Shi et al., 2023b, Artemyev et al., 2022b]. Such waves may

resonate with electrons nonlinearly. Presently, models of nonlinear resonant interactions

are mostly developed for Earth’s inner magnetosphere (see, e.g., Refs. [Shklyar and Mat-
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sumoto, 2009, Albert et al., 2013, Hsieh and Omura, 2017, Artemyev et al., 2021c] and

references therein) and require significant modifications to be suitable for the plasma and

wave characteristics commonly observed around Earth’s bow shock. In this chapter we seek

to advance such models for planetary shocks, and in particular Earth’s bow shock, which is

most accessible representative.

Intense whistler-mode waves detected at the bow shock and in the foreshock region are

strongly modulated by low-frequency compressional waves [Hull et al., 2012, Hull et al.,

2020], i.e. whistler-mode waves propagate in short wave packages. Figure 4.1(left panel)

shows the probability distribution of whistler-mode waves in the space of wave amplitude

Bw, in nT , and wave-packet size β, in wave periods. Although there are long and intense

wave-packets with Bw > 100pT and β ≥ 20, the majority of the observed intense waves

propagate in short wave-packets, characterized by β < 20. The number of wave-packets

decreases with the wave-packet size as N ∼ β−1.67. Such a strong wave modulation (short

packet size) can significantly reduce the efficiency of nonlinear resonant interactions [Tao

et al., 2013, Allanson et al., 2020, Allanson et al., 2021], because electrons spend less time

in resonant interactions with short wave-packets and cannot gain substantial energy (see

simulation results in Refs. [Mourenas et al., 2018, Zhang et al., 2020, An et al., 2022, Gan

et al., 2022]).

Figure 4.1(right panel) illustrates how wave-packet size affects the electron nonlinear res-

onant interactions. In the case of infinitely long wave-packets (β → ∞), resonant electrons

with the same initial energies and pitch-angles are divided into two populations. The first

population consists of a small group (low probability) of phase-trapped electrons that expe-

rience a significant energy gain (∆E > 0). The second population comprises a larger group

(high probability) of phase-bunched electrons that undergo a minor energy loss (∆E < 0).

For a finite wave-packet size (β = 50), the population of phase-trapped electrons increases

due to a higher probability of trapping. For comparison, we also show the ∆E-distribution

for the quasi-linear scattering regime (small wave intensity) with scaled ∆E → ∆E/Bw.
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This distribution shows a spread of ∆E within [−max∆E,max∆E], where max∆E is ap-

proximately the energy gain of the trapped population. The significant disparity observed in

the ∆E-distributions between the quasi-linear and the nonlinear resonant regime, as well as

between the different values of β highlights the importance of incorporating realistic wave-

packet characteristics into the model of wave-particle resonant interactions around the bow

shock.

In the following of this chapter, we first describe a probabilistic approach which enables

us to trace the long-term evolution of electron distribution functions. This approach assumes

that waves are sufficiently incoherent (wave-packets are short) to reduce the efficiency of non-

linear resonant interactions and hence lead to diffusive particle scatterings. Such a diffusion

by intense wave-packets is quite different from quasi-linear diffusion [Shklyar, 2021, Frantsu-

zov et al., 2023, Gan et al., 2022]. Then we describe how this probabilistic approach can be

merged with a mapping technique [Benkadda et al., 1996, Khazanov et al., 2013, Khazanov

et al., 2014, Artemyev et al., 2020] to model electron dynamics in systems with a significant

effect from nonlinear resonance with long wave-packets.

4.2 Hamiltonian Equations For Resonant Systems

Theoretical models proposed for wave resonant interactions within electrons bouncing along

magnetic field lines in the radiation belts [Tao et al., 2008, Artemyev et al., 2017, Lukin

et al., 2021] assume multiple, independent resonant interactions described by probability

distribution functions (constructed theoretically or derived numerically) of energy and pitch-

angle changes during each interaction. Such multiple resonant interactions are possible when

particles follow the bounce motion (and periodically attain resonance with the waves) or

when they resonate with multiple waves (different wave-packets spatially distributed along

particle trajectories). Around Earth’s foreshock region, electrons can also undergo such

multiple interactions. Figure 4.2 (bottom) depicts the electron dynamics and wave-particle
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Figure 4.1: The distribution of waves in (Bw, β) space (left). The distribution of waves in

(Bw, β) space for the foreshock region (see details of wave statistics in Ref. [Shi et al., 2023b]).

We present a 2D probability distribution in the space of peak wave-packet amplitude and

the wave-packet size β, which is measured in terms of wave periods. Additionally, we display

a 1D distribution for the number of wave-packets at various wave-packet sizes, β, and we fit

this distribution with a power law function of the form N ∼ β−1.67. (right) Three examples

of probability distributions of energy change ∆E for a single resonant interaction of electrons

(having the same initial energy/pitch-angle): (grey) low-intensity wave-packet, (blue) long

intense wave-packet, and (orange) short intense wave-packet. The wave magnetic field is

normalized to the minimum value of the ambient magnetic field (see details in the text), and

for the distribution with Bw/B0 = 10−5, we rescale ∆E → ∆E · 103 to compare with the

other two ∆E-distributions evaluated for Bw/B0 = 10−2.

71



interaction for a foreshock transient (an example is shown on the left) and for a bow shock (an

example is shown on the right). In both environments, the background plasma density varies

strongly with the background magnetic field (see Figure 4.2(a,d) and (h,k)), and the fpe/fce

ratio is large (≈ 100) and almost constant. The whistler-mode wave characteristics are also

quite similar in these two environments: waves propagate in the form of intense (∼ 1% of

background magnetic field), short wave-packets (see Figure 4.2(g,n)). This allows us to apply

our model to both systems, with equal efficacy. For the bow shock region, we are interested

in reflected electrons, which can be scattered by whistler-mode waves upstream and turned

back to the shock. These electrons should resonate with waves that are generated upstream

and propagating downstream. For foreshock transients, electrons may be trapped between

the shock of the foreshock transient and the bow shock. In that case, the electrons bounce

back and forth, undergoing multiple resonant interactions with waves generated within the

core of the foreshock transients.

We employ two models: one for the bow shock and the other for the foreshock region.

Both models describe electron (mass me, charge −e) motion in inhomogeneous magnetic

fields with field-aligned whistler mode waves [Artemyev et al., 2022b]:

H =
p2∥
2me

+ µΩ0 (s)− eΦ (s) + Uw(s, µ) cos (ϕ+ ψ)

Uw =

√
2µΩ0 (s)

mec2
eBw

k(s)
(4.1)

where (s, p∥) are conjugate variables of parallel coordinate and momentum, (ψ, µ) are con-

jugate variables of gyrophase and normalized magnetic moment (µ = E sin2 α/Ω0 where

E is the electron energy and α is the electron pitch-angle), Ω0(s) > 0 is the electron gy-

rofrequency, Φ(s) is the electrostatic potential describing the polarization electric fields due

to ion-electron decoupling around strong magnetic field gradients [Scudder, 1995, Gedalin,

1996], Bw is the wave amplitude, ϕ is the wave phase that determines the wave frequency

ω = −∂ϕ/∂t and the local wave number k(s) = ∂ϕ/∂s. We use the simplified cold plasma

dispersion relation kc = Ωpe(s) · (Ω0(s)/ω − 1)−1/2, see Ref. [Stix, 1962], where Ωpe(s) is the
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Figure 4.2: Observations of a foreshock transient (left) and the distant bow shock (right) by

the THEMIS spacecraft. The bottom panel depicts the electron dynamics (brown: reflection;

purple: trapping) and wave-particle resonant interactions (in a yellow-highlighted interaction

region) at the bow shock (black) and within the foreshock transient (demarcated by the bow

shock and the shock upstream of it in orange).
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plasma frequency.

The bow shock is described simply by a magnetic field ramp, Ω0(s) = Ωmin · (1+3b(s)), a

compressional plasma density increase Ωpe(s)/Ωpe,min ∝
√

Ω0(s)/Ωmin, and an electrostatic

potential Φ(s) = Φ0b(s) (see, e.g., Ref. [Gedalin, 1996]). Our choice of parameters is typical

for Earth’s bow shock: (Ωpe/Ω0)min = 100, Φ0 ∈ [0, 100] eV (see Refs. [Goodrich and

Scudder, 1984, Scudder, 1995]). Function b(s) = (1/2) · (1 + tanh(s/L)) varies from 0 to

1 with a spatial scale L ≈ 1000 km (the typical scale of magnetic field variations at the

bow shock, see Ref. [Krasnoselskikh et al., 2013]). This spatial scale determines the large

system parameter η = L/de ∼ 104, with de = c/Ωpe,min being the electron inertial length,

the wavelength scale.

The foreshock magnetic field model corresponds to foreshock transients, localized en-

hancements of the magnetic field that lead to electron magnetic trapping (see Paper 1 [Shi

et al., 2023] and Refs. [Shi et al., 2020, Shi et al., 2023b]). This magnetic field model

has a magnetic configuration akin to a magnetic field bottle, Ω0(s) = Ωmin

√
1 + (s/L)2, a

compressional plasma density increase Ωpe(s) = 100Ω0(s), and a large system parameter

η = L/de ∼ 104. We do not include any electrostatic potential mostly because there is no

observational study of such potential in foreshock transients.

The large parameter η and small wave amplitude Bw/B0 ∈ [10−4, 10−2] (see Refs. [Hull

et al., 2012, Hull et al., 2020, Shi et al., 2023b]) make Equation (4.1) a slow-fast (slow s, p∥

variables and fast ϕ, ψ phases) one with a small resonant perturbation ∼ Uw. To demonstrate

the main properties of nonlinear resonant interactions in the Hamiltonian system (4.1), we

follow the procedure of typical slow-fast resonant system analysis (see Refs. [Neishtadt and

Vasiliev, 2006, Neishtadt, 2014, Artemyev et al., 2018a]).

First, we introduce phase ζ = ϕ + ψ as a new conjugate coordinate to a new magnetic

moment µ̃. For this we use a generating function F (ϕ, s; µ̃, p; t) = (ϕ + ψ)µ̃ + ps with new
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coordinate-momentum pairs (s̃, p) and (ζ, µ̃):

ζ =
∂F

∂µ̃
= ϕ+ ψ, µ =

∂F

∂ψ
= µ̃,

s̃ =
∂F

∂p
= s, p∥ =

∂F

∂s
= p+ kµ̃.

(4.2)

Because µ̃ = µ and s̃ = s, the tilde sign will be omitted. The new Hamiltonian H =

H + ∂F/∂t has the form:

H =
(p+ kµ)2

2me

+ µ(Ω0 − ω)− eΦ(s) + Uw(s, µ) cos ζ (4.3)

This Hamiltonian describes a conservative system because ∂H/∂t = 0.

The resonance condition in new Hamiltonian variables is

ζ̇ =
∂H
∂µ

≈ k
(p+ kµ)

me

+ Ω0 − ω = 0. (4.4)

Equation (4.4) determines the resonant momentum µ = µR(s, p):

µR(s, p) =
me

k2

(
ω − Ω0 − k

p

me

)
. (4.5)

Expansion of the Hamiltonian near the resonance gives:

H ≈ Λ(s, p) +
k2

2me

(µ− µR)
2 + Uw(s, µR) cos ζ,

Λ(s, p) =
(p+ kµR)

2

2me

+ µR(Ω0 − ω)− eΦ.

(4.6)

To introduce the canonical variable Pζ = µ−µR, we use the generating functionW (ζ, s;Pζ , p̃) =

(Pζ + µR)ζ + p̃s with new conjugate variables:

ζ̃ =
∂W

∂Pζ

= ζ, µ =
∂W

∂ζ
= Pζ + µR,

s̃ =
∂W

∂p̃
= s+

∂µR

∂p̃
ζ, p =

∂W

∂s̃
= p̃+

∂µR

∂s̃
ζ.

