
UCLA
UCLA Electronic Theses and Dissertations

Title
Advancing the Cognitive Abilities of Embodied Agents: Large-Scale Simulations and Multi-
Agent Collaborations

Permalink
https://escholarship.org/uc/item/7mp710fx

Author
Gong, Ran

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7mp710fx
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Advancing the Cognitive Abilities of Embodied Agents:

Large-Scale Simulations and Multi-Agent Collaborations

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Ran Gong

2024

© Copyright by

Ran Gong

2024

ABSTRACT OF THE DISSERTATION

Advancing the Cognitive Abilities of Embodied Agents:

Large-Scale Simulations and Multi-Agent Collaborations

by

Ran Gong

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Demetri Terzopoulos, Co-Chair

Professor Song-Chun Zhu, Co-Chair

To construct a general artificial intelligence system, embodied agents must be able to

perceive their environment, understand human language, engage in complex reasoning,

manipulate objects, and collaborate with humans and each other. Cognitive science

research suggests that intelligence emerges from sensorimotor experiences and interactions

with the physical world. However, learning active perception and sensorimotor control

through interaction with the physical environment can be challenging because existing

algorithms are too slow for real-time learning, and embodied agents are fragile and

expensive. Consequently, there is a pressing need for virtual simulation systems that can

mimic complex behaviors and facilitate agent-environment interactions. In addition to

mastering basic physical skills, embodied agents also need to engage in long-horizon task

planning, coordination, and abstract reasoning to be effective in real-world scenarios.

The first line of research reported in this thesis focuses on developing simulation

environments in which robots can interact with human users and their surroundings.

We introduce a new simulation environment, VRKitchen, which enables the simulation

of complex high-level behaviors and state changes. We also collect a dataset featuring

human-environment interactions to predict human intentions. Furthermore, we develop a

new system, ARNOLD, to simulate intricate low-level physics, including articulated objects

ii

and liquids. Using the ARNOLD Dataset, we assess the abilities of robots to comprehend

human language and execute complex manipulations under varied visual conditions,

thereby evaluating their generalization capabilities in diverse and novel environments.

The second line of research addresses multi-agent collaboration and task allocation.

We examine how robots of various types can cooperate with each other or with human

users to accomplish common tasks. Initially, we propose a joint mind modeling framework

based on the theory of mind to enhance the collaboration between humans and robots.

Subsequently, we create a suite of multi-robot vision-based collaboration tasks, LEMMA,

where robots positioned around a tabletop must collaborate to complete a task based on

high-level instructions and also utilize tools. Lastly, leveraging large language models, we

introduce a centralized multi-agent dispatcher framework, MindAgent, and its associated

benchmarks and infrastructures.

iii

The dissertation of Ran Gong is approved.

Bolei Zhou

Kai-Wei Chang

Ying Nian Wu

Song-Chun Zhu, Committee Co-Chair

Demetri Terzopoulos, Committee Co-Chair

University of California, Los Angeles

2024

iv

To my family and friends who made this possible

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Contributions of the Thesis . 2

1.2 Outline of the Thesis . 6

2 Related Work . 8

2.1 Simulation Platforms . 8

2.2 Imitation Learning . 10

2.3 VR for AI . 10

2.4 Datasets for Computer Vision Tasks . 10

2.5 Simulators for Embodied AI . 11

2.6 Language Conditioned Manipulation . 12

2.7 Continuous State Understanding . 13

2.8 Human-Aware Planning . 14

2.9 Goal-Driven Explainable AI . 14

2.10 Visual Multi-Agent Collaboration . 15

2.11 Bimanual Robot Manipulation . 16

2.12 Visual Robot Task and Motion Planning 16

2.13 Multi-Agent Coordination . 17

2.14 Planning With LFMs . 18

2.15 Benchmarks Using Games . 18

I Simulation Environments 19

vi

3 VRKitchen: An Interactive 3D Virtual Environment for Task-Oriented

Learning . 20

3.1 Introduction . 20

3.2 The VRKitchen Environment . 25

3.3 Python-UE4 Bridge . 32

3.4 Performance . 33

3.5 Environment Interactions . 33

3.6 Data Generation From Virtual Environment 36

3.7 Generate Data From Ground Truth . 39

3.8 Summary . 48

4 ARNOLD: A Benchmark for Language-Grounded Task Learning With

Continuous States in Realistic 3D Scenes 50

4.1 Introduction . 50

4.2 The ARNOLD Benchmark . 53

4.3 Experiments . 60

4.4 Summary . 68

II Multi-Agent Collaboration 69

5 Joint Mind Modeling for Explanation Generation in Complex Human-

Robot Collaborative Tasks . 70

5.1 Introduction . 70

5.2 Single Agent Mind Model . 72

5.3 Joint Mind Modeling for Human-Robot Collaborations 76

5.4 Explanation-Based Task Coaching . 79

vii

5.5 User Study . 82

5.6 Summary . 87

6 LEMMA: Learning Language-Conditioned Multi-Robot Manipulation . 89

6.1 Introduction . 89

6.2 Problem Formulation . 91

6.3 LEMMA Benchmark . 93

6.4 Baseline Models . 98

6.5 Experiments . 101

6.6 Summary . 104

7 MindAgent: Emergent Gaming Interaction 105

7.1 Introduction . 105

7.2 The CuisineWorld Game . 107

7.3 MindAgent Gaming AI Infrastructure . 109

7.4 Experiments and Results . 113

7.5 Ablation Study for Multi-Agents . 117

7.6 Emergent Abilities . 119

7.7 Novel Game Adaptation . 119

7.8 Summary . 120

8 Conclusions . 122

8.1 Summary . 122

8.2 Future Directions . 123

A ARNOLD Benchmark Details . 125

A.1 Environment . 125

viii

A.2 Task Details . 128

A.3 Data Collection . 134

A.4 Implementation Details . 139

B MindAgent Details . 143

B.1 Prompt Examples . 143

B.2 Prompt Engineering Details . 144

B.3 LFM Settings . 145

B.4 CuisineWorld Task Details . 146

B.5 Additional Results in CuisineWorld . 150

B.6 Additional CuisineWorld Details . 162

B.7 Minecraft . 163

B.8 Additional Information on Human Evaluation 167

References . 169

ix

LIST OF FIGURES

1.1 The ARNOLD benchmark . 3

1.2 The MindAgent system for gaming interactions 5

3.1 RGB . 22

3.2 Depth . 22

3.3 Segmentation . 22

3.4 Sample sequences . 23

3.5 Architecture of VRKitchen . 25

3.6 Four humanoid avatars designed using MakeHuman. 26

3.7 Animation states for our agents . 27

3.8 VRKitchen scenes . 28

3.9 Sample decomposed kitchen cabinet . 29

3.10 Before and after a cutting action . 30

3.11 An example of human demonstrations for making a pizza 32

3.12 An example of human demonstrations for making roast meat 32

3.13 Examples of dishes . 34

3.14 Using a VR device at home . 36

3.15 Using a VR device in the office . 37

3.16 Web interface instructions . 37

3.17 Web interface tutorial . 37

3.18 Web interface atomic actions . 39

3.19 Samples of AttentionObject-VR dataset . 42

3.20 Example videos . 43

3.21 Samples qualitative results . 49

x

4.1 Multi-view robot observation . 55

4.2 Visualization of the input representations of models 61

4.3 Model ablation results with different language encoders 67

4.4 Real-world experiments . 68

5.1 Task illustration . 71

5.2 The hierarchical mind model . 72

5.3 Robot and Human mental state . 76

5.4 Human mental model update process . 77

5.5 Explanation timing . 81

5.6 Game view . 82

5.7 An example task schedule . 83

5.8 Time taken for the team to complete two orders under different testing conditions 86

5.9 User’s self-reported perception . 87

6.1 Expert demonstrations and high-level instructions 92

6.2 Model architecture . 98

6.3 Multi-Agent Cliport Model architecture . 101

7.1 The MindAgent infrastructure . 110

7.2 Collaboration efficiency curves . 114

7.3 Results of human evaluations . 116

7.4 Collaboration modes . 120

A.1 Pipeline of scene parsing . 126

A.2 Pipeline of parsing articulated bodies . 126

A.3 Randomness examples . 127

xi

A.4 Illustrations of the 8 tasks in ARNOLD . 129

A.5 Scene variations . 130

A.6 Object variations . 130

A.7 Lighting variations . 130

A.8 Material variations . 130

A.9 An illustration of the frame and camera for robot teleoperation 135

A.10 A schematic of the Xbox controller . 136

A.11 A toy example of the user interface (UI) for collecting human annotations . . 136

A.12 Distribution of human-annotated trajectory length 138

B.1 The MindAgent system prompt example . 143

B.2 The MindAgent system partial one-shot demo example 144

B.3 Dish distribution . 147

B.4 Level 0 — Very Simple Salmon Meatcake . 152

B.5 Level 1 — Very Simple . 152

B.6 Level 2 — Simple . 153

B.7 Level 3 — Intermediate . 153

B.8 Level 4 — Simple . 154

B.9 Level 5 — Advanced . 154

B.10 Level 6 — Unused . 155

B.11 Level 7 — Very Simple . 155

B.12 Level 8 — Simple . 156

B.13 Level 9 — Intermediate . 156

B.14 Level 10 — Intermediate . 157

B.15 Level 11 — Advanced . 157

xii

B.16 Level 12 — Advanced . 158

B.17 Human and multi-agent collaboration example 160

B.18 Task visualization in Minecraft . 164

B.19 Collaboration example in Minecraft . 165

B.20 Human evaluation interface . 166

B.21 Human evaluation questionnaire . 168

xiii

LIST OF TABLES

2.1 Comparisons with other 3D virtual environments 9

2.2 Comparison with existing benchmarks . 13

2.3 Comparison with other benchmarks . 17

3.1 The goals for five available dishes . 35

3.2 Human demonstration statistics . 39

3.3 Statistics of dataset . 43

3.4 Dataset Tasks (Part 1) . 44

3.5 Dataset Tasks (Part 2) . 45

3.6 Dataset Tasks (Part 3) . 46

3.7 Object detection results . 47

3.8 Accuracy of different methods . 48

4.1 Overview of the 8 tasks in ARNOLD . 56

4.2 Dataset statistics . 58

4.3 Evaluation results of the models on various tasks and splits 63

6.1 Task types . 94

6.2 Performance on the test set with high-level 102

6.3 Performance on the test set with human instructions. 102

6.4 Example high-level instruction . 103

6.5 Impact of distractors (single-step planning) 104

6.6 Impact of robot types . 104

7.1 Agent CoS performance scores . 113

xiv

7.2 Additional ablation on Level 3 for 2 agents 117

7.3 Using different numbers of agents as one-shot demonstrations on Level 3 . . 118

7.4 CoS performance scores of other LFMs on Level 3 118

7.5 Performance of the MindAgent framework in Minecraft 120

A.1 Delexicalized instruction templates . 138

A.2 The performances of two BC-Lang variants 140

B.1 Action space in CuisineWorld. 148

B.2 2 agents performance on different tasks . 149

B.3 3 agents performance on different tasks . 149

B.4 4 agents performance on different tasks . 149

B.5 Performance of other LFMs on Level 3 . 150

B.6 Additional ablation results . 150

B.7 Using different numbers of agents demos . 150

B.8 Performance of masked PPO with 2 agents in level 1 and level 4. 151

B.9 Comparison between CuisineWorld and other related benchmarks 151

xv

ACKNOWLEDGMENTS

I am deeply thankful to my family for their unwavering support throughout this journey.

I owe immense gratitude to my mother, Danli Duan, who made numerous sacrifices

to help me reach this point. I also want to express my heartfelt appreciation to my

godmother, Janet Wang, for her sacrifices and support. She provided me with a place to

call “home” in Los Angeles, a haven to which I can always return whenever things don’t

go as planned. Additionally, I am grateful to my uncle, Dennis Fox, for his long-time

support. He introduced me to various American sports, of which I have become a big fan,

and taught me how to be a skilled home chef. Today, I am proud to call myself an expert

steak chef.

I would like to express my sincere gratitude to my advisors, Professor Song-Chun

Zhu, for his invaluable guidance and mentorship. I am equally grateful to Professor

Demetri Terzopoulos for his enduring support and mentorship over the years. During my

internship at Amazon Alexa AI, I had the fortunate opportunity to work with Dr. Gaurav

S. Sukhatme, and at Microsoft Research Redmond, I was privileged to collaborate with

Dr. Jianfeng Gao.

I am especially grateful for the opportunity to have worked with an extremely talented

group of individuals. I would like to thank Baoxiong Jia, Xu Xie, Qing Li, Xiaojian Ma,

Pan Lu, Yining Hong, Jiangyong Huang, Yizhou Zhao, Zane Durante, Bidipta Sarkar,

Qian Long, Zhi Li, Yixin Zhu, Shu Wang, Muzhi Han, and Mark Edmonds for their

insightful discussions and valuable collaborations.

I am fortunate to have worked in multiple research labs. In Professor Song-Chun

Zhu’s lab, I had the opportunity to work on extremely large projects, which honed my

engineering skills and prepared me well for future research endeavors. Additionally, I

learned the fundamentals of conducting research and identifying long-term, worthwhile

problems. Working with Professor Demetri Terzopoulos helped me learn to pay extreme

attention to details. Working with Dr. Gaurav Sukhatme encouraged me to explore a

wide range of topics in robotics, fostering a strong interest in embodied AI research. This

xvi

experience also taught me to set realistic goals, create milestones, and deliver results.

Lastly, my time with Dr. Jianfeng Gao’s team taught me how to organize meetings and

promote efficient collaboration.

Additionally, I would like to thank Dr. Siyuan Huang for numerous helpful discussions

on choosing research topics and for inspiring me to tackle more challenging problems. I

would also like to give a special shout-out to Dr. Xiaofeng Gao for his detailed guidance

and longstanding support.

Last but not least, I would like to thank each committee member for their insightful

advice and valuable discussions.

I would not be where I am today without the support of these incredible individuals.

I am forever indebted to them for their guidance and encouragement.

xvii

VITA

2018 B.S. Computer Science and Engineering, UCLA.

2020 M.S. Computer Science, UCLA.

2022–present Ph.D. Candidate in Computer Science, UCLA.

2021 Applied Scientist Intern, Amazon

2022-2023 Applied Scientist Intern, Amazon

2023-2024 Research Intern, Microsoft Research Redmond

PUBLICATIONS

(* indicates equal contribution)

R. Gong*, Q. Huang*, X. Ma*, H. Vo, Z. Durante, Y. Noda, Z. Zheng, D. Terzopoulos,

F. Li, J. Gao. “MindAgent: Emerging Gaming Interaction.” Annual Conference of

the North American Chapter of the Association for Computational Linguistics (NAACL

Findings). 2024.

R. Gong*, J. Huang*, Y. Zhao, H. Geng, X. Gao, Q. Wu, W. Ai, Z. Zhou, D. Terzopou-

los, S.-C. Zhu, B. Jia, S. Huang. “ARNOLD: A Benchmark for Language-Grounded

Task Learning With Continuous States in Realistic 3D Scenes.” In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pp. 20483-20495. 2023.

(A short version won the Spotlight Award in the CoRL Language and Robot Learning

Workshop, 2022)

R. Gong, X. Gao, Q. Gao, S. Shakiah, G. Thattai, G. S. Sukhatme. “LEMMA: Learning

Language-Conditioned Multi-Robot Manipulation.” IEEE Robotics and Automation

Letters (RA-L). 2023.

X. Gao, Q. Gao, R. Gong, K. Lin, G. Thattai, G. S. Sukhatme. “DialFRED: Dialogue-

Enabled Agents for Embodied Instruction Following.” IEEE Robotics and Automation

xviii

Letters (RA-L). 2022.

Y. Hong, Q. Li, R. Gong, D. Ciao, S. Huang, S.-C. Zhu. “SMART: A Situation Model for

Algebra Story Problems via Attributed Grammar.” In Proceedings of the AAAI conference

on artificial intelligence, vol. 35, no. 14, pp. 13009-13017. 2021

P. Lu*, R. Gong*, S. Jiang*, L. Qiu, S. Huang, X. Liang, S.-C. Zhu. “Inter-GPS:

Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning.”

In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics

and the 11th International Joint Conference on Natural Language Processing (Volume 1:

Long Papers) pp. 6774–6786. 2021 (Oral presentation)

X. Gao*, R. Gong*, Y. Zhao, S. Wang, T. Shu, and S.-C. Zhu. “Joint Mind Modeling

for Explanation Generation in Complex Human-Robot Collaborative Tasks.” In 2020

29th IEEE International Conference on Robot and Human Interactive Communication

(RO-MAN), pp. 1119-1126. 2020.

Z. Nan, T. Shu, R. Gong, S. Wang, P. Wei, S.-C Zhu, and N Zheng. “Learning to Infer

Human Attention in Daily Activities.” Pattern Recognition, 103: 107314, 2020.

X. Gao, R. Gong, T. Shu, X. Xie, S. Wang, and S.-C. Zhu. “VRKitchen: an Interactive

3D Environment for Learning Real Life Cooking Tasks.” ICML Reinforcement Learning

for Real Life Workshop, 2019.

xix

CHAPTER 1

Introduction

Building artificial intelligence (AI) agents has been the dream of many research scientists

for decades. In the early days, the pioneering Dartmouth workshop coined the term

“artificial intelligence.” Subsequently, the field experienced rapid development on various

fronts. The optimism was high, and expectations were even higher. In the 1970s, Marvin

Minsky told Life Magazine, “From three to eight years, we will have a machine with the

general intelligence of an average human being.” Even though such efforts did not meet

the public’s expectations at the time, the field of AI quickly grew in the following decades.

People from a wide range of backgrounds began to study AI from different angles, such

as Computer Vision, Natural Language Processing, and Robotics.

Each field has achieved significant progress, facilitating a multitude of applications

that influence our daily lives. Nevertheless, to construct an agent with Artificial General

Intelligence (AGI), it is imperative to demonstrate intelligence across all domains. Recent

advancements in cognitive science also indicate that intelligence arises from the interaction

between an agent and its environment, as well as through sensorimotor activity (Smith

and Gasser, 2005). Consequently, there is a pressing need to develop a system capable of

engaging with the world by perceiving its environment, comprehending human language,

and collaborating with other agents.

Building and deploying such systems directly in the real world is often cumbersome,

as real robots are expensive, fragile, and slow. Additionally, different research laboratories

often have unique setups for their robots and environments, making it difficult for other

laboratories to reproduce similar results. The recent advancements in computer vision

and natural language processing have been largely driven by extensive datasets (Deng

1

et al., 2009; Yao et al., 2007). These fields benefit from unified benchmarks that evaluate

results and thereby promote progress. However, robotics lacks a similar unified effort. It

is impractical for laboratories on different continents to share identical hardware resources.

Early efforts studied active perception in autonomous agents populating physics-based

virtual worlds (Terzopoulos and Rabie, 1995; Rabie and Terzopoulos, 2000; Qureshi and

Terzopoulos, 2008); however, the simulation software excluded multi-contact simulations

and the OpenGL-shaded-polygon rendering quality was insufficiently photorealistic for the

purposes of present-day real-world applications. With the rapid advancement in physics

simulation and rendering technologies, it is now opportune to revisit the approach with the

overarching goal of tackling the greater challenges faced by real world perception-decision-

action systems. Fast and accurate physical simulations will pave the way for embodied

agents to interact with the world on previously infeasible scales as it has become possible

to simulate years of experience in mere seconds, thus unlocking tremendous potential for

such agents.

As Smith and Gasser (2005) suggest, the human learning process is inherently social.

We do not learn in isolation; rather, we learn from our parents, teachers, and peers.

Therefore, developing machines capable of collaborating with other AI systems and

with human users is crucial for the development of embodied systems exhibiting AGI.

With recent advancements in simulation technologies for the gaming industry, we can

now investigate these issues within simulations in open-world video games. Relevant

applications require a deep understanding of task settings, the dynamics of collaboration,

and often involve long-term planning.

1.1 Contributions of the Thesis

This thesis proposes, implements, and demonstrates multiple computational frameworks

designed to enhance the multi-agent collaboration capabilities of current real-world

systems, utilizing both physics simulators and video game development platforms. More

specifically, the thesis makes the following five primary contributions:

2

Sim2Real Transfer

Continuous Spectrum

20% 40% 80%0%

Novel State

Novel Object

Novel Scene

Pull the drawer

half open

[GOAL STATE]

Reorient the bottle 180°
away from the up axis

Slide the cabinet

75% open

Pour [GOAL] of

water to the cup

Figure 1.1: The ARNOLD benchmark for language-grounded task learning with continuous
states in realistic 3D scenes. ARNOLD provides 8 tasks with their demonstrations for
learning and a testbed for the generalization abilities of agents over (1) novel goal states,
(2) novel objects, and (3) novel scenes.

1. One of the main challenges of applying reinforcement learning to real world applica-

tions is the lack of realistic and standardized environments for training and testing

AI agents. We design and implement a Virtual Reality (VR) system, VRKitchen,

with integrated functions that (i) enable embodied agents to perform real life cooking

tasks involving a wide range of object manipulations and state changes and (ii) allow

human teachers to provide demonstrations for training agents. We also provide

standardized evaluation benchmarks and data collection tools to facilitate their

broad use in research on learning real life tasks.1

2. Understanding the continuous states of objects is essential for task learning and

planning in the real world. However, most existing task learning benchmarks assume

discrete (e.g., binary) object goal states, which poses challenges for the learning of

complex tasks and transferring learned policy from simulated environments to the

real world. Furthermore, state discretization limits a robot’s ability to follow human

instructions based on the grounding of actions and states. To tackle these challenges,

1Video demos, code, and data are available on the project website: https://sites.google.com/view/vr-
kitchen/.

3

https://sites.google.com/view/vr-kitchen/
https://sites.google.com/view/vr-kitchen/

we present ARNOLD (Figure 1.1), a benchmark that evaluates language-grounded

task learning with continuous states in realistic 3D scenes. ARNOLD is comprised of

8 language-conditioned tasks that involve understanding object states and learning

policies for continuous goals. To promote language-instructed learning, we provide

expert demonstrations with template-generated language descriptions. We assess

task performance by utilizing the latest language-conditioned policy learning models.

Our results indicate that current models for language-conditioned manipulations

continue to experience significant challenges in novel goal-state generalizations,

scene generalizations, and object generalizations. These findings highlight the need

to develop new algorithms that address this gap and underscore the potential for

further research in this area.2

3. Human collaborators can effectively communicate with their partners to finish a

common task by inferring each other’s mental states (e.g., goals, beliefs, and desires).

Such mind-aware communication minimizes the discrepancy among collaborators’

mental states, and is crucial to the success of human ad-hoc teaming. We believe

that robots collaborating with human users should demonstrate similar pedagogic

behavior. Thus, we propose a novel eXplainable AI (XAI) framework for achieving

human-like communication in human-robot collaborations, where the robot builds a

hierarchical mind model of the human user and generates explanations of its own

mind as a form of communication based on its online Bayesian inference of the user’s

mental state. To evaluate our framework, we conduct a user study on a real-time

human-robot cooking task. Our experimental results show that the generated

explanations of our approach significantly improve the collaboration performance

and user perception of the robot.

4. Complex manipulation tasks often require robots with complementary capabilities

to collaborate. We introduce a benchmark for LanguagE-conditioned Multi-robot

MAnipulation (LEMMA) focused on task allocation and long-horizon object manipu-

2Project website: https://arnold-benchmark.github.io.

4

https://arnold-benchmark.github.io

Figure 1.2: The MindAgent system for gaming interactions. MindAgent enables complex
task planning in a multi-agent system and provides a human-AI collaboration infrastructure
across various domains.

lation based on human language instructions in a tabletop setting. LEMMA features

8 types of procedurally generated tasks with varying degrees of complexity, some

of which require the robots to use tools and pass tools to each other. For each

task, we provide 800 expert demonstrations and human instructions for training and

evaluations. LEMMA poses greater challenges compared to existing benchmarks, as it

requires the system to identify each manipulator’s limitations and assign sub-tasks

accordingly while also handling strong temporal dependencies in each task. To

address these challenges, we propose a modular hierarchical planning approach

as a baseline. Our results highlight the potential of LEMMA for developing future

language-conditioned multi-robot systems.

5. Large Foundation Models (LFMs) can perform complex scheduling in a multi-agent

system and can coordinate agents to complete sophisticated tasks that require

5

extensive collaboration. However, despite the introduction of numerous gaming

frameworks, the community lacks adequate benchmarks that support the implemen-

tation of a general multi-agent infrastructure encompassing collaboration between

LFMs and human-NPCs. We propose a novel infrastructure, MindAgent (Fig-

ure 1.2), for evaluating planning and coordination capabilities in the context of

gaming interaction. In particular, our infrastructure leverages an existing gaming

framework to (i) act as the coordinator for a multi-agent system, (ii) collaborate

with human players via instructions, and (iii) enable in-context learning based on

few-shot prompting with feedback. Furthermore, we introduce CuisineWorld, a

new gaming scenario and its related benchmark that supervises multiple agents

playing the game simultaneously and measures multi-agent collaboration efficiency.

We conduct comprehensive evaluations with a new auto-metric Collaboration Score

(CoS) for assessing the collaboration efficiency. Finally, MindAgent is deployed

in real-world gaming scenarios in a customized VR version of CuisineWorld and

adapted in the “Minecraft” domain. Our work involving LFMs within our new

infrastructure for general-purpose scheduling and coordination elucidates how such

skills may be obtained by learning from large language corpora.

1.2 Outline of the Thesis

This thesis proposes simulation environments, benchmarks, user study protocols, and

computational frameworks to address the challenges of embodied simulation, learning,

and collaboration. Chapter 2 reviews prior work that is relevant to the range of topics

spanned by the thesis research.

The technical body of the dissertation is in two parts. Part I, which focuses on

simulation environments, comprises Chapter 3 and Chapter 4. Part II, which focuses on

multi-agent collaboration, comprises Chapter 5, Chapter 6, and Chapter 7.

In Chapter 3, we develop a VR-based virtual kitchen (Gao et al., 2019; Nan et al.,

2020). We provide a set of tools for collecting data using VR devices and web interfaces.

6

We collect synthetic indoor cooking datasets using our toolkits, and we benchmark the

performances of various reinforcement learning agents. We further collect a multi-view

dataset for human intention prediction.

In Chapter 4, we develop a photo-realistic and a physical-realistic simulation envi-

ronment for robots (Gong et al., 2023b). We further provide a benchmark for language-

grounded task learning on continuous object states. We perform a preliminary sim2real

transfer test and show that our benchmark is valuable for sim2real transfer.

In Chapter 5, we develop a real-time collaborative cooking game to study human-robot

collaborations (Gao et al., 2020). We propose a collaboration framework where human

users and robots collaborate together to finish a joint task. We conduct a user study to

confirm, in both subjective and objective measures, its effectiveness in collaboration.

In Chapter 6, we develop a multi-robot collaboration dataset and its associated

environment based on lone-horizon task planning and manipulations (Gong et al., 2023a).

We further improve the performance of the baseline models through a hierarchical modular

model.

In Chapter 7, we develop a text-based gaming environment to study multi-agent

collaborations and task planning (Gong et al., 2023c). We design an LLM based framework

to improve collaboration efficiency. We conduct a user study to confirm the potential

of collaborating with human players. We then transfer the framework to Minecraft and

demonstrate its usability.

Finally, in Chapter 8, we draw the key conclusions from our research and discuss

promising avenues for future work.

Appendix A and Appendix B present additional details about ARNOLD and MindAgent,

respectively.

7

CHAPTER 2

Related Work

This chapter reviews prior work that is relevant to the range of topics spanned by the

thesis research.

2.1 Simulation Platforms

Traditionally, visual representations are learned from static datasets. Either containing

prerecorded videos (Rohrbach et al., 2012) or images (Deng et al., 2009), most of them

fail to capture the dynamics in viewpoint and object state during human activities, in

spite of their large scale. Some early systems (Qureshi and Terzopoulos, 2008; Rabie

and Terzopoulos, 2000; Terzopoulos and Rabie, 1995; Lin et al., 2016) try to simulate

the dynamics of human activities in order to support the development of smart visual

surveillance systems and research into active computer vision for navigation. However,

agents in the environment cannot be trained in a fined grained level for compositional

tasks, and the environments often do not exhibit dynamic changes caused by the agents’

actions.

To address this issue, there has been a growing trend to develop 3D virtual platforms

for training embodied agents in dynamic environments. Typical systems include 3D game

environments (Kempka et al., 2017; Beattie et al., 2016; Johnson et al., 2016), and robot

control platforms (Todorov et al., 2012; Coumans and Bai, 2016; Fan et al., 2018; Plappert

et al., 2018). While these systems offer physics simulation and 3D rendering, they fail to

provide realistic environments and daily tasks humans face in the real world.

More recently, based on 3D scene datasets such as Matterport3D (Chang et al.,

8

Env. Large-scale Physics Realistic State Manipulation Avatar Demon

Malmo (Johnson et al., 2016)
√ √

DeepMind Lab (Beattie et al., 2016)
VizDoom (Kempka et al., 2017)
MINOS (Savva et al., 2017)

√ √

HoME (Brodeur et al., 2017)
√ √ √

Gibson (Xia et al., 2018)
√ √ √ √

House3D (Wu et al., 2018)
√ √ √

AI2-THOR (Kolve et al., 2017)
√ √ √

VirtualHome (Puig et al., 2018)
√ √ √ √

SURREAL (Fan et al., 2018)
√ √ √

VRKitchen (ours)
√ √ √ √ √ √

Table 2.1: Comparison with other 3D virtual environments. Large-scale: a large number
of scenes. Physics: physics simulation. Realistic: photo-realistic rendering. State:
changeable object states. Manipulation: enabling object interactions and manipulations.
Avatar: humanoid virtual agents. Demonstration: user interface to collect human
demonstrations.

2018) and SUNCG (Song et al., 2017), there are have been several systems simulating

more realistic indoor environments (Brodeur et al., 2017; Wu et al., 2018; Savva et al.,

2017; McCormac et al., 2017; Xia et al., 2018) for visual navigation tasks and basic

object interactions such as pushing and moving funitures (Kolve et al., 2017). While the

environments in these systems are indeed more realistic and scalable compared to previous

systems, they still can not simulate complex object manipulation that are common in our

daily life. Puig et al. (2018) took a step forward and has created a dataset of common

household activities with a larger set of agent actions including pick-up, switch on/off,

sit and stand-up. However, this system was only designed for generating data for video

understanding. In contrast, our system emphasizes training and evaluating agents on

virtual cooking tasks, which involves fine-grained object manipulation on the level of

object parts (e.g., grasping the handle of a knife), and flexible interfaces for allowing

both human users and AI algorithms to perform tasks. Our system also simulates the

animation of object state changes (such as the process of cutting a fruit) and the gestures

of humanoid avatars (such as reaching for an object) instead of only showing pre-conditions

and post-effects as in (Kolve et al., 2017). A detailed comparison between our system

and other virtual environments is summarized in Table 2.1.

9

2.2 Imitation Learning

Learning from demonstration or imitation learning is proven to be an effective approach

to train machine agents efficiently (Abbeel and Ng, 2004; Syed and Schapire, 2008; Ross

et al., 2010). Collecting diverse expert demonstrations with 3D ground-truth information

in real world is extremely difficult. We believe the VR interface in our system can greatly

simplify and scale up the demonstration collection.

2.3 VR for AI

VR provides a convenient way to evaluate AI algorithms in tasks where interaction or hu-

man involvement is necessary. Researches have been conducted on many relevant domains,

including physical intuition learning (Lerer et al., 2016), human-robot interaction (Liu

et al., 2017a; de Giorgio et al., 2017), learning motor control from human demonstrations

(Haidu et al., 2015; Kawasaki et al., 2001; Belousov et al., 2001). Researchers have also

used VR to collect data and train computer vision models. To this end, several plugins

for game engines have been released, such as UETorch (Lerer et al., 2016) and UnrealCV

(Qiu and Yuille, 2016). To date, such plugins only offer APIs to control game state and

record data, requiring additional packages to train virtual agents, or to gather data for

other computer vision tasks.

2.4 Datasets for Computer Vision Tasks

Deng et al. (2009) started the big data era for modern computer vision research. With

the increasing popularity of deep learning, there are a lot of datasets catering to different

tasks. For human attention predictions, CAD120 (Koppula et al., 2013), has been

commonly used. However, creating these dataset will require a significant amount of

manpower to design tasks, record videos, and annotate data. Amazon Mechanical Turks

are commonly used for annotation purposes; however, according to our own experiences,

turker annotations are often noisy, so it takes a large amount of time for researchers to

10

design a protocol to make sure annotations gathered from turkers are reliable. For tasks

like object recognition, researchers often want to label the smallest bounding box around

the object; however, in real annotation scenarios, it is really hard for humans to find the

smallest bounding box around the object. This might due to the fact that turkers are paid

by the number of images they annotated not by how accurate their boxes are. As long as,

their annotations are reasonable, researchers will often give them a pass. However, recent

studies (Ratner et al., 2017) has demonstrated that inaccuracy in the data annotations

can often produce meaningful differences in the final model. Therefore, it is crucial to

have accurate annotations for the dataset. In a virtual environment, since we have all the

information about the object model, it is relatively easy to obtain accurate ground truth

information through transformation matrices and projection matrix.