(4.7)

The first term Λ(s, p) in the new Hamiltonian H̃ will differ from the first term Λ(s, p) from

the Hamiltonian (4.6), because of the difference between old variables (s, p) and new variables

(s̃, p̃). Because the second term in the expressions for the old variables is small, it allows us
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to expand the Λ term in the Hamiltonian. Noticing that s = s̃+ {µR, s̃}ζ, p = p̃+ {µR, p̃}ζ

where {·, ·} are the Poisson brackets, it can be shown that

Λ(s, p) = Λ(s̃, p̃) + {µR,Λ}ζ,

and the new Hamiltonian can be written as:

H̃ ≈ Λ(s̃, p̃) +
k2

2me

P 2
ζ + {µR,Λ}ζ + Uw(s, µR) cos ζ. (4.8)

In this form, the first term Λ(s̃, p̃) describes the slow motion in the (s, p) ≈ (s̃, p̃) plane while

the following three are analogous to the nonlinear pendulum Hamiltonian:

Hζ =
1

2M
P 2
ζ +Aζ + Bcos ζ, (4.9)

which describes the fast motion near the resonance in the (ζ, Pζ) plane. Coefficients M , A,

B depend on the coordinates in the (s, p) plane:

M =
me

k2
, B = Uw(s, µR) =

√
2µRΩ0

mec2
eBw

k
, (4.10)

and

A = −∂ ln k
∂s

p2∥,R
kme

− ∂Ω0

∂s

p∥,R − kµR

k2
− e

k

∂Φ

∂s
, (4.11)

where p∥,R = me (ω − Ω0) /k is the solution of equation ϕ̇ + ψ̇ = 0 for the Hamiltonian

(4.1) and µR is defined through the electron’s resonance energy and the coordinate s of the

resonance.

The phase portrait of the Hamiltonian Hζ in (ζ, Pζ) is presented in Figure 4.3(top panel).

This portrait contains two types of trajectories: transient trajectories cross the resonance

Pζ = 0 once – electrons moving along such trajectories experience scattering with small

energy/pitch-angle change; and phase trapped trajectories which are closed around the res-

onance Pζ = 0 – electrons moving along such trajectories stay around the resonance for a

long time (see details in Refs. [Omura et al., 1991, Shklyar and Matsumoto, 2009, Artemyev
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et al., 2018a]). The trajectory demarcating the phase domains with transient and phase-

trapped trajectories is the separatrix. An important system parameter is the area of the

region enclosed by the separatrix:

S = 2
√
2MB

∫ ζmax

ζX

√
cos ζX − cos ζ +

A

B
(ζX − ζ)dζ, (4.12)

where ζX is the solution of equations Pζ = 0, Ṗζ → 0. Area S depends on (s, p) coordinates

in the resonance, where p = p∥,R − kµR. The combination of the conservation law E − eΦ−

ωµ = h = const (see Eq. (4.3)) and the resonance condition makes S a function of energy

E only, i.e., S = S(E) (see Figure 4.3(bottom) showing three examples of S(E)). This

function characterizes the electron energy change during resonant interactions, ∆E, and the

probability of electron phase trapping, Π (see Refs. [Shklyar, 1981, Solovev and Shkliar,

1986, Albert, 1993]). Such probability can be defined as the ratio of resonant electrons that

experience phase trapping for a single resonant interaction to the total number of resonant

electrons [Neishtadt, 1975, Shklyar, 1981].

The initial energy E determines the phase portrait in (ζ, Pζ) plane but cannot describe

electron trajectories in the phase portrait, because they also depend on the Hζ magnitude.

The coefficients in Hζ depend on E, whereas phase ζ is a fast oscillating variable. Thus, we

may introduce a normalized energy Hζ near the resonance Pζ = 0, 2πξ = ζR + (B/A) cos ζR,

and treat ξ as a random variable. An important property of the Hamiltonian (4.9) is that

the ξ-distribution is uniform (see numerical tests in Refs. [Itin et al., 2000, Frantsuzov

et al., 2023]). Therefore, we can use S(E) and the random variable ξ to characterize the

wave-particle resonant interactions [Artemyev et al., 2018b, Artemyev et al., 2020].

Note that the Hamiltonian H̃ and Eq. (4.9) have been derived for electron pitch-angles

that are not too small (i.e., not-too-small µ). However, when dealing with the resonant

interaction of whistler-mode waves with nearly field-aligned electrons, a different approach

is needed, as discussed in references [Artemyev et al., 2021a, Albert et al., 2021, Albert

et al., 2022b]. Electrons with small pitch-angles resonating with intense whistler-mode waves
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Figure 4.3: (a) A phase portrait of the Hamiltonian (4.9) with |A/B| < 1. (b) The separatrix

area S is a function of the initial energy. We plot S for bow shock and foreshock transient

models. For the bow shock model, we trace electrons that move from the upstream region,

get reflected from the shock, and then resonate with whistler-mode waves. Dashed lines show

the prohibited initial energy range: electrons with such initial energies cannot move away

from the shock, because these electrons are not reflected by the shock and go downstream

(for a given h value, this corresponds to a certain range of the initial pitch-angle). The

maximum resonance energy corresponds to a resonance location (s) at the minimum of the

ambient magnetic field.

78



exhibit a phenomenon known as anomalous trapping, where all particles become phase-

trapped and experience an increase in pitch-angle during a single resonant interaction, as

described in references [Kitahara and Katoh, 2019, Gan et al., 2020a]. While our model

does not reproduce this effect, we simulate it by implementing a scheme for electron losses:

particles with pitch-angles below 18◦ are assumed to escape from the magnetic trap with

maxB/minB = 10, which is common for foreshock transients [Shi et al., 2023b]. These

escaping particles are then replaced by new solar wind particles with intermediate to high

pitch-angles.

Figure 4.4 shows examples of electron trajectories from the numerical integration of the

Hamiltonian equations of motion for two systems with different parameters. There are two

main effects of nonlinear resonant interactions: phase bunching characterized by energy

decrease and phase trapping characterized by large energy increase (see Refs. [Karpman

et al., 1975, Trakhtengerts et al., 2003, Albert, 2000, Omura et al., 1991]). We aim to

theoretically describe electron distribution dynamics driven by multiple nonlinear resonant

interactions. To achieve this, we employ two approaches: probabilistic analysis and mapping

techniques.

4.2.1 Probabilistic Approach

To characterize wave-particle resonant interactions, we will use the probability distribution

P(∆E) of energy change for a single resonant interaction. For fixed system parameters, this

distribution will depend on the initial electron energy E and pitch-angle α0. The pitch-

angle can be substituted by the initial electron magnetic moment µ0 = E sin2 α0/Ωmin (we

set initial conditions at the magnetic field minimum). Equation (4.1) has one integral of

motion: E − ωµ = h = const (see, e.g., Ref. [Shklyar and Matsumoto, 2009]). This is a

constant because there are no electric fields in the reference frame moving with the wave

(t→ t+ωt), and the particle energy ∼ h in this reference frame is conserved. Therefore, we

can use the probability distribution function P(∆E,E) defined in the (∆E,E) space for fixed
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(a)

(b)

(c)

Figure 4.4: Examples of electron energy evolution due to the interactions with the prescribed

wave field (energy versus time): for the bow shock model with Φ0 = 0 (a), for the bow shock

with Φ0 = 100V (b), and for the foreshock transient (c). Each panel shows three trajectories

with the same initial energy 200eV and three different initial pitch-angles.
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h. For waves with infinitely long wave-packets ∼ cos (ϕ+ ψ), such probability distribution

functions can be derived analytically [Vainchtein et al., 2018, Artemyev et al., 2022c]. In

reality, however, waves propagate in the form of wave-packets (see Figure 4.2 and Refs.

[Hull et al., 2012, Hull et al., 2020, Shi et al., 2023b]), where P can only be determined from

numerical simulations [Omura et al., 2015, Hsieh and Omura, 2017, Artemyev et al., 2019c].

We introduce the wave field modulation, cos (ϕ+ ψ) → f(ϕ) cos (ϕ+ ψ), and numerically

evaluate P for different modulation characteristics. Function f(ϕ) describes the wave-packet

train, and we use a simple form f(ϕ) = exp (−5 · cos2(ϕ/2πβ)) with β denoting the wave-

packet size [Tsai et al., 2022]. An additional model parameter is the wave phase coherence

number measured by the number of contiguous coherent wave packets, Nc. This parameter

describes how many wave packets within the train have the same initial ϕ, i.e., maintain

phase coherence from one packet to the next one. This effect can be modeled by a finite

Nc, which will reduce the efficiency of the phase trapping and acceleration. The concept of

a wave-packet train assumes that idealized plane wave ∼ cos (ϕ+ ψ) is separated into an

infinite number of wave-packets, Nc → ∞. The duration of resonant interactions between

electrons and plane waves is limited by the inhomogeneity of the background magnetic field.

Similarly, the resonant interactions between electrons and an infinite ensemble of coherent

wave-packets also have this limitation. However, for wave-packets, there is an additional

effect of wave phase decoherence at the edge of packets, and such decoherence can further

limit the number of wave-packets that particles can interact with. The system with Nc → ∞

corresponds to the situation when all wave packets are generated in the same source region by

the same particle population and their modulation is attributed to quasi-periodical currents

of phase trapped electrons [Omura, 2021, Tao et al., 2020, Nunn et al., 2021]. Thus, there

is no variation (destruction) of the wave phase among wave packets. In this case, electrons

may be trapped into the next wave packet after escaping from the previous one, and such

multi-trapping would result in effective electron acceleration, similar to infinitely long wave-

packets [Hiraga and Omura, 2020]. However, different wave-packets are often generated
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in different source regions and their phases are not coherent across the entire packet train

[Zhang et al., 2020, Mourenas et al., 2022]. To account for the effect of phase decoherence, a

finite value parameter Nc is introduced to determine the maximum number of wave-packets

that particles can resonate with. This is the upper limit of wave-packets and particles can

escape from the resonant interactions even before reaching Nc. Note that this discussion is

relevant only to the phase trapping because the phase bunching occurs once per period of

particle motion at the resonance and does not depend on Nc.

4.2.2 Mapping Technique

The ξ-averaged characteristics of nonlinear resonant interactions (energy changes due to

bunching ⟨∆E⟩bunching and trapping ⟨∆E⟩trapping, and the trapping probability Π) are deter-

mined by the profile S(E) alone [Artemyev et al., 2018b, Artemyev et al., 2020]:

⟨∆E⟩bunching = ω⟨∆µ⟩bunching = − ω

2π
S (4.13)

S
(
E + ⟨∆E⟩trapping

)
= S (E) , Π = − ω

2π

dS
dE

(4.14)

with E − eΦ − ωµ = h = const. Therefore, knowing S (see, e.g., Figure 4.3(bottom)), we

may construct a map for energy changes:

En+1 = En +

 ⟨∆E(En)⟩bunching , ξ ∈ Ξbunching(En)

⟨∆E(En)⟩trapping , ξ /∈ Ξbunching(En)
(4.15)

where n is the number of resonant interactions (map iteration number), Ξbunching(E) deter-

mines the range of ξ corresponding to bunched particles, and ξ is a random variable that is

uniformly distributed over ξ ∈ [0, 1] (see Refs. [Itin et al., 2000, Frantsuzov et al., 2023]).