2.5 Simulators for Embodied AI

Significant progress has recently been made in developing simulators for training and

evaluating AI agents to perform indoor household activities (Li et al., 2021; Fu et al., 2022;

Gan et al., 2021; Chen et al., 2022a; Deitke et al., 2022b; Chang et al., 2018). To mitigate

complexity, most of these simulators make simplifications about world states and actions,

abstracting robot manipulation into symbolic planning in discrete action (Puig et al.,

2018; Kolve et al., 2017) and state spaces. However, agents trained in such settings are

unaware of the relationship between actions and the geometries and dynamics of objects,

therefore limiting their abilities in real-world scenarios. Recent efforts have gradually

transitioned to continuous action spaces, but they still make some simplifications. For

example, grasping is often simplified by attaching a nearby object to the gripper (Ehsani

et al., 2021; Srivastava et al., 2022), or through contact (Li et al., 2022; James et al., 2020;

Szot et al., 2021).

Among works that provide continuous object state change simulation, most do not

focus on manipulating object states in a precise and fine-grained manner. For example,

VRKitchen (Gao et al., 2019) defines task goals in a discrete manner even though the

11

underlying object states are continuous. Softgym (Lin et al., 2020) is an object manipula-

tion benchmark that provides a realistic simulation of deformable objects; however, it

lacks diversity among objects and scenes.

By contrast, ARNOLD provides a wide variety of scenes and objects. And ARNOLD

simulates continuous states for articulated objects and simulates fluids at the particle level.

We control the robots with 7-DOF continuous control and friction-based grasping powered

by a state-of-the-art physics engine (PhysX 5.0). Whereas most of the environments

(Gu et al., 2023; Szot et al., 2021) optimize for speed, we optimize for the realism of the

rendering. And ARNOLD also equips a remarkable rendering speed at 185 FPS (37 FPS

with five cameras).

2.6 Language Conditioned Manipulation

Relating human language to robot actions has been of recent interest (Lynch and Sermanet,

2021; Stepputtis et al., 2020; Zheng et al., 2022; Jiang et al., 2022; Deng et al., 2020;

Huang et al., 2022b, 2023; Nair et al., 2022; Zeng et al., 2022). However, the environments

in these efforts either lack realistic physics (Shridhar et al., 2020a, 2022a) or do not have

realistic scenes (Shridhar et al., 2022b; Mees et al., 2022b) where the surroundings of

the agent will constrain its motion, and different scene objects might occlude the agent’s

viewpoint. Additionally, systems like (Huang et al., 2022b; Brohan et al., 2022; Driess

et al., 2023; Lynch et al., 2022) are application-based, lacking a systematic benchmark for

language-conditioned manipulation. Most importantly, prior work aims to ground human

language to static object properties, such as colors and shapes. By contrast, ARNOLD

provides instructions for continuous object states. We compare between ARNOLD and other

related benchmarks in Table 2.2. In addition, most studies typically use a single-robot

setting. In (Tan et al., 2020; Liu et al., 2022c), a single agent can still finish the task

although multiple agents are available. We investigate, with limited reachability, how

multiple robots can collaborate with each other in LEMMA. Our task settings are designed

to require the collaboration of two robots to successfully complete the task. In our setting,

12

Benchmark Language Multi Camera Fluid Physics Continuous Scenes Robot Rendering Flexible Material Generalization

Alfred (Shridhar et al., 2020a) ✓ ✗ ✗ ✗ ✗ ✓ ✗ R ✗ ✗

Maniskill (Mu et al., 2021; Gu et al., 2023) ✗ ✓ ✓ ✓ ✓ ✗ ✓ R ✗ ✓

Calvin (Mees et al., 2022b) ✓ ✓ ✗ ✓ ✗ ✓ ✓ R ✗ ✓

Behavior (Li et al., 2022; Srivastava et al., 2022) ✗ ✗ ✓ ✓ ✓ ✓ ✓ RT ✓ ✗

KitchenShift (Xing et al., 2021) ✗ ✗ ✗ ✓ ✗ ✗ ✓ R ✗ ✓

RLBench (James et al., 2020) ✓ ✓ ✗ ✓1 ✗ ✗ ✓ R ✗ ✗

Softgym (Lin et al., 2020) ✗ ✗ ✓ ✓ ✓ ✗ ✗ R ✗ ✗

Orbit (Mittal et al., 2023) ✗ ✗ ✓ ✓ ✗ ✓ ✓ RT ✓ ✗

Vlmbench (Zheng et al., 2022) ✓ ✓ ✗ ✓1 ✓ ✗ ✓ R ✗ ✗

Ravens (Zeng et al., 2021; Shridhar et al., 2022a) ✓ ✓ ✗ ✓ ✗ ✗ ✓ R ✗ ✓

Habitat HAB (Szot et al., 2021) ✗ ✗ ✗ ✗ ✗ ✓ ✓ R ✗ ✓

TDW Transport (Gan et al., 2021, 2022) ✗ ✗ ✗ ✗ ✗ ✓ ✓ R ✗ ✗

ARNOLD ✓ ✓ ✓ ✓ ✓ ✓ ✓ RT ✓ ✓

Table 2.2: Comparison with existing benchmarks. ARNOLD features language-grounded
robot control over continuous object states with a large number of demonstrations in
photo-realistic scenes. ARNOLD also leverages advanced physics simulations powered by
PhysX 5.0 to simulate articulated bodies and fluids. Language: Task goals are specified
by human language instruction. Multi-Camera: Robot is equipped with multiple cameras.
Fluid: Advanced fluid simulation. Physics: Realistic physics simulation with realistic
grasping. 1: RLbench-based benchmarks use simplified grasping. Continuous: Object
state and goal state are continuous. Scene: Tasks are performed with a realistic scene
background. Robot: Perform actions with real robots for all tasks. R: Rasterization. RT:
RayTracing. Flexible Material: Easy to change materials and textures. Generalization:
Systematic generalization test at different levels.

due to the limited workspace reachability of each robot, each target object can only be

manipulated by one robot initially, making collaboration necessary to achieve the task

goals.

2.7 Continuous State Understanding

Some recent research tries to predict object states (Liu et al., 2017b; Nagarajan and

Grauman, 2018). However, the object states are discrete rather than continuous. More

recently, researchers (Weng et al., 2021; Di et al., 2022; Wei et al., 2022a; Tseng et al.,

2022) tried to predict object states continuously. However, they do not address the

manipulation of objects from arbitrary starting states to the desired states. Moreover,

they do not model the language grounding process. Most recently, Ma et al. (2023)

propose a method to perform precise object state manipulations, but their approach does

not perform language grounding and only a small subset of our tasks are covered with

their simple motion primitives. Compared with prior work, we provide more diverse goal

states to cover the continuous state space rather than learning only binary goal states.

13

This allows models to understand the continuous state space. Moreover, we also propose

evaluation of generalization in terms of continuous state understanding (see Section 4.2.4).

This evaluates how the model leverages its understanding of the state space to generalize

within a continuous spectrum, which is rarely studied in prior works. Though more goal

states can be added with our continuous simulation, we leave ARNOLD at the current scale

since more states will lead to greater data generation costs due to the compositions of

object/scene/state.

2.8 Human-Aware Planning

Designing robots that can work with humans has been widely studied by researchers.

Most of the prior works hope to create robots to better understand and adapt to human

collaborators. Liu et al. (2016) evaluate a collaborative task allocation framework based

on a Bayesian inference of human intention. Hadfield-Menell et al. (2016) propose a

formulation of the value alignment problem assuming the robot learning an unknown

human reward function. Optimal solutions can be achieved when the human demonstrates

active teaching behavior. To deal with sensor uncertainty and task ambiguity in a

collaborative assembly task, Hawkins et al. (2014) use an And-Or tree structure as the

task representation, which is similar to our approach. When sub-optimal user behavior are

encountered, Reddy et al. (2018) propose to learn the incorrect human internal dynamics

model via inverse RL and then perform an internal-to-real dynamics transfer to assist

users in shared-autonomy tasks. Our framework differs from this line of research in that

we also aim at improving humans’ understanding of robots’ models using communicative

actions. Such two-way understanding will further help human-robot collaborations.

2.9 Goal-Driven Explainable AI

In contrast to data-driven XAI which improves understanding of “black-box” machine

learning algorithms given input data, goal-directed XAI typically explains the behavior of

14

an agent or robot for a specific task (Langley et al., 2017; Anjomshoae et al., 2019; Miller,

2019), in order to increase model transparency (Struckmeier et al., 2019), human’s trust

(Wang et al., 2016) or task performance (Xu and Dudek, 2015). Some of the works achieve

this aim by enabling robots to directly generate easy-to-understand motions (Dragan

and Srinivasa, 2013; Kwon et al., 2018) or task plans (Zhang et al., 2017). Other works,

similar to ours, focus on using explicit communication to change user mental state, e.g.,

updating users’ incorrect reward functions (Tabrez et al., 2019), correcting users’ false

belief or misunderstanding about the environment (Gong and Zhang, 2018; Sreedharan

et al., 2018), resolving the disagreement between collaborators’ actions (Nikolaidis et al.,

2018) or providing users with necessary knowledge about the current situation (Devin and

Alami, 2016). Compared to these work that often require offline training with humans or

theoretical assumptions on the human models, this chapter takes a direct approach to

generate explanations solely based on an online estimation of human model and knowledge

of the task structure. The experiment results show our approach is empirically effective

in an ad-hoc human-robot teaming settings (Stone et al., 2010) where pre-coordination is

not available.

2.10 Visual Multi-Agent Collaboration

Visual multi-agent collaboration has attracted attention in recent embodied AI research

(Tan et al., 2020; Jain et al., 2020, 2019; Wang et al., 2021; Chen et al., 2020; Liu

et al., 2022b,c). However, among the works that involve object manipulation, simplified

non-physics based atomic actions are often employed as an abstraction for manipulation.

These works often use a magic glove to attach an object to the gripper as long as hand-

crafted conditions are met. For example, an object within 15cm to the gripper can be

automatically snapped to the gripper (Szot et al., 2021). While this simplification does

not affect learning robot task planning, it is unsuitable for learning low-level manipulation

policies. We do not make such a simplification here instead using a gripper to interact with

objects physically. Additionally, most previous works study the collaboration problem in

15

a single-task setting. In contrast, our work LEMMA uses a multi-task setting requiring the

comprehension of a textual description to understand the goal.

2.11 Bimanual Robot Manipulation

There is a rich set of literature on bimanual robot manipulation (Chen et al., 2022b;

Takata et al., 2022; Stavridis et al., 2021; Smith et al., 2012; Zhang et al., 2019; Stepputtis

et al., 2022; Lertkultanon and Pham, 2018). These works address important problems

in dual-arm coordination with a focus on coordinated control and collision avoidance.

However, there is less exploration of multi-robot task planning and allocation for long-

horizon tasks with strong temporal dependencies, along with workspace management. In

addition, these works typically do not involve vision and language inputs, especially for

the recognition of the physical limitations of different robots from vision input. More

importantly, previous research usually employs robot arms of the same type. In contrast,

our work, LEMMA, considers the settings of both heterogeneous and homogeneous robot

arms.

2.12 Visual Robot Task and Motion Planning

Traditionally, most works in this area use search over pre-defined domains for planning,

which require extensive domain knowledge and accurate perception. Moreover, they often

scale poorly with an increasing number of objects. Another line of work involves generating

task and motion plans given scene images (Driess et al., 2020; Driess et al., 2021). In

contrast, in our settings, the model uses both RGBD images and textual descriptions as

input for multi-task learning. Most recently, Singh et al. (2023) generated robot policies in

the form of code tokens using large language models (LLMs). Nonetheless, they only focus

on single-agent task planning. We compare and contrast our benchmark with existing

works in Table 2.3.

16

Benchmark Language Multi-task Manipulation Multi-agent Tool Use Temporal Dep.

Alfred (Shridhar et al., 2020a) ✓ ✓ ✗ ✗ ✓ ✓

MQA (Deng et al., 2020) ✓ ✓ ✓ ✗ ✗ ✗

Calvin (Mees et al., 2022b) ✓ ✓ ✓ ✗ ✗ ✗

EQA (Tan et al., 2020) ✓ ✓ ✗ ✓ ✗ ✗

Ravens (Zeng et al., 2021) ✗ ✗ ✓ ✗ ✗ ✗

Vlmbench (Zheng et al., 2022) ✓ ✗ ✓ ✗ ✗ ✗

CH-MARL (Sharma et al., 2022) ✓ ✗ ✗ ✓ ✗ ✗

TBP (Jain et al., 2019) ✗ ✗ ✗ ✓ ✗ ✗

EMATP (Liu et al., 2022c) ✓ ✓ ✗ ✓ ✓ ✓

LEMMA ✓ ✓ ✓ ✓ ✓ ✓

Table 2.3: Comparison with other benchmarks. LEMMA evaluates the performance of
language-conditioned multi-agent object manipulation in long-horizon tasks. Multi-task :
using a multi-task setting. Language: language instructions to specify goal. Manipulation:
physical object manipulation. Multi-agent : requiring multiple agents for task completion.
Tool use: requiring the robot to use a tool to interact with other objects. Temporal Dep:
temporal dependency between sub-tasks.

2.13 Multi-Agent Coordination

The field of multi-agent collaboration boasts a comprehensive body of literature. Tra-

ditionally, such collaborations have been modeled using the MDP/POMDP frameworks

(Lowe et al., 2017; Rashid et al., 2020; Jain et al., 2019; Wu et al., 2021; Gao et al., 2023).

However, there has been a recent shift towards using LFMs for these collaborations. For

instance, Zhang et al. (2023b) delved into how LFMs might communicate and cooperate in

a watch-and-help (WAH) task. Meanwhile, Zhang et al. (2023a) investigated a two-agent

collaboration game inspired by the simpler dynamics of the two-agent Overcooked-style

game. Notably, their research mainly concentrated on the task success rate, with most

studies typically anchored to a single task objective. By contrast, we emphasize the

importance of collaboration efficiency in scenarios encompassing multiple task objectives.

Further, our research uniquely focuses on evaluating the collaborative efficiency of two or

more agents. Additionally, while other works such as that of Park et al. (2023); Wu et al.

(2021) simulate each agent individually, we employ a centralized system. This not only

significantly reduces the number of API calls but also reduces context length, making it

more appropriate for use in gaming applications.

17

2.14 Planning With LFMs

A number of works leverage LFMs to perform task planning (Huang et al., 2022a; Wang

et al., 2023a; Yao et al., 2023; Li et al., 2023; Wang et al., 2024), specifically the LFMs’

WWW-scale domain knowledge and emergent zero-shot planning abilities to perform

complex task planning and reasoning. Recent robotics research also leverages LFMs

to perform task planning (Ahn et al., 2022; Huang et al., 2022b; Liang et al., 2022)

by decomposing natural language instruction into a sequence of subtasks, either in the

natural language form or in Python code , then using a low-level controller to execute

these subtasks. Additionally, Huang et al. (2022b), Liang et al. (2022), and Wang et al.

(2023b) also incorporate environmental feedback to improve task performance.

2.15 Benchmarks Using Games

Numerous games have been developed to study task planning (Baker et al., 2022; Carroll

et al., 2019; Bakhtin et al., 2022), yet only a handful delve into multi-agent collaborations.

Even within this limited subset, the focus predominantly remains on two-agent interactions

where responsibilities are unevenly distributed between the agents (Wan et al., 2022; Puig

et al., 2020)—it is common for one player to assume a dominant role while the other

provides support. By contrast, our work assumes the equal apportion of responsibilities

across agents, and we expand our investigation to encompass collaborations involving

more than two agents, even including human players. While some previous studies have

ventured into multi-task settings, none has delved into scenarios where agents must

compete for resources to complete multiple distinct tasks with varied levels of difficulty

within a single episode. Additionally, our work differs from that of Carroll et al. (2019)

in that our game settings feature a diverse array of tools and task objectives, thereby

generating an exponentially larger task space.

18

Part I

Simulation Environments

19

CHAPTER 3

VRKitchen: An Interactive 3D Virtual Environment for

Task-Oriented Learning

3.1 Introduction

Thanks to the recent success in many domains of AI research, humans now have built

machines that can accurately detect and recognize objects (Krizhevsky and Hinton, 2012;

He et al., 2017), generate vivid natural images (Brock et al., 2018), and beat human

Go champions (Silver et al., 2017). However, a truly intelligent machine agent should

be able to solve a large set of complex tasks in the physical world by adapting itself to

unseen surroundings and planning a long sequence of actions to reach the desired goals,

which is still beyond the capacity of current machine models. To achieve state-of-the-art

results, these systems often need a simulation environment which agents can interact with.

However, in some domains, collecting datasets for agents is very expensive, slow, and

often inaccurate. This gives rise to the need for an environment capable of synthesizing

interactive datasets for different tasks. In particular, we are interested in the following

two dataset-generation approaches for the present work.

3.1.1 Generating Multi-Modal Datasets in a Dynamic Environment

According to psychology studies (Smith and Gasser, 2005), humans learn from multi-modal

inputs (Vision, Sound, Touches, etc..). Different input modules self-teach each other so

that infants can obtain a rich and compact experience about the world. Recent works

(Ngiam et al., 2011) have been using sensor fusion-like algorithms to merge different

20

modalities of inputs. Therefore, an environment that can obtain different modalities of

sensor inputs with interactivity should be designed and implemented.

Researchers (Smith and Gasser, 2005) also indicate that the learning experience for

infants is physical, and infants often explore the environment to find out what task to

learn and the solutions to these tasks. To better simulate the real-world scenario where

the appearance of the same object may change dramatically as a result of actions (Isola

et al., 2015; Fathi and Rehg, 2013; Liu et al., 2017b), the environment needs to have rich

fluent changes. To capture such variation in object appearance, the agent is required

to have a better visual representation of the environment dynamics. For example, the

agent should recognize the tomato even if it is cut into pieces and put into a container.

To acquire such visual knowledge, it is important for an agent to learn from physical

interactions and reason over the underlying causality of object state changes. Therefore,

it is critical to have an interaction-based dynamic world.

Long sequences of events are often needed for certain tasks: such as human attention

prediction and human intention prediction. In order to perform these tasks, current

systems often need a large amount of annotated data. Therefore, a system that is capable

of generating a large number of highly customizable annotated data will potentially be

helpful to the future research.

There have been work on implementing interaction-based learning in lab environments

(Lerer et al., 2016; Agrawal et al., 2015; Haidu et al., 2015), but the limited scenarios

greatly restrict scalability and reproducitibility of prior work, plus the ad-hoc environments

often do not come with dataset generation capability. We believe that building a realistic

simulation platform is a good alternative since i) the performance of different algorithms

can be easily evaluated and benchmarked, and ii) a large set of diverse and realistic

environments and tasks can be designed and customized. iii) customizable multi-modal

data can be relatively easily generated (Figure 3.1, Figure 3.2, Figure 3.3).

21

(a) First subfigure (b) Second subfigure

Figure 3.1: RGB

(a) First subfigure for Depth (b) Second subfigure for Depth

Figure 3.2: Depth

(a) First subfigure for Segmentation (b) Second subfigure for Segmentation

Figure 3.3: Segmentation

22

Figure 3.4: A sample sequence of an agent making a sandwich. Rectangles on the left
graph represent five necessary sub-tasks, including (1) taking ingredients from the fridge,
(2) putting ham and cheese on the bread, (3) using the oven, (4) cutting a tomato, and
(5) adding some sauce. Each rectangle on the right graph indicates the atomic actions
required to finish a sub-task.

3.1.2 Collecting Human Demonstrations to Bootstrap Agent Models

Training an agent from scratch is extremely difficult in complex environments. To boot-

strap the training, it is common to let an agent imitate human experts by watching human

demonstrations (Ng and Russell, 2000; Ziebart et al., 2008; Giusti et al., 2016). Previous

work has shown that learning from demonstrations (or imitation learning) significantly

improves learning efficiency and achieves higher performance than reinforcement learning

(Zhu et al., 2017; Hester et al., 2017). However, it is expensive and time-consuming to

collect diverse human demonstrations with high quality. We believe that virtual reality

games can provide us with an ideal medium to crowdsource demonstrations from a broad

range of users (von Ahn and Dabbish, 2008).

In this work, we focus on simulating cooking activities in a virtual kitchen environment,

VRKitchen. We illustrate how this system can address the emerging needs for the learning

problems in an example shown in Figure 3.4, where an agent makes a sandwich in one of

the kitchens created in our system.

• The environment allows the agent to interact with different tools and ingredients

and simulates a variety of object changes; e.g., the bread changes its color when it

is being heated in the oven, and the tomato turns into slices after it is cut. The

23

agent’s interactions with the physical world when performing cooking tasks will

result in large variations and temporal changes in objects’ appearance and physical

properties, which calls for a task-oriented visual representation.

• To make a sandwich, the agent needs to perform a long sequence of actions, including

taking ingredients from a fridge, putting cheese and ham on the bread, toasting

the bread, adding some sliced tomato, and putting some sauce on the bread. To

quickly and successfully reach the final goal, it is necessary to equip the agent with

the ability to conduct long-term planning.

• We build two interfaces to allow an AI algorithm as well as a human user to control

the embodied agent respectively; thus, humans can give demonstrations using VR

devices at any place in the world, and the AI algorithms can learn from these

demonstrations and perform the same tasks in the same virtual environments.

In summary, our main contributions are:

• A configurable virtual kitchen environment in a photo-realistic 3D physical simulation

which enables a wide range of cooking tasks with rich object state changes and

compositional goals;

• A toolkit including a VR-based user interface for collecting human demonstrations

and a Python API for training and testing different AI algorithms in the virtual

environments.

• A new human demonstration dataset of various cooking tasks – UCLA VR chef

dataset.

• A multi-view dataset automatically generated from VRKitchen with automatically

generated annotations.

24

Figure 3.5: Architecture of VRKitchen. Users can either directly teleoperate the agent
using VR device or send commands to the agent by Python API.

3.2 The VRKitchen Environment

Our goal is to enable better learning of autonomous agents for tasks with compositional

goals and rich object state changes. To this end, we have designed VRKitchen, an

interactive virtual kitchen environment which provides a testbed for training and evaluating

various learning and planning algorithms in a variety of cooking tasks. With the help

of virtual reality device, human users serve as teachers for the agents by providing

demonstrations in the virtual environment.

3.2.1 Architecture Overview

Figure 3.5 gives an overview of the architecture of VRKitchen. In particular, our system

consists of three modules: (1) the physics engine and photo-realistic rendering module

consist of several humanoid agents and kitchen scenes, each has a number of ingredients

25

Figure 3.6: Four humanoid avatars designed using MakeHuman.

and tools necessary for performing cooking activities; (2) a user interface module which

allows users or algorithms to perform tasks by virtual reality device or Python API; (3) a

Python-UE4 bridge, which transfers high-level commands to motor control signals and

sends them to the agent.

3.2.2 Physics Engine and Photo-realistic Rendering

As a popular game engine, Unreal Engine 4 (UE4) provides physics simulation and

photo-realistic rendering, which are vital for creating a realistic environment. On top of

that, we design humanoid agents, scenes, object state changes, and fine-grained actions

as follows.

3.2.3 Humanoid Agents

Agents in VRKitchen have human-like appearances (shown in Figure 3.6) and detailed

embodiment representations. The animation of the agent can be broken into different

states; e.g.walking, idle. Each agent is surrounded by a capsule for collision detection:

when it’s walking, it would fail to navigate to a new location if it collides with any objects

in the scene. When it is idle, the agent can freely interact with objects within a certain

range of its body.

There are, in total, 12 different animation states as shown in Figure 3.7. Each

animation state has an associated animation. The transitions of the animation states

are determined by python API data. When appropriate, the python API will issue an

26

Figure 3.7: Animation states for our agents

animation transition command. There are two types of animations: i) node manipulation

through inverse kinematics(IK) ii) blended animations from different online resources. IK

systems are more flexible; however, the final animation might not look natural at all. This

is because the IK system will try to reach the location of the specification regardless of the

pose of the character. Blended animations, on the other hand, are more natural but can

not reach any arbitrary position in the environment. Therefore, for animation states that

require object manipulations or related to object manipulations, reaching for an object,

or crouching down, we are using the IK system. For animation states like holding objects

and walking, turning around, and standing up, we are using blended animations. The

transition between animation states is blended using the tool provided by UE4. We chose

the Hermite cubic transition mode with a transition duration between 0.2 seconds and 0.5

27

Figure 3.8: VRKitchen scenes

seconds based on different transitions. We manually tried different modes and transition

duration and found out this parameter setting looks more natural. Even though all agents

share the same animation states, different agents may exhibit different behaviors when

using IK animations. This is because different agents have different limb lengths, so the

computed IK trajectory might be different.

3.2.4 Scenes

VRKitchen consists of 16 fully interactive kitchen scenes as shown in Figure 3.8. Agents

can interact with most of the objects in the scenes, including various kinds of tools,

receptacles and ingredients. Each kitchen is designed and created manually based on a

common household setting. 3D models of furniture and appliances in kitchens are first

obtained from the SUNCG dataset (Song et al., 2017). SUNCG dataset provides a script

to create an entire kitchen from different 3D models. However, the created kitchens do

not support any interactions at all. For example, agents cannot open the doors in the

kitchen (stove door, cabinet doors, etc..), because doors are fixed, not movable. To solve

this issue, we use blender to manually separate door from the rest of the 3D model for

various different 3D models as shown in Figure 3.9. We also decompose other parts of the

28

Figure 3.9: Sample decomposed kitchen cabinet. Manually decomposed through blender.

objects according to our need. Sometimes decomposing objects are not enough. A decent

amount of SUNCG models do not have interiors at all. In order to make it functional in

our kitchen setting, we also manually design and create the functional interiors for our

3D models using blender. After we have basic furniture and appliances in the scene, we

then add cooking ingredients and tools. Instead of sampling their locations randomly, we

place the objects according to their utility; e.g., tools are placed on the cabinets while

perishable ingredients such as fruits and vegetables are available in the fridge. On average,

there are 55 interactive objects in a scene.

3.2.5 Object State Changes

One key factor of VRKitchen is the ability to simulate state changes for objects. Instead

of showing only pre-conditions and post-effects of actions, VRKitchen simulates the

continuous geometric and topological changes of objects caused by actions. This leads to

a great number of available cooking activities, such as roasting, peeling, scooping, pouring,

blending, juicing, etc.. Overall, there are 18 cooking activities available in VRKitchen.

The environment mainly consists of discrete changes as shown in Figure 3.10a and

Figure 3.10b. We believe that, for most tasks, discrete fluent changes that specify

pre-conditions and post-effects are sufficient for task planning.

29

(a) The inset shows a tomato before a cutting action

(b) The inset shows a tomato after a cutting action

Figure 3.10: Before and after a cutting action

30

3.2.6 Fine-Grained Actions

In previous platforms (Kolve et al., 2017; Brodeur et al., 2017), objects are typically

treated as a whole. However, in the real world, humans apply different actions to different

parts of objects; e.g., to get some coffee from a coffee machine, a human may first press

the power button to open the machine, and press the brew button afterwards to brew

coffee. Thus we design the objects in our system in a compositional way; i.e., an object

has multiple components, each of which has its own affordance. This extends the typical

action space in prior systems to a much larger set of fine-grained actions and enables the

agents to learn object-related causality and commonsense.

3.2.7 User Interface

With a detailed human embodiment representation, multiple levels of human-object

interactions are available. In particular, there are two ways for users to provide such

demonstrations:

(1) Users can directly control the agent’s head and hands. During teleportation, actions

are recorded using a set of off-the-shelf VR devices, in our case, an Oculus Rift head-

mounted display (HMD) and a pair of Oculus Touch controllers. Two Oculus constellation

sensors are used to track the transforms of the headset and controllers in 3D spaces. We

then apply the data to a human avatar in the virtual environment: the avatar’s head

and hand movements correspond to the human user’s, while other parts of its body are

animated through a built-in Inverse Kinematics solver (Forward And Backward Reaching

Inverse Kinematics, or FABRIK). Human users are free to navigate the space using the

Thumbsticks and grab objects using the Trigger button on the controller. Figure 1.1 gives

an example of collecting demonstrations for continuous actions.

(2) The Python API offers a way to obtain discrete action sequences from users. In

particular, it provides world states and receives discrete action sequences. The world state

is comprised of the locations and current states of nearby objects and an RGB/depth

image of the agent’s first-person view. Figure 3.11 and Figure 3.12 show examples of

31

Figure 3.11: An example of human demonstrations for making a pizza

Figure 3.12: An example of human demonstrations for making roast meat

recorded human demonstrations for tasks pizza and roast meat from a third person view.

3.3 Python-UE4 Bridge

The Python-UE4 bridge contains a communication module and a controller. The Python

server communicates with the game engine to receive data from the environment and

send requests to the agent. It is connected to the engine through sockets. To perform

an action, the server sends a command to UE4 and waits for a response. A client in

the game engine parses the command and applies the corresponding animations to the

agent. A payload containing states of nearby objects, the agent’s first-person camera view

(in terms of RGB, depth, and object instance segmentations), and other task-relevant

information are sent back to the Python server. The process repeats until the terminal

state is reached.

The controller enables both low level motor controls and high level commands. Low-

level controls change local translation and rotation of the agent’s body, heads, and hands,

while other body parts are animated using FABRIK. High-level commands, which perform

atomic actions such as taking or placing an object, are further implemented by taking

32

advantage of the low-level controller. To cut a carrot with a knife, for example, the

high-level controller iteratively updates the hand location until the knife reaches the

carrot.

3.4 Performance

We run VRKitchen on a computer with Intel(R) Core(TM) i7-7700K processor @ 4.50GHz

and NVIDIA Titan X (Pascal) graphics card. A typical interaction, including sending

a command, executing the action, rendering the frame, and getting a response, takes

about 0.066 seconds (15 actions per second) for a single thread. The resolutions for RGB,

depth, and object segmentation images are by default 84×84, but can be changed to any

resolution if needed(will affect performance).

3.5 Environment Interactions

In VRKitchen, we design all atomic actions and object state changes available in several

dish preparation tasks. Using these atomic actions, the agent can interact with the

environments until a predefined goal is reached. Figure 3.13 shows some examples of

dishes.

3.5.1 Atomic Actions

Each atomic action listed below can be viewed as a composition of a verb (action) and a

noun (object). Objects can be grouped into three types: tools, ingredients, and receptacles.

(1) Ingredients are small objects needed to make a certain dish. We assume that the agent

can hold at most one ingredient at a time. (2) For receptacles, we follow the definition

in (Kolve et al., 2017). They are defined as stationary objects which can hold things.

Certain receptacles are called containers, which can be closed, and agents can not interact

with the objects within them until they are open. (3) Tools can be used to change the

states of certain ingredients. Atomic actions and object affordance are defined in the

33

Figure 3.13: Examples of dishes made in VRKitchen. Note that different ingredients leads
to different variants of a dish. For example, mixing orange and kiwi juice together would
make orange & kiwi juice.

following way:

• Take {ingredient}: take an ingredient from a nearby receptacle;

• Place into {receptacle}: put a held ingredient into a nearby receptacle;

• Use {tool}: use a tool to change the state of a ingredient in a nearby receptacle;

• Go To {tool, receptacle}: move to a tool or receptacle;

• Toggle (open/close) {container}: change state of a container in front of the

agent.

• Turn: rotating the agent’s facing direction by 90 degrees.

Note that actions including Take, Place into, Use, and Toggle would fail if the

agent is not near the target object.

3.5.2 Ingredient Sets and States

Meanwhile, there are seven sets of ingredients, including fruit, meat, vegetable, cold-cut,

cheese, sauce, bread and dough. Each set contains a number of ingredients as variants:

for example, cold-cut can be ham, turkey, or salami. One ingredient may have up to four

34

Task Goal states Target location

Fruit juice fruit1: cut, juiced;
fruit2: cut, juiced cup

Roast meat fruit: cut, juiced, cooked;
meat: cooked pot

Stew veg: cut, cooked;
meat: cooked pot

Pizza

veg: cut, cooked;
cold-cut: cooked;
cheese: cooked;
sauce: cooked;
dough: cooked

plate

Sandwich

veg: cut; sauce;
cold-cut: cooked;
cheese: cooked;
bread: cooked

plate

Table 3.1: The goals for five available dishes. In each task, the agent should change
required ingredients to the goal states and move them to a target location.

types of state changes: cut, peeled, cooked and juiced. We manually define affordance for

each set of ingredients : e.g., fruit and vegetable like oranges and tomatoes can be juiced

(using a juicer) while bread and meat can not. Tools include grater, juicer, knife, oven,

sauce bottle, stove, and receptacles are fridge, plate, cut-board, pot, and cup.

3.5.3 Goals

Based on the atomic actions defined in Section 3.5.1, agents can prepare five dishes: fruit

juice, stew, roast meat, sandwich and pizza. The goals of each task are compositionally

defined upon (1) goal states of several sets of ingredients and (2) target locations: to

fulfill a task, all required ingredients should meet the goal states and be placed in a target

location. For example, to fulfill the task fruit juice, two fruits should be cut, juiced,

and placed into the same cup. Here, the target locations are one or several kinds of

containers. Table 3.1 defines the goal states and target locations of all tasks.

35

Figure 3.14: Using a VR device at home

3.6 Data Generation From Virtual Environment

3.6.1 Gather Data From Human Demonstrations

Gathering Human demonstrations is an essential component of policy-learning tasks.

DAGGER (Ross et al., 2010) requires humans to continuously provide feedback to the

learned policy and take over when a human sees a mismatch between agents’ policy and

human belief. A distributed data collection tool also provides future opportunities for

crowd-sourcing human demonstrations. Here, we provide two different ways for humans

to take over when appropriate: 1) through a VR device and 2) through a web-based

interface in the case of not having a VR device available.

3.6.2 Gather Human Demonstration From VR Device

UE4 has built-in VR support. Here, we use Oculus Rift to perform our experiment. In

the VR Setting, a lot of actions are continuous; however, in VR Kitchen, atomic actions

are discrete. In order to mitigate this difference, we propose to decompose continuous

actions into discrete ones. Users use Touch Pad “A” Button and pointers to navigate

around the world to make appropriate actions. As long as users have VR device, they are

not constraint on their locations as shown by Figure 3.14 and Figure 3.15.

36

Figure 3.15: Using a VR device in the office

Figure 3.16: Web interface instructions

Figure 3.17: Web interface tutorial

37

i) When the user presses the “A” button, provided the user is far away from the

location of interest, the system will teleport the user to the nearest valid location around

his pointer. In the back end, the system will interpret this user action as GoTo location.

ii) When the user presses the “A” button, provided the user is close to the location

of interest, the system will interpret the action as one of the following according to the

current state of the agent: Use item, Take item, Place into item, Toggle(Open/Close)

item.

3.6.3 Gather Human Demonstration From Web Interface

VR devices are still quite expensive to this date. Therefore, not everyone has a VR device

available in their home. In order to alleviate this problem, we propose to use a web-based

interface for the purpose of data collection for the general public. The web-based interface

is built using Flask, JavaScript, HTML5, and CSS.

At first, the web-based interface will provide some initial text-based instructions about

the task as shown in Figure 3.16, and the users are asked to solve this problem with their

commonsense knowledge.

After users choose a task and a scene ID, the web-based interface will provide a

short and quick demo of the environment set-up and sample demonstrations done by the

machine for that task. As shown by Figure 3.17. However, the ingredients are randomized.

Therefore, users are most likely to use a different set of ingredients.

Then the web-based interface will display all the valid atomic actions to the users and

provide users with a text-based description about the goal state of the current task and

the user’s current state as shown in Figure 3.18. Users can simply click buttons on a web

browser to execute an action. All actions are recorded in the back end. The actions and

the associated user RGB image can be used for imitation learning.

In the data collection process, users will first solve a simple task “Cut Fruit”, which is

not recorded so that users are familiar with the tools and the environment.

We recorded the human demonstrations from 9 different users, and we found out that

38

Figure 3.18: Web interface atomic actions

Task Average Median Variance
(Number of steps to solve the task)

Cook Meat 16.67 16 7.8
Cook Soup (only 8 data points are valid) 15.38 14.5 9.9
Make Juice 17.67 17 6.9
Make Pizza 34.11 33 28.8
Make Sandwich 30.67 29 12.67

Table 3.2: Human demonstration statistics

the user’s background has a significant impact on task completion steps. For example,

users from a Western background can finish the “Make Pizza” task way faster than others.

We also found out that simple tasks tend to have a lower variance. Detail statistics are

shown in Table 3.2

3.7 Generate Data From Ground Truth

In General Computer vision tasks, we often need to annotate data. With our environment,

we can automatically provide some annotated data with low noise. We can provide RGB

images, depth images, and instance segmentation from multi-view cameras. We also has

the capacity to automatically generate bounding boxes on a 2D image. Apart from those

general computer vision annotations, we can also provide annotations tailored to a specific

computer vision task.

39

Here, we demonstrate our environment’s capacity through an AttentionObject-VR

dataset.

3.7.1 Human Attention

Attention is an important topic in the computer vision field and has been widely used

for object detection, video tracking, image retrieval, and other applications. Eye fixation

saliency map estimation and saliency object estimation are two important problems in the

study of visual attention, and their focus is inferring saliency regions or objects in an image

that draw the attention of the human (outside the image) who is looking at the image. In

this chapter, we study the attention of a human inside a third-person view video, we call

it Inside-video human attention. To infer human attention, the foremost thing is to make

clear what human attention is. Originally, attention is a concept in philosophy. Nowadays,

it is well-known as a concept in psychology. One dominant definition in psychology is that

attention is the process of attending to objects. This definition indicates that attention is

based on objects. Actually, some studies (Chen, 2012; Chou and Yeh, 2012; Pooresmaeili

and Roelfsema, 2014) in psychophysics and biology fields as well as some inter-discipline

studies in neuro image filed and brain image field also claim the object-based attention.

These studies provide the strong theory support for defining human attention as objects.

Another widely accepted definition in psychology is that attention is something that

happens in the mind—a mental “inside” which is linked with the perceivable “outside”

(Seemann, 2011). This definition indicates that attention is related to the high-level

invisible information in the human mind.

Based on these studies, we define human attention as the attentional objects that

coincide with the task a human is doing. With a task in mind, a human finishes the

task by doing several sub-tasks in a certain temporal order. For example, when a human

is doing the task of taking the water from the drinking fountain, the human first finds

the cup, then goes to the drinking fountain, and finally takes the water. To finish each

sub-task, a human behaves purposely to operate on or approach the attentional objects.

40

For example, when the human is doing the sub-task of finding the cup, the human uses

the hand to catch the cup. When the human is doing the sub-task of going to the drinking

fountain, the human walks to approach the drinking fountain.

3.7.2 Dataset Overview

Though there exists a large number of datasets for the studies of human gaze, visual

attention, and human-object interaction, to our best knowledge, no publicly available

dataset is targeted for inferring the task-driven inside video human attention. Therefore,

we collect a video dataset in VR (Virtual Reality) scenes. With the development of VR

techniques, VR data has become as life-like as real data. In VR scenes, all objects are

configured with accurate locations and sizes, allowing automatic object annotations and

large-scale data collection. To collect the dataset, we use 8 different existing kitchen

scenes. In each scene, many furniture and objects are configured, objects can be divided

into two categories: tools (e.g., knife, juicer, oven, etc..) and ingredients (e.g., bread,

orange, tomato, etc..). A human can use tools to change the state of an ingredient. For

example, to make orange juice, a human uses a knife to cut an orange into halves and put

them into a juicer to get juice.

The dataset has several characteristics:

• Diverse and large. The dataset consists of 8 scenes, 10 tasks, 33 subtasks, and 4

humans. As shown in Figure 3.19, different scenes vary significantly in the scene

scale, furniture configuration, and object placement. For each scene, we collect

videos from 3 different camera views to make the data more diverse. The camera

views are fixed in certain scene, and are manually chosen to make the views cover

the 360-degree scene. The images of different camera views notably differ from each

other. The 10 tasks are: bake bread, cook soup, cut meat, fry steak, make coffee,

make juice, make sandwiches, microwave food, pour coke, and turn on the light.

The dataset is large, consisting of 133,419 images and 1,887,858 object annotations

in total. The detailed statistics are in Table 3.3. On average, each video consists of

41

Figure 3.19: Samples of the AttentionObject-VR dataset. The dataset is collected in
eight scenes. In each scene, videos are captured from three different camera views. In
this figure, each row shows three images from the three camera views at the same time in
the same scene

42

Figure 3.20: An example of annotating a video. Given a video with the task label of “cut
meat”, the video is segmented into several sub-tasks (“approach to refrigerator”, “take
meat”, “approach to board”, “put down meat”, and “use a knife to cut meat”). In each
sub-task, the attentional object (red bounding boxes) and other non-attentional objects
(green bounding boxes) are annotated. To conclude, the annotations include task labels,
sub-task labels, attentional objects, and non-attentional objects.

Videos Images Attentional Objects Other Objects

Train 596 100,951 117,643 1,330,431
Test 184 32,468 37,211 402,573
Total 780 133,419 154,854 1,733,004

Table 3.3: The statistics of the AttentionObject-VR dataset. Videos: Number of videos,
Images: Number of images, Attentional objects: number of attentional object annotations,
other objects: Number of non-attention object annotations

171 images. The video resolution resolution is 1280 × 720.

• Well-organized. To make the dataset qualified for inferring human attentional

objects, it is necessary to guarantee humans and attentional objects are inside

images. Therefore, we removed the images and videos that did not satisfy this

requirement. To divide the dataset into training sets and testing sets, the data

collected in scenes 7 and scene 8 are used for testing, and the data collected in other

scenes is used for training. Table 3.4, Table 3.5 and Table 3.6 show some of the

sample tasks.

• Well-annotated. Figure 3.20 shows an example of annotating a video. Given a

video with a task label, it is segmented as several sub-tasks to guarantee that

43

Task Task definition (attention objects in parenthesis)

Make coffee Approach cup (cup)
Take cup (cup)
Approach coffee machine (coffee machine)
Put the cup under coffee machine (cup and coffee ma-
chine)
Press make button to make coffee (cup and coffee ma-
chine)

Microwave Food Approach fridge (fridge)
Open door of fridge (fridge)
Take the bread (bread)
Close fridge (fridge)
Approach plate (plate)
Put bread on plate (bread and plate)
Take the plate and bread to approach microwave (mi-
crowave)
Use microwave (microwave)

Cook Soup Approach tomato (tomato)
Use knife (knife and tomato)
Pick up tomato (tomato)
Approach pot (pot)
Put the tomato into pot (pot and tomato)

Pour Coke Approach fridge (fridge)
Take coke from fridge (coke)
Close fridge (fridge)
Approach a cup (cup)
Pour coke into the cup (cup and coke)

Table 3.4: Dataset Tasks (Part 1)

the attentional object in each sub-task is determinate. To accurately segment a

task into several sub-tasks, three volunteers are asked to find the keyframes in

a video to segment sub-tasks. In most cases, the keyframe is not controversial.

The average key frame is taken as the final key frame for controversial ones. For

each frame, the attentional objects and non-attentional objects are annotated with

detailed information like the location, size, and types. On average, each image

contains 1.16 attentional object annotations (two attentional objects are annotated

in some images) and 13 non-attentional object annotations. Benefiting from the

44

Task Task definition (attention objects in parenthesis)

Make Juice Approach fridge (fridge)
Open fridge (fridge)
Take up orange (orange)
Close fridge (fridge)
Approach board (board)
Use knife (knife and orange)
Take the orange (orange)
Approach juicer (juicer)
Put the orange into juicer (orange and juicer)

Fry Steak Approach fridge (fridge)
Open door of fridge (fridge)
Take the steak(bread)
Close fridge(fridge)
Approach pot (pot)
Put the steak into pot (pot and steak)
Operate stove (stove)

Make Sandwich Approach fridge (fridge)
Open door of fridge (fridge)
Take the bread (bread)
Close fridge (fridge)
Approach plate (plate)
Put the bread onto plate (bread and plate)
Approach fridge (fridge)
Open door of fridge (fridge)
Take the ham (ham)
Close fridge (fridge)
Approach bread (bread)
Put the ham onto bread (ham and bread)

Table 3.5: Dataset Tasks (Part 2)

45

Task Task definition (attention objects in parenthesis)

Bake Bread Approach fridge (fridge)
Open door of fridge (fridge)
Take the bread (bread)
Close fridge (fridge)
Approach oven (stove)
Use oven (stove, bread)

Cut Meat Approach fridge (fridge)
Open fridge door (fridge)
take the beef (beef)
Close fridge door (fridge)
Approach board (board)
use knife (knife, beef)

Turn on the light Approach light switch (light switch)
push/pull switch (light switch)

Table 3.6: Dataset Tasks (Part 3)

good annotations, the dataset can also be used for other studies like task/event

recognition, video segmentation, and action recognition.

3.7.3 Dataset Benchmark Results

We run object detection algorithm RetinaNet (Lin et al., 2017) on this dataset, and the

results are in Table 3.7. Then we benchmark our dataset on human attention task.

We study the problem of inferring the task-driven attentional objects of a human inside

third-person view videos, to our best knowledge, there does not exist exactly same work

with ours. The most related work is to estimate where a human is looking. Therefore, we

select two state-of-the-art human face and head direction estimation methods as baselines.

We briefly describe the three baseline methods as follows:

• PRNet (Feng et al., 2018) is a face alignment method that can estimate human face

direction. It takes the raw image and human face as input, and the output is the

dense (more than 40K) aligned face key points. These dense points are compared

with a pretrained model to compute the camera matrix, which is further combined

46

Class Num. of Instances Accuracy (mAp)

Bread 4409 0.1665
Cut Board 29828 0.0340
Microwave 26144 0.4670
Fridge 28912 0.7911
Light Switch 8146 0.4900
Coke 3014 0.2539
Stove 28640 0.6707
Juicer 30402 0.9961
Coffee Machine 21487 0.0351
Plate 57606 0.7812
Ham 838 0.0021
Beef 2602 0.0987
Tomato 1780 0.1883
Cup 61534 0.5512
Pot 30678 0.6622
Eggplant 1129 0.0153
Knife 29488 0.2207
Orange 1417 0.1404
Average by Class 0.3647
Weighted Average 0.5390

Table 3.7: Object detection results

with 68 facial key points to estimate the human face direction.

• Hopenet (Ruiz et al., 2018) is a head pose estimation method. It takes the raw

image and human face as input, and the output is the three Euler angles that signal

the human head direction.

• ResNet-BinCls (He et al., 2016) is a binary classification method based on ResNet-18

(He et al., 2016). It first detects the objects in an image; then, a binary classifier

estimates the scores of each object being and not being the attentional object. To

estimate the score of a candidate object, the human skeleton and the candidate

object are represented as a binary 1×H ×W mask, which is concatenated with

the 3 × H × W raw image to serve as the input of the trained binary classifier.

The RetinaNet model (Lin et al., 2017) and OpenPose model (Cao et al., 2017)

are respectively used for attentional object candidate detection and human pose

47

Methods T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 All

PRNet 0.41 0.28 0.29 0.28 0.26 0.29 0.31 0.34 0.27 0.07 0.30
Hopnet 0.54 0.36 0.36 0.37 0.17 0.37 0.39 0.39 0.29 0.00 0.35
ResNet-BinCls 0.49 0.51 0.46 0.55 0.19 0.53 0.48 0.71 0.50 0.48 0.48

Table 3.8: Accuracy of different methods on the AttentionObject-VR dataset. “All”
corresponds to the overall accuracy. T1 to T10 correspond to the accuracy of different
tasks. T1: bake bread, T2: cook soup, T3: cut meat, T4: fry steak, T5: make coffee, T6:
make juice, T7: make sandwich, T8: microwave food, T9: pour coke, and T10: turn on
light.

estimation.

Benchmark results are shown in Table 3.8, and qualitative results are shown in Figure 3.21.

3.8 Summary

We have designed a virtual reality system, VRKitchen, which offers physical simulation,

photo-realistic rendering of multiple kitchen environments, a large set of fine-grained

object manipulations, and embodied agents with human-like appearances and gestures.

We have implemented toolkits for training and testing AI agents as well as for collecting

human demonstrations in our system. We were also able to compile a video dataset of

human demonstrations of the cooking tasks using the user interface and scripting files in

the system.

48

Figure 3.21: Samples of qualitative results of different methods in three typical scenarios.
(a) Human facial information is available and conveys a distinct cue to infer attentional
objects. (b) Human facial information is not available, but the human pose provides the
informative cue to infer attentional objects. (c) Human facial cues and human pose cues
are not sufficient, and invisible high-level task information is needed to infer attentional
objects. In this Figure, the red bounding boxes represent the ground truth attentional
object annotations, the blue lines represent the face and head directions estimated by the
PRNet model and Hopenet model, and the blue bounding boxes represent the attentional
objects estimated by the ResNet-BinCls method.

49

CHAPTER 4

ARNOLD: A Benchmark for Language-Grounded Task

Learning With Continuous States in Realistic 3D Scenes

4.1 Introduction

The ability to ground language is a crucial skill that has evolved over the course of human

history, allowing people to learn and describe concepts, perform tasks, and communicate

with one another. While recent developments have enabled the grounding of concepts in

images (Radford et al., 2021; Kamath et al., 2021; Saharia et al., 2022; Gao et al., 2016),

the interaction with physical environments (Deitke et al., 2020; Batra et al., 2020; Xia

et al., 2020; Li et al., 2021; Nagarajan and Grauman, 2020; Jain et al., 2019, 2020; Gu

et al., 2022; Geng et al., 2022, 2023; Xu et al., 2023; Wan et al., 2023; Deitke et al., 2022a;

Duan et al., 2022), and language understanding in physical environments (Lu et al., 2019;

Anderson et al., 2018; Pashevich et al., 2021; Zhang and Chai, 2021; Thomason et al.,

2020; Gao et al., 2022; Wang et al., 2019; Padmakumar et al., 2022), few researchers have

investigated the grounding of actions in daily tasks (Shridhar et al., 2022a; Zheng et al.,

2022; Shridhar et al., 2022b; Wang et al., 2022). Given that humans can comprehend

object status and relate language instructions to the physical environment, a pertinent

question arises: How can we imbue robotic systems with the same capacity to understand

and execute language instructions in the physical world?

Learning action grounding in daily activities is a challenging task that presents several

non-trivial difficulties. Firstly, robotic tasks rely heavily on detailed scene understanding

for successful execution. This includes the understanding of geometry information, layouts,

and visual appearances. The various combinations of scene configurations, including novel

50

appearances, objects, and spatial positions, further exacerbate this challenge. Therefore,

it is crucial for robotic systems to acquire generalizable skills that can be transferred to

different domains and settings.

Secondly, humans possess an exquisite ability to understand desired goal states precisely.

This ability allows us to effortlessly map from simple descriptions (e.g., a cup half filled, a

door fully opened, etc.) to the precise status of physical properties (e.g., half the volume,

pulled to 180◦, etc.). However, it is exceedingly challenging for robots to learn the precise

goal state from abstracted language instructions, especially when referring to an implicit

range of continuous object states (e.g., a bit of coffee, slightly open, etc.) (Krantz et al.,

2020; Hong et al., 2022; Mees et al., 2022a). As a result, there is an urgent need for robot

systems to maintain a mapping from language instructions to precise goal states in a

continuous world.

A necessary first step toward tackling these challenges is to develop realistic robot

simulation systems that enable language-grounded learning. Indeed, notable recent

advances in simulated environments have facilitated grounded task learning (Das et al.,

2018; Shridhar et al., 2020a; Mees et al., 2022b; Zheng et al., 2022; Ma et al., 2022).

Despite the impressive progress, these benchmarks suffer from several limitations that

hinder the effective operation of robots in the real world: (1) They typically assume

that tasks are performed in simple and clean environments rather than in scenes that

are spatially occupied by clutter and visually disturbed by diverse textured backgrounds

(Kumar and Todorov, 2015; Lin et al., 2020; Zheng et al., 2022; Shridhar et al., 2022b).

(2) They assume discrete (e.g., binary) object states and perfect motor control that

ignore the low-level geometry and dynamics of objects (Szot et al., 2021; Srivastava et al.,

2022; Ehsani et al., 2021) and, consequently, they do not attempt in-depth physical state

understanding or fine-grained manipulation skills. (3) These benchmarks do not ground

instructions to precise states (Zheng et al., 2022; Shridhar et al., 2022a), thus neglecting

the challenging problem of grounding language to object states.

To address these critical challenges of language-grounded robot task learning, we

introduce a new benchmark, ARNOLD, for grounding task instructions to precise robot

51

actions and object states in realistic natural scenes (Figure 1.1). Specifically, we leverage

a highly accurate physics simulation engine to create eight challenging robot manipulation

tasks that include continuous robot motion, friction-based grasping, and a variety of

object state manipulations. Each task is associated with a set of goals sampled from a

continuous range of object states and their corresponding detailed task descriptions in

human language form. We further provide plentiful demonstrations of each task with

trajectories generated with a template-based planner for robot learning.

To provide an in-depth evaluation of language-grounded task learning, we complement

prior research with an evaluation that targets the ability of agents to generalize learned

language-grounded skills to unseen scenarios, including novel scenes, novel objects, and

our featured novel goal states. We have meticulously curated a collection of 40 distinctive

objects and 20 scenes from open-source datasets (Xiang et al., 2020; Kolve et al., 2017;

Fu et al., 2021) and designed data splits for evaluating different aspects of agents’ gener-

alization ability in language-grounded task learning. Furthermore, we provide thorough

experimental analyses and show that state-of-the-art language-conditioned manipulation

models still suffer with regard both to grounding and generalization. Additionally, we

show that state modeling is crucial for tasks in ARNOLD through carefully designed ablation

studies.

In summary, ARNOLD makes the following contributions:

• A realistic 3D interactive environment with diverse scenes, objects, and con-

tinuous object states, facilitating the learning and evaluation of precise robot

manipulation.

• A systematic benchmark comprising eight challenging language-grounded robotic

tasks and evaluation splits for different aspects of skill generalization.

• Extensive experiments and analyses of state-of-the-art language-conditioned ma-

nipulation models, revealing their strengths and weaknesses in promoting future research

on language-grounded task learning.

52

4.2 The ARNOLD Benchmark

The ARNOLD benchmark is motivated by the abilities that an intelligent manipulator agent

should possess, including (1) the ability to comprehend and ground human instructions

to precise world states, (2) the capacity to acquire policies for generating accurate actions

and plans toward precisely defined goal states, and (3) the feasibility of transferring

such abilities to the real world. Therefore, in ARNOLD we focus on language-conditioned

manipulation driven by continuous goal states situated in diverse photo-realistic and

physically-realistic 3D scenes.

4.2.1 Simulation Environment

Simulation Platform: ARNOLD is built on NVIDIA’s Isaac Sim (Makoviychuk et al.,

2021), a robotic simulation application that provides photo-realistic and physically-

accurate simulations for robotics research and development. In ARNOLD, the photo-realistic

rendering is powered by GPU-enabled ray tracing, and the physics simulation is based on

PhysX 5.0. Figure 1.1 and Figure 4.1 provide examples of simulation and rendering.

Physical Simulation: To ensure physically-realistic simulation, we assign physics

parameters to objects, including weight and friction for rigid-body objects, and cohesion,

surface tension, and viscosity for fluids. These parameters are selected as in prior work

(Mu et al., 2021) and are adjusted by human operator feedback. Fluids are simulated

using the GPU-accelerated position-based-dynamics (PBD) method (Macklin and Müller,

2013) through NVIDIA’s Omniverse platform. Depending on the rendering speed, we

perform an optional surface construction process using marching cubes (Lorensen and

Cline, 1987) to achieve the final fluid rendering effect.

Scene Configuration: There are 40 distinct objects and 20 diverse scenes in ARNOLD.

The scenes are curated from (Fu et al., 2021), a large-scale synthetic dataset of indoor

scenes. This endows ARNOLD with professionally designed layouts and high-quality 3D

53

models. In addition to objects provided by Isaac Sim, we collected objects from open-

source datasets (Kolve et al., 2017; Xiang et al., 2020). We modified object meshes to

enhance visual realism, e.g., by modifying materials and adding top covers to cabinets

and drawers. For more stable physics-based grasping, we performed convex decomposition

to create precise collision proxies for each object. More details are found in Appendix A

of (Gong et al., 2023b).

Robot: We use a 7-DoF Franka Emika Panda manipulator with a parallel gripper in

ARNOLD for task execution. The agent has direct control over its seven joints and its

gripper. We represent end-effector actions with three spatial coordinates for translation

and quaternion for rotation, as it is more tractable for policy learning (Liu et al., 2022a).

We utilize the built-in motion planner of Isaac Sim to transform the end-effector action

back to the space of robot joints for execution. Currently, our tasks do not involve

navigation, i.e., the robot base remains fixed during task execution.

Visual Input: In ARNOLD, we use five cameras around the robot for visual input. As

shown in Figure 4.1, the cameras provide various views, including front, left, robot

base, and wrist. While each camera provides RGB-D input at a resolution of 128× 128

by default, users can render at arbitrary resolution. Notably, unlike the deterministic

rendering in prior works (Shridhar et al., 2022b; Zheng et al., 2022), the rendering in

ARNOLD is stochastic due to the ray tracing sampling process (Shirley and Morley, 2008),

which makes ARNOLD more realistic and challenging. In addition to the visual observation,

other auxiliary observations can be accessed, e.g., camera parameters, robot base pose,

and part-level semantic mask. Other Omniverse sensors (e.g., tactile) are excluded here

since they are not required by the tasks and models. They are all available if necessary.

4.2.2 Task Design

We include eight tasks with various goal state variations in ARNOLD. Specifically, we focus

on continuous goal states and define success ranges around them wherein robots should

54

Base

Front

Left

Wrist 2

Wrist 1

Figure 4.1: Multi-view robot observation in ARNOLD. The top row shows views from the
front and left cameras and the bottom row from the base and two wrist cameras.

55

Task Types Goal States Success Ranges

PickupObject 10, 20, 30, 40 (cm) ±5 cm
ReorientObject 0, 45, 135, 180 (°) ±20°
OpenDrawer 25, 50, 75, 100 (%) ±10%
CloseDrawer 0, 25, 50, 75 (%) ±10%
OpenCabinet 25, 50, 75, 100 (%) ±10%
CloseCabinet 0, 25, 50, 75 (%) ±10%
PourWater 25, 50, 75, 100 (%) ±10%
TransferWater 20, 40, 60, 80 (%) ±10%

Table 4.1: Overview of the 8 tasks in ARNOLD. Each task features 4 goal states specified by
human language, one of which is reserved for novel state evaluation. The task is deemed
successful when the object state remains in the success range for two seconds. Note that
TransferWater imposes the extra condition that only less than 10% of the original
amount of water in the cup can be spilled.

maintain object states for 2 seconds to succeed.

Table 4.1 provides an overview and Figure 1.1 a visualization. More illustrative

examples are shown in Appendix B of (Gong et al., 2023b) . Performing these tasks

requires capabilities in language grounding, friction-based grasping, continuous state

understanding, and robot motion planning. Additional task details follow:

• In PickupObject and ReorientObject, we instruct the robot to manipulate a

bottle to achieve different goals. For the former, the initial state of the object is on the

ground with goals specifying heights above the ground. For the latter, the initial state

of the object is on the ground, oriented horizontally (the state value equals 90°), with

goals specifying the angle between the object’s orientation and the upright orientation.

• In the four tasks {Open,Close}{Drawer,Cabinet}, the goal value specifies the

geometric state of the articulated joint, either in terms of distance (for prismatic joints

in Drawer) or angle (for revolute joints in Cabinet). The initial state is any value

smaller than the goal for Open and larger than the goal for Close.

• In PourWater and TransferWater, the manipulated object is a cup containing

water, and the goal specifies the percentage of water to be poured out (Pour) or

poured into another cup (Transfer). In these two tasks, the goal values are specified

as percentages of water relative to the initial amount of water in the cup.

56

Our task pool covers a variety of manipulation skills and grounding aspects. Pick-

upObject and ReorientObject are selected for the basic skills of moving and rotating

objects and the grounding of distances and angles. These abilities are then composed and

reinforced in the four tasks {Open,Close}{Drawer,Cabinet}, where the goal state is

grounded on the state of the manipulated drawer or cabinet joint. Beyond rigid-body

objects, fluid manipulation in the two tasks {Pour,Transfer}Water challenges the

robots’ ability to manipulate containers and move fluid, grounding goal state values to

fluid volumes.

4.2.3 Data Collection

Demonstration Generation: We designed a motion planner for each task to generate

demonstrations. We partitioned each task into sub-task stages for the planner. For each

stage, we adopted the RMPflow controller (Cheng et al., 2020) to plan motions toward

keypoints. Unlike other approaches to data curation in simulation environments, this

keypoint-based motion planner approach affords high sampling efficiency and facilitates

imitation learning. While motion planning appeared to be challenging on particular tasks,

as demonstrated in (Mu et al., 2021; Gu et al., 2023), we introduced some prior design

and practical techniques (details in Appendix B of (Gong et al., 2023b)) to produce

satisfactory outcomes. For example, we leveraged spherical linear interpolation (Slerp) to

accommodate continuous manipulation in the Cabinet and Water tasks. As a result,

our motion planner can efficiently generate demonstrations.

Augmentation With Human Annotations: Despite the strength of motion planners,

the diversity of produced demonstrations is highly dependent on the keypoints. To mitigate

this problem, we collected about 2k human annotations of task configurations (e.g., object

positions), which amount to considerably more diverse and higher quality data. Moreover,

we augmented the data with additional relative positions and robot shifts to broaden data

variations. Eventually, we curated demonstrations by running inference with ground-truth

keypoints and verifying the validity of initial configurations in each execution. In total,

57

Train Val Test Object Scene State State∗ Total

PickupObject 623 134 134 275 221 294 134 1,815
ReorientObject 355 76 77 114 82 210 77 991
OpenDrawer 554 119 119 155 255 348 119 1,669
CloseDrawer 671 147 148 251 81 530 148 1,976
OpenCabinet 319 69 69 81 181 241 69 1,029
CloseCabinet 478 103 103 55 157 72 103 1,071
PourWater 312 67 67 96 87 186 67 882
TransferWater 259 56 56 51 50 119 56 647

Total 3,571 771 773 1,078 1,114 2,000 773 10,080

Table 4.2: Dataset statistics. (1) Train: training data. (2) Val : validation data for
model selection. (3) Test : test data for i.i.d. evaluation. (4) Object/Scene/State: Novel
splits for generalization evaluation. (5) State∗: the Any State split for generalization on
arbitrary state.

we collected 10k valid demonstrations for the ARNOLD benchmark (as in Table 4.2), with

each demonstration containing 4–6 keyframes.

Language Instructions: For each demonstration, we sampled a template-based lan-

guage instruction with our language generation engine. We designed several instruction

templates with blanks for each task, and each template can be lexicalized with various

phrase candidates. For example, the template “pull the [position] [object] [percentage]

open” may be lexicalized into “pull the top drawer 50% open”. In addition to the represen-

tation by explicit numbers, we also prepared a candidate pool of equivalent phrases (e.g.,

“fifty percent”, “half ”, “two quarters”) for random replacement. Note that the instruction

does not specify the initial state, so the agent must recognize the current state from the

observation. We present template examples in Appendix C of (Gong et al., 2023b).

4.2.4 Benchmark

Data Split: Evaluating and improving the generalization abilities of robots is a major

focus of ARNOLD.

To this end, we randomly split the objects, scenes, and goal states into seen and unseen

58

subsets, respectively. We then created the Normal split by gathering data with seen

objects, scenes, and states. The split was further shuffled and divided into Train/Val/Test

sets proportioned at 70%/15%/15%. Notably, in addition to providing valid initialization

configurations, demonstrations for evaluation splits may be used to provide intermediate

ground truth for diagnosing model performance (Section 4.3.3).

Furthermore, we created the Generalization splits Novel Object/Scene/State by gath-

ering data with one of the three components (i.e., objects, scenes, and goal states) unseen;

e.g., the Novel Object split comprises data of unseen objects, and seen scenes and states.

While the Novel State split addresses the generalization of unseen goal states, we

expect that grounding on continuous state representations should help the agent to adapt

to any arbitrary state within a continuous range. Therefore, we make the Any State

split with seen objects and scenes, setting the goal states uniformly distributed over a

continuous range, e.g., 0%–100%. Such a design resembles universal tasks with arbitrary

goal states and facilitates the evaluation of state generalization. Table 4.2 presents the

data statistics.

Metrics: A task instance is regarded as a success when the success condition is satisfied

continually for 2 seconds. The success condition requires the current state to be within a

tolerance threshold from the goal state; i.e., the success range. The tolerances are derived

according to human behaviors and are shown in Table 4.1. Note that TransferWater

imposes the extra condition that only 10% or less of the water can be spilled. The

execution of evaluation resembles the composition of sub-task stages in the motion planner

(details in Appendix B of (Gong et al., 2023b)). To avoid accidental triggering, we check

the success condition after the agent completes the final stage. For example, in the task

“pour half of the water out of the cup”, the agent succeeds if 40% ∼ 60% of the water

remains in the cup for 2 seconds after the agent has reoriented the cup upright. We have

adopted success rate as the evaluation metric in the ARNOLD.

59

4.3 Experiments

4.3.1 Experimental Setup

Models: To evaluate the existing language-conditioned robotic manipulation models on

ARNOLD, we chose two state-of-the-art models as our primary focus: 6D-CLIPort (Zheng

et al., 2022) and PerAct (Shridhar et al., 2022b).

• 6D-CLIPort takes as input an RGB-D image from the top-down view and predicts

end-effector poses for the current object and the target action. Each end-effector pose

contains an action translation and a categorical prediction over discretized Euler angles.

6D-CLIPort comprises three branches to process the multi-modal input: Transporter-

ResNet (Zeng et al., 2021) for the spatial stream, CLIP visual encoder and language

encoder (Radford et al., 2021) for the semantic stream.

• PerAct takes RGB-D images as input to fuse a 3D voxelized grid. In addition, PerAct

also requires the proprioception, including gripper states and the current timestep.

The proprioception features are tiled on the voxel grid. Next, the hybrid voxel grid is

downsampled and flattened to a sequence. Meanwhile, the language instruction is fed

to a language encoder (e.g., CLIP (Radford et al., 2021)) and then appended to the

sequence. PerAct uses Perceiver-IO (Jaegle et al., 2022) to resample a compact latent

representation from the multi-modal long sequence. After decoding, PerAct finally

outputs a Q function over the original voxel grid for the prediction of action translation.

Similar to 6D-CLIPort, PerAct also outputs a categorical distribution over discretized

Euler angles for the prediction of action rotation. In contrast to the implementation

in (Shridhar et al., 2022b), we discard the heads for predicting gripper and collision.

Instead, we add an optional head for state prediction.

Moreover, we considered three model variants of PerAct in our experiments: (1) PerAct

without language (PerAct w/o L) for studying the importance of language-grounding, (2)

PerAct with additional supervision on state value (PerAct†) to show the urgency of state

modeling for tasks in ARNOLD, and (3) PerAct trained in the multi-task setting (PerAct

60

Figure 4.2: Visualization of the input representations of models. The five cameras are
from the front, base, left, and two wrist views. The left camera view is occluded by the
wall. Finally, these camera views fuse into an RGB-D image for 6D-CLIPort and a voxel
grid for PerAct.

MT) given the great potential of multi-task learning shown in (Shridhar et al., 2022b).