Although the function Ξbunching(E) can be quite complicated (see details in, e.g., Ref. [Al-

bert et al., 2022a]), it can be approximated by a simple step-wise function [Artemyev et al.,

2020]:
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En+1 = En +

 ⟨∆E⟩bunching , ξ ∈ (Π(En), 1]

⟨∆E⟩trapping , ξ ∈ [0,Π(En)]
(4.16)

This map should be supplemented by the equation of pitch-angle changes (α0 is defined

as the pitch angle at the minimum Ω0): α0,n+1 = α0,n + ∆α, with ∆α determined from

En+1 − eΦR(En+1, α0,n+1) − ωµ(En+1, α0,n+1) = En − eΦR(En, α0,n) − ωµ(En, α0,n); here,

ΦR(E,α0) = Φ(sR(E,α0)) is the electrostatic potential when electrons enter or escape from

the resonance (which could be treated as equal for bunching and for trapping and could be

found from S(En) = S(En+1)). Iteration number n can be substituted by time as tn+1 =

tn + τ(En), with τ(En) being the time interval between two resonant interactions (see Ref.

[Artemyev et al., 2021c]).

4.3 Long Wave Packets

During a simulation of many electrons interacting with wave-packets of a given frequency, Nc

and β, the value of h remains fixed throughout the resonant interaction, and the resultant

energy change can be obtained from a probability distribution of ∆E for the fixed h. We

can therefore use a ∆E lookup table for the given fixed h of an electron of an initial pitch

angle and associated resonance energy. The full range of initial equatorial pitch angles (30◦

to approximately 80◦ at the minimum of the magnetic field magnitude) will map to a range

of resonance energies around 220− 280eV and result in a 2-D probability distribution quan-

tifying the results of the interaction. Figure 4.5 shows probability distributions P(∆E,E)

for a fixed h and long wave-packets (β = 100, Nc → ∞). There is a clear dependence

of ∆E-distribution on initial energy, E0. For small E0, the distribution of energy changes

shows two distinct populations: a small number of electrons with very large ∆E > 0 are

electrons accelerated via phase trapping, whereas the main electron population has small

∆E < 0 due to phase bunching. With the increase of the initial energy, E0, the trapping

acceleration becomes less effective and the trapped population moves closer to ∆E ∼ 0. This
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(a) (b) (c)

Figure 4.5: Examples of P(∆E,E0) distributions for the bow shock model with Φ0 = 0

(a), for the bow shock model with Φ0 = 100V (b), for the foreshock model (c); in all cases,

Nc → ∞ and β = 100. The main difference between (a) and (b) is that for Φ0 = 100V

many electrons with resonant energies ≤ 225eV cross the bow shock and do not resonate

with waves in the upstream region.

is caused by the value of the resonance energy: for fixed h, smaller E0 means smaller α0 and

larger s for the resonant interactions where electrons will be trapped. As all trapped elec-

trons escape from the resonance at s ∼ 0, which corresponds to minimum B0, the duration

of electron trapping increases with larger values of s (see Refs. [Shklyar and Matsumoto,

2009, Omura et al., 2015, Artemyev et al., 2015] for a discussion of trapped electron accel-

eration in an inhomogeneous magnetic field). This leads to longer trapping times and more

significant acceleration. Therefore, for long, coherent wave-packets (large β, large Nc) the

probability distribution of energy changes, P(∆E,E), depends on two parameters (E, h).

To describe electron dynamics, we need to determine the probability distribution in 3D

space of (∆E,E0, h). This can be done analytically because ∆E can be determined from

analysis of the Hamiltonian equation (4.1) with the wave term included [Vainchtein et al.,

2018, Artemyev et al., 2020], and we will provide such a solution using mapping technique.

Figure 4.6 depicts several examples of electron trajectories calculated by direct integration

of the Hamiltonian equation (4.1) and by evaluation of the map (4.16). For numerical

integration of Hamiltonian equations we use the Runge-Kutta method of 4th order and

random initial electron phases, ζ. For mapping evaluation we use uniformly distributed
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Figure 4.6: Test particle (TP) trajectories obtained by numerical integration approach for

two wave amplitudes (panels a,b and c,d respectively), in comparison with trajectories ob-

tained from the mapping technique (4.16) and conservation of h = E − ωµ = const. The

electron energy and pitch-angle at the minimum magnetic field are plotted as a function of

the number of resonant interactions, n.

ξ ∈ [0, 1] and ⟨∆E⟩ determined by S(E) profiles. We use the magnetic field model of

the foreshock transient to show multiple resonant interactions, and we converted time to

the number of resonant interactions n. Although the trajectories of electrons with energy

En are not identical between the results from the test particle approach and the mapping

technique (the difference is due to the random ξ), these two approaches show statistically

similar results: electron energy often decreases due to the phase bunching (small negative

jumps) and more rarely increases due to the phase trapping (large jumps). Note the energy

change in the resonance (due to the phase bunching and phase trapping) depends on the

pre-resonance energy, pitch-angle, and this makes each energy change different. The phase

trapping and phase bunching can be clearly distinguished. In the case of electrons resonating

with field-aligned whistler-mode waves, phase trapping should consistently lead to an increase

in energy. (see, e.g., Refs. [Albert et al., 2013, Furuya et al., 2008, Vainchtein et al., 2018]).
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4.4 Short Wave Packets

4.4.1 Probabilistic Function of ∆E

Although it is possible to obtain an analytical model for resonant interactions between long

wave packets and electrons, such long wave packets are rarely observed. In contrast, the

majority of observations are of short wave packets (see Figure 4.1 and Ref. [Shi et al.,

2023b]). For these, the efficiency of trapping acceleration varies from one interaction to

another, and the role of initial conditions becomes much less important. To illustrate this,

we calculate the P(∆E,E) distribution for fixed h and small β, Nc. Figure 4.7 shows that in

the short wave-packet limit, the ∆E -distribution is mainly distributed within 20eV of ∆E =

0, with no significant probability of large positive values of ∆E. This implies that the energy

gained by trapped electrons decreases(due to the shorter time that electrons spend in the

trapping acceleration, see, e.g., Refs [Tao et al., 2013, Zhang et al., 2018b, Mourenas et al.,

2018]), while the number of trapped electrons increases (due to large gradient of the wave

amplitude at the edge of wave-packet, see, e.g., Ref. [Bortnik et al., 2008, Artemyev et al.,

2019c, An et al., 2022]). Such a ∆E-distribution can be characterized by two parameters,

⟨∆E⟩ and ⟨(∆E)2⟩, i.e., the wave-particle interaction is diffusive. However, this diffusion,

⟨(∆E)2⟩ ∝ Bκ
w with κ ∼ 1, caused by almost monochromatic intense waves is quite different

from the quasi-linear diffusion with ⟨(∆E)2⟩ ∝ B2
w (see the theoretical model for ⟨(∆E)2⟩

in Ref. [Frantsuzov et al., 2023]). In addition to the symmetric distribution of ∆E, short

wave-packets also have another important effect. As depicted in Figure 4.7, P(∆E,E) now

exhibits weak dependence on E for fixed h. Therefore, instead of a 2D P(∆E,E), we can use

a 1D distribution, P̄(∆E) = ⟨P(∆E,E)⟩E, to describe the interaction around the specific

resonance energy E, for a fixed h.

Figure 4.7 shows that for systems with short wave packets, we may use a 1D P̄(∆E) dis-

tribution. This distribution is equivalent to the cumulative probability distribution C(∆E) =∫ ∆E

−∞ P̄(x)dx, which can be used for tracing the electron resonance energy change: given a
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Figure 4.7: Examples of P(∆E,E) distributions for the bow shock model with Φ0 = 0

(a), for the bow shock model with Φ0 = 100V (b), for the foreshock model (c); Nc = 10

and β = 20. The main difference between (a) and (b) is that for Φ0 = 100V a considerable

number of electrons with resonant energies ≤ 225eV cross the bow shock and do not resonate

with waves in the upstream region.

random number ξn ∈ [0, 1], one can find the corresponding ∆E using C(∆E) = ξn dis-

tribution. The energy change for each interaction is En+1 = En + ∆E (ξn), where n is

the iteration number (number of resonant interactions). Figure 4.8(a) shows C(∆E) for

P̄(∆E) = ⟨P(∆E,E)⟩E from Figure 4.7(c), whereas Figure 4.8(b) shows several trajectories

En evaluated with this probabilistic approach. For comparison, we also plot En trajectories

(Figure 4.8(c)) obtained from the numerical integration of original Hamiltonian equations

with the system parameters in the caption of Figure 4.7. Figures 4.8(b,c) demonstrate that

this C-based probabilistic approach and the numerical integration approach provide electron

trajectories with quite similar elements: rare positive energy jumps due to phase trapping

and regular energy drift to smaller values due to phase bunching. Note that for fixed wave

frequency the wave-particle resonant interaction occurs with the conservation of h = E−µω

(e.g., Ref. [Shklyar and Matsumoto, 2009]). This conservation law allows tracing of electron

pitch-angle for changing energy: sin2 α(s) = (1 − h/E)Ω(s)/ω. This relation shows that

electron pitch-angle increases for phase trapping (energy increase) and decreases for phase

bunching (energy decrease).
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(b)

(c)

Figure 4.8: Panel (a) shows the cumulative probability distribution function C(∆E) for

P̄(∆E) from Figure 4.7(c). Panels (b,c) shows electron energy as a function of the number of

resonant interactions n (two interactions per bounce period) for several electron trajectories

evaluated with the probabilistic approach (b) and with numerical integration of original

Hamiltonian equations (c). The system configuration and parameters are the same as in

Figure 4.7(c).
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4.4.2 Mapping Technique for Short Wave Packets

Short wave-packets (or as a train of such short packets) can significantly change the properties

of nonlinear resonant interactions, i.e., the efficiency of phase trapping [An et al., 2022, Gan

et al., 2022, Allanson et al., 2021]. In the first-order cyclotron resonant interaction, electrons

move in the opposite direction to the whistler-mode waves, and thus the packet size controls

the time-scale of the electron motion in the trapping regime [Tao et al., 2013, Zhang et al.,

2018b, Mourenas et al., 2018]. However, the probability of trapping depends on dS/dE ∝

dBw/ds gradient [Neishtadt, 1975, Neishtadt, 2014], which is very large around the wave-

packet edges; this can significantly increase the number of trapped particles [Bortnik et al.,

2008, Artemyev et al., 2012, Frantsuzov et al., 2023]. Moreover, for all resonance coordinates

(i.e., independent of the background magnetic field and plasma gradients), electrons can

interact with the wave-packet edge and thus be trapped. Although all these effects seem

to complicate the description of wave-particle nonlinear interactions, they also randomize

the interaction process and reduce the importance of specific shapes of the S(E) profile.

For sufficiently short wave-packets, S(E) can be approximated by S/2π = ω−1C ·
√
ε ·

[1− (E/δE)2]
5/4

, where ε = maxBw/B0, δE is the resonance energy range for which S ≠ 0,

and C ∼ 1 is a numerical factor of the order of one (see derivations of this approximation

in Ref. [Artemyev et al., 2019b] and in Appendix of Ref. [Mourenas et al., 2018]). Note

that we have introduced the normalization factor ω−1 for the S function, and thus C has a

dimension of energy. Interactions with small wave-packets mean that at each interaction we

shall use Sn/2π = ω−1C ·
√
ε · [1− ((E − E∗

n)/δE)
2]

5/4
, with E∗

n determining the location of

the wave-packet relative to the electron in resonance. For fixed h, the resonance energy E

determines the resonant coordinate s, and thus the relative location of electrons and wave-

packets can be modeled by parameter E∗
n in the Sn equation. If En /∈ [E∗

n − δE,E∗
n + δE],

the electron in question will not meet the wave-packet in resonance (see derivations of this

approximation in Ref. [Artemyev et al., 2021b]).