For PerAct†, we provide additional state supervision by adding an extra output head

to regress the normalized state values from the hidden features. We also tried other

manipulation models; e.g., BC-Z in Appendix D of (Gong et al., 2023b).

Implementation Details: We obtain the visual representations for the models based

on the five rendered RGB-D images as follows: With the camera parameters, we cast

the pixels back to 3D and thus derive a point cloud for each view. With these point

clouds in 3D scenes, we apply a perception bounding box to make the keypoint learning

more tractable. In our setting, the cube spans 126 cm on each axis and the cube center

61

(px, py, pz) is 50 cm away from the robot base along the robot’s forward direction.

Next, we obtain the visual representations (visualized in Figure 4.2) as follows:

• For 6D-CLIPort, with each pixel occupying a size of 0.56 cm, we can map the 126 cm

× 126 cm perceived area to a 224× 224 top-down view image. We project the point

clouds with their color and distance information onto this image. Note that the distance

represents height rather than depth. If a pixel is related to multiple points (occlusion),

the RGB values will be the average of these points and the distance will be the largest

height.

• For PerAct, we set the size of voxel grid to be 1203, with each voxel covering the 3D

context in a 1.05 cm3 volume. We then aggregate point clouds of all views into the

voxel grid, including coordinates, RGB, positional embedding, and occupancy.

Refer to https://github.com/arnold-benchmark/arnold for detailed implementations of

the models and their variants.

Learning: We trained all the models on the Train split and performed model selection

among ten checkpoints on the Val split. Following common practice (Zheng et al., 2022;

Shridhar et al., 2022b), we used waypoints in demonstrations to facilitate model learning.

Specifically, we unify the execution of tasks in ARNOLD into a two-phase procedure: grasping

the target object and then manipulating it toward the goal state. We followed the training

settings of (Zheng et al., 2022; Shridhar et al., 2022b). Additionally, in multi-task training

we sampled each training data by first uniformly sampling the task, then sampling a

demonstration of the corresponding task. We set the number of training iterations to

100k for the single-task and 200k for the multi-task setting. We performed all the training

on a single NVIDIA A100 GPU with batch size 8.

Evaluation Execution: The evaluation executor of each task resembles the pipeline of

a motion planner yet has a slight difference (see details in Appendix B of (Gong et al.,

2023b)). The model’s predictions are converted back to keypoints of sub-task stages

62

https://github.com/arnold-benchmark/arnold

P.Object R.Object O.Drawer C.Drawer O.Cabinet C.Cabinet P.Water T.Water Average

6D-CLIPort 6.72 25.37 0.00 0.00 0.00 0.00 0.00 2.70 0.00 0.00 0.00 5.83 0.00 0.00 0.00 7.14 0.84 5.13
Object 8.36 28.36 0.00 0.00 0.00 0.00 0.00 0.40 0.00 1.23 0.00 1.82 0.00 0.00 0.00 3.92 1.05 4.47
Scene 10.41 24.43 0.00 0.00 0.00 1.57 0.00 0.00 0.00 0.55 1.27 1.27 0.00 0.00 0.00 12.00 1.46 4.98
State 0.00 0.00 0.00 0.00 0.00 0.57 0.75 1.13 0.00 0.83 0.00 2.78 0.00 0.00 0.00 16.81 0.09 2.77
Any State 10.45 29.10 1.30 2.60 0.84 0.00 0.68 1.35 0.00 5.80 0.00 2.91 0.00 1.49 0.00 7.14 1.66 6.30

PerAct (w/o L) 25.37 33.58 14.29 7.79 17.65 36.13 47.30 52.03 8.70 34.78 7.77 10.68 14.93 11.94 5.36 14.29 17.67 25.15
Object 29.09 26.55 8.77 3.51 3.87 20.00 24.70 32.67 0.00 0.00 1.82 7.27 16.67 29.17 9.80 19.61 11.84 17.35
Scene 26.70 24.89 14.63 14.63 19.61 33.33 48.15 54.32 1.10 3.87 1.91 1.27 13.79 20.69 6.00 16.00 16.49 21.13
State 0.34 0.00 0.00 0.95 9.20 8.05 1.70 2.08 0.00 2.07 1.39 1.39 1.08 2.69 5.04 8.40 2.34 3.20
Any State 20.15 19.40 12.99 12.99 13.45 30.25 20.95 24.32 5.80 26.09 14.56 15.53 14.93 16.42 1.79 7.14 13.08 19.02

PerAct 94.03 97.76 19.48 24.68 31.09 44.54 60.81 66.22 24.64 42.03 22.33 45.63 55.22 74.63 32.14 46.43 42.47 55.24
Object 86.55 92.73 11.40 35.09 6.45 21.29 26.29 27.89 0.00 0.00 1.82 5.45 36.46 42.71 13.73 13.73 22.84 29.86
Scene 72.85 84.62 17.07 31.71 20.78 31.37 66.67 64.20 0.00 4.97 5.10 19.11 33.33 51.72 22.00 36.00 29.73 40.46
State 2.38 0.68 0.00 0.95 10.92 12.64 13.77 17.74 0.00 5.81 1.39 1.39 1.61 1.08 5.88 1.68 4.49 5.25
Any State 47.01 50.75 7.79 19.48 21.85 30.25 18.92 25.00 5.80 21.74 3.88 15.53 14.93 25.37 10.71 14.29 16.36 25.30

PerAct† 94.78 95.52 24.68 28.57 36.13 52.94 60.14 68.24 23.19 49.28 30.10 48.54 49.25 85.07 28.57 53.57 43.36 60.22
Object 87.27 91.27 10.53 32.46 1.94 22.58 18.73 25.10 0.00 4.94 0.00 5.45 34.38 33.33 9.80 11.76 20.33 28.36
Scene 69.68 84.16 13.41 37.80 25.49 38.43 60.49 67.90 0.55 4.97 6.37 19.75 29.89 63.22 26.00 24.00 28.99 42.53
State 0.68 2.38 0.48 0.00 10.06 12.93 13.58 18.11 0.00 6.22 0.00 8.33 2.15 1.61 5.88 2.52 4.10 6.51
Any State 48.51 47.76 14.29 14.29 21.01 33.61 23.65 28.38 4.35 24.64 6.80 13.59 26.87 31.34 14.29 19.64 19.97 26.66

PerAct (MT) 88.81 88.81 3.90 22.08 26.05 43.70 33.78 52.03 11.59 33.33 20.39 37.86 34.33 58.21 14.29 23.21 29.14 44.90
Object 77.09 77.45 7.02 20.18 1.29 15.48 13.55 25.50 0.00 0.00 1.82 7.27 13.54 30.21 1.96 11.76 14.53 23.48
Scene 68.78 77.83 10.98 41.46 13.33 25.88 29.63 55.56 0.00 4.97 5.73 9.55 19.54 43.68 4.00 16.00 19.00 34.37
State 9.18 12.59 0.00 1.90 8.05 12.07 9.43 13.40 0.00 2.07 1.39 0.00 2.69 6.45 5.88 5.88 4.58 6.80
Any State 36.57 45.52 5.19 10.39 15.13 19.33 16.22 21.62 1.45 8.70 0.97 3.88 8.96 14.93 3.57 17.86 11.01 17.78

PerAct (MT)† 90.30 92.54 14.29 20.78 25.21 47.90 33.78 56.76 20.29 39.13 19.42 37.86 26.87 64.18 17.86 30.36 31.00 48.69
Object 81.09 85.45 7.89 24.56 3.23 22.58 14.74 28.69 0.00 4.94 1.82 5.45 9.38 20.83 3.92 19.61 15.26 26.51
Scene 67.87 79.64 7.32 29.27 12.94 25.49 39.51 65.43 1.10 4.42 7.01 14.01 10.34 43.68 8.00 22.00 19.26 35.49
State 2.04 3.06 0.95 2.38 9.20 18.68 6.98 11.13 0.00 3.73 2.78 11.11 6.45 9.14 1.68 4.20 3.76 7.93
Any State 46.27 47.01 12.99 12.99 12.61 23.53 14.86 26.35 4.35 5.80 4.85 8.74 16.42 25.37 3.57 5.36 14.49 19.39

Table 4.3: Evaluation results of the models on various tasks and splits, measured by
success rate and shown in percentages. The gray figures indicate performances with the
first-phase ground truth. For each model, the first row shows the performance on the
Test set, and the following three rows show those on the Novel splits of Object, Scene,
and State. The last row indicates the performances on the Any State split. Tasks are
abbreviated for more space. Average performances on eight tasks are appended to each
row. w/o L: without language instruction. †: model variants with state modeling. MT:
multi-task models.

for evaluation execution. We make our evaluation strict and appropriate by avoiding

shortcuts on the object state during robot motion. For example, the task instructing “pull

the cabinet 50% open” will not be considered a success even if the cabinet is held around

50% open for 2 seconds so long as the motion planner has not executed its final action.

To eliminate the influence of a first-phase failure (i.e., failing to grasp the target object or

object part), we conduct additional evaluations that provide first-phase ground truth.

4.3.2 Experimental Results

We report experimental results in Table 4.3 (black) and present our findings and analyses

below.

63

Across Models: Comparing the baseline models 6D-CLIPort, PerAct, and PerAct

(MT), we found that 6D-CLIPort fails on most of the tasks. We conjecture that this

stems from (1) the information lost in the input representation when compressing complex

3D scenes into a single image and (2) the difficulty in regressing target height values

for action translation. By contrast, the voxelized representations in PerAct provide rich

3D contexts that benefit model learning. With such differences, PerAct outperforms

6D-CLIPort significantly. Meanwhile, we observed performance drops for PerAct (MT)

compared to PerAct on all tasks. This indicates that it is still difficult to leverage more

diverse multi-task data for efficiently learning better task policies in ARNOLD, especially

given its challenges in both grounding and manipulation.

Across Tasks: The most challenging tasks in ARNOLD are ReorientObject and

{Open,Close}Cabinet. ReorientObject is difficult because it involves estimation

of the bottle orientations, and models can often be confused by visually similar states.

For example, the action for the goal state of 45° will lead to a goal state of 135° if the

bottle orientation is reversed. Manipulating a cabinet proved to be challenging even with

privileged information to specify goals (Mu et al., 2021; Gu et al., 2023) as it requires

accurate prediction of both interacting position, rotation, and precise continuous motion

control. Replacing privileged information with instructions will only make it harder.

Furthermore, we observed superior model performance in PourWater compared to

TransferWater. This is because transferring water requires position alignment between

cups to avoid spillage.

On Generalization Splits: In general, we observed performance drops for most models

when transferring to Novel generalization splits, especially on the Novel State split. This

reveals that, without proper modeling of continuous states, generalizing the grounding of

seen goal states to unseen ones remains challenging. Meanwhile, the performance drop on

the Novel Object and Novel Scene splits varies according to the tasks. For tasks where

the objects occupy substantial space (e.g., drawer), the impact of unseen objects is more

64

significant than unseen scenes.

For the Any State split, the models’ performances were inferior compared with the

Novel Object/Scene split and superior to those on the Novel State split. As goal states

are uniformly sampled from a continuous spectrum, the success ranges of seen goal states

are likely to cover a large portion of the spectrum, making the Any State generalization

interpolations of learned knowledge and skills. This suggests an interesting research

question that can be investigated with ARNOLD: How can the task learning model better

generalize by interpolating within ranges and extrapolating to out-of-range goal states?

Remarks: The key findings from our experiments with ARNOLD are as follows:

• Current models still struggle with tasks that require complex manipulation skills (e.g.,

manipulating cabinets). This heightens the demand for better policy learning models to

tackle challenging manipulation tasks.

• The low success rate of models on all generalization splits motivates the necessity for

(1) increasingly fine-grained representations for perceptual inputs, (2) finer modeling of

continuous object states, and (3) better alignment between language and robot actions.

• The Any state experiments suggest that state generalization could potentially be achieved

through the interpolation of acquired knowledge and skills. This promotes approaches

with deeper insights into systematic generalization for robot skill adaptation.

4.3.3 Ablation Studies

Influence of Language: PerAct (w/o L), trained with a single-task scheme, exhibits

a considerable performance gap behind PerAct. This indicates the importance of the

goal-state information in ARNOLD. Meanwhile, we observe a relatively small gap for

ReorientObject. We believe this is due to (1) the bottleneck of this task lying in

the ambiguity of visual perception, as discussed in Section 4.3.2 and (2) the difficulty of

grounding angles from current visual observations. On the other hand, the significant

performance gap on PickupObject shows the effectiveness of language grounding in

65

visually more identifiable concepts such as translation distance.

Importance of State Modeling: The PerAct variants with state supervision (†) were

expected to realize a performance gain from explicit state prediction supervision. However,

we observed marginal improvements on the Test split and limited enhancements on

generalization splits for this method. This indicates that such end-to-end state supervision

is insufficient for state modeling in ARNOLD and calls for better approaches to representing

and modeling the continuous object states in robotic task learning.

With Intermediate Oracle: To better demonstrate how well models understand

goal states, we provided models with first-phase ground truth (i.e., grasping positions)

and report their performance in Table 4.3 (gray). As expected, we observed significant

performance gains with such ground truth. Moreover, directly comparing the scores with

the first-phase oracle, we can also observe larger gaps between PerAct and PerAct†, as

well as PerAct (MT) and PerAct (MT)†. These results demonstrate that explicit state

modeling is indeed beneficial for goal state understanding.

Choice of Language Encoder: We investigated model ablation over the language

encoder by switching the default language encoder CLIP (Radford et al., 2021) in PerAct

to T5-base (Raffel et al., 2020). Due to space constraints, we report model performance

only on OpenDrawer. As shown in Figure 4.3, PerAct-T5 outperforms PerAct-CLIP

on all the benchmarking splits. This may be due to the inefficacy of the global language

representation learned in CLIP in representing fine-grained goal states for precise control.

By contrast, T5 is a general-purpose language processing model that offers the ability to

maintain detailed information through language modeling and generation. This shows

that finer language embeddings may benefit the language grounding of robots to some

extent.

66

31.09

6.45

20.78

10.92

38.66

9.03

22.75
16.09

13.45

22.68

14.84 20

10.59 18.03

1.72
2.01

0

10

20

30

40

50

60

70

Su
cc

es
s

R
at

e
(%

)
PerAct-CLIP PerAct-T5 Gain from Intermediate Oracle

Test Object Scene State

Figure 4.3: Model ablation results with different language encoders

4.3.4 Sim2Real Transfer Experiment

As a realistic simulation environment, one key question to address is: To what extent

can the agents trained in ARNOLD generalize to real-world scenarios? To this end, we

set up a real-world environment for testing the Sim2Real transfer capabilities of agents.

Specifically, we used the Franka robot arm to manipulate previously unseen real-world

objects with partial point cloud observations captured through a single RGB-D camera

from the left view (Figure 4.1). We experimented with PerAct, which was trained in

ARNOLD to open/close 2 different drawers and pick up 5 different objects. We mitigated

the Sim2Real gap as follows:

1. Perception: We used high-fidelity rendering. Due to the imperfect depth sensor in the

real world, we sprayed contrast aiding paint onto metallic and transparent areas. For

diffuse objects with acceptable depth quality, further domain adaptation would be

beneficial.

2. Control: Instead of using the qpos control API, we used an inverse kinematics (IK)

controller to perform real-robot actions, which avoids error accumulation.

Additional experimental details can be found in Appendix D of (Gong et al., 2023b).

67

Figure 4.4: Real-world experiments with inference results shown on the upper right. The
red dots indicate the predicted positions of the next action for the end-effector.

Throughout our experiments, we observed that models trained in ARNOLD show preliminary

Sim2Real transfer capabilities; i.e., reasonable predictions for both picking up objects and

manipulating drawers, as shown in Figure 4.4. However, the actual robot manipulation

continues to struggle because of the Sim2Real gap. For example, when opening a non-

plastic drawer in the real world, the robot encounters high friction and is therefore

susceptible to prediction errors that lead to inexecutable actions (e.g., exceeding the

critical friction angle). With more fine-grained object assets, we believe that the flexible

design of the ARNOLD simulator can gradually close this Sim2Real gap by providing more

realistic simulations.

4.4 Summary

We have presented ARNOLD, a benchmark for language-grounded task learning in realistic

3D interactive environments with diverse scenes, objects, and continuous object states.

We devised a systematic benchmark comprising eight challenging language-grounded

robot tasks and evaluation splits for robot skill generalization in novel scene, object, and

goal-state scenarios. We conducted extensive experiments and analyses to pinpoint the

limitations of the current models and identified promising research directions for grounded

task learning.

68

Part II

Multi-Agent Collaboration

69

CHAPTER 5

Joint Mind Modeling for Explanation Generation in

Complex Human-Robot Collaborative Tasks

5.1 Introduction

In recent years, there has been a great amount of success on building powerful artificial

intelligence (AI) systems to solve complex tasks (Levine et al., 2016; Bansal et al., 2017).

As highly autonomous robots are being developed, there is a growing need to make

them quickly understood to avoid consequences caused by misunderstanding (Gunning,

2017). However, existing robot systems are often not human compatible — i) they do not

understand humans’ minds and ii) they are just black boxes to humans too. Such limits

prevent the AI systems from working with humans effectively.

Inspired by studies on the Theory-of-Mind (Premack and Woodruff, 1978; Dennett,

1989), we believe that a crucial step towards building human compatible systems, par-

ticularly for human-robot collaborations, is to understand human activities and their

underlying mental state. As a motivating example, consider a robot chef helping a human

make salads in the kitchen shown in Figure 5.1. Even when the robot understands how to

perform the task on its own, it would be challenging to finish the task efficiently without

having a shared mental model with its human partner. For making the salad, the robot

believes the plate should be picked up by the user while the human agent believes the other

way. If the robot can identify such discrepancies between different agents’ mental states,

it can generate explanations to mitigate the differences and encourage the correction of

sub-optimal human behavior.

70

Figure 5.1: The task making salad requires team members to take three lettuce from the
basket and cut each one with a knife, before it can be put into the plate and served. After
the first lettuce has been cut, the robot is cutting the second one. The robot can identify
human’s sub-optimal behavior (taking new lettuce from the basket) before generating
explanations to the human.

To this end, we propose a framework that improves human-robot teaming performance

through explanations. With a graph-based representation, the robot can maintain the

mental states of both team members during a highly-structured collaborative task. The

robot can then generate explanations when difference between mental states is detected,

which implies sub-optimal user behaviors. In summary, the main contribution of this

chapter is three-fold:

• We design a real-time collaborative cooking game as an online user study system and

develop an evaluation protocol, which can be accessed from our website.

• We propose to understand complex human activities using an action parsing algorithm

based on an And-Or graph task representation, which allows the robot to infer human

mental states in complex environments.

• Based on the inferred human mental state, we propose an explanation generation

71

Figure 5.2: The hierarchical mind model for the collaboration task, “making salad”, repre-
sented by an AoG. The And node represents temporal relations between sub-tasks. The
Or node represents two possible ways for the team to finish the tasks. Each terminal node
(diamond) denotes an atomic action that would cause certain fluent changes (triangles)
for objects.

framework. Experiments on a real-time cooking task show that our approach successfully

improves user perception of the robot and leads to better human-robot collaborations.

5.2 Single Agent Mind Model

And-Or graphs (AoGs) have been widely used for robot task planning (Xiong et al., 2016;

Shu et al., 2017; Liu et al., 2018) and human activity modeling (Tu et al., 2013; Shu

et al., 2015). As a hierarchical representation, a spatial-temporal-causal And-Or graph

(STC-AoG) encodes a joint task plan and corresponding spatial, temporal, and causal

relations an agent could have about the task (Xiong et al., 2016). In this work, we propose

to use a STC-AoG as a unified representation of a robot’s knowledge and plan regarding

the task as well as the inferred human’s knowledge and plan. An example of a single-agent

plan for making salad is in Figure 5.2.

72

5.2.1 STC-AoG as a Hierarchical Mind Model

In general, an And-Or Graph consists of nodes and edges. The set of nodes includes Or

node, And node, and Terminal node. Each Or node specifies the Or relation: only one of

its children nodes would be performed at a given time. An And node represents the And

relation and is composed of several children nodes. Each Terminal node represents a set

of entities that cannot be further decomposed. The edge represents the top-down sampling

process from a parent node to its children nodes. The root node of the And-Or tree is

always an And node connected to a set of And/Or nodes. Each And-node represents a

sub-task which can be further decomposed into a series of sub-tasks or atomic actions.

In this chapter, the graph G =< A,F, T, V,R, P > is formally defined as the following:

• A is a set of terminal nodes. Each node corresponds to an atomic action a ∈ A.

• F is a set of object states essential to the task, including possible pre-conditions and

post-effects of atomic actions.

• T : F ×A → F is a set of transition rules that represent state changes caused by atomic

actions.

• V is a set of non-terminal nodes, which can be further decomposed into two sets: the

And nodes S and the Or nodes O. Each sub-task corresponds to an And node s,

which encodes a temporal relationship between its children. An Or node o forms a

production rule with an associated probability; i.e., you may choose one of its children

each weighted with a certain probability.

• R is the set of production rules.

• P is the set of probabilities on production rules.

Causal Relation: Causal knowledge represents the pre-conditions and the post-effects

of atomic actions. We define it as a fluent change caused by an action. Fluent f ∈ F

can be viewed as some essential properties in a state x that can change over time; e.g.,

73

the temperature in a room and the status of a heater. For each atomic action, there

are pre-conditions characterized by certain fluents of the states; e.g., an agent cannot

successfully turn on the heater unless it is plugged in. As the effect of an action, certain

fluents would be changed, and the state x would evolve to x′. For example, if someone

turns on a heater, the temperature of the room will be higher (and the heater would be

on). It is formulated as one of the transition rules T .

Temporal Relation: Temporal knowledge encodes the schedule for an agent to finish

each sub-task. It also contains the temporal relations between atomic actions in a low

level sub-task. The sub-task preparing salad, for example, consists of taking salad, placing

it onto the cutting board, and using the knife.

Spatial Relation: Spatial knowledge represents the physical configuration of the

environment that is necessary to finish the task. In our case, to make the salad, an

agent needs to know the locations of ingredients (e.g., lettuce), tool benches (e.g., basket,

cutting board), delivery benches, etc..

5.2.2 Parse Graphs as Mental State Representations

During the collaboration, an agent can use parse graphs to represent the mental states

of itself or the other agent. A parse graph is an instance of an And-Or Graph, each of

its Or nodes selects one child node. Figure 5.3 shows two parse graphs represent the

robot and human’s plan for the situation is shown in Figure 5.1. In our case, the parse

graph pgt =< sht , s
r
t , a

h
t , a

r
t , f

h
t , f

r
t > is one possible plan for both agents to finish the task.

Particularly, the root node leads to a selection of individual sub-tasks (sht , srt) as sub-goals

assigned to human and robot agent. To achieve these sub-goals, agents perform atomic

action (aht , a
r
t) based on their belief of current fluent (fh

t , f
r
t).

74

5.2.3 Joint Task Planning by Parsing STC-AoG

To construct the mental state representation for the robot, we design an algorithm based

on STC-AoG parsing to select the optimal task plan for the team.

Given a set of sub-tasks S necessary to complete the joint task, the objective is to

minimize the total task completion time by assigning a sub-task to either a robot or

human agent, without violating any latent constraint:

min
xv
s ,τs

max
v∈{r,h}

∑
s∈S

xv
sδ

v
s

s.t. xv
s ∈ Xfeasible, τs ∈ Γfeasible,

(5.1)

where xv
s is a binary variable indicating whether to assign sub-task s to agent v, and τs

is a continuous variable representing the finishing time for the sub-task s. Constant δvs

represents the amount of time for agent v to finish the sub-task s. Xfeasible and Γfeasible

represent the set of valid assignments that satisfies latent causal constraints, e.g., an

agent cannot hold two objects at the same time; a sub-task can be performed only if

pre-conditions are met; after all assigned sub-tasks have been completed, the final state

should satisfy the goal requirement.

We search for the optimal task plan via a dynamic programming algorithm. Starting

from the initial state fb, we make valid sub-tasks assignments and simulate new interme-

diate state fe based on the state transition function T . By updating the current optimal

consumed time and the corresponding sub-task assignment vectors for every intermediate

state, our algorithm will finally reach the optimal plan for the entire task. During the

updating process, we also record the sub-task assignment vectors for previous states,

in order to generate the whole optimal assignment {xv
s}s=1,...,|S| and completion time

τ1, ..., τ|S| for each sub-task. After the task plan is computed, the robot’s mental model

is represented by a parse graph, as shown in the left part of Figure 5.3: each sub-task

in the task plan indicates a sub-goal that an agent needs to achieve at the time being.

Sub-tasks are further connected with a sequence of corresponding atomic actions, which

75

Figure 5.3: Robot mental state pgr and inferred human mental state p̂gh represented as
parse graphs.

have certain pre-conditions and post-effects.

5.3 Joint Mind Modeling for Human-Robot Collaborations

Our goal is to enable efficient human-aware collaboration for a human-robot team.

Specifically, robots need to understand human agents based on their actions and decide

whether the team is moving in the right direction. We propose to model the robot mental

state pgr and the human mental state pgh.

5.3.1 Mind Models for Human and Robot

We treat the robot’s mind as the oracle; i.e., it contains all necessary spatial, temporal,

and causal information the team needs to finish the task. For example, at any given time

t, the robot has a certain expectation of (i) current low level sub-goals (sht , srt) both agents

should be pursuing; (ii) the actions (aht , a
r
t) agents should perform; (iii) whether current

object fluents satisfy pre-conditions of such actions, and what would be the post-effects.

It is also necessary to model the user’s mind, which acts as a strong inductive bias in

predicting user activities. As the user’s mental state pght is not directly available to the

robot, we propose to infer it from user behavior and the history of communication.

76

Figure 5.4: Human mental model update process. We use it to infer user mental state
pgh, which is hidden to the robot. Here we assume human actions aht and robot message
mr

t are conditional independent given human mental state pght at time t.

5.3.2 Human Mental State Inference

Based on the observed user behavior, we infer the most likely human mental state p̂gh,

including the belief, goal and action plans. On a high level, this inference process uses

observed user actions and communication history to infer human mental state. Specifically,

given the And-Or graph G and human-robot interaction data DT = {dt}t=1,...,T , we infer

the user mind p̂gh iteratively:

p̂gh = argmax
pgh

p(pgh|DT , G), (5.2)

p(pgh|DT , G) ∝ p(pgh|G,DT−1)p(dT |pgh, G). (5.3)

Here the first term models the prior on the user mind given previous data DT−1 and AoG

structure G. The second term models the likelihood for new data dT .

To model the likelihood function p(dT |pgh, G), we take a sampling-based approach.

For each interaction data d, we consider user atomic action ahobs and communication

between the two agents m. The idea is to model how likely the user performs action ahobs

when receiving message from the robot mr, with current mental state pgh, as shown in

77

Figure 5.4. Assuming ahobs and mr are conditional independent given pgh we have:

p(d|pgh, G) = p(ahobs|pgh, G)p(mr|pgh, G), (5.4)

p(ahobs|pgh, G) =
∑
ahsamp

p(ahsamp|pgh)p(ahobs|ahsamp), (5.5)

where p(ahsamp|pgh) denotes the probability of sampled human action ahsamp given current

estimation of human mental state pgh. p(ahobs|ahsamp) measures the similarity between

observed human trajectory ahobs and sampled trajectory ahsamp.

In practice, we use rapid-exploring random tree (RRT*) for trajectory sampling and

dynamic time warping (DTW) based approach to compare trajectories. DTW outputs a

difference score diff . We use it in the energy function for the Boltzmann distribution.

Then we update the human mental state in every time-step through the following equation:

P (p̂ght+1|DT , G) =
1

Z
e−

diff
T λnP (p̂ght |DT−1, G), (5.6)

where T is a constant temperature term, Z is a normalization constant, and λ (> 1) is a

constant that controls the importance of an explanation. It models how much information

the user can retain for an explanation. n is the number of times an explanation about p̂gh

is generated for the user in this task. Therefore, λn implicitly encodes the communication

history m. Right now, we only consider communications from robot to human mr.

Communication from human to robot mh can be considered in the future by adding

corresponding energy terms. For now, some parameters (T and λ) are set heuristically.

These parameters can be learned from annotated user data (Carreira-Perpinan and Hinton,

2005).

78

5.3.3 Robot Mental State Update

Based on the observations in the environment, the robot can update its joint task plan. It

is a two-step process. First, the robot collects all relevant information about the task and

calls a DP planner described in Section 5.2.3 to obtain an optimal sequence of sub-tasks.

Then the robot updates its mental state through re-organizing AoG (Delete finished nodes.

Re-order unfinished nodes. If necessary, add back nodes deleted previously). Second, the

robot uses causal knowledge (pre-conditions and post-effects of each atomic action) in the

AoG terminal nodes to determine the next atomic action. If pre-conditions for the next

atomic action are satisfied, the robot will execute it. Otherwise, the robot will be idle,

waiting for the user to complete the other part of the job.

5.4 Explanation-Based Task Coaching

In this section, we propose a framework for explanation generation to enable efficient

human-robot collaboration.

5.4.1 Explanation Framework

As shown in Algorithm 1, the framework includes an iterative process of online planning

and explanation generation:

1. At a given time, the robot updates its mental state to represent the expected current

goals of both agents and corresponding atomic actions;

2. The mental state of the human agent can be inferred, which would be further compared

to the robot’s mental state. Based on the result, the robot would decide whether

explanations are necessary;

3. On the occasions where users perform an action other than that indicated in the

explanation, the robot would update its task plan and mental model to reflect the best

joint policy and expected mental models in the new state.

79

Algorithm 1: Planning and explanation generation
1 while Task not finished do
2 if Replan needed then
3 Collect state information from the game;
4 Collect predicted human intentions from the last time step ;
5 Call DP planner ;
6 Obtain a new sequence of sub-tasks from planner and re-organize AoG

based on it;
7 Parse AoG through checking pre-conditions and post-effects against the

current environment state information ;
8 Find out the next atomic action to execute based on parsing result ;

9 Predict human intentions by (5.6) ;
10 Measure the difference between predicted intention and expected human

actions;
11 Generate an explanation if difference is significant;

Take the task making salad for example. At the beginning of the game, an optimal

plan requires the user to first take the plate. A sub-optimal plan could be the user first

taking the lettuce. If the user insists on taking the lettuce first regardless of whether

explanations are given, the robot will update the task plan and expect the user to

gather the plate afterwards.

5.4.2 Explanation Timing

The explanation serves to provide users with the knowledge necessary to finish the task

efficiently. This is achieved by inferring the user’s mental model during the interaction

and comparing it with the robot’s. Whenever a disparity between these two models is

detected, we can generate explanations to encourage correction of the user’s mental state.

During collaboration, we use temporal parsing to get robot mental state pgrt from its

And-Or graph at time t. As in Section 5.3.2, user mental states p̂ght can be inferred based

on communication history and action sequences. The system generates explanations when

there is a mismatch between the robot mental state and inferred human mental state:

|pgrt − p̂ght | > ϵ. In practice, we measure P (p̂ght |DT , G) for every sub-tasks at each time

step based on (5.6). If the probability P (p̂ght = pgrt |DT , G) is lower than a threshold, we

80

Figure 5.5: Explanation timing. At time t, sort posterior probability of pghi
t in descending

order, and then compare the most possible user mental state pgh1
t with robot mental state

pgrt . Since they are the same, there is no need to explain to the user. At time t′, pgh1

t′ is
not equal to pgrt′ , therefore, the robot should provide the explanation.

generate an explanation for the user. This process is shown in Figure 5.5.

5.4.3 Explanation Content

We envision the disparity occurred between the user’s mental state and robot’s due to

several reasons:

1. The user wants to achieve goals that are different from the robot’s expectation;

2. The user performs incorrect atomic actions to achieve a sub-goal;

3. The user is unaware of the pre-condition or effect of an atomic action.

In this chapter, we do not distinguish between the possible causes of disparity when

choosing the explanation timing, as they are too ambiguous. Instead, we propose to

generate hierarchical explanation which consists of three components of the robot’s mind

representation:

1. The robot would explain the current expected sub-goals of both agents (sht , s
r
t) based

on its mental state pgr; e.g., “My current goal is preparing the lettuce. Meanwhile,

your expected goal is getting the plate.”;

81

(a) (b)

Figure 5.6: (a) A top-down view of our collaborative cooking game, where the user (the
bottom character) collaborates with a robot (the top character) on some cooking tasks;
e.g., making apple juice. (b) The explanation interface exhibits the expected sub-tasks for
both agents. Pre-conditions and post-effects of atomic actions are displayed as well.

2. The robot communicates the expected atomic actions that both agents are supposed

to perform (aht , a
r
t); e.g., “Currently, I’m performing the action slicing the lettuce. You

are supposed to perform the action taking the plate.”;

3. In addition, by showing images of world states before and after an action (as shown in

Figure 5.6b), the robot would also demonstrate the fluent change caused by an atomic

action ft
at−→ ft+1.

5.5 User Study

We conducted a user study in a gaming environment to evaluate our algorithm, where par-

ticipants can collaborate with agents on a virtual cooking task. The gaming environment

and explanation interface are displayed in Figure 5.6.

5.5.1 Experiment Domain

Our experiment domain is inspired by the video game Overcooked3, where multiple

agents are supposed to make use of various tools and take different roles to prepare,

cook, and serve various dishes. Particularly, we use Unreal Engine 4 (UE4) to create a

3http://www.ghosttowngames.com/overcooked/

82

http://www.ghosttowngames.com/overcooked/

Figure 5.7: An example task schedule for making apple juice. The robot maintains the
schedule to reflect its expectation on how the team should finish the task. Each color
block represents a sub-task, performed by either robot or human. At a specific timing,
we can assign tasks to both agents based on the schedule; e.g., at 10.0s, the robot is
getting apple slices 1 while the user is supposed to be preparing apple 2. The schedule
gets updated based on inferred human mental states, as shown in Algorithm 1.

real-time cooking task, namely making apple juice. To finish the task, teammates need to

take apples from the box and slice them with a knife near the chopping board. Three

apple slices should be put into the juicer before producing and delivering apple juice.