To model electron resonant interactions with wave-packets, we numerically integrate the
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Hamiltonian equations for system (4.1) withBw → Bwf(ϕ), where f(ϕ) = exp (−5 cos2(ϕ/2πβ))

is the function modulating the wave field and separating it into wave-packets with the dura-

tion of ∼ β for each packet [Tsai et al., 2022]. There are two scenarios of electron resonant

interactions with the wave-packet train (several wave-packets). The first scenario assumes

that the entire train has been generated within the same wave source region that does not

change significantly during the wave generation, and thus the phase ϕ is coherent along the

entire train. In this case, electrons may be retrapped by the next wave-packet after escap-

ing from resonance with the previous wave-packet. This situation is especially common for

short wave-packets, i.e., with β < 10, when the distance between two consecutively moving

wave-packets is small. Such multi-trapping electron acceleration is quite effective [Hiraga

and Omura, 2020, Foster et al., 2021] and does not principally differ from the electron trap-

ping into an infinitely long wave-packet (except that the trapping probability is higher due

to strong wave field gradients at the leading edges of wave-packets). Figure 4.9(a) shows

the distribution of the electron energy change, ∆E, due to resonant interactions with phase-

coherent wave-packet trains. The spreading of the distribution (∆E > 0) is because of the

randomization of energy gain of the trapped electrons. However, keeping the coherent phase

for a long wave-packet train may not be always realistic. Thus, we also use the second

scenario assuming that wave-modulation (separation of wave field into the wave-packets) de-

stroys the wave phase coherence, and leads to ϕ jumps between wave-packets (see examples

of in Refs. [Santoĺık et al., 2014, Zhang et al., 2020, Nunn et al., 2021]). Such jumps of ϕ

prevent the electrons from being trapped into multiple wave-packets [Zhang et al., 2020]. To

model this effect, we introduce a coherence length measured in wave-packet duration, Nc: all

electrons will escape from resonance after interaction with Nc packets (some electrons may

escape sooner, but no electrons are allowed to stay in resonance longer than this). Figure

4.9(b) shows the distribution of the electron energy change, ∆E, due to resonant interactions

with a wave-packet train having Nc = 2. Comparison of Panels (a) and (b) demonstrates

the effect of wave phase jumps: even for β = 50, the range of ∆E > 0 due to trapping
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Figure 4.9: ∆E-distributions for a single resonant interaction with (a) the coherent wave-

packet train, (b) wave-packet train with Nc = 2. Panel (c) shows ∆E-distribution obtained

from the mapping technique. Parameters of map S/2π = ω−1C ·
√
ε·[1− ((E − E∗

n)/δE)
2]

5/4

are given on the panel (c), top; see text for details.

significantly shrinks for Nc = 2, in comparison with Nc → ∞. Note that we use a long wave

packet to better illustrate the effect of a finite Nc.

We compare numerically derived ∆E-distributions with the results obtained from elec-

tron trajectories integrated using the mapping technique for different δE parameters. Figure

4.9(c) shows that the mapping with Sn/2π = ω−1C ·
√
ε · [1− ((E − E∗

n)/δE)
2]

5/4
can re-

produce the main properties of the numerically obtained ∆E-distributions shown in Figure

??(b): a significant population of electrons do not meet the wave-packet at resonance (a

finite electron population around ∆E ∼ 0), whereas energy change for resonant electrons

weakly depends on the initial energy. Therefore, we propose utilizing a combination of

Sn/2π = ω−1C ·
√
ε · [1− ((E − E∗

n)/δE)
2]

5/4
functions in the mapping technique to accu-

rately replicate any particular ∆E-distribution obtained from the numerical integration of

the electron resonant interactions with wave-packet trains.
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4.4.3 Synthetic Map

In this subsection, we further construct the mapping function as a sum of S(E) functions.

Such a synthetic map allows us to describe the probability distribution P in (∆E,E) space.

We adopt the distribution of wave-packet sizes, β, as derived from observations (see Figure

4.1(a)): Pβ = C0β
−1.67 for β ∈ [2, 100] and C0 =

(∫
Pβ(β)dβ

)−1
. Next, we numerically

integrate a large ensemble of electron trajectories, where each electron undergoes resonance

with wave-packets that have randomly chosen β values.

To construct such a synthetic map (a sum of many maps with different S(E)), we first

determine how S(E) parameters (i.e., δE, C, E∗
n distributions) control the resulting ∆E-

distribution. Figure 4.10(a) depicts a schematic of the role of δE and C in determining the

∆E-distribution characteristics. The magnitude of S(E) controls the ∆E range of bunching

with min∆E = −maxωS(E)/2π, whereas δE controls the ∆E range of trapping with

max∆E = δE. The maximum relative number of trapped particles, Π, is determined by

maxΠ/
√
ε = (C/δE) · (5/21/233/4) ≈ 1.551 · (C/δE). The energy ranges of bunching and

trapping ∆E depend on the initial electron energy E (see Figure 4.9). As a result, we

set C = C(E) and δE = δE(E). If such dependencies are weak, |dC/dE| ≪ C/δE and

dδE/dE ≪ 1, they will not significantly change the value of Π.

The distribution of wave-packet positions, E∗
n, determines how often electrons will res-

onate with waves. If E∗
n is uniformly distributed within E±δE, then each map iteration will

have an energy change, i.e., electrons will encounter wave-packets each time when crossing

the resonance. This describes a system with dense wave-packet trains, where one packet

moves right after another. If E∗
n is uniformly distributed within the entire resonance energy

range [E−, E+] and δE < E+ − E−, then the probability of the particle energy change (the

probability to meet a wave-packet in resonance) is δE/(E+−E−). For small δE/(E+−E−),

the resonant interactions are rare, and this describes a system with well-separated individ-

ual wave-packets. Figure 4.10(b) shows ∆E-distributions for three different E∗
n distributions:
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Figure 4.10: The basic principles to construct the synthetic map. The basic principles

to construct the synthetic map: (a) a schematic view of δE and C roles in determining

the characteristics of ∆E distribution (the resonance energy range is E ∈ [E−, E+] and

δE ≤ [E−, E+]); (b) three ∆E-distributions for three uniform E∗
n distributions within E ±

δE (black), within [E−, E+] (red), and within E ± 2δE (blue); (c) cumulative distribution

functions for ∆E-distributions from (b).

a smaller probability of resonant interactions means a higher value of probability to have

∆E = 0 (see a peak of P at ∆E = 0). Furthermore, we evaluate the cumulative distribu-

tions for these three probability distributions. Figure 4.10(c) shows that for particles with

E∗
n ∈ [E−, E+], they frequently do not encounter waves in resonance, resulting in a high

probability of a zero ∆E. However, for electrons with E∗
n ∈ [E− δE,E+ δE], each resonant

interaction causes a change in their energies, leading to a relatively high probability of a

significant ∆E.

Figure 4.11(a,b) shows the probability distribution functions P(∆E,E) for a single reso-

nant interaction with randomly chosen β, Nc = 5 and Nc = 10. For Nc = 10, the distribution

P(∆E,E) has a slightly higher probability for large ∆E > 0 at low energies (E ≤ 490eV),

but the difference between Nc = 5 and Nc = 10 is significantly reduced due to a wide β

distribution dominated by small β (see Figure 4.1). For Nc = 5, the distribution P(∆E,E)

is almost independent of E. In the first paper, we have examined the limit of small Nc

when the probability distribution function P(∆E,E) can be reduced to 1D P(∆E), without
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significant dependence on E.

We fit two P(∆E,E) distributions from Figure 4.11(a,b) by G(∆E,E) functions derived

from the synthetic map consisting of a sum (
∑

k SkPδE(δEk)) of

Sk/2π = ω−1Ck ·
√
ε ·

(
1− ((E − E∗

n)/δEk)
2)5/4

We use PδE ∝ (δE)−1.67, which is based on the Pβ distribution and the δE ∝ β relation

(see schematic in Figure 4.10 and Ref. [Artemyev et al., 2021b]). Figure 4.11(c,d) shows

two G(∆E,E) distributions constructed with four Sk functions having different Ck and

E∗
n = E±δEk (parameters are in the figure caption). These syntheticG(∆E,E) distributions

reproduce the main details of the numerically obtained P(∆E,E) distributions. Importantly,

the fitting procedure for G(∆E,E) does not have a unique solution, but should approach

the distribution of energy changes ∆E that fully describes the dynamics of electron resonant

interactions. Thus, we need to further test whether the constructed G(∆E,E) provides a

correct long-term evolution of the electron ensemble.

4.5 Verification of Two Methods

4.5.1 Verification of Probabilistic Approach

To verify the probabilistic approach, we use the C function to evaluate the energy changes

of 105 trajectories for 20 resonant interactions. We use the initial distribution function

F (E) ∼ exp(−E/50eV ) to set the initial phase space density F (E) and then trace its

evolution in energy. Note that this is a 1D distribution for a fixed h; to trace the dynamics of

a 2D (energy, pitch-angle) distribution, numerous h should be used [Vainchtein et al., 2018].

To compare and validate the results obtained from the probabilistic approach, we use 104

numerically integrated electron trajectories with the same initial distribution F (E). Figure

4.12 shows Fm(E) for the probabilistic approach and Ft(E) for test particle simulations

with different n. Note that although we use iteration numbers instead of time, the same
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Figure 4.11: Panels (a,b) show two distributions P(∆E,E) for the bow shock magnetic field

model and Nc = 5(a), Nc = 10(b). For each resonant interaction, we use a random value of

β determined by the probability distribution function Pβ = C0 · β−1.67 for β ∈ [2, 100] and

C0 =
(∫

P (β)dβ
)−1

and the same wave amplitude Bw/minB0 = 10−2. Panels (c,d) show

two distributions G(∆E,E) obtained from the mapping of a sum of Sk with PδE(δEk) = ak ·

(δE)−1.67. For panel (c) δEk = {1, 9, 15, 25},
√
εCk = {9, 14, 18, 22}, ak = {6.3, 17.7, 5.7, 9.4},

and for panel (d) δEk = {5, 9, 14, 23},
√
εCk = {17, 15, 22, 19}, ak = {0.1, 22.0, 22.0, 22.0}.
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approach can be used for the time iteration, tn+1 = tn + τ(En)/2, with τ(En) being the

bounce period of electrons, i.e., τ(En)/2 is the time between two resonant interactions. The

scattering caused by short wave-packets mostly results in an energy decrease (which also

means the pitch-angle decrease), and Ft(E), Fm(E) grow at smaller energies. The electron

distribution obtained by test particle simulations evolves very similar to that obtained from

the probability approach, i.e., the probability approach works well.

4.5.2 Verification of Mapping Technique

Figure 4.13(a,c) repeats the results from Figure 4.11(a,b) for a single resonant interaction

with wave-packets having β distributions of Pβ ∝ β−1.67. However, in this case, the trajecto-

ries are traced in the foreshock transient magnetic field model. For Nc → ∞, the shortness of

wave-packets can be compensated by the effect of multiple trapping, and the corresponding

probability distribution function P(∆E,E) contains a finite probability of large ∆E > 0 for

small E. Despite that the ∆E-distribution depends on E, the synthetic mapping technique

reproduces the main features of the 2D distribution P(∆E,E) (compare Figure 4.13(a) and

Figure 4.13(b)).

For Nc = 3, there is almost no effect of multiple trappings, and the corresponding prob-

ability distribution function P(∆E,E) does not contain large ∆E > 0 jumps. Moreover,

due to the dominant role of small β in Pβ ∝ β−1.67 distribution, the energy change ∆E due

to resonant interactions only weakly depends on the initial energy E (similar to the bow

shock system; compare Figure 4.13(c) and Figure 4.11(a)). Although the synthetic map can

describe such a 1D distribution of P(∆E) (compare Figure 4.13(c) and Figure 4.13(d)), we

note that a simpler approach for such E-independent systems is the proposed probabilistic

approach.

We next verify the suggested approach for constructing synthetic maps in the foreshock

transient magnetic field model. This assumes multiple resonant interactions for each electron,

and thus includes the long-term dynamics of the electron energy distribution. In the test
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Figure 4.12: Evolution of electron distribution function evaluated by numerical integration of

Hamiltonian equations (4.1) and by the probabilistic approach using the cumulative distribu-

tion C of Figure 4.8(a). Three panels show results for n = 1(a), n = 5(b), and n = 20(c); the

dashed curve in each panel shows the normalized initial distribution, F (E) ∼ exp(−E/50eV );

blue curves show results of test particle simulations, black curves show results of the proba-

bilistic approach.
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Figure 4.13: Panels (a, b) show the probability distribution function P(∆E,E) for

Nc → ∞ and the corresponding synthetic map, starting from the initial distribution

of ∼ exp (−E/50 eV); panels (c, d) show the same but for Nc = 3. Parameters

for (b): δEk = {67, 47, 30, 26, 18, 15, 14, 5},
√
εCk = {10, 16, 20, 16, 14, 8, 11, 12}, ak =

{3.7, 7.8, 2.9, 7.7, 2.5, 6.1, 10.3, 10.7}; for (d): δEk = {11, 10, 5, 4},
√
εCk = {21, 17, 14, 12},

ak = {0.4, 3.1, 4.9, 6.0}. Panels (e, f) show the evolution of the energy distribution with

Nc → ∞ and the corresponding evolution of distribution with the use of the synthetic map

from panel (b); panels (g, h) show the same but for Nc = 3 with the synthetic map from

panel (d).
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particle simulation, we numerically integrate 104 electron trajectories with the same h and

initial energy distributions with energy falloff ∼ exp(−E/50eV ). Trajectories are trapped

in the system with an ensemble of wave-packets described by Pβ, but for half of the bounce

period each electron only resonates with one wave-packet (new wave characteristics for the

next half of the bounce period are set when an electron crosses the B0 minimum). Electrons

that undergo phase bunching tend to drift towards smaller energy and pitch angles. This

drift may cause them to enter the small pitch-angle range, where the mapping technique

should be modified due to the effects of anomalous trapping [Kitahara and Katoh, 2019].

Moreover, such electrons should escape the system because their mirror points are outside

of the foreshock transient region (magnetic field magnitude in the mirror points exceeds

∼ 10× of the minimum magnetic field). Thus, we exclude electrons reaching the small pitch-

angle boundary, α0 ≈ 20◦. To keep the same number of particles during the simulation, we

substitute each escaping electron with a new one (e.g., trapped into the foreshock transient

from the solar wind flow) of identical initial energy as the lost electron. Modeling them

this way is equivalent to including a large trapping probability for small energy electrons,

to reflect them from the small-energy/small pitch-angle boundary (see Refs. [Kitahara and

Katoh, 2019, Albert et al., 2021, Artemyev et al., 2021a] for discussions of this effect for

electron scattering by whistler-mode waves in the radiation belts).

Figures 4.13(e,f) and (g,h) compare the results of test particle simulations and the map-

ping technique using the synthetic maps shown in Figure 4.13(b) and (d), respectively. For a

large Nc, we see a significant acceleration of electrons, whereas, for small Nc, electrons mostly

drift to small energies. Due to the conservation of E−ωµ invariant [Shklyar and Matsumoto,

2009], small energies mean small pitch-angles (∆α ∝ ∆E, and the energy decrease due to

the phase bunching corresponds to the pitch-angle decrease; see Figure 4.6). Therefore, a

small-energy electron population in Figure 4.13 is associated with small pitch-angles, i.e. a

field-aligned electron population. The drift of electrons to small energies/pitch-angles for

small Nc is clearly evident in the results obtained from the test particle simulations (pan-
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els (e, g)) as well as in the mapping technique results (panels (f, h)). Thus, the presented

comparison validates the proposed mapping technique and synthetic map.

4.6 Summary

In this chapter, we theoretically modeled resonant interactions between solar wind electrons

and intense short wave-packets of whistler-mode waves. We proposed and verified a proba-

bilistic approach based on P(∆E) probability distributions and a mapping technique based

on the synthetic map to describe electron dynamics. The probabilistic approach can be

used to model the long-term dynamics of electron distributions in a system with multiple

nonlinear resonant interactions with short wave-packets. The mapping technique is used

to describe the rare but effective electron acceleration by long wave-packets. These two

approaches can reproduce the main statistical properties of wave-particle interactions while

keeping all important information without requiring extensive computational power.

These approaches can be useful for modeling the electron resonant interaction effects

in large-scale simulations, where the long-term electron dynamics is dominated by adia-

batic heating and transport, whereas wave-particle resonant effects should be responsible for

scattering and relaxation of the electron anisotropy. In Chapter 5, we combine the wave

characteristics described in the previous chapter and the method shown in this chapter to

build a compound model for electron acceleration.

100



CHAPTER 5

Compound Acceleration of Electrons in Earth

Foreshock

5.1 Introduction

In previous chapters, we discussed the characteristics of whistler waves, confirmed the effec-

tiveness of interactions between electrons and whistler-mode waves, and developed theoretical

approaches to simulate the long-term behavior of electrons. This chapter combines wave-

particle interactions, adiabatic acceleration, and shock drift acceleration into a comprehen-

sive acceleration model using probabilistic methods. This compound model can successfully

replicate the observed electron energy spectrum in Earth’s foreshock region, enhancing our

understanding of the shock acceleration process.

In collisionless space plasmas, shock waves heat and energize charged particles [Jones

and Ellison, 1991, Giacalone, 2005, Perri et al., 2022]. Astrophysical shocks are believed to

generate some of the most energetic particles in the universe [Koyama et al., 1995, Aharonian

et al., 2004, Masters et al., 2013]. A long-lasting mystery in shock acceleration is how to

accelerate background thermal particles up to superthermal or even mildly relativistic ener-

gies (so-called Fermi’s injection problem). In-situ spacecraft measurements at interplanetary

shocks [Dresing et al., 2016] and at bow shocks of the inner [Wilson et al., 2016a] and outer

planets [Masters et al., 2013] of the heliosphere are the most natural way to test and explore

this particle energization. Such measurements are very copious and detailed at Earth’s bow

shock and its foreshock, the region upstream of Earth’s bow shock which contains many
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Figure 5.1: Schematic of electron interaction with the bow shock and high-amplitude mag-

netic field transients in the foreshock region. An electron can traverse or bounce at these

strong field regions. Between successive bounces, electrons are energized and scattered in

pitch angle by electrostatic waves and whistler-mode waves. Electron shock drift acceleration

and adiabatic betatron and Fermi acceleration due to foreshock transient motion toward the

bow shock supplement the energization by waves. The original electron phase space density

(df) in the solar wind decreases quickly as energy increases above ∼ 100eV. After acceler-

ation, the electron phase space density distribution has a power-law tail up to hundreds of

keV, as shown in the red line.
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solitary, large-scale transient structures [Turner et al., 2013]. This region has been found

to host acceleration of electrons by more than four orders of magnitude, from solar wind

energies of ≤10eV to near-relativistic energies of hundreds of keV [Wilson et al., 2016a, Liu

et al., 2019, Amano et al., 2020]. This acceleration is surprising, given the relatively limited

scale-size of the foreshock, and has been an outstanding unsolved issue for decades. Inves-

tigating the mechanisms responsible for the formation of such energetic electrons upstream

of the collisionless shock will provide unique information for models and theories of shock

acceleration in various space plasma systems [Amano and Hoshino, 2022].

Classic shock-drift acceleration (SDA) alone is insufficient to accelerate solar wind elec-

trons to hundreds of keV without effective electron trapping around the bow shock [Webb

et al., 1983, Treumann, 2009]. Stochastic shock drift acceleration (SSDA) [Amano et al.,

2020] overcomes this limitation by assuming pitch-angle (angle between velocity and mag-

netic field direction) scattering of electrons at turbulent wave field sites on either side of

the shock. This allows electrons that bounce between those sites to spend sufficient time

near the shock to be shock-drift accelerated to high energies [Amano et al., 2020, Amano

and Hoshino, 2022]. SSDA’s efficiency depends on the effectiveness of pitch-angle scattering

by electron resonant interactions with electromagnetic and electrostatic waves [Katou and

Amano, 2019, Vasko et al., 2022].

There is no single wave mode that can pitch-angle scatter electrons efficiently over the

wide energy range from 10eV to hundreds of keV. However, multiple wave modes exist in

the bow shock and foreshock, such as: electrostatic waves consisting of a mixture of ion-

acoustic waves [Balikhin et al., 2005, Vasko et al., 2022], ion and electron phase space holes

[Kamaletdinov et al., 2022]; electromagnetic high-frequency whistler-mode waves [Oka et al.,

2017, Shi et al., 2023a]; low-frequency whistler-mode (magnetosonic) waves [Krauss-Varban

et al., 1994, Wilson et al., 2012, Lalti et al., 2022b]; and ultra-low frequency magnetic

field perturbations [Hobara et al., 2007, Wilson, 2016]. Each wave mode can resonate with

electrons in a specific (often quite narrow) energy range but acting together these modes
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may cover the entire energy range of interest.

When there is a large Sun-Earth component to the magnetic field in the solar wind,

occasional discontinuities transported by the latter interact with the foreshock and cause

foreshock transients. These are sites of large magnetic field compressions that can adiabat-

ically reflect or locally heat electrons [Liu et al., 2019]. Moreover, these transients often

form new shock waves ahead of the bow shock, contributing to the electron SDA upstream

of the parent shock [Zhang et al., 2022]. A subset of electrons in the foreshock environ-

ment is subject to scattering and acceleration by many or all these processes, as depicted in

Figure 5.1, amounting to a compound, aggregate acceleration. Such acceleration is difficult

to study except by using appropriate modeling with realistic assumptions, well-guided by

observations.

5.2 Observations

5.2.1 Electron Energy Spectrum

Here we show that the combination of electron resonant scattering by different wave modes,

electron adiabatic reflection from large-amplitude foreshock transients, and SDA can col-

lectively account for the formation of observed electron fluxes up to and above ∼ 200keV,

consistent with observations. Towards this goal, we employ observations of Magnetospheric

Multiscale (MMS), Time History of Events and Macroscale Interactions during Substorms

(THEMIS), theoretical models of wave-particle resonant interaction with electrostatic and

whistler-mode waves, and a probabilistic approach which allows for rapid evolution of elec-

tron trajectories in prescribed magnetic fields and wave fields. The MMS data are used to

derive the statistical properties of the wave-fields with high spatial resolution around tran-

sients, whereas the THEMIS data are used to inform us of the typical spatial structure of

the foreshock environment.

To justify our main theoretical assumptions and motivate our choice of model parameters
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we present in Figure 5.2 MMS observations of foreshock transients, exhibiting significant

electron fluxes in the ∼ 200keV range. MMS crosses the quasi-perpendicular bow shock

around 00:50 UT. The shock has a normal [0.99,−0.03, 0.10] in geocentric solar ecliptic

(GSE) coordinates, at an angle 80◦ ± 5◦ to the interplanetary magnetic field. The shock-

normal velocity is 650km/s. The bow shock crossing is evident as a clear transition from

thermalized ion energy spectra and a strong, highly fluctuating magnetic field intensity

downstream, to narrow spectra and a weakly fluctuating field upstream. The foreshock

region (in the upstream) is replete with energetic ions (≥ 10keV) coincident with transient

magnetic field enhancements. These are typical observations of foreshock transients [Turner

et al., 2013, Omidi et al., 2010]. We zoom into one of them, at ≈02:15UT: there is a classic

transient configuration with two magnetic field boundaries (peaks at 02:15 and 02:16UT in

Panel (c)) and core region characterized by weak and fluctuating magnetic field, reflected

ions, and strongly scattered solar wind beam (Panel (d)). We focus on the energetic electrons

filling the core region (Panel (e)) up to 200keV. The electron phase space density energy-

spectrum (Panel (i)) shows a power law ∼ E−4 tail between E ∼ 1 keV and 200 keV, in

good agreement with previously reported energetic electron events at foreshock transients

by THEMIS [Wilson et al., 2016a, Liu et al., 2019]. To gain such high energies the solar

wind electrons must be able to interact multiple times with the bow shock. Therefore, there

should be some mechanisms providing solar wind electron trapping between the bow shock

and its foreshock transients.