Figure 5.6a shows a top-down view of the environment. The game interface is designed

to be interactive (e.g., object appearance will change after taking valid actions) so that

people can easily play through.

To finish the task, each user needs to complete a sequence of 62 atomic actions, if

acting optimally, and observe 5 different object fluent changes with a total state space

around 109. An example task schedule is shown in Figure 5.7.

5.5.2 Experiment Design

Hypotheses: The user study tests the following hypotheses with respect to our algorithm

in the collaboration:

• H1: Task completion time. Participants would collaborate with the robot more

efficiently if the robot generates explanations based on the human mental state modeling,

compared to the other conditions.

• H2: Perception of the robot. Participants would have higher perceived helpfulness

83

and efficiency of the robot, as a result of receiving explanations based on the human

mental state modeling, compared to the other conditions.

Manipulated Variables: We use a between-subject design for our experiment. In

particular, users are randomly assigned to one of three groups and receive different

explanations from the robot:

• Control: Users would not get any explanations from the robot. As a result, they can

learn to finish the task by interacting with the environment.

• Heuristics: The robot gives explanations when there is no detected user action for a

period of time. This serves as a simple heuristic for the robot to infer whether the user

is having difficulties in finishing the task. The timing threshold is set to 9.3 seconds,

based on the result of a pre-study in which users can actively ask for explanations when

they get stuck.

• Mind modeling: The robot gives explanations when there is a disparity between

robot and human mental states.

Study Protocol: Before starting the experiment, each participant signs an informed

consent form. An introduction is given afterward, including rules and basic controls of

the game. As a part of the introduction, participants are given three chances to work

on a simple single-agent training task, to verify their understanding. Those who fail

to complete the training task in one minute would not continue the study. This is a

comprehension test to exclude people who do not understand game control.

Participants who finish training get to see further instructions before starting to

collaborate with the robot. They are first educated about the goal of a collaboration task

(i.e., making apple juice) and what actions the team should perform to finish it. This is

done to make sure every participant has sufficient knowledge to finish the task, so that

the impact of user-specific prior knowledge can be minimized. To prepare users to interact

and communicate with the robot agent, we would also show them a top-down view of

84

the level map (as shown in Figure 5.6a), the appearance of the robot agent as well as an

example of an explanation. During the task, the team is required to make and serve two

orders of dishes in the virtual kitchen. At the end of the study, each participant is asked

to complete a post-experiment survey to provide background information and evaluate

the robot teammate.

Measurement: In the background study, we have collected from users their basic

demographic information, education, as well as experience with video games.

Our objective measure is intended to evaluate the human-robot teaming performance

and subjective measure is designed for evaluating users’ perception of the robot. Our

dependent measures are listed below:

• Teaming performance. We evaluate teaming performance by recording the time for

the team to complete each order.

• Perception of the robot. We measure user’s perception about the robot, in terms

of its helpfulness and efficiency. Helpfulness is comprised of questions that measure

users’ opinion on the robot’s ability to provide necessary help. Efficiency is comprised

of questions that measure users’ opinion on how efficiently and fluently the team is able

to finish the task.

5.5.3 Results and Analysis

We recruited 29 subjects for our IRB-approved study from the university’s subject pool.

Most of the participants (69.3%) came from a non-STEM background. Their reported

ages ranged from 17 to 36 (M=19.52, SD=2.89). All the participants have moderate

experience with video games and have not played the video game Overcooked, which

inspired our study design. Each participant got 1 course credit after completing the study.

In addition, for ease of conducting the study, we discarded the data of 2 participants from

the control group, as they got completely lost and failed to finish the designated task. As

a result, there are 10 valid participants in the “mind modeling” and “heuristics” group,

85

Figure 5.8: Time taken for the team to complete two orders under different testing
conditions

and 7 in the “control” group.

Generally, we use ANOVA to test the effects of different experimental conditions

on teaming performance and subjective perception of the robot. Tukey HSD tests are

conducted on all possible pairs of experimental conditions.

As shown in Figure 5.8, we found marginally significant effects from “mind modeling”

conditions on completion time of the first order (F (2, 24) = 2.038, p = .152). Post-hoc

comparisons using the Tukey HSD tests revealed that teams could finish the first order

significantly faster if users were under the “mind modeling” condition, compared to those

under “control” (p = .044). The result is marginally significant compared to those in

“heuristics” (p = .120), confirming H1. However, for the completion time of the second

order, we did not find any significant effect (F (2, 24) = 0.425, p = .658). This is not

surprising since users were asked to finish the same task twice. They could take advantage

86

Figure 5.9: User’s self-reported perception of the robot in terms of its efficiency and
helpfulness.

of their previous experience working with the robot for the second order. Intuitively, the

quantitative result showed that our explanation generation algorithm helped non-expert

users to finish the task efficiently on their first run, while those in the control group

needed to complete the task once to be able to finish it with the same efficiency.

The factorial ANOVA also revealed a significant effect of the explanation system on

the perceived helpfulness (F (2, 24) = 4.663, p = .019) and efficiency (F (2, 24) = 4.136, p =

.029) of the robot (Figure 5.9). In support of H2, post-hoc analysis with the Tukey

HSD tests showed that the robot’s perceived helpfulness was significantly higher under the

“mind modeling” condition, compared to “control” (p = .023) and “heuristics” (p < .01).

Users under the “mind modeling” were also more likely to believe the explanation system

resulted in improved collaboration efficiency, compared to “heuristics” (p = .026) and

“control” (p < .01).

5.6 Summary

In this chapter, we proposed a framework that allows a robot agent to improve team-

ing performance by communicating compelling explanations to its non-expert human

teammate. By maintaining the mental state of both agents, the robot agent successfully

generates explanations when the human behavior deviates from the optimal plan. By

87

conducting a user study on a virtual collaborative cooking task, we demonstrated that

the proposed algorithm can improve efficiency and quality of the interaction.

88

CHAPTER 6

LEMMA: Learning Language-Conditioned Multi-Robot

Manipulation

6.1 Introduction

There is growing interest in connecting human language to robot actions, particularly

in single-agent systems (Shridhar et al., 2022a; Mees et al., 2022b; Zheng et al., 2022;

Anderson et al., 2018; Shridhar et al., 2023). However, there remains a research gap in

enabling multi-robot systems to work together in response to language input.

Recent vision and language tasks have primarily focused on navigation and object

interactions (Anderson et al., 2018; Shridhar et al., 2020a; Gao et al., 2022). However, the

lack of physical manipulation in these works makes the settings oversimplified. Although

some recent studies, such as (Shridhar et al., 2022a, 2023), address vision and language

object manipulation in single-robot settings, the language instructions provided specify

only short-term goals, neglecting long-term objectives. Huang et al. (2022b) attempt

to address these limitations by exploring long-horizon planning with manipulation for

individual robots. Nevertheless, there remains a need to investigate multi-robot systems

capable of accomplishing a broader range of long-horizon tasks while following language

instructions.

Learning policies for multi-robot systems introduces distinct challenges, including

diverse capabilities arising from physical constraints such as the location and reach of

different robots. Moreover, task planning heavily depends on the spatial and physical

relations between the objects and robots, in addition to the geometries of the objects. To

89

ensure suitable task assignments, an awareness of each robot’s specific physical capabilities

is needed.

To tackle the language-conditioned vision-based multi-robot object manipulation

problem, we have developed LEMMA, a benchmark that contains 8 types of collaborative

object manipulation tasks with varying degrees of complexity. Some tasks require the

robot to use tools for object-object interactions. For each task, the object poses, ap-

pearances, and robot types are randomized, requiring object affordance estimation and

robot capability understanding. To enable multi-task learning, each task is paired with

an expert demonstration and several language instructions specifying the task at different

granularities. As a result, LEMMA introduces a diverse range of challenges in multi-robot

collaboration, including physics-based object manipulation, long-horizon task planning,

scheduling and allocation, robot capability and object affordance estimation, tool use, and

language grounding. Each aspect poses distinct challenges and is crucial for a multi-robot

system that follows human instructions to complete tasks. To evaluate existing techniques

on LEMMA, we further provide several baseline methods and compare their performance

to each other. We assess task performance by utilizing the latest language-conditioned

policy learning models. Our results indicate that current models for language-conditioned

manipulation and task planning face significant challenges in LEMMA, especially when

dealing with complex human instructions.

We make the following contributions:

• We design eight novel collaborative object manipulation tasks involving robots with

different physical configurations implemented in Nvidia Omniverse - Isaac Sim.

• We provide an open-source dataset comprising 6,400 expert demonstrations and natural

language instructions, including human and high-level instructions.

• We implement a modular hierarchical planning approach as a baseline, which integrates

language understanding, task planning, task allocation, and object manipulation.

90

6.2 Problem Formulation

Assume a robot system comprised of N robots that is tasked to complete a complex

manipulation task, the goal of which is specified by a language instruction xL = {xl}Ll=1,

which is a sequence of L word tokens. The full task can be decomposed into M sub-tasks

dM = {dm}Mm=1. dM represents the full task, and dm represent each sub-task in dM . Given

the language instruction xL, our goal is to find a valid and optimal sub-task allocation.

We define qim and cim as the quality and cost, respectively, for allocating robot i to work

on sub-task m. Then the combined utility for the sub-task is:

uim =


qim − cim, if robot i can execute sub-task m

−∞ otherwise.

We define the assignment of sub-task m to robot i as

vim =


1, robot i is assigned to sub-task m

0 otherwise,

with γm = i being an assignment variable for each sub-task m, indicating that sub-task

m is assigned to robot i.

The goal is to maximize the utility of the full manipulation task under a time constraint.

Defining the execution time for task m by robot i as τim, and the maximum time allowed

to execute the task as Tmax, we can express the task decomposition and assignment

problem as follows:

argmax
v

N∑
i=1

M∑
m=1

uimvim, (6.1)

subject to ∑
i

∑
m τimvim ≤ Tmax∑

i vim ≤ 1 ∀m ∈ M

vim ∈ {0, 1} ∀i ∈ N, ∀m ∈ M.

91

(a) Pass. Instruction: Place the pink cube on the white pad. Robots: UR10 and UR10.

(b) Hook. Instruction: Place the pink cube on the pink pad. Robots: UR5 and UR5.

(c) Stack. Instruction: Place the pink cube on top of the red cube. Robots: UR5 and UR10.

(d) Poke2stack. Instruction: Place the pink cube on top of the red cube. Robots: UR5 and UR5.

Figure 6.1: Expert demonstrations and high-level instructions of tasks in LEMMA. We use
minimal instructions that specify the goal, thus, it is possible that two different tasks may
have the same instruction; e.g., tasks in (c) and (d) have the same instruction, but (d)
requires robots to make use of the tool to poke the blocks so that the red robot can reach
them. Note that the pair of robots involved in each demonstration can be different. The
pair of robots in homogeneous settings (e.g., a, b, and d) have the same reach, while in
heterogenous cases the reach can be different for each robot (e.g., c).

As pointed out by Korsah et al. (2013), this problem cannot be solved in polynomial

time. In this work, we tackle this problem by learning from expert demonstrations,

so that each sub-task can be assigned to a capable robot to ensure successful task

execution. With the sub-task dm and its assignment γm, an object manipulation policy

π(st+1|st, otN , xL, dm, γm) can be used to move a specific object from its current pose st

to its target pose st+1, given the observations otN = {oti}Ni=1 and language instruction xL.

In this work, the observation ON consists of robot joint configurations, RGBD images

associated with each robot, and camera parameters.

92

6.3 LEMMA Benchmark

We introduce LEMMA to address the language-conditioned multi-robot manipulation prob-

lem. This benchmark is designed to evaluate a system’s ability to dynamically perform

task allocation and object manipulation in a tabletop environment. LEMMA sets itself apart

from existing language-conditioned robotic manipulation benchmarks, such as (Zeng et al.,

2021; Zheng et al., 2022; Mees et al., 2022b), in several key aspects:

• All tasks in LEMMA feature strong temporal dependencies, making the execution order

of sub-tasks critically important. Out-of-order execution will result in task failure.

• LEMMA tasks are exclusively multi-agent based. Due to the robots’ reachable space

limitations, it is impossible to complete tasks in LEMMA using a single agent.

• As illustrated in Figure 6.1, robots are provided with only minimal high-level instructions.

This requires the model to have a deep understanding of the environment and plan a

sequence of actions accordingly to reach the goal specified by the instruction. Using a

language classifier to determine the task type and a template to form task plans, as

in (Min et al., 2022), is inadequate, as multiple tasks may share the same language

instructions.

• LEMMA allows robots with different physical configurations to collaborate on manipulation

tasks. Two types of robots are provided in LEMMA, namely UR10 and UR5.

A detailed comparison between LEMMA and other related benchmarks is shown in Table 2.3.

6.3.1 Task Settings

In LEMMA, we focus on tasks that require a multi-robot system to complete, given a single

instruction and visual observations from top-down cameras placed above each robot.

Specifically, we consider a two-robot setting under centralized control. The high-level goal

is specified by a single natural language instruction such as “Place the red block on top of

the white pad”. However, this instruction may not provide all the necessary details on how

93

Task Type Pass Pass2 Stack Stack2 Poke Poke&Stack Hook Hook&Stack

Objects Categories Cube, Pad Cube, Pad Cube Cube Cube, Pad,
Stick Cube, Stick Cube, Pad,

Stick Cube, Stick

Using Tools ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Passing Tools ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Number of Objects 3-6 6-8 2-5 4-6 4-6 3-5 3-5 3-6
Number of Sub-tasks 2 4 2 4 3 5 4 7

Table 6.1: There are 8 types of tasks in LEMMA. Tasks require 2-7 sub-tasks, with each sub-
task requiring the robot to pick up an object, move to a location and put it down. Some
tasks require the robots to use tools. In addition, the most difficult task, Hook&Stack,
requires passing the tool from one robot to the other.

to complete the task. To thoroughly assess system performance in language-conditioned

multi-robot collaboration, we have designed 8 tasks of varying difficulty. The tasks are

implemented in a simulated tabletop environment in NVIDIA Omniverse Isaac-Sim. Task

statistics can be found in Table 6.1.

Pass: The first robot is required to pick up a cube of a designated color in its own

reachable workspace and place it within a shared workspace; i.e., a space that is reachable

by both robots. Following this, the second robot must pick up the designated cube and

position it on top of a specified pad in its reachable workspace.

Stack: The first robot picks up a designated cube in its reachable workspace and places

it in the shared workspace. Subsequently, the second robot picks up a different designated

cube and stacks it on top of the first cube.

Poke: Initially, the cube is unreachable by either robot. One robot has access to a tool

and must use it to poke the designated cube into the other robot’s reachable workspace.

The second robot then picks up the cube and places it in the target pad in its reachable

workspace.

Hook: Initially, the cube is unreachable by either robot. However, one of the robots

can use a tool to hook the cube into its own reachable space. After that, the robot need

to move it to the shared workspace so that the other robot can pick it up and position it

94

on the target pad.

Pass2: As an extension of Pass, the task requires the robots to pass two different objects

to each other and place them in their respective target locations.

Stack2: As an extension of Stack, the task requires the robots to construct two block

towers, each requires two cubes of different designated colors.

Poke&Stack: The task requires one robot to use a tool to poke two designated cubes

into the other robot’s workspace. The other robot then places one cube on top of the

other.

Hook&Stack: The task requires one robot to use a tool to hook a designated cube

into its own reachable space and pass the tool to the second robot, allowing it to perform

its hook action on the second cube. The first robot then moves the first hooked cube to

the shared workspace so that the second robot can pick it up and stack it on the second

block.

6.3.2 Action Space and Observation Space

The default action space of each robot is the end-effector position. Nevertheless, alternative

control mechanisms such as joint positions, joint velocities, and joint torques can also be

accommodated for controlling 6 degrees-of-freedom robots. Due to physical constraints,

each robot has a unique reachable workspace, allowing it to only interact with a limited

set of objects in the task.

To obtain visual observations, we place a fixed RGBD camera above each robot. Each

camera has a limited field of view and cannot capture all the objects. We follow Shridhar

et al. (2022a) to process the vision input: we first generate the scene point cloud based on

all RGBD images and camera parameters, and use the point cloud to obtain the top-down

orthographic RGBD reconstruction of the scene.

95

6.3.3 Task Generation

For diversity among the tasks, we use a rejection sampling mechanism to generate task

instances. Each task instance specifies the initial environment configurations and goal

conditions. To ensure that the task completion requires both robots, we make sure that

the initial location of the target object falls into the reachable workspace of only one

robot. In addition to the target object, we also add some distractor objects to make the

task more challenging:

1. Specify each robot’s type, location, and color. There are two robot types, UR5 and

UR10, respectively. Each robot has two different colors, red and white. Colors and

types are randomly assigned to each robot.

2. Sample the goal condition of the task, including the colors of the target objects and

their goal locations, according to the task type. e.g., the goal condition for the Stack

pink on red task is satisfied when a pink block is on top of a red block, as shown in

Figure 6.1c. There are five available colors for blocks and pads, including pink, red,

white, blue, and green. The color of the tool is always yellow.

3. Sample the initial locations of target objects, so that each object is only within the

reachable space of a single robot.

4. Sample the colors and locations of distractor objects while making sure the colors of

the target objects are unique.

The above sampling mechanism is repeated until one valid task instance is generated.

6.3.4 Expert Demonstration

Given a task specification, we use an oracle task and motion planner to create expert

demonstrations. Based on the initial configurations and goal conditions of the task, the

oracle creates a task plan consisting of a sequence of sub-tasks dM , and the allocated robot

γm for each sub-task dm. The sub-task follows a pick-and-place procedure, specifying the

96

target object to pick up and the target pose at which to place the object. Once the task

plan is generated, an RMPflow motion planner is utilized to generate a motion plan based

on ground truth object locations at each time step. All the motion plans are executed

by the designated robot, and the corresponding RGBD images and camera poses are

recorded to form the expert demonstration data.

6.3.5 Language Instructions

We assign high-level instruction and a human instruction to each task instance. For

high-level instruction, we manually define a template for each task and lexicalize the

template using the goal of the task. For human instruction, we first crowd-sourced 500

templates on Amazon Mechanical Turk and selected 80 valid templates that are not too

verbose and uniquely specify the goal given the visual observation, 10 for each task type.

For each task instance, we then sample a template from the template pool and lexicalize

it to generate human instruction. Some examples of the instruction templates can be

found in Table 6.4.

In summary, each datapoint in LEMMA contains the following information: 1) a ma-

nipulation task, specified by the initial configurations and goal conditions, 2) an expert

demonstration, including camera poses and RGBD images at each timestep, 3) a high-level

instruction and a human instruction specifying the task. As a result, we generate 800

data sessions for each task type, with a total of 6400 sessions. For each task type, we

keep 700 sessions in the training set, 40 in the validation set, and 60 in the test set.

6.3.6 Evaluation Metrics

We have adopted success rate as the evaluation metric in LEMMA. Task success is defined

as 1 if the task goal-conditions are met at the end of the episode, and 0 otherwise. The

time constraint of each episode Tmax is set to 100 seconds. The task specified by the

instruction Place the red block on the green circle, for example, is considered successful if,

at the end of the episode, the red block is on top of the green circular pad.

97

(a) Overall architecture of the baseline model.

(b) The architecture of the Episodic
Transformer model used as the high-
level planner.

Figure 6.2: Our baseline model involves a high-level task planning module and a low-level
planning module. The high-level planning module takes as input the top-down fused scene
image and human instruction to generate sub-instructions that assign the corresponding
sub-tasks to robots based on their limitations. Each sub-task is specified by action
primitives (in orange) and objects (in blue). The low-level planning module uses the
sub-instruction and top-down projection of the scene to generate pick and place locations
(visualized as purple and green stars respectively) of the gripper in the scene.

6.4 Baseline Models

Consider the problem of learning multi-agent task and motion planning with two robots

given a single language instruction and visual observations. The problem can be decom-

posed into two sub-problems: (a) multi-robot task planning and task allocation, and

(b) single-robot planning given the assigned sub-task. To this end, we design a modular

baseline model which includes a high-level planner for deciding which sub-task a robot

should work on and a low-level planner for generating pick and place locations for the

gripper given the assigned sub-task. Figure 6.2a shows the overall architecture of our

baseline model. We follow Shridhar et al. (2022a) to use the fused point clouds generated

from the RGB and depth images of two cameras. Then we use the top orthographic

projection of the point cloud as the visual input.

6.4.1 Action Primitives

We define six action primitives: move, prehook, hook, prepoke, poke and stop. The non-

stop action primitives follow generalized pick-and-place settings. Move is the standard

98

pick-and-place primitive, requiring the robot to pick up the object and move it to a

specified location. Prehook and prepoke require the robot to pick up the tool and align it

with the target object to prepare for hook and poke respectively. The required height of

the gripper is different for each primitive. For hook and poke, the height of the gripper

after picking is set at 5cm, enabling the tool to come into contact with the target object.

For other primitives, the height of the gripper is set to 30cm to avoid contact with other

objects between the pick and place actions. The sequence of action primitives required to

complete the task depends on the relative poses of target objects, such as cubes, tools, and

pads. As a result, the same language instruction can correspond to completely different

sequences of primitive actions, depending on the specific arrangement of these objects.

6.4.2 Multi-Robot Task Planning and Task Allocations

The multi-robot collaboration task can be decomposed into a sequence of sub-tasks, each

can be completed by a single robot. The sub-task allocation can be represented by a tuple

(dtm, g
t
m, γ

t
m). gtm = (e, p, q) represents the entities to specify the sub-task dtm, including the

action primitive e, the pick entity p and place entity q; e.g., (Move,Red Cube, Shared Space)

indicates moving a red cube on top of the shared workspace between two robots. γt
m is

the sub-task assignment indicating which robot is to perform the task. (dtm, gtm, γt
m) are

further lexicalized using templates to form the sub-instruction specifying the sub-task

and its allocation (Figure 6.2a). In practice, we use Episodic Transformer (Pashevich

et al., 2021), a vision and language task planner to generate the sub-instructions. The

approach is a language-conditioned visual task planning method that employs a trans-

former architecture for long-horizon planning. As shown in Figure 6.2b, ET uses the

historical visual and language information in the entire episode to capture long-term

dependencies between actions. It leverages the transformer architecture to first separately

encodes image histories, language instructions, and past action histories, and then perform

cross-attention across modalities to decode robot assignment, action primitives, and the

target object separately.

99

The choice between neural-based open-loop planning and closed-loop planning is often

debatable. Open-loop planning cannot adapt to errors made in the planning process.

However, it is more stable to train since the training distribution is often more aligned

with the testing distribution. Here we consider both open-loop planning and close-loop

planning for our benchmark and compare their performance. Note the original Episodic

Transformer is closed-loop only and requires new observation at each time step to plan

the next action (i.e., Single-step). We modify the algorithm to use only the initial

visual observation by providing it as input repeatedly during the loop to plan the whole

sub-instruction sequences (i.e., Multi-step).

6.4.3 Single Agent Object Manipulation and Grounding

In this work, we use CLIPort (Shridhar et al., 2022a) as the low-level planner. Formally, at

each time step, the algorithm focuses on learning a goal-conditioned policy π that produces

actions at based on the current visual observation ot and a language instruction xt
L =

{xt
l}Ll=1. The visual observation ot is an orthographic top-down RGB-D reconstruction of

the scene, where each pixel corresponds to a point in 3D space. As shown in Figure 6.2a,

in our use case, each input language instruction xt
L = (gtm, γ

t
m) specifies a sub-task being

allocated to robot γt
m at time step t. As a result, the goal-conditioned policy is defined as

π
(
otN , x

t
L

)
= π

(
otN , g

t
m, γ

t
m

)
→ at = (Tpick , Tplace) ∈ A,

where the actions a = (T pick, T place) denote the end-effector poses for picking and

placing respectively. CLIPort is designed for tabletop tasks, with T pick, T place ∈ SE(2).

6.4.4 Multi-Agent Cliport

Since the sub-instruction already contains the sub-task allocation γt
m and action primitive

e, the CLIPort module used as our low-level planner only needs to predict the pick

and place location. To compare with this modular approach, we present a modified

version of the original CLIPort module (i.e., M-CLIPort) to perform task planning and

100

“place the pink cube
 on top of the red pad”

 CLIP
Sentence
Encoder

 CLIP
ResN

et50
Transporter
 ResN

et

Feature Fusion

PickPos X
PickPos Y
PickRotation
Agent
Action Primitive

PlacePos X
PlacePos Y
Place Rotation

Figure 6.3: Multi-Agent Cliport Model architecture. The output is extended to include
robot assignment and action primitive for each predicted action.

task allocation explicitly in an end-to-end fashion. We extend the output to a higher

dimensional vector to predict the robot assignment and action primitive to use in addition

to pick and place locations, as shown in Figure 6.3.

6.5 Experiments

6.5.1 Evaluation Workflow

We train the CLIPort module for 300K steps on the training set and save a checkpoint

every 20K steps. Then we perform checkpoint selection on the validation split for both

the high-level planner and the low-level planner. For the low-level planner, we use the

ground-truth sub-instructions as input for checkpoint selection. For the high-level planner,

we train the Episodic Transformer model for 30 epochs and save a checkpoint at the end of

each epoch. We choose the best checkpoint based on the accuracy of predicted task plans

on the validation split. We report the performance of a combination of best-performing

high-level and low-level checkpoints on the test set. Since the physics and rendering in

Isaac-sim are not deterministic, we evaluate all tasks for 10 runs and report the means

and standard deviations.

101

Task Type Pass Pass2 Stack Stack2 Poke Poke&Stack Hook Hook&Stack Avg

M-CLIPort 34.33±2.19 0.00±0.00 10.67±0.82 0.00±0.00 15.33±4.64 6.00±0.82 21.67±4.34 1.67±1.50 11.21±0.76
Single-step 87.00±0.67 27.00±1.25 41.67±0.00 30.00±3.86 28.00±3.86 10.33±1.24 86.70±2.36 35.00±2.36 43.21±0.45
+ GTA 100.00±0.00 84.67±2.67 91.33±0.67 72.00±0.67 46.67±0.00 32.33±1.70 98.33±0.11 73.33±2.36 74.83±0.44
Multi-step 83.06±1.15 28.06±1.78 28.89±0.79 31.11±2.48 30.83±2.31 9.17±1.27 82.78±1.57 24.72±4.66 39.83±0.84
+ GTA 100.00±0.00 83.89±3.00 90.00±0.00 74.72±1.78 55.28±0.62 35.56±1.24 96.94±0.62 58.34±1.93 74.34±0.56

Table 6.2: Performance on the test set with high-level instructions. M-CLIPort: Multi-
agent Cliport. Single-step: high-level planning generates each sub-instruction based on the
new observation. Multi-step: high-level planning generates the complete sub-instruction
sequences from the initial observation. GTA: replacing the robot task allocation results
from either single-step or multi-step planning by the ground truth while preserving the
predicted action primitives and objects.

Task Type Pass Pass2 Stack Stack2 Poke Poke&Stack Hook Hook&Stack Avg

M-CLIPort 25.83±1.86 0.00±0.00 20.00±2.36 0.00±0.00 4.58±1.38 1.25±1.38 3.75±0.72 0.00±0.00 6.93±0.47
Single-step 44.44±2.29 1.67±0.00 21.67±1.36 0.00±0.00 13.88±1.24 2.50±0.83 25.56±1.57 9.17±1.60 14.86±0.26
+ GTA 63.33±0.00 5.56±1.24 59.44±1.24 1.39±0.62 25.28±0.62 9.17±1.27 30.00±0.00 19.72±0.62 26.74±0.20
Multi-step 58.33±1.18 0.00±0.00 38.54±0.99 0.00±0.00 7.71±2.92 2.92±1.10 21.46±0.99 3.96±1.16 16.61±0.39
+ GTA 81.89±0.55 5.00±1.44 70.42±0.72 0.00±0.00 15.00±0.00 8.33±1.67 23.33±0.00 14.17±1.87 27.27±0.30

Table 6.3: Performance on the test set with human instructions.

6.5.2 Experiment Results

6.5.2.1 High-Level Instructions

The results shown in Table 6.2 compare language-conditioned policies with different task-

planning modules. The M-CLIPort fails for all tasks with longer horizons. In comparison,

our modular hierarchical planning approach works reasonably well for most tasks but fails

for very long-horizon tasks (i.e., poke&stack and hook&stack). As an ablation, we further

supply ground truth task allocation to the planning module (i.e., GTA). The results

show that system performance can be greatly improved with ground truth task allocation.

This indicates that task allocation is quite challenging since it requires understanding the

reachable workspace of robots to determine which robot should be assigned to a certain

sub-task.

6.5.2.2 Human Instructions

The results shown in Table 6.3 demonstrate the system performance under human

instructions. Human instructions are more complex than high-level instructions since

102

Task Type High-Level Instruction Human Instruction

Pass place the pick-color cube on top of the place-color pad pick a pick-color cube from one side, put it at the
center and put it on the place-color circle

Pass2 place the pick-color1 cube on top of the place-color1 pad and
place the pick-color2 cube on top of the place-color2 pad

place the pick-color1 cube on the place-color1 pad
and pick-color2 cube on the place-color2 pad
in the opposite direction

Stack place the pick-color cube on top of the place-color cube take place-color block and place it in center under
the pick-color block

Stack2 place the pick-color1 cube on top of the place-color1 cube and
place the pick-color2 cube on top of the place-color2 cube

assemble two block towers by placing the place-color1
cube under the pick-color1 cube and the place-color2
cube under the pick-color2 cube

Poke place the pick-color cube on top of the place-color pad use the L object to push the pick-color block to the
other robot and place it on the place-color pad

Poke&Stack place the pick-color cube on top of the place-color cube
grab the brown L to push the pick-color and place-color
cubes closer to the other robot, so it can grab and place
the pick-color cube on top of the place-color cube

Hook place the pick-color cube on top of the place-color pad fetch the pick-color cube using the L shaped object
and place it on top of the place-color pad

Hook&Stack place the pick-color cube on top of the place-color cube use the grippers to pick up the pick-color block from
the hook and stack it on the place-color block

Table 6.4: Example high-level instruction and crowd-sourced human language instruction
templates to specify manipulation tasks in LEMMA. pick-color and place-color represent
the color of objects being picked up and placed on.

they feature different input lengths, levels of detail, and word choices. Our results show

there is a significant gap between the performance of high-level instructions and human

instructions, showing that current models are not capable of handling the increased

complexity in language. Among all the results, models perform significantly worse on

Stack2 and Pass2 with human instructions. This discrepancy is likely due to the fact that

the orders of objects vary in human instructions for these tasks (e.g., “Place the red cube

under the white cube” vs “Place the white cube on top of the red cube”), as demonstrated

in Table 6.4, which poses greater challenges in language understanding. In addition, for

tasks requiring tool use, human instructions do not always involve the tools; e.g., one

instruction for poke is “push the red block toward the other robot and put it on the blue

circle”. In these cases, the model often fails to predict the correct object to manipulate.

6.5.2.3 Further Analysis

To provide more insight into the factors affecting task performance, we further show a

breakdown of performance under different settings, including robot types and the number

of distractors in the scene. We observe that in general, the task performance decreases

103

No. Distractors 0 1 2

Pass 91.67±0.00 87.06±2.35 81.18±3.50
Pass-human 75.00±0.00 53.92±2.19 37.25±5.55
Stack 46.15±0.00 40.00±3.08 16.92±2.86
Stack-human 16.67±2.87 28.33±2.36 15.38±6.28
Poke 33.08±7.14 30.00±4.44 17.50±2.50
Poke-human 16.03±2.64 12.96±2.62 11.46±6.67
Hook 91.30±3.89 83.16±3.94 84.44±7.37
Hook-human 26.09±2.51 32.46±3.62 17.59±2.07

Table 6.5: Impact of distractors (single-step planning)

Robot Type UR5&UR5 UR5&UR10 UR10&UR10

Multi-step 38.60±3.25 36.32±0.47 46.89±1.69
Multi-step-human 15.71±0.59 19.16±0.83 13.06±0.53
Single-step 37.44±1.00 41.05±1.30 51.94±1.17
Single-step-human 16.81±0.40 15.57±0.33 11.94±0.96
M-CLIPort 13.50±0.84 11.27±0.51 9.10±2.23
M-CLIPort-human 6.62±0.93 8.52±1.25 4.48±1.06

Table 6.6: Impact of robot types

with an increasing number of distractor objects (Table 6.5). As for the robot types,

the collaborations among two UR10s exhibit significantly higher performance using the

hierarchical planning model given high-level instructions (Table 6.6). This is probably

due to the fact that UR5s have a smaller reachable space compared to UR10s, making it

more critical to accurately predict the reachable workspace of each robot.

6.6 Summary

In this chapter, we presented LEMMA, the first public benchmark for language-conditioned

multi-robot tabletop manipulation. LEMMA combines the problems of language grounding,

task planning, task allocation, tool use, capability estimation, long-horizon manipulation,

and multi-modal scene understanding. All these subproblems of LEMMA pose significant

challenges for existing algorithms.

104

CHAPTER 7

MindAgent: Emergent Gaming Interaction

7.1 Introduction

Large foundation Models (LFMs) have been driving the effort to develop general intelligent

machines (Bubeck et al., 2023; Mirchandani et al., 2023). Although they are trained using

large text corpora, their superior problem-solving capacity is not limited to canonical

language processing domains. LFMs can potentially tackle complex tasks that were

previously presumed exclusive to human experts or domain-specific algorithms. Recent

research has shown the possibility of using LFMs to generate complex plans for robots and

game AI (Liang et al., 2022; Wang et al., 2023b,a; Yao et al., 2023), marking an important

milestone for LFMs as general-purpose intelligent agents. In this chapter, we investigate

the planning capacity of LFMs in the context of multi-agent systems (Stone and Veloso,

2000). Compared to planning for a single agent, which has been studied extensively (Wang

et al., 2023b,a), multi-agent planning imposes much higher problem-solving complexity

due to an action space that grows exponentially with respect to the number of agents.

The planner must simultaneously control multiple agents, avoid possible conflicts, and

coordinate agents into achieving a shared goal that requires potentially sophisticated

collaboration. To understand to what extent LFMs can acquire multi-agent planning

skills, we first develop a new benchmark, CuisineWorld, which is illustrated in Figure 1.2.

To incorporate agent AIs into video games, we design MindAgent, an infrastructure

inspired by multi-agent task allocation optimization theories, to facilitate the multi-agent

planning capabilities of LFMs. Our infrastructure enables LFMs to perform complex

coordination and scheduling of multiple agents in order to achieve task completion. We

105

conduct comprehensive evaluations with recently introduced LFMs, including GPT-4,

Claude, and LLaMA, playing our CuisineWorld game within our MindAgent interactive

multi-agent planning framework, leading to the following key observations:

1. Zero shot multi-agent planning: Powerful pretrained LFMs like GPT-4 are

capable of scheduling multiple agents (ranging from 2 to 4) to complete dishes,

even by collaborating with human players, by merely reading game instructions and

recipes;

2. Planning with advanced prompting: We can significantly boost multi-agent

planning performance by leveraging an emergent in-context learning ability (Brown

et al., 2020; Wei et al., 2021) by adding only a few expert demonstrations (from

different games) to the prompt, explaining the rationale of certain actions as in

Chain-of-Thought prompting (Wei et al., 2022b), and providing on-the-fly feedback

to the LFMs during planning.

3. Generalization: LFMs can potentially be generalist multi-agent planners as they

are able to generalize in order to coordinate a growing number of agents and perform

well in new game domains such as Minecraft.

The contributions of our work are as follows:

• We develop a new gaming scenario and related benchmark based on a multi-agent

virtual kitchen environment, CuisineWorld. It adopts a minimal text-based game

format and supports planning tasks with various structures and challenges, making

it an ideal test bed for the emergent multi-agent planning (i.e., scheduling and

coordination) capacity of LFMs.

• We introduce MindAgent, an infrastructure for interactive multi-agent planning

with LFMs. which demonstrates the in-context learning of the multi-agent planning

capacity of LFMs and offers several prompting techniques to facilitate their plan-

ning ability, including providing few-shot demonstrations, planning rationals, and

environmental feedback.

106

• We conduct extensive evaluations of our benchmark with multiple LFMs and

prompting settings. Our experimental results validate its potential in helping

develop generalist multi-agent planners.

• We deploy MindAgent in real-world gaming scenarios and demonstrate its ability to

power human-AI interactions.

Compared to canonical domain-specific automated planning systems, although multi-

agent planning with LFMs is more likely to be bottlenecked by high computational cost,

context length limitations, non-optimal plans, etc., it can potentially improve planning

performed by in-context learning from data without fine-tuning, seamlessly adapt to new

planning problems across different domains, and offer a more flexible interface to human

collaborators. Ultimately, our investigation into the leveraging of LFMs for general-

purpose scheduling and coordination can elucidate how such skills may be acquired by

learning from large text corpora, and is potentially instrumental to the future development

of more effective LFM-based planners.

7.2 The CuisineWorld Game

We introduce CuisineWorld as a novel and flexible game for multi-agent scheduling and

coordination in a virtual kitchen environment. In this game, a multi-agent system must

supervise multiple agents and coordinate them, with the goal of completing as many

dish orders as possible. The game is equipped with a textual interface since our focus

is on evaluating LFM-based planning agents. Our modularized design separates tasks

and game engines, allowing inclusion of more tasks (dish types) and domains (“kitchen”

implementation via text-based engine, Unity, Minecraft, etc.).

7.2.1 Tasks and Reward

A task in CuisineWorld is a dish order, ranging from the most basic tunaSashimi, which

can be made by simply chopping raw tuna meat, to sophisticated dishes like porkPasta

107

requiring various cooking tools. In a game episode with a maximum of T steps, in every

task interval τint, a new task or dish order will be added to the active task list. A task will

be regarded completed and be removed from the active task list when the corresponding

dish has been placed on the serving table. Alternatively, a task will be deemed to have

failed and be removed from the list after its lifetime τlft, which depends on the complexity

of the dish, is exceeded. Along with the tasks, the game provides rewards and penalties

or feedback on certain occasions, e.g.when a task is just completed, when infeasible

commands are dispatched, etc.. We support five different actions 1) goto 2) get 3) put 4)

activate 5) noop. The state space contains descriptions of the environment and agents.

Due to space limitations, we refer the reader to additional details in Section B.4.

7.2.2 Collaboration Score (CoS)

We need to evaluate to what extent the dispatcher (played by an LFM) can coordinate

multiple agents to complete dish orders across a variety of scenarios. We are particularly

interested in the question: can the dispatcher continue to coordinate the agents into

efficient collaborations as τint decreases; i.e., as more dish orders are flooding in? Our

hypothesis is that an ideal dispatcher should be capable of coordinating the agents

until there are way more tasks than the system can handle. Therefore, we introduce a

collaboration score (CoS), defined as

CoS =
1

M

M∑
i=1

completed
[
τint,(i)

]
completed

[
τint,(i)

]
+ # failed

[
τint,(i)

] , (7.1)

where # denotes the number of tasks and M is the total number of τint intervals evaluated.

Effectively, CoS is the average task completion rate across different τint conditions. In our

default setting, we use M = 5. While the actual values of τint depend on the game level,

we ensure that they span a wide range of difficulties including both relaxed and intense

scenarios.

In summary, CuisineWorld is a game that emulates a virtual kitchen in which several

108

robotic agents are commanded to use various cooking tools and ingredients to prepare as

many dish orders as possible in a limited period of time. To necessitate collaboration,

new orders will keep flooding in while the existing ones should be completed before their

expiration times. Therefore, LFMs must properly coordinate the agents to maximize

overall productivity. CuisineWorld offers game levels with a wide range of planning

difficulty: dishes with different complexity (number of ingredients and tools involved),

number of agents, order frequency and lifetime, etc.., making it a useful test bed for

LFM-based multi-agent planning.

7.3 MindAgent Gaming AI Infrastructure

Our first foray into the challenging CuisineWorld benchmark is an interactive multi-agent

planning framework with LFMs. It facilitates in-context learning and adopts a minimalist

design for the purposes of demonstrating the scheduling and coordination capacity of LFMs,

while also bringing in exploratory prompting techniques that facilitate better planning

and inform future approaches in this domain. Our MindAgent infrastructure comprises

prompt, current state, and memory, as shown in Figure 7.1 with details illustrated as

follows:

Prompt incorporates four distinct sub-components: recipes, general instructions,

inference knowledge, and a one-shot demo.

Recipes outline hierarchical procedures for preparing various dishes at a given

level. They specify the ingredients necessary for each intermediate or final product, the

appropriate tools, and the outcome.

Instructions detail the foundational rules of CuisineWorld, delineating the array

of actions agents can undertake within the game and enumerating the characteristics of

every tool available. Moreover, they inform agents about the base ingredients retrievable

from storage, as well as all potential intermediate products they can procure. Agents are

also explicitly advised to remain cautious about feedback from the environment.

109

Figure 7.1: The MindAgent Infrastructure. Planning Skill and Tool Use: The game
environment requires diverse planning skills and tool use to complete tasks. It generates
relevant game information and converts the game data into a structured text format that
the LFMs can process. LFM: The main workhorse of our infrastructure makes decisions,
thus serving as a dispatcher for the multi-agent system. Memory History: A storage
utility for relevant information. Action Module: Extracts actions from text inputs and
convertd them into domain-specific language and validates DSLs so that they cause no
errors during execution.

Inference Knowledge encapsulates insights and helpful hints for the agent, which

when utilized appropriately can guide agents to sidestep potential errors and improve

their collaborative efficiency.

One-shot Demo presents a step-by-step demonstration of the preparation of a distinct

dish, different from other dishes at the current level, spanning several time steps, each of

which is incorporated as part of the prompt. The demonstration illustrates the major

procedures for cooking a dish in CuisineWorld, including obtaining ingredients, putting

ingredients into different tools, transporting intermediate ingredients, and delivering the

final dish to the serving table.

Current State provides a snapshot of the prevailing observations from the environ-

ment. It encompasses information such as the locations of agents, the objects currently

in the possession of agents, the tools that are accessible within the environment, the

110

ingredients present within each tool, and the tools that are actively in use. Moreover, it

includes optional feedback from the environment, triggered when agent actions violate the

rules of the environment; for instance, when assigning two distinct actions to the same

agent.

Memory archives the history of interaction with the environment. Specifically, it chroni-

cles the state of the environment and the state of the agents at every time step.

In addition to the prompt modules, other modules are implemented to help interface

between LFMs and CuisineWorld, as follows:

Action Extraction employs a regular expression matching procedure to distill agent

actions from the textual output of the LFMs. This module is indispensable because LFM

output is not always clean, but may include information reflecting its internal thought

processes or even issue apologies for prior missteps in reaction to environmental feedback.

Action Validation utilizes a look-ahead checking mechanism. This module parses

the proposed actions, assessing their feasibility. If an action is deemed unexecutable, an

error message is returned.

7.3.1 Infrastructure Mechanisms

Assuming a multi-agent system with N agents, the system must complete a sequence of

P different tasks. Each task has Mp different sub-tasks. Furthermore, the number and

types of tasks are unknown at the beginning of the episode. The environment will sample

a task for the agents to finish during a given interval. The agents must complete the

designated task along with other tasks in the task queue. Additionally, each task has an

expiration time, after which the task will be marked as a failure. The objective of the

multi-agent system is to finish as many tasks as possible and fail as few tasks as possible

within a given time frame.

To find optimal task planning, scheduling, and allocations. We define qpim and cpim as

quality and cost, respectively, in the context of allocating agent i to work on sub-task m

111

of task p in the episode. The combined utility for the sub-task is

upim =


qpim − cpim, if agent i can execute sub-task m of task p in the episode;

−∞, otherwise.
(7.2)

The assignment of sub-task m to agent i is

vpim =


1, if agent i is assigned to sub-task m of task p in the episode;

0, otherwise.
(7.3)

The goal is to maximize the utility of the episode subject to a time constraint. We

define the execution time for task m by agent i for task p in the episode as τpim, and the

maximum time allowed to execute the task as Tmax, we express the task decomposition

and assignment problem as

argmax
v

P∑
p=1

N∑
i=1

Mp∑
m=1

upimvpim,

subject to∑
p

∑
i

∑
m

τpimvpim ≤ Tmax,

∑
i

vpim ≤ 1 ∀m ∈ M,∀p ∈ P,

vpim ∈ {0, 1} ∀i ∈ N,∀m ∈ M,∀p ∈ P. (7.4)

Since this problem cannot be solved in polynomial time, we tackle it by leveraging LFMs.

Our prompt design choices try to help an LFM system solve Equation 7.4. In practice,

we reformulate the equation with qualities or rewards expressed in natural language

as environmental feedback. For example, when the agent successfully collects an item,

the environment emits a signal “collect finish”. When the dispatcher assigns a different

task to the same agent, the environment emits a signal “agent IDs cannot be the same”.

As rewards are not immediately observable, we borrow spirits from temporal difference

112

very simple simple intermediate advanced Average
level 0 level 1 level 7 level 2 level 4 level 8 level 3 level 9 level 10 level 5 level 11 level 12

2 Agents 0.727 0.706 0.682 0.687 0.664 0.504 0.764 0.725 0.701 0.661 0.692 0.559 0.673
3 Agents 0.781 0.778 0.780 0.528 0.600 0.455 0.822 0.771 0.815 0.689 0.733 0.570 0.694
4 Agents 0.771 0.761 0.761 0.505 0.592 0.626 0.848 0.744 0.790 0.692 0.675 0.534 0.692

Table 7.1: Agent CoS performance scores on very simple, simple, intermediate, and
advanced tasks for various numbers of agents.

learning. State-action history is accumulated into the memory history. Due to context

length limits, it is infeasible to fit the entire history into the context window. We select a

fixed horizon history as part of the prompt. We further express the constraints of the

system in natural language and repeat important constraints multiple times if necessary.

7.4 Experiments and Results

We have conducted extensive experiments in CuisineWorld. We first introduce the

experiment settings and then present an analysis of our empirical results. Our experiments

focused on addressing the following research questions:

Q1: How efficiently can the model dispatch multiple agents?

Q2: Can the model dispatch agents for dynamic, on-the-fly goals across different tasks?

Q3: To what extent can the existing methods collaborate with human users?

Q4 What is the human perception of collaborating with numerous intelligent agents?

Q5: How do various components of the input prompt influence the model’s performance?

Q6: How do other LFMs perform compared to GPT-4?

7.4.1 Experimental Regimen I: LFMs Dispatch Multi-Agent NPCs (Q1, Q2)

Figure 7.2 and Table 7.1 report the performance of our system under different settings.

As shown in Figure 7.2, in general, increasing the number of agents from 2 to

3 will increase the overall performance. However, when increasing more, the overall

performance might drop due to the complexity of multi-agent collaborations, as shown

by the corresponding CoS by level. As shown in the tables, the CoS is the highest when

113

3 4 5 6 7 8 9
task interval

0.4

0.6

0.8

1.0
su

cc
es

s r
at

e
level_0

2-agent
3-agent
4-agent

3 4 5 6 7 8 9
task interval

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

level_1

6 8 10 12 14
task interval

0.2

0.4

0.6

0.8

su
cc

es
s r

at
e

level_2

6 8 10 12 14 16
task interval

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

level_3

6 8 10 12 14
task interval

0.4

0.6

0.8

su
cc

es
s r

at
e

level_4

8 10 12 14 16 18 20
task interval

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

level_5

6 8 10 12
task interval

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

level_7

6 8 10 12 14
task interval

0.2
0.4
0.6
0.8
1.0

su
cc

es
s r

at
e

level_8

7.5 10.0 12.5 15.0 17.5 20.0 22.5
task interval

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

level_9

8 10 12 14 16 18
task interval

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

level_10

8 10 12 14 16 18
task interval

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

level_11

6 8 10 12 14
task interval

0.2

0.4

0.6

0.8

su
cc

es
s r

at
e

level_12

Figure 7.2: Collaboration efficiency curves on several levels.

there are two agents in two cases. The CoS is the highest when there are three agents in

seven cases. The CoS is the highest when there are four agents in three cases. Second, we

observe that the system performance degrades with more agents under less demanding

conditions, indicating that the LFM dispatcher struggles with fewer tasks.

7.4.2 Experimental Regimen II: Human and Multi-NPCs with LFMs

We recruited 12 subjects for our internal ethics review approved study, including 2 females

and 10 males. During testing, we recorded only user interaction data. Identifiable

information was not recorded. Subjects could quit at any time. We used ANOVA to

test the effects of different experimental conditions on collaboration performance and

the subjective perceptions. Tukey HSD tests were conducted on all possible pairs of

experimental conditions.

114

We conducted a user study in our gaming environment that addresses Q3 and Q4.

The user study evaluates the LFM dispatcher’s ability to collaborate with humans, where

participants are collaborating with 1, 2, and 3 agents or working alone on the virtual

cooking tasks (level 3).

The user study tests the following hypotheses:

H1: Task productivity. Participants have higher productivity when collaborating with

AI agents.

H2: Task productivity with more agents. Participants have higher productivity

when collaborating with more AI agents.

H3: Perception of the AI agents. Participants have higher perceived task efficiency

and more fun playing the game due to collaboration.

We use a within-subject design for our experiment. Every user tries to finish the

task solo or collaborates with different numbers of agents with varying competency. We

randomize the order of the treatment to mitigate practice, fatigue, and carryover effects.

Single agent: Participants work by themselves.

LFM-powered multi-agent system: Participants collaborate with the multi-agent AI

system powered by an LFM.

Random agent: Random agents execute random actions from a pool of valid actions.

Participants collaborate with random AI agents.

As shown in Figure 7.3 we found significant effects on the team collaboration success

rate F (4, 55) = 28.11, p < 0.001. Post-hoc comparisons using Tukey HSD tests revealed

that the team comprising the human player with LFM agents achieves a higher success

rate than the human working alone (p < 0.001) across different numbers of agents, thus

confirming H1. Although collaborating with more agents led to a greater success rate,

collaborating with one agent was not significantly different from collaborating with two

or three agents (p = 0.774 and p = 0.231, respectively). Therefore, we are unable to

confirm H2. We observed that human players have more fun playing the game when

collaborating with LFM-powered AI agents than when playing alone (p = 0.0126). Players

felt that collaboration with AI agents leads to higher productivity (p = 0.0104), thus

115

(a) Collaboration score:
The collaboration score is
higher if more agents are col-
laborating with human play-
ers, although the difference is
not significant.

(b) Perceived enjoyment:
Humans enjoy the game more if
they collaborate with the right
number of agents.

(c) Perceived more fun:
Players enjoy the game more be-
cause of collaboration with com-
petent agents.

(d) Perceived Assisting:
There is no significant differ-
ence in terms of human percep-
tions of helpfulness when col-
laborating with more agents,
even though the task success
rate is higher.

(e) Perceived dependabil-
ity:
When collaborating with more
agents, players depend on the
agents more.

(f) Perceived Predictability:
There is no difference in terms
of the predictability of agent be-
haviors when collaborating with
more agents.

(g) Perceived productivity:
Players think collaborating with
AI agents will improve produc-
tivity.

(h) Perceived Trust:
There is no difference in terms
of trust when collaborating with
more agents.

Figure 7.3: Results of human evaluations

116

Ablation CoS

GPT-4 (full) 0.764
GPT-4 w/ only few-step 0.710
GPT-4 w/o inference knowledge 0.714
GPT-4 w/o feedback 0.311

Table 7.2: Additional ablation on Level 3 for 2 agents

confirming H3. Additionally, when playing with AI agents, human players take their

actions based on other players’ actions (p = 0.00266). Human players also found that AI

agents are more predictable than random agents (p < 0.001). Further insights from player

feedback highlighted an intriguing trade-off: while greater numbers of agents improved

overall task success rates, this reduced the enjoyment of the game. Often, players felt

sidelined and less involved. Thus, game developers should adjust AI performance to

maintain player engagement and fun. As suggested by Yuan et al. (2022), aligning human

values with AIs is a promising approach.

7.5 Ablation Study for Multi-Agents

7.5.1 Study of the Prompt Components (Q5)

In Table 7.2, we elucidate the performance of LFM dispatchers with certain components

of the prompt omitted. We chose level 3 as the basis for our ablation study. It was

selected because it displayed a clear correlation between an increased number of agents

and improved performance, serving as a stable benchmark for evaluating the LFM’s

coordination capabilities. We recognize that the LFM may not perform consistently

across all levels on the challenging CuisineWorld benchmark. When performance is

variable or poor on certain levels, it can obscure the effects of ablation studies due to

multiple confounding factors. Details about the prompt can be found in the appendices.

Specifically, for these tests, we excluded individual components such as the inference

knowledge, reduced the prompt example to a mere two steps instead of the complete

demonstration, and evaluated the model without environmental feedback.

117

Ablation on demo CoS

4agent using 4agent demo 0.848
4agent using 2agent demo 0.851
3agent using 3agent demo 0.822
3agent using 2agent demo 0.775

Table 7.3: Using different numbers of agents as one-shot demonstrations on Level 3

GPT-4 Claude-2 LLaMA2 ChatGPT

2 Agents 0.686 0.3125 0 0
3 Agents 0.822 0.372 0 0
4 Agents 0.848 0.473 0 0

Table 7.4: CoS performance scores of other LFMs on Level 3

Table 7.2 indicates a significant drop in performance when environmental feedback is

excluded, underscoring its pivotal role in the efficacy of the LFM dispatcher. Replaying

action sequences reveals that, without feedback, the LFM dispatcher tends to repeat

mistakes and gets stuck in specific states for prolonged durations. Another key takeaway

is that a succinct two-step demonstration of input and output format can still achieve

impressive performance for unseen tasks with dynamic objectives. Notably, in these

two-step instances, there is no explicit guide to finishing any tasks, yet the model does not

merely complete the task but continually performs additional tasks within the same episode.

Furthermore, we observe that integrating human-crafted inference knowledge bolsters the

performance of the LFM dispatcher. Lastly, even with few-shot demonstrations involving

fewer agents, the LFM dispatcher retains satisfactory performance, as shown in Table 7.3.

7.5.2 Study of the Performance of Other LFMs (Q6)

To study how other LFMs perform on our tasks, we tested the collaboration performance

of GPT-3.5, Claude-2, and LLaMA2, and Table 7.4 summarizes the results. For a fair

comparison, all tests employed identical prompt inputs.

We observed that while other LFMs tend to underperform, models such as Claude-2

manage to complete the task to a considerable extent.

118

7.6 Emergent Abilities

Across our experiments, our MindAgent framework exhibits the following emergent prop-

erties:

7.6.1 Emergent Collaboration Task Understanding

As shown in Table 7.2, especially in the few-step ablation entries, GPT-4 exhibits its

proficiency even when not provided with a full demonstration of specific tasks. To

clarify, a “full few-shot demo” typically refers to a comprehensive demonstration of a task,

detailing each step and procedure involved. By contrast, we provide GPT-4 with only a

partial demonstration or a glimpse of the task executing only two steps. Yet, despite this

limited input, GPT-4’s performance is remarkable. This underscores GPT-4’s impressive

emergent zero-shot multi-agent planning abilities. Beyond simply completing unseen

tasks, GPT-4 also demonstrates adaptability by dynamically prioritizing multiple different

tasks as they arise, emphasizing its emergent multi-task, on-the-fly planning skills.

7.6.2 Emergent Multi-Agent Reasoning Abilities

Referring to Table 7.3, GPT-4 has the ability to deploy more agents based on demonstra-

tions of fewer agents. For instance, it can effectively dispatch 4 agents having only seen

demonstrations involving 2 agents. The performance is better when 4 agents use 2-agent

demos compared to 4-agent demos, possibly because the task suits 2 or 4-agent teams.

With 4 agents, the model can create two independent teams of two, showing its ability to

allocate tasks and plan for more agents than previously experienced.

7.7 Novel Game Adaptation

In line with our ongoing efforts to create collaborative, in-game, multi-agent systems, we

integrated our infrastructure into Minecraft (Figure 7.4). In this adaptation, we designed

several unique cooking tasks where two in-game agents, Alex and Steve, must cook various

119

(a) Multi-Agent (b) Human-NPC (c) VR

Figure 7.4: (a) Alex and Steve are collaborating to kill different animals. (b) A human
player instructs the agents to perform certain actions. (c) A human player collaborating
with agents in VR.

GPT-4 Minecraft τint,(1) τint,(2) τint,(3) τint,(4) τint,(5) CoS

Performance 0.195 0.381 0.704 0.792 0.833 0.581

Table 7.5: Performance of the MindAgent framework in Minecraft

types of meat. After cooking, they must deposit the meats into a chest. See Table 7.5

for the experimental results. Refer to Section B.7.4 for the details of Minecraft actions.

Section B.7.1 provides more details about transferring to Minecraft.

Incorporating game-specific domain knowledge into the system is crucial for games in

which specific knowledge plays an important part. In CuisineWorld and Minecraft, we

inject domain-specific knowledge (such as recipes) directly into the context, which the

LFMs utilize to inform the decision-making and collaboration strategies. This demon-

strates the feasibility of adapting MindAgent to other domains where specific knowledge

plays a crucial role. In addition, techniques like Retrieval-Augmented Generation (RAG)

and Fine Tuning may be pivotal in further developing MindAgent’s ability to handle

domain-specific complexities.

7.8 Summary

We introduced MindAgent, an infrastructure for multi-agent collaboration through LFMs

across multiple gaming domains. We investigated its multi-agent planning capabili-

ties, and we deployed our infrastructure into real-world video games that demonstrate

its multi-agent and human-AI collaboration effectiveness. Additionally, we presented

120

CuisineWorld, a text-based multi-agent collaboration benchmark that provides a new

auto-metric Collaboration Score (CoS) to quantify collaboration efficiency.

121

CHAPTER 8

Conclusions

8.1 Summary

Interaction with the environment is the cornerstone of intelligence, as intelligence emerges

in agent-environment interactions as a result of sensorimotor activities (Smith and Gasser,

2005). Directly interacting with real-world environments can be slow, expensive, and

dangerous. Therefore, large-scale simulation systems will serve as the bedrock for devel-

oping future generations of intelligent agents. In this dissertation, we pursued large-scale

simulations for embodied AI and robotics. Through the simulation environments and

their related benchmarks and datasets, we studied several problems involving multi-modal

sensory activities and concluded that current systems do not suffice to tackle the complex

challenges that arise with high-fidelity simulation environments. Although challenges re-

main, we demonstrated in this thesis that sim2real transfer from simulation environments

is feasible.

In Chapter 3, we presented an indoor task completion human simulator, where a

humanoid robot must use various tools to manipulate objects, navigate around the room,

and find objects to finish a series of complex cooking tasks. We further collected an

indoor human activity dataset for human intention prediction. In Chapter 4, we pushed

the boundaries of what is possible in robotics simulations for photo-realism and physical-

realism. Rather than defining object states as discrete, we defined a continuous range of

object states, connected human language to robots, and measured their grounded state

understanding. Additionally, we presented a benchmark for various levels of systematic

generalizations. We found that the current system cannot generalize to unseen object

122

states, prompting further research in this area. In addition, we conducted sim2real transfer

experiments and found that sim2real transfer is possible within our framework.

The simulation environments developed in Chapter 3 and Chapter 4 allow researchers

to study interactive visual task planning, scene understanding, and grounded robot

manipulation. In Chapter 5, we further studied human-robot collaboration through

a theory of mind framework. We demonstrated the effectiveness of mental modeling

and explanations. In Chapter 6, we further studied multi-robot collaboration. We

demonstrated that using language as an intermediate representation with an explicit

task planning module improves downstream task performance. In Chapter 7, we studied

multi-agent collaboration using LLMs. We found that LLMs can serve as an efficient

multi-task, multi-agent coordinator as well as a natural interface for communicating and

collaborating with human users.

8.2 Future Directions

In this thesis, we proposed several methods to scale up robot simulations and conducted

preliminary sim2real transfer tests. We also conducted several human-AI collaboration

experiments. However, numerous interesting problems remain. The following problems

are well worth investigating in the future:

• Simulation Systems: Despite creating large-scale datasets, the current scope of

robotics simulation systems is still modest compared to the extensive data used for

training large-scale vision-language models. Further scaling of simulation systems is

crucial. Additionally, the most important thing is not the scale of the dataset but

rather the diversity of the dataset. Creating a large number of diverse tasks and a

systematic evaluation system will be crucial for future systems.

• Multi-Contact Dynamics: The physics system of current robotics simulations

needs refinement, particularly in simulating accurate contact dynamics for better

manipulation systems. Additionally, a more systematic approach to sim2real transfer

123

is necessary, moving beyond human-designed heuristics towards automated methods

for setting simulation parameters that closely match real-world conditions.

• Enhancing Sensor Systems: Current systems predominantly rely on visual

sensors. Incorporating a richer array of sensors, including tactile sensors and other

modalities with real-time feedback with compliance mechanisms, is essential for

developing adaptive robotics systems.

• Few-Show Generalization: Current systems often perform poorly in novel scenar-

ios, as highlighted in this dissertation. We hope to bridge the gap between human

generalization capabilities and current AI systems. We believe that choosing the

correct representation and inductive biases are the key to unlocking this potential.

• Cross Embodiment Generalization: Current robotics systems often learn from

demonstrations of the same embodiment. However, there is a wealth of interactive

data from humans and animals interacting with their environments. If we can

leverage such data for efficient learning, this presents a huge opportunity to scale to

unseen tasks.

• Latency: State-of-the-art systems require a large amount of computing power to

make simple decisions. For example, Brohan et al. (2023) can only process up to

5 Hz with cloud computing. This results in significant latencies and high deployment

costs. Increasing the computational speed with smaller models or different sensor

modalities will be essential to facilitate natural human-robot interaction for future

real-time applications.

We believe that solving the aforementioned issues requires interdisciplinary expertise

in computer vision, natural language understanding, computer graphics, machine learning,

robotics, neuroscience, and cognitive science. With rapidly increasing computational power

and data, we believe that these challenging problems can be solved through collaboration

between expert research teams with diverse technical backgrounds.

124

APPENDIX A

ARNOLD Benchmark Details

A.1 Environment

A.1.1 Assets in USD Format

Universal Scene Description (USD) is a format for 3D scene descriptions. The process of

parsing assets into Omniverse involves the transformation of graphical data into USD

files. This primarily provides developers with a streamlined method of accessing and

retrieving relevant information from the assets, including scene files, articulation bodies,

animations, etc.. By utilizing a USD file format, users can easily access a wide range

of assets and subsequently inform Omniverse of the relevant content required for their

application, eliminating the need for tedious, manual retrieval of information from each

asset individually.

Working With the 3D-Front Dataset: The 3D-Front dataset consists of a set of

professionally designed synthetic indoor scenes. It features a large number of rooms that

are furnished with high-quality textured 3D models. The dataset is composed of three

primary components: models, scenes, and textures. And it contains tens of thousands of

room layouts with thousands of furnished objects. To parse the 3D-Front dataset into

USD format, we apply the following steps as shown in Figure A.1:

• Parse the original scene files (JSON) into a data frame containing the mesh and furniture

information.

• Use Maya MEL script to load scenes into Autodesk Maya.

• Apply Maya and Omniverse converter to save the scenes in USD format.

125

Figure A.1: Pipeline of scene parsing. After pre-processing the original 3D-Front scene
data, we build an automatic pipeline to load the scene layout into Autodesk Maya
with custom designs. Next, we convert the layout file to USD format and deploy it in
Omniverse.

Figure A.2: Pipeline of parsing articulated bodies. To convert the original articulated
bodies into USD format, we refine the built-in functionalities in Omniverse Isaac Sim and
modify the assets manually.

Working With Articulated Bodies: The articulated bodies in ARNOLD mainly come

from SAPIEN. We use built-in tools of Omniverse Isaac Sim to parse the original articulated

bodies (URDF) into USD format as shown in Figure A.2.

A.1.2 Speed

With five 128× 128 cameras, our system runs at 17 fps for liquid simulation and 37 fps for

rigid body simulations on an NVIDIA RTX 3090 GPU and AMD 5950X CPU. Currently,

Omniverse Isaac Sim only supports serial cameras. We expect a huge performance

improvement with the upcoming release of Omniverse Isacc Sim which supports parallel

cameras.

126

(a) Two rendered images with a subtle difference.

(b) Distribution of pixel difference.

Figure A.3: An example that shows the rendering randomness in ARNOLD. (a) Two 128×128
images rendered from the same frame exhibit a subtle difference, with about 78.8% of the
pixels being different. (b) The distribution of pixel difference. Here the difference per
pixel is measured by the sum of RGB differences. More than 50% of the pixels differ less
than a value of 3.

127

A.1.3 Randomness

Different from previous work (Zheng et al., 2022; Shridhar et al., 2022b), the rendering

randomness in ARNOLD would result in non-deterministic images. This means two images

rendered from the same frame may exhibit a subtle difference. Figure A.3 shows an

example where about 78.8% of the pixels are different, together with the distribution of

pixel difference.

A.2 Task Details

We provide illustrative examples of some tasks in Figure A.4. Figure A.5, Figure A.6,

Figure A.7, and Figure A.8 illustrate the variations from different aspects in ARNOLD. In

this section, we provide the implementation details of each task. In our notations, we use

o to denote visual observation, a for action (i.e., position and rotation with regard to the

world). δ is a function to compute the pre-grasp pose.

A.2.1 PickupObject

Motion Planner: The motion planner of PickupObject consists of four sub-task

stages. We depict each stage as follows, beginning with the visual observation and ending

with a consequent end effector pose.

1. Observe o1. Move the end effector to the pre-grasp pose. Reach a1 = δ(a2).

2. Observe o2. Move the end effector to reach the position for grasping. Reach a2.

3. Observe o3. Close gripper. Reach a3.

4. Observe o4. Lift the object to the goal height. Reach a4.

Learning and Evaluation: We extract two observation-action pairs for two-phase

learning: o1, a2 and o4, a4. During evaluation, the robot executes the action predictions

ã2 and ã4 similar to the motion planner:

1. Move to δ(ã2) for pre-grasp.

128

Figure A.4: Illustrations of the 8 tasks in ARNOLD

129

Figure A.5: Scene variations

Figure A.6: Object variations

Figure A.7: Lighting variations

Figure A.8: Material variations

130

2. Move to ã2 and close gripper.

3. Move to ã4 for goal state.

A.2.2 ReorientObject

Motion Planner: The motion planner of ReorientObject consists of four sub-task

stages. We depict each stage as follows, beginning with the visual observation and ending

with a consequent end effector pose.