5.2.2 Spatial Scale of the Electron Acceleration Region

To estimate the spatial scale of the foreshock region filled by the transient structures and

hosting electron acceleration we use the statistics of observations by THEMIS that comprises

five (2008-2009) and three (2010-2023) satellites [Angelopoulos, 2008]. We focus on the

2010-2023 period, when THEMIS A, D, and E can near-simultaneously traverse the dayside

region, maintaining a spatial separation ranging from hundreds to thousands of km (several
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Figure 5.2: Observations of flux enhancement of tens to hundreds of keV electrons at a

foreshock transient. Between 00:30 and 02:30 UT, MMS crossed Earth’s bow shock and

foreshock, where multiple foreshock transients were detected. Panels (a) and (b) show mag-

netic field strength and ion energy spectra, respectively. Panels (c-h) zoom into a subset

of the above interval during a foreshock transient event. From top to bottom these panels

show: (c) the magnetic field strength, (d) the ion energy spectrum, (e) the electron energy

spectrum for 50 − 200 keV electrons indicating the presence of relativistic electrons up to

150keV, (f, g) magnetic field power spectra for high and low frequencies, respectively, (h)

the high-frequency electric field power spectrum. Panel (i) illustrates the observed electron

phase space density (df) at the upstream region outside transients (magenta lines) and at the

foreshock transient of panels (c-h) (blue lines). Reliable measurements are limited to data

above the 1 count level (dashed red line). Notably, the electron df during the enhancement

adheres to a power-law behavior, with df proportional to E−4 (dashed blue line).
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Earth radii). We use the routinely (always) available magnetic field and plasma moment

data provided by the THEMIS fluxgate magnetometer (FGM) [Auster et al., 2008] and ion

electrostatic analyzers (iESA) [McFadden et al., 2008], respectively. We assemble a database

of events when one of the THEMIS spacecraft crosses the bow shock, and another one

observes the foreshock transient, similar to the example in Figure 5.3 (a-f). Using such

events we estimate the distance between the upstream foreshock transient structures and

the bow shock. This distance serves as the spatial scale of the electron acceleration region

in our model, where electrons bounce between the bow shock and the boundary of foreshock

transients. To compile statistics, we utilize the THEMIS dataset from 2010-2023, select

events akin to the one described above, and impose the constraint that the distance between

the two satellites in the GSE-Y direction should be less than 2.5 Earth radii, since we are

mostly interested in the spatial scale along solar wind flow. The distribution of the spatial

scales in the database is depicted in Figure 5.3(g). Most of the foreshock transients are

observed within 4 Earth radii (∼ 25000km) upstream of Earth’s bow shock, in agreement

with previously published estimates [Chu et al., 2017b]. This spatial scale is used in our

model of electron dynamics.

5.3 Model

Trapping can be accomplished by adiabatic reflection or electron pitch-angle scattering as

follows: First, the foreshock region is filled with transients with large magnetic field fluctua-

tions [Hobara et al., 2007, Zhang et al., 2022]. The compressional nature of these fluctuations

may allow them to adiabatically reflect electrons, trapping them between the bow shock and

the ensemble of transients within the foreshock. Second, the foreshock magnetic boundaries

host intense electrostatic turbulence [Balikhin et al., 2005, Kamaletdinov et al., 2022, Vasko

et al., 2022] (Figure 5.2 (h)), high-frequency whistler mode waves [Oka et al., 2017, Shi

et al., 2023a] (Figure 5.2 (f)) , and low-frequency magnetosonic waves [Krauss-Varban et al.,
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Figure 5.3: Typical multi-satellite observation of a foreshock transient’s plasma environment

detected by THEMIS. (a-b) THEMIS-E crossing of the bow shock, denoted by the vertical

black line. (c-e) concurrent THEMIS-D (nearby THEMIS-E) observation of the foreshock

transient, identified by its magnetic field enhancement and electron density perturbation in

the upstream region; (f) locations of THEMIS-D and THEMIS-E in the GSE coordinate

system, with the dashed black line indicating the position of the bow shock. We have

found approximately 100 similar events, involving one THEMIS satellite crossing the bow

shock and another being in the upstream region observing foreshock transient perturbations;

(g) statistical distribution of the distances between the bow shock and transient structure,

offering insights into the spatial scales of the foreshock acceleration region.
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1994, Wilson et al., 2012, Lalti et al., 2022b] (Figure 5.2 (g)). These wave modes provide

effective pitch-angle scattering for electrons covering a wide energy range. Figure 5.4(a-c)

shows typical waveforms of these wave-modes. The efficiency (rate) of electron pitch-angle

scattering by these waves is given by the pitch-angle diffusion rate (Dαα, in rads2/s). The

mechanics for calculating the diffusion rates for these waves are well-established [Kennel and

Petschek, 1966, Summers, 2005, Kamaletdinov et al., 2022] for a homogeneous or weakly

inhomogeneous magnetic field. However, the foreshock region is also filled with large am-

plitude magnetic field fluctuations which provide strong inhomogeneity. Thus, we averaged

the standard rates of pitch-angle diffusion over an ensemble of observed magnetic field fluc-

tuations, using THEMIS statistics (see Methods) to establish the spatial scales of these fluc-

tuations. Figures 5.4(d-f) show such averaged rates: electrostatic turbulence (EST) mostly

scatters < 1keV electrons of large and intermediate pitch-angles, high-frequency whistler

mode waves (WW) mostly scatter < 10keV electrons with the resonance energy increas-

ing with pitch-angle, and magnetosonic waves (MSW) mostly scatter > 10keV field-aligned

electrons. Figure 5.5 confirms that the three wave modes cover five orders of magnitude in

energy, from the solar wind electron energy ∼ 10eV to near the maximum observed energy

of energetic electrons ∼ 100keV.

The acceleration mechanism includes electron SDA at the bow shock, and Fermi and

betatron electron acceleration upstream of it, due to the foreshock transient motion [Liu

et al., 2017b]. Note that although high-frequency whistler mode waves also contribute to

electron acceleration in our model [Shi et al., 2023a], the main role of all three wave modes

and compressional fluctuations is to trap electrons near the bow shock, allowing them to

experience multiple SDA and adiabatic (Fermi and betatron) acceleration.

5.3.1 Electron Resonant Scattering by Waves

Our model of electron resonant scattering due to the wave-particle interactions in the fore-

shock region includes electrostatic turbulence, high-frequency whistler-mode waves between
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Figure 5.4: Representative waveforms of three types of wave modes typically observed around

the compressional boundary of foreshock transients, selected from times of the example shown

in Figure 5.2, along with pitch-angle scattering rates associated with typical wave power

for such wave modes. (a) Large-amplitude electrostatic (EST) waves seen in electric field

measurements (δE); (b) High-frequency whistler-mode (WW) wavepacket, with predominant

magnetic field perturbations in the perpendicular direction, suggesting propagation along

the background magnetic field; (c) Wavepackets the magnetic field for magnetosonic (MSW)

waves. Observation times (UT) are listed in the horizontal axis. Panels (d-f) depict diffusion

coefficients for the three types of waves averaged over background magnetic field conditions

representative of the large-scale magnetic field perturbation.
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the lower-hybrid flh and the electron cyclotron fce frequencies, and low-frequency whistler-

mode magnetosonic waves, a continuation of whistler-mode below flh. For each of these

modes, we use the theoretical model of quasi-linear scattering rate (pitch-angle diffusion co-

efficient),Dαα. Intense electrostatic turbulence around Earth’s bow shock consists of different

nonlinear waves and packets of intense ion acoustic waves [Vasko et al., 2022, Kamaletdinov

et al., 2022]. The scattering rate for such turbulence has been derived and verified in [Vasko

et al., 2018a, Vasko et al., 2022]:

Dαα =

∫
D

(X)
αα P (X) ℓ (X) dX∫
ℓ (X′)P (X′) dX′ , X = (vϕ, ℓ, θ, Ew)

D(X)
αα =

E2
wΩ

2
e

4
√
2πNeEΩpe

(ℓ/λD)
3

sin2 α

(vϕ cosα− v cos θ)2

|vϕ − v cosα cos θ|3
n=∞∑
n=1

n2J2
n (ρn) e

−ξn (5.1)

ξn =
n2Ω2

e (ℓ/λD)
2

Ω2
pe (vϕ − v cosα cos θ)2

, ρn =
nv sinα sin θ

vϕ − v cosα cos θ
(5.2)

where ℓ is the spatial scale of nonlinear waves, λD is the Debye length evaluated with the

background electron density Ne and temperature, vϕ and θ are the phase speed and normal

angle (relative to the background magnetic field) of nonlinear waves, Ew is the wave electric

field amplitude, Ωce and Ωpe are the ambient electron gyrofrequency and plasma frequency,

respectively, n is the number of cyclotron resonance, Jn(ρn) is the Bessel function, v is the

velocity of electrons with the energy E. The first integral is the averaging of the diffusion

rate D
(X)
αα over the probability distribution P of wave characteristics X (see details of P(X)

in [Vasko et al., 2022]).

The diffusion rate for the whistler-mode waves has been derived [Kennel and Petschek,

1966], and we use the approximation for field-aligned waves resonating with relativistic

electrons (this relativistic correction becomes important for ∼ 100keV energies) [Summers,

2005]:
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Dαα =

∫
D

(X)
αα P (X) dX∫
P (X) dX

, X = (ω,Bw)

(5.3)

D(X)
αα =

πB2
wΩce

2B2
0γ

2

(v − vϕ cosα)

|v cosα− vg|

∣∣∣vg
v

∣∣∣F (ω)

where ω is the wave frequency, γ is the relativistic factor, Bw/B0 is the ratio of wave magnetic

field amplitude and the background field, vg = ∂ω/∂k is the wave group velocity derived from

the cold plasma dispersion relation [Stix, 1962], and F (ω) stands for the power spectrum of

the waves. The normalization in the first line provides
∫ ω+

ω−
F (ω)dω = 1, where ω± denote the

lower and upper limits of the frequency range, respectively. Notably, magnetosonic waves and

high-frequency whistler-mode waves represent the same wave mode (whistler-mode) but with

different frequencies: for magnetosonic waves, the frequency range extends from the proton

cyclotron frequency to the low-hybrid frequency, whereas for high-frequency whistler-mode

waves the frequency range spans from the low-hybrid frequency to the electron cyclotron

frequency. The diffusion coefficient for both types of waves can be estimated using Equation

5.3. We conducted separate fittings for the power spectrum, F (ω), of magnetosonic waves

and whistler-mode waves, as illustrated in Figure 5.5(a).

Each type of wave has a specific resonance energy range: electrostatic waves predomi-

nantly interact with electrons below 100eV, high-frequency whistler-mode waves primarily

influence electrons in the range of 10eV to 1 keV, and magnetosonic waves exert substan-

tial effects on electrons with energies exceeding 1keV. Figure 5.5(b) shows the combined

diffusion coefficient of electrostatic waves, high-frequency whistler waves, and magnetosonic

waves. The diffusion coefficients are evaluated for the B0 = Bcore, where Bcore is the magnetic

field magnitude is the core foreshock. However, the foreshock transient region exhibits high

amplitude variations of the magnetic field, as depicted in Figure 5.5(c) (where P represents

the probability distribution of background field fluctuations relative to Bcore). Under such

intense magnetic field fluctuations, the wave-particle resonance conditions can strongly vary,
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widening the energy range of electrons scattered by each of the three wave modes [Voshchep-

ynets et al., 2015]. To account for this effect, we calculated the diffusion coefficient averaged

over the background magnetic field fluctuations.

⟨Dαα(α,E)⟩ =
∫ Bmax

0
Dαα(α,E,B0)P(B0)dB0∫ Bmax

0
P(B0)dB0

(5.4)

Such averaged diffusion coefficient ⟨Dαα⟩ for the three types of waves is shown in Figure 5.4

of the main text, while the combined result is presented in Figure 5.5(d). The inclusion of

background magnetic field fluctuations leads to broader energy, pitch-angle range of finite

⟨Dαα⟩. The combined effect of these three wave modes, enhanced by background magnetic

field fluctuations, facilitates the scattering of electrons across a broad energy spectrum - from

10eV to 100keV, encompassing all pitch angles. This overlap provides a continuous path in

energy from 10s of eV to 10s of keV for electrons to be scattered by these waves. The most

intense of these compressional fluctuations, the foreshock transient boundaries, contribute as

well by adiabatically reflecting electrons thus increasing the probability of electron trapping.

5.3.2 Numerical Simulation

To reproduce the observed electron spectrum, we simulate electron dynamics affected by a

combination of electron scattering and acceleration. We start the simulation with the solar

wind electron distribution (grey color) where most of the electrons have energies below 100eV

(although there is a finite population up to 1keV), and aim to resolve the question of electron

acceleration up to 100− 200keV (see Figure 5.6). When we include only SDA and adiabatic

reflection from the compressional magnetic field fluctuations of foreshock transients, most

electrons escape the foreshock region after ∼ 7 reflections from the shock, and the maximum

acceleration does not exceed 1−3 keV (magenta curve). If EST scattering is added, electrons

may experience up to ∼ 12 reflections from the shock and gain 3 − 5keV (red curve). The

inclusion of electron WW scattering and acceleration increases the number of electron reflec-
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Figure 5.5: Derivation of simulation parameters for waves. (a) observed magnetic field power

spectrum of magnetosonic waves and high-frequency whistler-mode waves (black lines) and

a fit to the observations (blue line); (b) combined diffusion coefficient for the three types

of waves calculated at the minimum magnetic field (inside the core); (c) distribution of

magnetic field perturbations within foreshock transient structures; (d) combined diffusion

coefficient averaged over the background magnetic field perturbations; (e) distribution of the

ratio Bboundary/Bcore.
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tions from the shock further, up to ∼ 24, with the electron energy gain reaching 5 − 7keV

(green curve). Scattering of more than a few keV electrons requires the inclusion of MSW

scattering, which increases the number of electron reflections from the bow shock to ∼ 40,

whereas the electron energy gain reaches 10− 20keV (blue curve). Therefore, a combination

of SDA, adiabatic reflection from the foreshock transients, and resonant scattering by three

different wave modes can provide acceleration of < 100eV solar wind electrons to ∼ 20keV.

The next effect to be included is the Fermi and betatron adiabatic acceleration. The leading

edge of the foreshock transient often forms its shock wave propagating upstream ahead of

the bow shock with a velocity comparable to that of the bow shock. Electrons trapped

between two shocks moving toward each other (bow shock and transient shock) experience

Fermi acceleration [Hietala et al., 2012]. As the foreshock transient moves (collapses) onto

the bow shock, its magnetic field is compressed, increasing by a factor of ∼ 3 (see [Liu et al.,

2019]). This effect should provide electron betatron heating [Liu et al., 2019]. Figure 5.6

shows that when both Fermi and betatron adiabatic (AD) acceleration are also included

in the simulation, the electron spectrum reaches ∼ 200keV and attains a power law falloff

∼ E−4 (black curve). The variability of the model output spectrum due to uncertainties in

the bow shock speed determination is depicted by the blue-shaded region.

The numerical simulation of electron dynamics, scattering, and acceleration is based

on the probabilistic approach [Tao et al., 2008, Shi et al., 2023], which is similar to the

Monter-Carlo approach usually applied to astrophysical shock waves [Kirk and Schneider,

1987, Bykov et al., 2017]. An elementary model time-step of electron dynamics is the bounce

period between the bow shock and the foreshock transient. If the electron pitch-angle is

sufficiently small to cross the bow shock or the foreshock transient boundary, it is considered

to be lost and a new electron with the solar wind energy substitutes this lost electron in the

simulation. The bow shock magnetic field has a spatial gradient increasing it ∼ 4 times from

the core field and we do not change the shock configuration for the entire simulation, whereas

for each electron interaction with the foreshock transient boundary we generate the transient
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Figure 5.6: Results of our modeling of the compound electron acceleration process, succes-

sively incorporating various effects considered in this chapter. Formation of the observed

E−4 energy spectrum necessitates the inclusion of all the effects considered in this study.

Gray solid line: initial electron distribution; Magenta line: model results considering only

the adiabatic reflection by ultra-low-frequency magnetic field fluctuations and SDA accel-

eration at the bow shock; Red, green, and blue lines: progressive addition of pitch-angle

scattering by EST, WW and MSW waves, respectively; Black line: adding the adiabatic

Fermi and betatron acceleration to all the other effects. Only when all the effects discussed

are compounded does the result adhere to df ∝ E−4, consistent with observations. The blue-

shaded region indicates the variability in the results when different adiabatic parameters are

chosen (e.g., the shock normal speed is varied in the range of 800− 1200km/s). The dashed

gray lines fit the high energy portion of the spectra, shown for clarity.
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boundary magnetic field Bboudnary/Bcore from the distribution function of Bboudnary/Bcore

obtained in MMS statistics (see Figure 5.5(e)). We assume there can be three transient

structures during a time interval in the foreshock [Chu et al., 2017b], so electrons have three

chances to be reflected by the transient boundary (see discussion below). Although the

number of particles is conserved within the simulation, we also assume that the core of solar

wind electron distribution remains unchanged (as there is an almost infinite source of for

this core), and in Figure 5.6 we add a small population of solar wind electrons with < 100eV

energy to all spectra to make them the same for < 100eV energy range.

Within one bounce period, each electron has the opportunity to experience the combined

effects of shock drift acceleration (SDA), pitch-angle scattering induced by electrostatic tur-

bulence, high-frequency whistler waves, and magnetosonic waves. Additionally, electron

energy can be changed by wave-particle resonant interactions with high-frequency whistler-

mode waves, Fermi acceleration due to reflection from the moving boundary of the foreshock

transient, and betatron acceleration resulting from the increase in the core magnetic field

due to plasma compression by the moving foreshock transient [Liu et al., 2019, Liu et al.,

2017b]. The equations describing electron energy E and pitch-angle α recalculation within

one bounce period (between n and n+ 1 bounces) are:

αn+1/2 = αn +
∑

i=EST,WW,MSW

Wi

√
⟨Dαα(En, αn)⟩i

E∥,n+1/2 = E∥,n +∆E∥,WW (En, αn + 1/2)

E⊥,n+1/2 = E⊥,n +∆E⊥,WW (En, αn + 1/2)

E∥,n+1 = E∥,n+1/2 +∆EFermi(E∥,n+1/2) + ∆ESDA(E∥,n+1/2)

E⊥,n+1 = E⊥,n+1/2 +∆EBeta(E⊥,n+1/2)

αn+1 = arctan(E⊥,n+1/E∥,n+1)

(5.5)

where Wi = N · dt, and N (0, 1) is a random number from the normal Gaussian probability

distribution with a zero mean value and unity dispersion [Tao et al., 2008], dt =
∫
L
ds/v∥

represents the time-scale electrons spend around the foreshock transient boundary (where
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all wave modes are hosted), with L denoting the spatial scale of this boundary. The energy

change caused by resonant interactions between high-frequency whistler-mode waves and

electrons (∆EWW ) is calculated based on the conservation law E(1− ω/Ωe sinα
2) = const.

Fermi acceleration and SDA change the parallel velocity (energy) component, given by

∆E∥,Fermi = 2mev
2
f , where the bow shock and foreshock transient boundary speed, vf , is dis-

tributed by normal Gaussian probability distribution with a mean value of 1000 km/s and a

standard deviation of 400 km/s, which correspond to the shock speed ∼ 100km/s (see [Kru-

parova et al., 2019]) and shock normal angle above 85◦ (see [Lalti et al., 2022a]). Betatron

acceleration changes the perpendicular component as ∆E⊥,beta = E⊥,n ((B + δB)/B − 1),

where δB is the core magnetic field increment for dt time-scale (we consider
∑
δB/B = 3

for the entire simulation period).

Most of the system parameters for numerical simulations of electron dynamics, scattering,

and acceleration are selected according to spacecraft statistical observations. However, the

role of a free model parameter, the number of simultaneously existing foreshock transients,

requires additional verification. The number of such transients determines the probability of

electron adiabatic reflection in the foreshock and thus should affect the electron acceleration

efficiency. Figure 5.7(a) shows that with other system parameters fixed, the increase/decrease

of the number of foreshock transients (n = 3±1) results in a variation of phase space density

of > 10keV electrons and maximum energies within ∈ [75, 300]keV. Therefore, this free

parameter has significant control over the final accelerated electron spectrum. For the event

of Figure 5.2 the selected number of transients (n = 3) is consistent with the observations

(in Figure 5.2 (a,b), MMS observed three transient structures in the foreshock region), and

provides the best fit to the observed electron spectrum.

Solar wind electron acceleration from 10−100eV energies to ∼ 200keV requires ∼ 50−100

of scatterings and reflections from the foreshock transients, and each such reflection is a

probabilistic process. Therefore, the simulation should contain a sufficient number of test

particles to provide good statistics of low-probability multiple reflections, corresponding to
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Figure 5.7: Investigation of the role of multiple foreshock transient crossings in the electron

energization. (a) effect of the number of foreshock transients (nt) on electron spectrum:

as nt increases, electrons can be accelerated to higher energies; (b) normalized number

density distribution of the final result of a simulation with 5× 107 electrons; (c) probability

distribution in the (initial energy, final energy) space, demonstrating that the main source

of the accelerated particles is the core of the solar wind (< 100 eV).

the most accelerated electron population. Figure 5.7(b) shows that number of electrons

reaching ∼ 200keV is about ×10−6 smaller than the number of core electron population

∼ 10 − 100eV. In our simulation setup, we consider 5 × 107 test particles to describe well

the tail of the electron energy spectrum. Note this tail with ∼ 200keV energies is mostly

formed by the core solar wind distribution, [10, 100] eV. Although the probability of > 100eV

to be trapped and further accelerated to higher energies is expected to be higher than for

< 100eV electrons, Figure 5.7(c) shows that this hot solar wind population has too low

fluxes to contribute to the 100keV population, i.e. in the solar wind spectrum the number of

particles decreases with the energy increase much faster than the probability to be trapped

and accelerated in the foreshock increases with the energy.
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5.4 Summary

The good agreement of the model results of Figure 5.6 with observations in Figure 5.2(i)

validates the proposed scenario of solar wind electron acceleration in the foreshock to 100−

200keV. Such acceleration transforms a small subset of the initial < 1keV solar wind electron

distribution (comprising a core population below 100eV and an exponential energy tail) into

a power law distribution with an E−4 falloff, a power law in the 1-200keV energy range.

Importantly, efficient electron acceleration from solar wind energies, ∼ 10 − 100eV, up to

near-relativistic energies, ∼ 200keV, cannot be otherwise explained by a single mechanism of

electron scattering. Rather, multiple wave modes, adiabatic reflections, and adiabatic Fermi

and betatron acceleration compound the energy gain arising from shock drift acceleration,

allowing electrons of progressively higher energies to continue to be scattered upstream and

have the opportunity to be further accelerated.