1. Observe o1. Move the end effector to the pre-grasp pose. Reach a1 = δ(a2).

2. Observe o2. Move the end effector to reach the position for grasping. Reach a2.

3. Observe o3. Close gripper. Reach a3.

4. Observe o4. Reorient the object to goal orientation. Reach a4.

Learning and Evaluation: We extract two observation-action pairs for two-phase

learning: o1, a2 and o4, a4. During evaluation, the robot executes the action predictions

ã2 and ã4 similar to the motion planner:

1. Move to δ(ã2) for pre-grasp.

2. Move to ã2 and close gripper.

3. Rotate to ã4 for goal state.

A.2.3 OpenDrawer and CloseDrawer

Motion Planner: The motion planner for these two tasks consists of four sub-task

stages. We depict each stage as follows, beginning with the visual observation and ending

with a consequent end effector pose.

1. Observe o1. Move the end effector to the pre-grasp pose. Reach a1 = δ(a2).

2. Observe o2. Move the end effector to reach the position for grasping. Reach a2.

3. Observe o3. Close gripper. Reach a3.

131

4. Observe o4. Gradually pull or push the drawer until the goal condition is satisfied.

We apply linear interpolation on the action translation to slow down since excessive

movement will result in the detachment of gripper. Reach a4.

Learning and Evaluation: We extract two observation-action pairs for two-phase

learning: o1, a2 and o4, a4. During evaluation, the robot executes the action predictions

ã2 and ã4 similar to the motion planner:

1. Move to δ(ã2) for pre-grasp.

2. Move to ã2 and close gripper.

3. Gradually interpolate like the motion planner toward ã4 for goal state.

A.2.4 OpenCabinet and CloseCabinet

Motion Planner: The motion planner for these two tasks consists of four sub-task

stages. We depict each stage as follows, beginning with the visual observation and ending

with a consequent end effector pose.

1. Observe o1. Move the end effector to the pre-grasp pose. Reach a1 = δ(a2).

2. Observe o2. Move the end effector to reach the position for grasping. Reach a2.

3. Observe o3. Close gripper. Reach a3.

4. Observe o4. Gradually pull or push the cabinet until the goal condition is satisfied.

We apply linear interpolation on the action translation to slow down, and apply

spherical linear interpolation (Slerp) on the action rotation to meet the revolute

constraint. Reach a4.

Learning and Evaluation: We extract two observation-action pairs for two-phase

learning: o1, a2 and o4, a4. During evaluation, the robot executes the action predictions

ã2 and ã4 similar to the motion planner:

1. Move to δ(ã2) for pre-grasp.

132

2. Move to ã2 and close gripper.

3. Gradually interpolate like the motion planner toward ã4 for goal state.

A.2.5 PourWater and TransferWater

Motion Planner: The motion planner of these two tasks consists of seven sub-task

stages. We explain each stage as follows, beginning with the visual observation and ending

with a consequent end effector pose:

1. Observe o1. Move the end effector to the pre-grasp pose. Reach a1 = δ(a2).

2. Observe o2. Move the end effector to reach the position for grasping. Reach a2.

3. Observe o3. Close gripper. Reach a3.

4. Observe o4. Lift the cup up to the target height for pouring. Reach a4.

5. Observe o5. Translate the cup horizontally to the position for pouring. Reach a5.

6. Observe o6. Gradually tilt the cup to pour water out until the goal condition is

satisfied. We apply spherical linear interpolation on the action rotation to slow

down and make fluids controllable. Excessive tilting would suddenly empty the

water. Reach a6.

7. Observe o7. Gradually rotate the cup back to an upright pose, similar to the previous

stage. Reach a7.

Learning and Evaluation: We extract two observation-action pairs for two-phase

learning: o1, a2 and o4, a5,6, where a5,6 combines the translation of a5 and rotation of

a6. During evaluation, the robot executes the action predictions ã2, ã5,6 similar to the

motion planner. Note that we maintain the angular velocity to a constant, which ensures

reproducibility of the amount of poured water, as well as distinctions among the rotations

for different goal states.

1. Move to δ(ã2) for pre-grasp.

2. Move to ã2 and close gripper.

3. Lift up from ã2 to the height of ã5,6.

133

4. Translate horizontally to the position of ã5,6, with rotation unchanged.

5. Gradually tilt the cup to ã5,6 by spherical linear interpolation (Slerp).

6. Gradually rotate the cup back to the upright pose.

A.3 Data Collection

A.3.1 Human Annotations

We collect human annotations for the positions of robots and interactive assets to ensure

reasonable configurations in 3D scenes. For the rationality of such annotations, we ask

human operators to teleoperate robots to complete tasks. We will first introduce the

settings of robot teleoperation in Section A.3.1.1 and then present the whole pipeline of

data collection in Section A.3.1.2.

A.3.1.1 Robot Teleoperation

Frame Definition: Human operators use an Xbox controller to control the robot and

the camera for data collection. The input to the controller is in the robot base frame,

where the X axis originates from the robot’s base and points to the object, and the Y

axis is the upward pointing axis, as displayed in Figure A.9. This controller input is

transformed into the world frame for robot motion at each timestep.

Robot Control: Human operators can adjust the position and rotation of the robot

end effector, as well as toggle the gripper. The Xbox layout is shown in Figure A.10.

Specifically, the controller supports two control modes for rotation: joint position control

and end effector rotation control. The joint position control mode allows the operator

to directly change the positions of joints: A1 (shoulder joint), A6 (forearm joint), and

A7 (wrist joint). The end effector rotation control mode allows the operator to rotate

the end effector around the X, Y, Z axis of the robot base frame while maintaining its

position, which is more general for rotation control. Operators can switch between these

134

Figure A.9: An illustration of the frame and camera for robot teleoperation

two modes during the data collection process.

Camera Control: Human operators can move their viewing camera freely in the 3D

scenes to avoid occlusion. This is accomplished by a spherical camera control (Figure A.9),

where the camera can move on a sphere centered at the robot end effector while keeping

casting toward the end effector. Note that the radius of the sphere can also be adjusted

for a clearer view.

A.3.1.2 Collection Pipeline

Settings: The collection of human annotations is conducted through a user interface (UI),

which is implemented as an extension of Omniverse Isaac Sim, as shown in Figure A.11.

For each task, we enumerate the compositions of objects, scenes, initial states and goal

states. Each composition instance is called a mission. Human annotators are supposed to

annotate each mission with two configurations of the relative positions between the robot

and object. Each configuration is loaded for human control for two trials. Hence, each

mission can produce up to four trajectories.

135

Figure A.10: A schematic of the Xbox controller

Figure A.11: A toy example of the user interface (UI) for collecting human annotations

136

Procedures: The annotator starts annotating a mission by placing the object group

(robot and object) at an appropriate anchor position in the scene and clicking the “Record

house + anchor” button. Then, the annotator is supposed to adjust the relative position

between the robot and object before clicking the “Record robot” and “Record object”

buttons. Clicking these two buttons amounts to recording a configuration. For each

configuration, the annotator is supposed to control the robot to complete the task after

clicking the “Load mission & Record” button. Each click is regarded as a trial. Once the

annotator succeeds, a message of “Task Success” will be displayed. Then the annotator

can click the “Stop” button and thereby produce a human trajectory. The trajectory

replay is supported by clicking the “Load mission & Replay” button. Altogether, each

mission is annotated with two configurations and two trials for each configuration. To

proceed to the next mission, the annotator can click the “Next” button.

Statistics: We record the human trajectories with the aforementioned Xbox controller

at 120Hz and finally collect 2990 trajectories. These trajectories consist of 6.2M frames

(14.3 hours) in total and 2073 frames (17.3 seconds) on average. The minimum, median

and maximum length are 110 frames (0.9 seconds), 1752 frames (14.6 seconds) and 11336

frames (94.5 seconds), respectively. The distribution is shown in Figure A.12. Although

these human trajectories are not directly used for training in ARNOLD, the annotations

of configurations and keypoints are referenced by motion planners for demonstration

generation. And these human trajectories are of potential use when more powerful

algorithms are available.

A.3.2 Data Augmentation

For richer data variations, we apply augmentation to the robot positions based on collected

human annotations. For example, the robot positions may be expanded by shifting 10cm

horizontally along four orthogonal directions. After that, we use the motion planner to

check if the robot can execute the task successfully with new positions.

137

Figure A.12: Distribution of human-annotated trajectory length (timesteps). Here 120
timesteps amount to a second.

Tasks Examples of Delexicalized Templates

PickupObject Raise [value_object] [value_height] above the ground
ReorientObject Reorient [value_object] [value_degree] away from the up axis
OpenDrawer Open the [value_position] [value_object] [value_percent]
CloseDrawer Close the [value_position] [value_object] [value_percent]
OpenCabinet Open the [value_position] [value_object] [value_percent]
CloseCabinet Close the [value_position] [value_object] [value_percent]
PourWater Pour [value_percent] water out of [value_object]
TransferWater Transfer [value_percent] water to [value_object]

Table A.1: A few examples of delexicalized instruction templates for various tasks. During
data generation, we first sample a delexicalized instruction template from the template
pool. Then, we fill in the placeholders by sampling from candidate pools that consist of
equivalent phrases.

138

A.3.3 Language Instructions

We sample a few instruction templates from our template pool and present them in

Table A.1. For generality and diversity, we construct these templates with placeholders,

which can be lexicalized flexibly. In these templates, “[value_object]” holds for the actual

object name, e.g., “white bottle”. The goal states are specified by “[value_height]” (e.g.,

“20cm”), “[value_degree]” (e.g., “90 degrees”), and “[value_percent]” (e.g., “40%”). In

some tasks where multiple objects exist, the referential words are necessary and specified

by “[value_position]”, which indicates the positional information of the target object, e.g.,

“top left”. The placeholders are lexicalized randomly by sampling from candidate pools

which contain equivalent phrases, e.g., “fifty percent”, “half ”, “two quarters”.

A.3.4 Verification

We replay the recorded keypoints of the generated demonstrations in the procedure of

evaluation to verify their validity. After removing the failed demonstrations, we obtain a

set of 10k demonstrations whose success is ensured achievable.

A.4 Implementation Details

A.4.1 Additional Evaluation of BC-Z

BC-Z (Jang et al., 2021) is a behavior-cloning model that pursues zero-shot task gen-

eralization with large-scale data. We follow the implementation of PerAct (Shridhar

et al., 2022b) to adapt the language-conditioned model (BC-Lang) to our settings. This

model takes as input a single-view RGB-D image, with RGB and depth processed by two

separate streams. We select the front view for the single-view visual input. The task

instruction is processed by a CLIP text encoder (Radford et al., 2021) to extract a global

semantic embedding. With the visual and language input, BC-Lang outputs directly

regresses an end effector pose, whose translation and rotation are both continuous values

(coordinates and quaternions). There are two variants of backbone: CNN and ViT. We

139

Test Object Scene State Any State

BC-Lang-CNN 2.52 14.29 0.00 0.65 1.18 5.88 0.00 1.44 0.84 0.84
BC-Lang-ViT 5.88 19.33 0.00 0.00 0.39 2.35 0.86 4.02 0.84 5.04

PerAct 31.09 44.54 6.45 21.29 20.78 31.37 10.92 12.64 21.85 30.25

Table A.2: The performances of two BC-Lang variants. We add the performance of
PerAct for comparison. The results show that BC-Z, regressing end effector pose with a
single-view image as visual input, is much less effective.

run additional experiments with the two BC-Lang variants and report their performances

on the OpenDrawer task (shown in Table A.2). The results indicate BC-Z cannot handle

the tasks in ARNOLD.

A.4.2 Workflow

Data Sampling: We consider three aspects of balance when sampling data for training.

(1) To ensure object-level balance, we categorize the demonstrations according to the

manipulated object. A uniform sampling over categories is prior to sampling a demon-

stration within the category. (2) To ensure phase-level balance, we use a biased weight

of 1:4 to sample a phase for training based on a selected demonstration. (3) To ensure

task-level balance during multi-task training, a uniform sampling over tasks is prior to

the task-specific sampling.

Validation: We perform model selection by evaluating each checkpoint instead of

tracking the loss on Val set since we observe an inconsistency between these two metrics,

as mentioned by Shridhar et al. (2022a). We select the best checkpoint for final evaluation.

A.4.3 Ablation

Without Language: We simply skip the operation of appending language embedding to

the flattened voxel grid, making the latent representation contain only visual information.

State Head: As a naive implementation, we represent all object states through a

normalized value in the [0, 1] range. For PickupObject, the state value is expressed by

140

h
40

(initially 0), where h is the height in cm. For ReorientObject, the state value is

expressed by α
180

(initially 0.5), where α is the angle (degrees) between object orientation

and the upward axis. For the rest of the tasks, the state value is equal to the percentage.

The state head predicts both the current state and the goal state, which are optimized

via MSE loss. Although learning to regress state values brings moderate improvements,

there is still quite a large space for better methods on state modeling.

Language Encoder: We adopt T5-base encoder (Raffel et al., 2020) as the alternative to

CLIP language encoder. To ensure a fair comparison, we pad the token sequence encoded

by T5-base to 77, the same as the token sequence of CLIP. Despite the sophisticated pre-

training on large-scale text corpus, T5-base as a language encoder for language-grounded

task may be limited by a lack of alignment with vision modality. Moreover, the scarce

data in robotics tasks may induce T5-base to suboptimal performances.

A.4.4 Sim2Real

Equipment and Configurations: To set up the real-robot experiment, we adopted

the Franka Emika Panda robot arm, the RealSense D435 RGB-D camera, and a random

common object in the object category. We placed the robot arm and object similar to

the configurations in simulation. Notably, we only used the left camera view, and nothing

was tuned particularly. We used the aruco marker to calibrate the D435 camera and

Franka API to initialize the robot arm.

Inference: We pre-processed the point cloud due to the imperfect depth camera, e.g.,

discarding noisy or too far away points. Next, we fetched the PerAct model trained in

the simulator to perform inference for the next movement of the robot arm. We utilized

Franka API to execute the actions and evaluate similarly to the metrics in ARNOLD.

Results: We summarize the real-world experiment as follows. (1) We experimented

with opening/closing two different drawers and picking up five objects. We conducted 19,

141

8, and 31 trials in various configurations (e.g., object poses, camera poses, instructions

etc.) for closing drawers, opening drawers, and picking up objects, respectively. And the

corresponding numbers of success are 6, 0, and 4. (2) Throughout our experiments, we

observe preliminary Sim2Real transfer capabilities, i.e., reasonable predictions for picking

up objects and manipulating drawers. Nonetheless, the complex real-world environments,

e.g., strict friction and sensory noise, still limit the performance of Sim2Real transfer to a

considerable extent.

142

APPENDIX B

MindAgent Details

B.1 Prompt Examples

We provide some examples of prompts for CuisineWorld. Figure B.1 shows an example

of the system prompt info. Figure B.2 shows an example of a partial demonstration.

Figure B.1: The MindAgent system prompt example

143

Figure B.2: The MindAgent system partial one-shot demo example

B.2 Prompt Engineering Details

Our initial approach began with a simple and generic prompt, designed to be as neutral

as possible. This baseline prompt was tested across all models, including GPT-4, Claude,

and other LFMs in our study. We observed that only GPT-4 and Claude were able to

generate reasonable planning responses with this initial prompt. Consequently, we refined

our prompt engineering efforts to better suit these two models, aiming to optimize their

performance and response quality.

For the other LFMs, we also attempted individual prompt engineering. However, these

efforts did not yield significant improvements in their responses compared to the initial

144

trial. After several rounds of testing and refinement, we concluded that further prompt

customization for these models did not result in notably better outcomes.

As a result, we decided to use a consistent prompt across all LFMs for the final

comparison. This decision was made to maintain uniformity in testing conditions, despite

the prompts being more closely tuned to GPT-4 and Claude. We believe this approach

offers a reasonable balance between fairness and practicality in evaluating the capabilities

of different LFMs under similar conditions.

B.3 LFM Settings

We perform experiments on CuisineWorld through OpenAI APIs and Anthropic APIs

(Anthropic, 2023). All GPT-4 (OpenAI, 2023) experiments employ the gpt-4-0613 model,

and all Chat-GPT (Ouyang et al., 2022) experiments employ gpt-3.5-turbo-0613. For the

Llama 2 (Touvron et al., 2023) experiments, we use the hugging face inference endpoints

Llama-2-70b-chat-hf. We set the temperature for all experiments to 0.1 following Wang

et al. (2023a). We report the average results over three episodes. These LFMs can be

accessed through publicly available APIs or huggingface endpoints. These APIs are for

public use. However, users should be aware of their licensing agreements before using

them.

B.3.1 Design Considerations

We adopted a centralized setting for the following reasons:

Token Limitation: In decentralized settings like ours, each agent needs to compile

a full system message which includes a distinct copy of recipes, rules, one-shot demo is

required, while in centralized setting we only need one system message to describe them,

which significantly reduces the total number of input tokens (within the input context) of

LFM and therefore make the framework more affordable.

145

Communication Overhead: Each agent needs to receive both their own state and

the states of the other agents, possibly in text, while in centralized setting there is no

communication among agents as other states are directly observable. This can also save

the cost on input tokens.

Save API Call: In decentralized setting, to generate one environment step, we need to

call API N times (N is the number of agents), while in centralized setting we only need

to call the API once and we will be able to obtain actions for all agents (as produced by

the centralized LFM dispatcher).

B.4 CuisineWorld Task Details

B.4.1 CuisineWorld Task Definitions

We follow prior work (Yao et al., 2023; Liu et al., 2023; Deng et al., 2023) to interactively

evaluate LFMs as planning agents. Overall, the interactive evaluation can be

formulated as a Markov Decision Process (S,A, T ,R,G), with state space S, action space

A (effectively indicating all the possible schedules that can be made at a single time

step), transition dynamics T , reward function R, and task instruction space G. Note

that, although there are multiple agents inside CuisineWorld that can be coordinated,

asmentioned above, we adopt a centralized planning scheme and thereby formulate our

game as a single-agent, fully-observable decision-making problem. Figure 1.2 illustrates

the state and action space as well as the possible tasks of our game.

State Space S: In a CuisineWorld virtual kitchen, there are two types of entities:

location and agent. For each entity, the game will provide a set of descriptions, and

the aggregated descriptions of all entities will be the state returned by the game. A

location can be storage, where one can obtain ingredients and dispense waste, a serving

table, onto which one should put the completed, or a cooking tool; e.g., pan or blender.

We offer up to two descriptions for each location: inside(location, items), indicating

146

Num. of
tools

Num. of
ings.

Num. of
steps

Max. mix
size

8

6

8

6

14

15

11

15

8

7

10

7

3

5

4

5

1 2 3 4

Figure B.3: Dish distribution over the number of tools and ingredients (ings.) involved,
cooking steps, and maximum mixture size as in the recipe.

what items (some ingredients, completed dishes, etc.) are now inside the location, and

occupy(location), suggesting location is now being used and cannot be touched; e.g.,

an activated blender. An agent is an entity that can be dispatched to complete the task,

and we provide up to three descriptions for each agent: at(location, agent), indicating

that agent is now at location, hold(agent, items), suggesting what items agent is

holding, and occupy(agent), implying agent is now operating a tool, e.g., chopping some

fruits, and will not respond to any dispatching command. The set of tool distributions

can be found in Figure B.3.

Action Space A: An action in CuisineWorld is a list of dispatching commands. Given

N agent entities, a total of N commands must be generated. The agent provides the

following commands (also tabulated in Table B.1):

1. goto(agent, location), to let agent move to location;

2. get(agent, location, item), to let agent get a specific item from location;

3. put(agent, location), to put whatever agent is holding into location;

4. activate(agent, location), to let agent turn on location if it is a cooking tool,

e.g.blender ;

147

Type Arguments Description

goto
agent

location
Move agent to
location

get
agent

location
(item)

agent obtain item
from location

put
agent

location
agent put everything
it holds to location

activate
agent

location
agent turn on
location

noop agent not dispatching agent

Table B.1: Action space in CuisineWorld.

5. noop(agent), to have agent perform no actions in this round of dispatching.

Note that, to avoid the possible confusion of multiple agents being dispatched to oper-

ate with the same location, the dispatcher also must properly order the dispatching

commands as they will be executed sequentially.

B.4.2 Implementing CuisineWorld

The implementation of CuisineWorld mostly follows the spirit of Overcooked!, a renowned

video game. Therefore, we refer to many of its game mechanisms while simplifying some

of them; e.g., we skip low-level control and assume all agent entities have access to all

location at any time. Specifically, we crawled the rules and recipes from the community-

contributed wiki4 of Overcooked!, streamlined them, and made necessary modifications,

ending up with the basic version of CuisineWorld comprising 10 types of location

(serving table, storage, and 8 different cooking tools), 27 types of ingredients, and 33

unique dishes. We grouped the dishes based on their difficulty (primarily based on the

number of cooking tools involved) to design and implement 12 game levels, which are

further categorized into 4 classes: entry, simple, intermediate, and advanced, with 3 levels

4Steam community wiki

148

https://steamcommunity.com/sharedfiles/filedetails/?id=1769729191

2-agent very simple simple intermediate advanced Avg.
level 0 level 1 level 7 level 2 level 4 level 8 level 3 level 9 level 10 level 5 level 11 level 12

GPT4 τint,(1) 18/54 18/56 12/31 14/34 12/30 3/30 10/26 7/20 7/23 6/23 6/21 10/36 0.318
GPT4 τint,(2) 18/31 17/34 10/23 13/26 12/22 9/22 10/17 8/11 6/12 5/13 4/14 8/21 0.486
GPT4 τint,(3) 18/25 19/25 10/17 16/18 11/18 6/16 11/13 6/8 7/10 8/10 9/9 8/17 0.709
GPT4 τint,(4) 18/18 18/19 12/12 11/14 11/12 7/11 12/12 8/8 9/9 6/7 8/9 11/12 0.912
GPT4 τint,(5) 18/18 17/17 12/12 11/13 11/13 9/9 11/11 4/5 7/7 8/8 8/8 9/12 0.937

CoS 0.727 0.706 0.682 0.687 0.664 0.504 0.764 0.725 0.701 0.661 0.692 0.559 0.673

Table B.2: 2 agents performance on different tasks

3-agent very simple simple intermediate advanced Average
level 0 level 1 level 7 level 2 level 4 level 8 level 3 level 9 level 10 level 5 level 11 level 12

GPT4 τint,(1) 21/55 24/55 16/33 17/33 9/28 6/32 12/25 5/20 8/21 7/22 7/22 9/26 0.368
GPT4 τint,(2) 20/31 25/33 11/22 4/24 13/24 7/21 14/20 9/12 9/13 7/14 8/14 10/23 0.549
GPT4 τint,(3) 22/25 21/26 17/17 11/20 9/17 4/15 13/14 8/8 12/12 7/7 9/10 10/16 0.791
GPT4 τint,(4) 22/22 20/21 14/14 9/13 7/10 6/10 10/10 6/7 10/10 5/8 7/8 11/13 0.846
GPT4 τint,(5) 20/20 15/16 11/12 10/14 10/11 8/9 12/12 6/6 8/8 5/5 8/8 6/10 0.914

CoS 0.781 0.778 0.780 0.528 0.600 0.455 0.822 0.771 0.815 0.689 0.733 0.570 0.694

Table B.3: 3 agents performance on different tasks

4-agent very simple simple intermediate advanced Average
level 0 level 1 level 7 level 2 level 4 level 8 level 3 level 9 level 10 level 5 level 11 level 12

GPT4 τint,(1) 22/54 18/55 17/34 13/34 8/28 9/33 16/27 5/20 8/23 5/22 8/22 8/35 0.349
GPT4 τint,(2) 24/32 21/33 14/24 14/25 12/24 11/22 16/19 7/12 9/15 7/14 6/12 12/23 0.590
GPT4 τint,(3) 23/25 23/26 13/18 11/19 10/17 11/17 15/17 8/9 11/11 7/8 10/11 9/17 0.785
GPT4 τint,(4) 22/22 21/22 14/14 7/15 10/13 10/12 12/13 9/9 10/10 6/7 8/8 9/13 0.875
GPT4 τint,(5) 14/18 20/20 14/14 7/13 9/11 7/8 12/12 5/5 7/7 6/6 3/5 7/10 0.859

CoS 0.771 0.761 0.761 0.505 0.592 0.626 0.848 0.744 0.790 0.692 0.675 0.534 0.692

Table B.4: 4 agents performance on different tasks

each. Note that the recipes, dishes, and levels can be easily extended to incorporate more

challenging tasks.

B.4.3 Task Graph Visualization

In CuisineWorld, we provide tasks of different complexities to holistically evaluate the

multi-agent system’s performance. Additionally, the environment is highly customizable

and extendable. Users only need only modify the JSON files to add more tasks or modify

existing tasks. We visualize different CuisineWorld task graphs in Figure B.4 through

Figure B.16. The dish distribution is shown in Figure B.3.

149

2 agent 3 agent 4 agent

GPT-4 Claude-2 LLaMA ChatGPT GPT-4 Claude-2 LLaMA ChatGPT GPT-4 Claude-2 LLaMA ChatGPT

τint,(1) 10/26 3/24 0 0/24 12/25 5/26 0 0/24 16/27 9/25 0 0/24
τint,(2) 10/17 3/16 0 0/15 14/20 4/16 0 0/15 16/19 4/15 0 0/15
τint,(3) 11/18 3/12 0 0/12 13/14 3/12 0 0/12 15/17 4/12 0 0/12
τint,(4) 11/13 3/9 0 0/9 10/10 5/11 0 0/9 12/13 6/11 0 0/9
τint,(5) 11/11 4/6 0 0/6 12/12 5/7 0 0/6 12/12 6/7 0 0/6
CoS 0.686 0.3125 0 0 0.822 0.372 0 0 0.848 0.473 0 0

Table B.5: Performance of other LFMs on Level 3

2 agent GPT-4 GPT-4 w/ few-step GPT-4 w/o inference knowledge GPT-4 w/o feedback

τint,(1) 10/26 8/26 8/25 4/25
τint,(2) 10/17 11/19 9/17 4/17
τint,(3) 11/13 11/13 10/12 4/12
τint,(4) 12/12 9/11 8/9 1/9
τint,(5) 11/11 10/10 9/9 5/7
CoS 0.764 0.710 0.714 0.311

Table B.6: Additional ablation results

level_3 4agent using 4agent demo 4agent using 2agent demo 3agent using 3agent demo 3agent using 2agent demo

GPT4 τint,(1) 16/27 14/27 12/25 11/25
GPT4 τint,(2) 16/19 16/20 14/20 11/19
GPT4 τint,(3) 15/17 15/16 13/14 12/14
GPT4 τint,(4) 12/13 13/13 10/10 12/12
GPT4 τint,(5) 12/12 12/12 12/12 11/11
CoS 0.848 0.851 0.822 0.775

Table B.7: Using different numbers of agents demos

B.5 Additional Results in CuisineWorld

Table B.2 through Table B.7 report additional performance results for several different

numbers of agents and task complexity levels, performance of other LFMs, and additional

ablation results. Table B.8 shows the results of using a centralized PPO agent comparing

against our method using heavily engineered dense rewards.

B.5.1 Comparison Between CuisineWorld and Related Benchmarks

Table B.9 compares CuisineWorld against related benchmarks along the following criteria:

• Multi-task: The benchmark contains multiple different tasks.

• Object Interaction: Agents must manipulate or engage with different items or

environmental elements to achieve certain goals with irreversible actions.

150

model level 1 level 4

RL Performance 0.451 0.598
Ours(GPT4 τint(4)) 0.947 0.917

Table B.8: Performance of masked PPO with 2 agents in level 1 and level 4.

Benchmark Multi-task Object
Interaction

Tool
Use

Maximum
Agents

Collabo-
ration

Human
in-the-loop

Procedural
Level Generation

ALFWorld (Shridhar et al., 2020b) ✓ ✓ ✓ 1 ✗ ✗ ✗

WAH (Puig et al., 2020) ✓ ✓ ✗ 2 ✓ ✓ ✗

TextWorld (Côté et al., 2019) ✓ ✓ ✓ 1 ✗ ✗ ✓

Generative Agents (Park et al., 2023) ✓ ✓ ✓ 25 ✗ ✗ ✓

EMATP (Liu et al., 2022c) ✓ ✓ ✓ 2 ✓ ✗ ✗

Overcooked-AI (Carroll et al., 2019) ✗ ✓ ✓ 2 ✓ ✓ ✗

HandMeThat (Wan et al., 2022) ✓ ✓ ✓ 2 ✓ ✗ ✗

DialFRED (Gao et al., 2022) ✓ ✓ ✓ 2 ✓∗ ✗ ✗

TEACH (Padmakumar et al., 2022) ✓ ✓ ✓ 2 ✓∗ ✗ ✗

CerealBar (Suhr et al., 2019) ✗ ✗ ✗ 2 ✓ ✗ ✗

LIGHT (Urbanek et al., 2019) ✓ ✗ ✗ 1369 ✗ ✓ ✓

Diplomacy (Bakhtin et al., 2022) ✗ ✗ ✗ 7 ✓ ✓ ✗

CordialSync (Jain et al., 2020) ✗ ✓ ✗ 2 ✓ ✗ ✗

CoELA (Zhang et al., 2023b) ✓ ✓ ✗ 2 ✓ ✓ ✗

TooManyCooks (Wu et al., 2021) ✓ ✓ ✓ 2 ✓ ✓ ✗

CuisineWorld (Ours) ✓ ✓ ✓ 4+ ✓ ✓ ✓

Table B.9: Comparison between CuisineWorld and other related benchmarks. ∗: Notably,
even though multiple agents can be present, the second agent is limited to communicating
with the first agent. The second agent cannot interact with the environment in an active
gaming capacity.

• Tool Use: Completing tasks necessitates the use of specific tools by the agents.

• Maximum Agents: Denotes the upper limit of agents that can be present in any

experiment.

• Collaboration: Many tasks mandate teamwork and collaboration between different

agents.

• Human in-the-loop: The framework allows humans to join the game and collabo-

rate actively with the agents.

• Procedural Level Generation: There is flexibility in adding new tasks, making

the game dynamic and adaptable.

151

Figure B.4: Level 0 — Very Simple Salmon Meatcake

(a) Salmon Meatcake (b) Lamb Meatcake (c) Lobster Meatcake

Figure B.5: Level 1 — Very Simple

152

(a) Salmon Sashimi (b) Tuna Sashimi (c) Mixed Sashimi

Figure B.6: Level 2 — Simple

(a) Salmon Sushi (b) Tuna Sushi

Figure B.7: Level 3 — Intermediate

153

(a) Tomato
Salad

(b) Lettuce
Salad (c) Tomato Lettuce Salad (d) Tomato Cucumber Salad

Figure B.8: Level 4 — Simple

(a) Tomato Pasta (b) Beef Pasta (c) Pork Pasta

Figure B.9: Level 5 — Advanced

154

(a) Pepperoni Pizza (b) Hawaiian Pizza (c) Chicken Pizza

Figure B.10: Level 6 — Unused

(a) Onion Potato Carrot
Soup (b) Onion Potato Leek Soup (c) Onion Broccoli Cheese Soup

Figure B.11: Level 7 — Very Simple

155

(a) Beef Dumpling (b) Pork Dumpling (c) Salmon Dumpling

Figure B.12: Level 8 — Simple

(a) Cheeseburger (b) MaxJr (c) Hopper

Figure B.13: Level 9 — Intermediate

156

(a) Burrito de Pastor (b) Burrito de Pollo (c) Burrito de Asada

Figure B.14: Level 10 — Intermediate

(a) Burrito de Pastor (b) Burrito de Pollo (c) Burrito de Asada

(d) Salmon Sushi (e) Tuna Sushi

Figure B.15: Level 11 — Advanced

157

(a) Potato Salad (b) French Fries (c) Smashed Potato

Figure B.16: Level 12 — Advanced

158

Compared to other benchmarks, such as (Wu et al., 2021; Carroll et al., 2019), we

have the following differences:

• Enhanced Kitchen Layouts: We have diversified the layout of kitchens by

incorporating a wider range of tools (both in types and quantities) and ingredients.

This approach differs from that of Wu et al. (2021) and Carroll et al. (2019), where

the emphasis is not on the variety of kitchen tools and ingredients. For example, in

(Carroll et al., 2019), there are only two types of ingredients and two types of tools.

In (Wu et al., 2021), there are two types of ingredients, and two types of tools. In

comparision, there are 27 unique ingredients, and 10 tools in CuisineWorld.

• Complex Task Design: Our benchmark includes a broader spectrum of recipes,

varying significantly in difficulty levels. This variation is not just in terms of the

number of tools and ingredients required but also in the intermediate steps involved

in each recipe. Refer to Figure B.13 for a detailed illustration. This aspect of task

complexity, particularly in the context of high-level planning, is not extensively

explored in (Carroll et al., 2019) and (Wu et al., 2021). In (Wu et al., 2021; Carroll

et al., 2019) there are very limited number of dishes, 1 and 3 respectively. However,

in CuisineWorld, there are 33 unique dishes.

• Multi-Dish Episodes and Collaborative Strategy Assessment: We require

agents to complete multiple dishes within a single episode, with the types of dishes

varying to challenge and assess the collaborative strategies of the agents. Our level

design ensures that there are shared intermediate steps among the types of dishes

in a single episode. The system is tasked with multiple different goals at the same

time. This approach allows us to use metrics like ‘Collaborative Score’ (CoS) to

evaluate how agents collaborate to achieve higher dish throughput. This dynamic

aspect of collaboration, especially in the context of dish expiration and shared tasks,

offers a new dimension to the study of multi-agent cooperation, which is distinct

from the environments in (Carroll et al., 2019) and (Wu et al., 2021). In (Carroll

et al., 2019) the goal is to finish as many dishes as possible in a limited amount of

159

M
u
lt

i-
ag

en
t

H
u
m

an
-a

ge
nt

V
R

In
te

ra
ct

io
n

Figure B.17: (Top) A multi-agent collaboration example in CuisineWorld; the three
agents are preparing a mixed juice together. (Middle) A human player as the head chef
instructing the agents to cook mixed juice. (Bottom) A human player collaborating with
collaborative agents in VR.

time. In (Wu et al., 2021), the goal is to finish one dish in the least amount of time.