The proposed compound acceleration mechanism successfully reproduces the electron ac-

celeration by a factor of 10, 000 within the compact region of the foreshock and thus provides

a quantitative solution to the problem of collisionless shock acceleration that has remained

unresolved for decades. This mechanism reveals the key role played by multiple wave modes

(ES, EE, MSW) in trapping electrons (via pitch-angle scattering) within the foreshock re-

gion and providing stable conditions for electron energization. The same plasma kinetics

(wave-particle resonant interactions) may resolve electron acceleration at other heliospheric

[Masters et al., 2013] and astrophysical [Koyama et al., 1995, Aharonian et al., 2004] shock

regimes with appropriate parameter scaling. Therefore, the proposed and verified accelera-

tion mechanism is expected to change our understanding of particle acceleration at shocks

physics and may be important in particle acceleration and the generation of cosmic rays at

other astrophysical settings shocks throughout the cosmos.
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CHAPTER 6

Summary and Future Work

6.1 Research Summary

For decades we have observed ultra high energy cosmic rays which are believed to be gener-

ated around astrophysical shock waves. However, all theories assumed a pre-existing pool of

suprathermal particles that undergo acceleration to ultrahigh energies. The source of these

suprathermal particles – called the “injection problem” – remains an outstanding problem

even though it is the most crucial part of the energization process. This thesis focuses on how

the electrons are accelerated in planetary foreshocks and provides a solution that is readily

available at all astrophysical shocks and may explain numerous outstanding problems in

solar and astrophysics.

Spacecraft frequently observe relativistic electron populations within the foreshock region,

characterized by energy levels surpassing those of solar wind electrons by four orders of

magnitudes or more. However, mechanisms for such strong acceleration remain elusive.

Although there are many well-developed theories for particle acceleration around the bow

shock, such as shock drift acceleration, stochastic shock drift acceleration, and betatron

and Fermi heating, these mechanisms cannot fully resolve the observed high-energy electron

energy spectra.

Electromagnetic waves in the foreshock region have been reported decades ago, yet their

role in electron acceleration within the foreshock regions has remained largely unexplored.

One of the most important wave modes, the whistler-mode waves, is an important wave mode

121



known for their capacity to effectively scatter and accelerate electrons in the inner magne-

tosphere. While the theoretical framework for studying interactions between whistler-mode

waves and electrons has been well established in the radiation belt region, the foreshock

presents different plasma conditions and electron energy ranges. Consequently, the specific

effects of resonant interactions with whistler-mode waves in the foreshock need to be inves-

tigated individually. Despite the distinct plasma parameters characterizing the foreshock,

the observational and theoretical techniques developed for the inner magnetosphere offer

valuable guidance for studying wave-particle interactions in the foreshock. By leveraging

this existing knowledge and adapting it to the unique conditions of the foreshock, we can

advance our understanding of electron acceleration processes in this region. Through sta-

tistical analysis of in-situ observations near Earth’s bow shock gathered from the THEMIS

and MMS datasets and theoretical approaches to model wave-particle interactions, we built

a compound acceleration model. This model represents a significant advancement as it suc-

cessfully replicates the near-relativistic electron energy spectra observed in the vicinity of

Earth for the first time.

We first conducted a case study and a statistical analysis of high-frequency whistler waves

(with frequencies above the low-hybrid frequency) in the foreshock region. We explored their

spatial distribution, wave properties, and regime of resonant interactions. Through statisti-

cal analysis in Chapter 2, we demonstrated that whistler waves are frequently present near

foreshock transient structures with a high occurrence rate, and we also obtained typical

wave properties such as wave frequency, frequency bandwidth, wave normal angle, and wave

amplitude. We found that the electron resonance energy range is around 10s eV to a few

hundred eV. Additionally, a subset of these waves displayed large amplitudes, reaching up

to one percent of the background magnetic field. The interaction between waves and elec-

trons in the foreshock region has two regimes: (quasi-)linear and nonlinear. These regimes

necessitate different theoretical frameworks and exhibit different effects on electron scat-

tering and acceleration. The resonant regimes depend on the wave intensities, background
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field gradients, and wave coherency. Quasi-linear interactions occur when wave amplitudes

are relatively small, and the waves are broadband. Conversely, nonlinear interactions can

markedly influence electron trajectories and occur when waves are sufficiently intense and

highly coherent. Our analysis indicates that the majority of observed waves in the foreshock

satisfy the conditions for quasi-linear interactions. We conducted a case study to assess the

efficiency of pitch-angle scattering using the quasi-linear approximation, and revealed that

whistler waves in foreshock transients can effectively scatter electrons within short time in-

tervals. While quasi-linear interactions dominate, a portion of the waves can interact with

electrons nonlinearly, with pronounced effects on electron dynamics.

In Chapter 3 and Chapter 4, we further investigated the nonlinear effects observed in

the foreshock region. Through a combination of case studies and test-particle simulations,

we provided observational evidence demonstrating that nonlinear interactions can accel-

erate electrons and reproduce the characteristic butterfly electron distribution. Our case

study demonstrated that nonlinear interactions can efficiently accelerate and scatter elec-

trons within the foreshock. Furthermore, we introduced two theoretical approaches: the

probabilistic approach and the mapping technique. These methods allow us to theoretically

trace electron dynamics without relying on test-particle simulations, thereby offering signif-

icant computational advantages. In developing these theoretical approaches, we carefully

considered realistic wave packet sizes obtained from observations, as the size of wave packets

can influence nonlinear interactions.

In Chapter 5, we synthesized our understanding of whistler-mode waves with the theo-

retical framework to solve the electron acceleration problem. Using observations of electrons

with energies up to 200 keV and a data-constrained model, we reproduced the observed

power-law electron spectrum, ∼ E−4, and demonstrated that the acceleration by more than

4 orders of magnitude is a compound process including a complex, multi-step interaction

between more commonly known mechanisms (adiabatic acceleration and shock drift accel-

eration) and resonant scattering by several plasma wave modes. The proposed model of
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electron acceleration addresses the decades-long issue of the generation of energetic (and

relativistic) electrons at planetary plasma shocks.

In summary, this thesis focuses on the electron acceleration in foreshock regions problem

and, for the first time, successfully reproduces the observed acceleration by a factor of 104,

from 10eV up to several hundred keV. The proposed acceleration mechanism is compound

acceleration by a combination of mechanisms, which have never before been considered in

aggregate. These results may deepen our understanding of particle acceleration in shock

physics and be important in particle acceleration and the generation of cosmic rays at other

astrophysical settings shocks throughout the cosmos.

6.2 Future Work

In future study, we plan to substantially expand our model to incorporate effects such as

wave obliquity and self-consistent wave-particle dynamics when waves that facilitate the

acceleration of electron populations are generated by suprathermal populations associated

with the same foreshock transients.

6.2.1 Role of ultra-low-frequency fluctuations in electron Heating: Magnetic

Pumping and Whistler-Mode Waves

Self-consistent wave generation and electron acceleration can occur in various magnetic field

configurations; however, configurations involving compressional electron heating are par-

ticularly promising for research. In these configurations, energy from large-scale plasma

dynamics is converted into electron anisotropy, which subsequently facilitates the generation

of whistler-mode waves and further accelerates electrons. A typical example of such configu-

rations near Earth’s bow shock involves compressional ultra-low-frequency waves that drive

the so-called pumping mechanism for self-consistent electron acceleration.

The magnetic pumping process involves electron adiabatic (compressional) heating due
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to ultra-low-frequency waves, along with simultaneous scattering by high-frequency fluctu-

ations. Specifically, when the electron energy undergoes adiabatic (reversible) changes due

to magnetic field fluctuations and is coupled with electron pitch-angle scattering from high-

frequency waves (turbulence), this scattering disrupts the reversibility and promotes electron

heating [Lichko et al., 2017, Egedal et al., 2018]. The theory of magnetic pumping and its

validation using observational data from shock waves and high-frequency wave models are

discussed in various studies [Lichko and Egedal, 2020, Egedal and Lichko, 2021, Egedal

et al., 2021, Montag and Howes, 2022]. Similarly, the electron heating mechanism involving

adiabatic modulation and scattering by high-frequency waves has been explored for the intra-

cluster medium [Kunz et al., 2011, Ley et al., 2023] and planetary magnetospheres [Borovsky

et al., 2017].

An important, but yet underexplored aspect of magnetic pumping is the origin of high-

frequency waves responsible for electron scattering. There are multiple electrostatic wave

modes around Earth’s bow shock [Vasko et al., 2022, Kamaletdinov et al., 2022, Wang

et al., 2020, Lalti et al., 2023] that effectively scatter solar wind electrons [Vasko et al.,

2018b, Gedalin, 2020, Kamaletdinov et al., 2022]. However, the most important wave mode

for magnetic pumping is the electromagnetic high-frequency whistler-mode wave which can

be generated by the adiabatically modulated electron population [Huang et al., 2018, Yao

et al., 2021, Jiang et al., 2022]. The magnetic pumping can be self-consistently supported

by the whistler-mode wave generation and the electron scattering by these waves. Figure 6.1

illustrates this scenario using an example from THEMIS [Angelopoulos, 2008] observations

around Earth’s bow shock. Ultra-low-frequency magnetic field fluctuations (top panels)

create local magnetic field dips with the trapped hot electrons and strong whistler-mode wave

activities (bottom panel). The compressional dynamics of such magnetic field fluctuations

periodically heat and cool the trapped electrons [Yao et al., 2021, Jiang et al., 2022], whereas

whistler-mode waves may scatter electrons in the pitch-angle space and provide redistribution

of the electron energy between the cross-field and field-aligned directions. [Lichko et al., 2017,
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Figure 6.1: An overview of THEMIS (Angelopoulos 2008) observations of ultralow-frequency

magnetic field fluctuations upstream of Earth’s bow shock.

Lichko and Egedal, 2020] have shown that such a combination of adiabatic (reversible) energy

variation and pitch-angle scattering should result in electron heating and the formation of

a suprathermal electron population. In future study we may incorporate such a magnetic

pumping mechanism into our model of electron acceleration in the foreshock. This will allow

us to include the electron pitch-angle scattering and heating provided by self-consistently

generated whistler-mode waves. Such self-consistent elements of electron dynamics are the

perspective direction for improving the simulations of electron foreshock acceleration.

126



6.2.2 Oblique Whistler Waves

In the thesis, we mainly focus on whistler-mode waves propagating quasi-parallel to the back-

ground magnetic field (with an angle ψ between the wavevector k and the magnetic field B

around zero). The natural and potentially important generalization of this assumption is

to consider wave obliquity. Although observational data suggest that most high-frequency

whistler waves exhibit weak obliqueness, a portion of the waves are observed to be oblique.

As depicted in Figure 2.2, the wave normal angle distribution for high-frequency whistler

waves peaks around ψ = 10◦, with a portion of the waves having wave normal angles ex-

ceeding 30◦. The obliquity of whistler-mode waves has been extensively studied in the inner

magnetosphere, revealing their significant impact on electron scattering, acceleration, and

precipitation into the atmosphere [Artemyev et al., 2016]. When waves propagate parallel

to the magnetic field, only cyclotron resonance (n = 1 in Equation 2.4) occurs. However,

oblique wave propagation introduces Landau resonance (n = 0) and higher-order resonances

[Albert, 2017]. Consequently, the diffusion coefficient for oblique waves encompasses a wider

range of pitch angles and energy levels compared to that of parallel propagating waves.

Oblique chorus waves have been shown in the magnetosphere to significantly increase diffu-

sion rates at high energy [Gan et al., 2022, Lorentzen et al., 2001] and can also effectively

scatter electrons up to several hundreds of keV [Lorentzen et al., 2001, Mourenas et al., 2012].

Furthermore, if we incorporate background field fluctuations as discussed in Chapter 5, we

may even further broaden the energy range and pitch angle range of resonant interactions.

In a future proposed work, we will calculate the diffusion coefficient for the oblique

whistler waves, and further incorporate this effect in the model described in Chapter 5 to

study their effects on the electron acceleration process.
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