Both of them do not consider the density of the tasks (interval between dish orders

coming to the kitchen) and its effect on coordination. As we mentioned earlier,

this concpet (changing density of the tasks and measuring collaboration proficiency

upon it) is at heart of CuisineWorld and our CoS metric, and it has demonstrated

its effectiveness of benchmarking collaboration between LFMs and human-NPCs

(as indicated in the abstract).

B.5.2 Visualizing CuisineWorld

To implement CuisineWorld into a real-world game system, we built on top of the work of

Gao et al. (2020). In our game, as visually depicted in Figure B.17, players are given the

160

opportunity to engage in collaborative interactions with NPCs. This introduces a unique

dynamic to the gameplay, enabling users to experience a more immersive cooperative

environment. Additionally, the game’s interface is versatile, providing players multiple

ways to interact within the game world. They can either use a standard keyboard setup,

which is conventional and likely familiar to most PC gamers, or immerse themselves even

further using a Virtual Reality (VR) device. This VR functionality ensures a more tactile

and realistic interaction, as players can physically move, gesture, and engage with the

NPCs and other in-game elements in the 3D environment.

Unlike the step-by-step nature of the text version, the real-time virtual game operates

continuously. To align the LFM’s processing with this dynamic environment, we imple-

mented a system where the LFM checks user actions at regular intervals during the game

loop, referred to as “time steps”. These time steps are defined as 0.1 seconds. Then we

can ensure LFM can respond to user actions in a timely manner, matching the pace of

the real-time game.

In the real-time version, human players control their agents directly through keyboard

inputs, resulting in low-level actions like moving or picking up items. However, the

LFM-agent operates on a higher, more temporally-extended level of atomic actions. To

bridge this gap, when the LFM checks user actions, it doesn’t just read the keyboard

inputs. Instead, it assesses changes in the high-level game state, such as the agent’s

location, and the status of tools and ingredients. This assessment allows the LFM to

infer the temporally extended actions that align with its text-based decision-making

process. Implementing this required a simple inverse dynamics model through checking

state changes to translate low-level actions into high-level atomic actions, facilitating a

seamless transition from the text game to the real-time virtual game. For ‘GoTo’ action,

we utilized the A* pathfinding algorithm, integrated into the Unreal Engine, to facilitate

this movement.

161

B.6 Additional CuisineWorld Details

B.6.1 Task Interval Computation

In our approach, we initially construct a task graph delineating subgoals, which serves as

the foundation for our computations. We then apply breadth-first search in a single-agent

context to determine the optimal task sequence. This sequence is a key component for

calculating task intervals in multi-agent collaboration scenarios. For each tool requiring

activation, we incorporate its activation wait time into the respective task intervals.

Additionally, for each new connection in the task graph, we increase the total task interval

time by tripling the edge time. We assume each subgoal requires at least, goto, get and

put 3 actions. The cumulative task interval is subsequently adjusted by a scaling factor

of 0.3 and the variable τ . We pick the value tau ranging from 1.0, 1.5, 2.0, 2.5 and 3.0 to

represent different task difficulties. This process enables us to effectively compute task

intervals tailored for multi-agent collaborative environments of varied difficulties.

B.6.2 Common Failure Modes

Through replaying actions, we have identified the following common failure modes for

GPT-4 agents: 1) Inability to Prioritize Task Order: Occasionally, the LFM overlooks

the task at the top of the queue, leading to the expiration of that task. 2) Difficulty

Understanding the ’Occupy()’ State Instruction: In CuisineWorld, agents must wait for

varying timesteps before cooking is completed, with the wait time dependent on the

specific tool used. If agents attempt to remove ingredients immediately after activating

a tool, the action fails. Instead of continuing to wait, the agents may shift their focus

to other tasks, which slows down overall progress. 3) Challenges in Allocating Agents

to Correct Subgoals: When multiple dishes are being prepared concurrently, the agents

often struggle to allocate themselves effectively to the appropriate subgoals.

162

B.6.3 Rational for CoS Metric

• In the kitchen scenario as demonstrated in CuisineWorld, hypothetically, when

the dish order come very rarely (with a large interval), no matter if there is any

collaboration, high success rate can easily attained as there is sufficient time.

• However, as we reduce the interval, more and more dish order are flooding in. If the

agents (and humans) are able to collaborate well, the productivity will be high, or

namely, they can still manage to maintain a decent success rate. On the contrary,

teams with poor collaborate will likely suffer from a substantial drop on success rate

as the interval gets smaller. The same collapse will ultimately happen to a good

collaborative team too when the interval gets too small, but good collaboration can

always sustain longer.

• Therefore, it makes sense to use the averaged success rate across different intervals

as an indicator of the collaboration proficiency. More importantly, such metric asks

for a game setting where the dish order will keep coming, in a changing interval,

which also aligns with the original Overcooked! game experiences.

B.7 Minecraft

B.7.1 Transfer to Minecraft

To transfer MindAgent from CuisineWorld to Minecraft requires modifications on both

games and the model. On the LFM side, we update the background knowledge of

the model. This included: 1) Action Space Explanation: We provided the LFM with

detailed information about the possible actions and interactions within the Minecraft

environment. 2) Recipe and Tool Definitions: We also included definitions of recipes,

tools, and ingredients specific to Minecraft. We believe these modifications are reasonable

and necessary, as without these knowledge, it’s very difficult for model to operate in an

unknown environments. On the game development side, we dedicated efforts to: Text-to-

163

(a) Cooking chicken in Minecraft (b) Cooking mutton in Minecraft

(c) Cooking steak in Minecraft (d) Cooking porkchop in Minecraft

Figure B.18: Task visualization in Minecraft

Game Interaction Translation: We developed code to translate text-based interactions

and commands from the LFM into actionable inputs within the game environment. This

translation layer was key to bridging the gap between the LFM’s text-based outputs and

the game’s interactive elements.

B.7.2 Task Graphs

In Figure B.18 we visualize the task graphs for different tasks in Minecraft.

B.7.3 Gameplay Visualization

We visualize Minecraft gameplay in Figure B.19.

B.7.4 Action Details for Mindcraft

We define the following actions for the multi-agent system in our Minecraft game: 1)

goto(agent, location); 2) killMob(agent, mobType); 3) mineBlock(agent, blockType);

164

M
u
lt

i-
ag

en
t

H
u
m

an
-a

ge
nt

V
R

In
te

ra
ct

io
n

Figure B.19: (Top) A multi-agent collaboration example in Minecraft. At left Alex and
Steve are killing different animals and at right they are cooking meat in a furnace together.
(Middle) A human player instructing the agents to perform certain actions. (Bottom) A
human player collaborating with agents in VR.

4) putFuelFurnace(agent, fuelType), to put the item from agent’s inventory to the

furnace’s bottom slot. 5) putItemFurnace(agent, itemType), to put the item from

agent’s inventory to the furnace’s top slot; 6) takeOutFurnace(agent), take out the

cooked item from the furnace 7) putInChest(agent, itemType).

The state space in Minecraft contains the following: 1) nearby blocks for each agent,

2) nearby entities for each agent, 3) each agent’s inventory, 4) items inside the furnace, 5)

items inside the chest, and 6) the human player’s inventory if a human player is involved.

To ensure reproducibility, we modify the game mechanism. A killed mob will respawn

nearby, and a mined block will also respawn nearby.

165

(a) Human evaluation interface welcome screen (b) Human evaluation example

(c) Human evaluation example (d) Human instructions

Figure B.20: Human evaluation interface welcome screen (a), evaluation examples (b)–(c),
and instructions to the human participants (d).

166

B.8 Additional Information on Human Evaluation

B.8.1 Human Data Collection

Measurement In the background, we collect the numbers of failed and successful tasks

during a participant’s interaction with the game system. Additionally, we record the

entire action history of players and intelligent agents. After each episode, the participants

must complete a survey about their engagement with the system on a 5-point Likert

chart. Our objective measure is intended to evaluate the human-AI teaming performance,

and the subjective measure is designed to evaluate users’ perceptions of the system. The

human evaluation interface can be found in Section B.8.

B.8.2 Human Evaluation Interface

We use the human evaluation interface to test the human’s perception of collaborative

agents. This gives us a more controlled environment so users’ perception of collaborative

agents does not depend on their ability to control the keyboard and mouse, and their

perception of collaborative agents does not depend on the latency and rate limits of

GPT-4. Figure B.20 shows the interface welcome screen, human evaluation examples, and

examples of human instructions.

B.8.3 Human Evaluation

We list our human evaluation questionnaire platform in the Figure B.21.

167

Figure B.21: Human evaluation questionnaire

168

REFERENCES

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the Twenty-First International Conference on Machine
Learning, page 1. 10

Agrawal, P., Carreira, J., and Malik, J. (2015). Learning to see by moving. In
Proceedings of the IEEE International Conference on Computer Vision. 21

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O., David, B., Finn, C., Fu,
C., Gopalakrishnan, K., Hausman, K., Herzog, A., Ho, D., Hsu, J., Ibarz, J., Ichter,
B., Irpan, A., Jang, E., Ruano, R. J., Jeffrey, K., Jesmonth, S., Joshi, N., Julian, R.,
Kalashnikov, D., Kuang, Y., Lee, K.-H., Levine, S., Lu, Y., Luu, L., Parada, C., Pastor,
P., Quiambao, J., Rao, K., Rettinghouse, J., Reyes, D., Sermanet, P., Sievers, N., Tan,
C., Toshev, A., Vanhoucke, V., Xia, F., Xiao, T., Xu, P., Xu, S., Yan, M., and Zeng, A.
(2022). Do as I can and not as I say: Grounding language in robotic affordances. In
arXiv preprint arXiv:2204.01691. 18

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sünderhauf, N., Reid, I.,
Gould, S., and Van Den Hengel, A. (2018). Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Conference on
Computer Vision and Pattern Recognition (CVPR). 50, 89

Anjomshoae, S., Najjar, A., Calvaresi, D., and Främling, K. (2019). Explainable
agents and robots: Results from a systematic literature review. In Proceedings of the
18th International Conference on Autonomous Agents and MultiAgent Systems, pages
1078–1088. International Foundation for Autonomous Agents and Multiagent Systems.
15

Anthropic (2023). Introducing Claude. https://www.anthropic.com/index/
introducing-claude. Accessed: 2023-12-15. 145

Baker, B., Akkaya, I., Zhokov, P., Huizinga, J., Tang, J., Ecoffet, A., Houghton, B.,
Sampedro, R., and Clune, J. (2022). Video pretraining (VPT): Learning to act by
watching unlabeled online videos. Advances in Neural Information Processing Systems,
35:24639–24654. 18

Bakhtin, A., Brown, N., Dinan, E., Farina, G., Flaherty, C., Fried, D., Goff, A., Gray,
J., Hu, H., et al. (2022). Human-level play in the game of diplomacy by combining
language models with strategic reasoning. Science, 378(6624):1067–1074. 18, 151

Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., and Mordatch, I. (2017). Emergent
complexity via multi-agent competition. arXiv preprint arXiv:1710.03748. 70

Batra, D., Chang, A. X., Chernova, S., Davison, A. J., Deng, J., Koltun, V., Levine, S.,
Malik, J., Mordatch, I., Mottaghi, R., et al. (2020). Rearrangement: A challenge for
embodied AI. arXiv preprint arXiv:2011.01975. 50

169

https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H.,
Lefrancq, A., Green, S., Valdés, V., Sadik, A., Schrittwieser, J., Anderson, K., York,
S., Cant, M., Cain, A., Bolton, A., Gaffney, S., King, H., Hassabis, D., Legg, S., and
Petersen, S. (2016). DeepMind lab. arXiv preprint arXiv:1612.03801, pages 1–11. 8, 9

Belousov, I. R., Chellali, R., and Clapworthy, G. J. (2001). Virtual reality tools
for internet robotics. Proceedings - IEEE International Conference on Robotics and
Automation. 10

Brock, A., Donahue, J., and Simonyan, K. (2018). Large scale GAN training for high
fidelity natural image synthesis. CoRR, abs/1809.11096. 20

Brodeur, S., Perez, E., Anand, A., Golemo, F., Celotti, L., Strub, F., Rouat, J.,
Larochelle, H., and Courville, A. (2017). Home: A household multimodal environment.
arXiv preprint arXiv:1711.11017. 9, 31

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Chen, X., Choromanski, K., Ding,
T., Driess, D., Dubey, A., Finn, C., Florence, P., Fu, C., Arenas, M. G., Gopalakrishnan,
K., Han, K., Hausman, K., Herzog, A., Hsu, J., Ichter, B., Irpan, A., Joshi, N., Julian,
R., Kalashnikov, D., Kuang, Y., Leal, I., Lee, L., Lee, T.-W. E., Levine, S., Lu, Y.,
Michalewski, H., Mordatch, I., Pertsch, K., Rao, K., Reymann, K., Ryoo, M., Salazar,
G., Sanketi, P., Sermanet, P., Singh, J., Singh, A., Soricut, R., Tran, H., Vanhoucke,
V., Vuong, Q., Wahid, A., Welker, S., Wohlhart, P., Wu, J., Xia, F., Xiao, T., Xu, P.,
Xu, S., Yu, T., and Zitkovich, B. (2023). RT-2: Vision-language-action models transfer
web knowledge to robotic control. In arXiv preprint arXiv:2307.15818. 124

Brohan, A., Chebotar, Y., Finn, C., Hausman, K., Herzog, A., Ho, D., Ibarz, J., Irpan,
A., Jang, E., Julian, R., et al. (2022). Do as I can, not as I say: Grounding language in
robotic affordances. In Conference on Robot Learning (CoRL). 12

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot
learners. In Advances in Neural Information Processing Systems (NeurIPS). 106

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P.,
Lee, Y. T., Li, Y., Lundberg, S., et al. (2023). Sparks of artificial general intelligence:
Early experiments with GPT-4. arXiv preprint arXiv:2303.12712. 105

Cao, Z., Simon, T., Wei, S.-E., and Sheikh, Y. (2017). Realtime multi-person 2D
pose estimation using part affinity fields. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 7291–7299. 47

Carreira-Perpinan, M. A. and Hinton, G. E. (2005). On contrastive divergence learning.
In Aistats, volume 10, pages 33–40. Citeseer. 78

Carroll, M., Shah, R., Ho, M. K., Griffiths, T. L., Seshia, S. A., Abbeel, P., and Dragan,
A. (2019). On the utility of learning about humans for human-AI coordination. arXiv
preprint arXiv:1910.05789. 18, 151, 159

170

Chang, A., Dai, A., Funkhouser, T., Halber, M., Niebner, M., Savva, M., Song, S.,
Zeng, A., and Zhang, Y. (2018). Matterport3D: Learning from RGB-D data in indoor
environments. International Conference on 3D Vision (3DV 2017), pages 667–676. 8,
11

Chen, B., Song, S., Lipson, H., and Vondrick, C. (2020). Visual hide and seek. In
Artificial Life Conference Proceedings, pages 645–655. MIT Press. 15

Chen, C., Schissler, C., Garg, S., Kobernik, P., Clegg, A., Calamia, P., Batra, D.,
Robinson, P. W., and Grauman, K. (2022a). SoundSpaces 2.0: A simulation platform
for visual-acoustic learning. In Advances in Neural Information Processing Systems
Datasets and Benchmarks Track (NeurIPS Datasets and Benchmarks). 11

Chen, Y., Yang, Y., Wu, T., Wang, S., Feng, X., Jiang, J., McAleer, S. M., Dong, H.,
Lu, Z., and Zhu, S.-C. (2022b). Towards human-level bimanual dexterous manipulation
with reinforcement learning. In Advances in Neural Information Processing Systems
Datasets and Benchmarks Track (NeurIPS Datasets and Benchmarks). 16

Chen, Z. (2012). Object-based attention: A tutorial review. Attention, Perception, and
Psychophysics, 74(5):784–802. 40

Cheng, C.-A., Mukadam, M., Issac, J., Birchfield, S., Fox, D., Boots, B., and Ratliff, N.
(2020). RMPflow: A computational graph for automatic motion policy generation. In
Algorithmic Foundations of Robotics XIII: Proceedings of the 13th Workshop on the
Algorithmic Foundations of Robotics 13, pages 441–457. Springer. 57

Chou, W.-L. and Yeh, S.-L. (2012). Object-based attention occurs regardless of object
awareness. Psychonomic Bulletin and Review, 19(2):225–231. 40

Côté, M.-A., Kádár, A., Yuan, X., Kybartas, B., Barnes, T., Fine, E., Moore, J.,
Hausknecht, M., El Asri, L., Adada, M., et al. (2019). Textworld: A learning en-
vironment for text-based games. In Computer Games: 7th Workshop, CGW 2018,
Held in Conjunction with the 27th International Conference on Artificial Intelligence,
IJCAI 2018, Stockholm, Sweden, July 13, 2018, Revised Selected Papers 7, pages 41–75.
Springer. 151

Coumans, E. and Bai, Y. (2016). Pybullet: A python module for physics simulation
for games, robotics and machine learning. GitHub repository. 8

Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., and Batra, D. (2018). Embodied
question answering. In Conference on Computer Vision and Pattern Recognition
(CVPR). 51

de Giorgio, A., Romero, M., Onori, M., and Wang, L. (2017). Human-machine collabo-
ration in virtual reality for adaptive production engineering. Procedia Manufacturing.
10

171

Deitke, M., Batra, D., Bisk, Y., Campari, T., Chang, A. X., Chaplot, D. S., Chen,
C., D’Arpino, C. P., Ehsani, K., Farhadi, A., et al. (2022a). Retrospectives on the
embodied AI workshop. arXiv preprint arXiv:2210.06849. 50

Deitke, M., Han, W., Herrasti, A., Kembhavi, A., Kolve, E., Mottaghi, R., Salvador,
J., Schwenk, D., VanderBilt, E., Wallingford, M., et al. (2020). RoboTHOR: An open
simulation-to-real embodied AI platform. In Conference on Computer Vision and
Pattern Recognition (CVPR). 50

Deitke, M., VanderBilt, E., Herrasti, A., Weihs, L., Salvador, J., Ehsani, K., Han, W.,
Kolve, E., Farhadi, A., Kembhavi, A., et al. (2022b). ProcTHOR: Large-scale embodied
AI using procedural generation. In Advances in Neural Information Processing Systems
(NeurIPS). 11

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255. 1, 8, 10

Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang, B., Sun, H., and Su, Y. (2023).
Mind2Web: Towards a generalist agent for the web. arXiv preprint arXiv:2306.06070.
146

Deng, Y., Guo, D., Guo, X., Zhang, N., Liu, H., and Sun, F. (2020). MQA: Answering
the question via robotic manipulation. In Robotics: Science and Systems (RSS). 12, 17

Dennett, D. C. (1989). The Intentional Stance. MIT press. 70

Devin, S. and Alami, R. (2016). An implemented theory of mind to improve human-
robot shared plans execution. In 2016 11th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 319–326. IEEE. 15

Di, Y., Zhang, R., Lou, Z., Manhardt, F., Ji, X., Navab, N., and Tombari, F. (2022).
GPV-Pose: Category-level object pose estimation via geometry-guided point-wise
voting. In Conference on Computer Vision and Pattern Recognition (CVPR). 13

Dragan, A. and Srinivasa, S. (2013). Generating legible motion. In Proceedings of
Robotics: Science and Systems (RSS ’13). Carnegie Mellon University. 15

Driess, D., Ha, J.-S., and Toussaint, M. (2020). Deep visual reasoning: Learning to
predict action sequences for task and motion planning from an initial scene image. In
Robotics: Science and Systems 2020 (RSS 2020). RSS Foundation. 16

Driess, D., Ha, J.-S., and Toussaint, M. (2021). Learning to solve sequential physical
reasoning problems from a scene image. The International Journal of Robotics Research
(IJRR). 16

Driess, D., Xia, F., Sajjadi, M. S. M., Lynch, C., Chowdhery, A., Ichter, B., Wahid, A.,
Tompson, J., Vuong, Q., Yu, T., Huang, W., Chebotar, Y., Sermanet, P., Duckworth, D.,
Levine, S., Vanhoucke, V., Hausman, K., Toussaint, M., Greff, K., Zeng, A., Mordatch,

172

I., and Florence, P. (2023). PaLM-E: An embodied multimodal language model. In
arXiv preprint arXiv:2303.03378. 12

Duan, J., Yu, S., Tan, H. L., Zhu, H., and Tan, C. (2022). A survey of embodied
AI: From simulators to research tasks. IEEE Transactions on Emerging Topics in
Computational Intelligence. 50

Ehsani, K., Han, W., Herrasti, A., VanderBilt, E., Weihs, L., Kolve, E., Kembhavi, A.,
and Mottaghi, R. (2021). ManipulaTHOR: A framework for visual object manipulation.
In Conference on Computer Vision and Pattern Recognition (CVPR). 11, 51

Fan, L., Zhu, Y., Zhu, J., Liu, Z., Zeng, O., Gupta, A., Creus-Costa, J., Savarese,
S., and Fei-Fei, L. (2018). Surreal: Open-source reinforcement learning framework
and robot manipulation benchmark. In Conference on robot learning, pages 767–782.
PMLR. 8, 9

Fathi, A. and Rehg, J. M. (2013). Modeling actions through state changes. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. 21

Feng, Y., Wu, F., Shao, X., Wang, Y., and Zhou, X. (2018). Joint 3D face reconstruction
and dense alignment with position map regression network. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 534–551. 46

Fu, H., Cai, B., Gao, L., Zhang, L.-X., Wang, J., Li, C., Zeng, Q., Sun, C., Jia, R.,
Zhao, B., et al. (2021). 3D-FRONT: 3D furnished rooms with layouts and semantics.
In International Conference on Computer Vision (ICCV). 52, 53

Fu, H., Xu, W., Xue, H., Yang, H., Ye, R., Huang, Y., Xue, Z., Wang, Y., and Lu,
C. (2022). RFUniverse: A physics-based action-centric interactive environment for
everyday household tasks. arXiv preprint arXiv:2202.00199. 11

Gan, C., Schwartz, J., Alter, S., Mrowca, D., Schrimpf, M., Traer, J., De Freitas, J.,
Kubilius, J., Bhandwaldar, A., Haber, N., et al. (2021). ThreeDWorld: A platform for
interactive multi-modal physical simulation. In Advances in Neural Information Pro-
cessing Systems Datasets and Benchmarks Track (NeurIPS Datasets and Benchmarks).
11, 13

Gan, C., Zhou, S., Schwartz, J., Alter, S., Bhandwaldar, A., Gutfreund, D., Yamins,
D. L., DiCarlo, J. J., McDermott, J., Torralba, A., et al. (2022). The ThreeDWorld
transport challenge: A visually guided task-and-motion planning benchmark towards
physically realistic embodied AI. In International Conference on Robotics and Automa-
tion (ICRA). IEEE. 13

Gao, Q., Doering, M., Yang, S., and Chai, J. (2016). Physical causality of action
verbs in grounded language understanding. In Annual Meeting of the Association for
Computational Linguistics (ACL). 50

173

Gao, X., Gao, Q., Gong, R., Lin, K., Thattai, G., and Sukhatme, G. S. (2022).
DialFRED: Dialogue-enabled agents for embodied instruction following. IEEE Robotics
and Automation Letters (RA-L). 50, 89, 151

Gao, X., Gong, R., Shu, T., Xie, X., Wang, S., and Zhu, S.-C. (2019). VRKitchen:
An interactive 3D virtual environment for task-oriented learning. arXiv preprint
arXiv:1903.05757. 6, 11

Gao, X., Gong, R., Zhao, Y., Wang, S., Shu, T., and Zhu, S.-C. (2020). Joint mind
modeling for explanation generation in complex human-robot collaborative tasks. In
2020 29th IEEE international conference on robot and human interactive communication
(RO-MAN), pages 1119–1126. IEEE. 7, 160

Gao, Y., Liu, F., Wang, L., Lian, Z., Wang, W., Li, S., Wang, X., Zeng, X., Wang, R.,
Wang, J., et al. (2023). Towards effective and interpretable human-agent collaboration
in MOBA games: A communication perspective. arXiv preprint arXiv:2304.11632. 17

Geng, H., Li, Z., Geng, Y., Chen, J., Dong, H., and Wang, H. (2023). PartManip: Learn-
ing cross-category generalizable part manipulation policy from point cloud observations.
In Conference on Computer Vision and Pattern Recognition (CVPR). 50

Geng, Y., An, B., Geng, H., Chen, Y., Yang, Y., and Dong, H. (2022). End-to-end
affordance learning for robotic manipulation. arXiv preprint arXiv:2209.12941. 50

Giusti, A., Guzzi, J., Cireşan, D. C., He, F., Rodríguez, J. P., Fontana, F., Faessler, M.,
Forster, C., Schmidhuber, J., Caro, G. D., Scaramuzza, D., and Gambardella, L. M.
(2016). A machine learning approach to visual perception of forest trails for mobile
robots. IEEE Robotics and Automation Letters, 1(2):661–667. 23

Gong, R., Gao, X., Gao, Q., Shakiah, S., Thattai, G., and Sukhatme, G. S. (2023a).
LEMMA: Learning language-conditioned multi-robot manipulation. IEEE Robotics
and Automation Letters. 7

Gong, R., Huang, J., Zhao, Y., Geng, H., Gao, X., Wu, Q., Ai, W., Zhou, Z., Terzopoulos,
D., Zhu, S.-C., Jia, B., and Huang, S. (2023b). ARNOLD: A benchmark for language-
grounded task learning with continuous states in realistic 3D scenes. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 20483–20495. 7,
54, 56, 57, 58, 59, 61, 62, 67

Gong, R., Huang, Q., Ma, X., Vo, H., Durante, Z., Noda, Y., Zheng, Z., Zhu, S.-C.,
Terzopoulos, D., Fei-Fei, L., et al. (2023c). MindAgent: Emergent gaming interaction.
arXiv preprint arXiv:2309.09971. 7

Gong, Z. and Zhang, Y. (2018). Behavior explanation as intention signaling in human-
robot teaming. In 2018 27th IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN), pages 1005–1011. IEEE. 15

174

Gu, J., Chaplot, D. S., Su, H., and Malik, J. (2022). Multi-skill mobile manipulation for
object rearrangement. International Conference on Learning Representations (ICLR).
50

Gu, J., Xiang, F., Li, X., Ling, Z., Liu, X., Mu, T., Tang, Y., Tao, S., Wei, X., Yao, Y.,
et al. (2023). ManiSkill2: A unified benchmark for generalizable manipulation skills.
In International Conference on Learning Representations (ICLR). 12, 13, 57, 64

Gunning, D. (2017). Explainable artificial intelligence (XAI). Defense Advanced
Research Projects Agency (DARPA), 2nd Web, 2. 70

Hadfield-Menell, D., Russell, S. J., Abbeel, P., and Dragan, A. (2016). Cooperative
inverse reinforcement learning. In Advances in Neural Information Processing Systems,
pages 3909–3917. 14

Haidu, A., Kohlsdorf, D., and Beetz, M. (2015). Learning action failure models from
interactive physics-based simulations. In IEEE International Conference on Intelligent
Robots and Systems. 10, 21

Hawkins, K. P., Bansal, S., Vo, N. N., and Bobick, A. F. (2014). Anticipating human
actions for collaboration in the presence of task and sensor uncertainty. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 2215–2222. IEEE.
14

He, K., Gkioxari, G., Dollár, P., and Girshick, R. B. (2017). Mask R-CNN. CoRR,
abs/1703.06870. 20

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778. 47

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Sendonaris, A.,
Dulac-Arnold, G., Osband, I., Agapiou, J., Leibo, J. Z., and Gruslys, A. (2017). Learn-
ing from demonstrations for real world reinforcement learning. CoRR, abs/1704.03732.
23

Hong, Y., Wang, Z., Wu, Q., and Gould, S. (2022). Bridging the gap between learning in
discrete and continuous environments for vision-and-language navigation. In Conference
on Computer Vision and Pattern Recognition (CVPR). 51

Huang, S., Wang, Z., Li, P., Jia, B., Liu, T., Zhu, Y., Liang, W., and Zhu, S.-C. (2023).
Diffusion-based generation, optimization, and planning in 3D scenes. In Conference on
Computer Vision and Pattern Recognition (CVPR). 12

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. (2022a). Language models as zero-
shot planners: Extracting actionable knowledge for embodied agents. In Chaudhuri,
K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings
of the 39th International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 9118–9147. PMLR. 18

175

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence, P., Zeng, A., Tompson,
J., Mordatch, I., Chebotar, Y., et al. (2022b). Inner monologue: Embodied reasoning
through planning with language models. In Conference on Robot Learning (CoRL). 12,
18, 89

Isola, P., Lim, J. J., and Adelson, E. H. (2015). Discovering states and transformations
in image collections. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. 21

Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C., Ionescu, C., Ding, D., Koppula,
S., Zoran, D., Brock, A., Shelhamer, E., et al. (2022). Perceiver IO: A general
architecture for structured inputs and outputs. In International Conference on Learning
Representations (ICLR). 60

Jain, U., Weihs, L., Kolve, E., Farhadi, A., Lazebnik, S., Kembhavi, A., and Schwing,
A. (2020). A cordial sync: Going beyond marginal policies for multi-agent embodied
tasks. In European Conference on Computer Vision (ECCV). 15, 50, 151

Jain, U., Weihs, L., Kolve, E., Rastegari, M., Lazebnik, S., Farhadi, A., Schwing, A. G.,
and Kembhavi, A. (2019). Two body problem: Collaborative visual task completion.
In Conference on Computer Vision and Pattern Recognition (CVPR). 15, 17, 50

James, S., Ma, Z., Arrojo, D. R., and Davison, A. J. (2020). RLBench: The robot
learning benchmark and learning environment. IEEE Robotics and Automation Letters
(RA-L). 11, 13

Jang, E., Irpan, A., Khansari, M., Kappler, D., Ebert, F., Lynch, C., Levine, S., and
Finn, C. (2021). BC-z: Zero-shot task generalization with robotic imitation learning.
In Conference on Robot Learning (CoRL). 139

Jiang, Y., Gupta, A., Zhang, Z., Wang, G., Dou, Y., Chen, Y., Fei-Fei, L., Anandkumar,
A., Zhu, Y., and Fan, L. (2022). VIMA: General robot manipulation with multimodal
prompts. arXiv preprint arXiv:2210.03094. 12

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D. (2016). The Malmo platform
for artificial intelligence experimentation. IJCAI International Joint Conference on
Artificial Intelligence, 2016-Janua:4246–4247. 8, 9

Kamath, A., Singh, M., LeCun, Y., Synnaeve, G., Misra, I., and Carion, N. (2021).
MDETR-modulated detection for end-to-end multi-modal understanding. In Interna-
tional Conference on Computer Vision (ICCV). 50

Kawasaki, H., Nakayama, K., Mouri, T., and Ito, S. (2001). Virtual teaching based
on hand manipulability for multi-fingered robots. Proceedings 2001 ICRA. IEEE
International Conference on Robotics and Automation (Cat. No.01CH37164). 10

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and Jaskowski, W. (2017). ViZDoom:
A doom-based ai research platform for visual reinforcement learning. IEEE Conference
on Computatonal Intelligence and Games, CIG. 8, 9

176

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti, A., Gordon, D.,
Zhu, Y., Gupta, A., and Farhadi, A. (2017). AI2-THOR: An interactive 3D environment
for visual AI. arXiv preprint arXiv:1712.05474. 9, 11, 31, 33, 52, 54

Koppula, H. S., Gupta, R., and Saxena, A. (2013). Learning human activities and
object affordances from RGB-D videos. The International Journal of Robotics Research,
32(8):951–970. 10

Korsah, G. A., Stentz, A., and Dias, M. B. (2013). A comprehensive taxonomy for multi-
robot task allocation. The International Journal of Robotics Research, 32(12):1495–1512.
92

Krantz, J., Wijmans, E., Majumdar, A., Batra, D., and Lee, S. (2020). Beyond the
Nav-Graph: Vision-and-language navigation in continuous environments. In European
Conference on Computer Vision (ECCV). 51

Krizhevsky, A. and Hinton, G. E. (2012). ImageNet classification with deep convolu-
tional neural networks. In Neural Information Processing Systems. 20

Kumar, V. and Todorov, E. (2015). MuJoCo HAPTIX: A virtual reality system for
hand manipulation. In 2015 IEEE-RAS 15th International Conference on Humanoid
Robots (Humanoids). 51

Kwon, M., Huang, S. H., and Dragan, A. D. (2018). Expressing robot incapability.
In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot
Interaction, pages 87–95. 15

Langley, P., Meadows, B., Sridharan, M., and Choi, D. (2017). Explainable agency for
intelligent autonomous systems. In Twenty-Ninth IAAI Conference. 15

Lerer, A., Gross, S., and Fergus, R. (2016). Learning physical intuition of block towers
by example. In International Conference on Machine Learning, pages 430–438. PMLR.
10, 21

Lertkultanon, P. and Pham, Q.-C. (2018). A certified-complete bimanual manipulation
planner. IEEE Transactions on Automation Science and Engineering, 15(3):1355–1368.
16

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373. 70

Li, C., Xia, F., Martín-Martín, R., Lingelbach, M., Srivastava, S., Shen, B., Vainio,
K., Gokmen, C., Dharan, G., Jain, T., et al. (2021). iGibson 2.0: Object-centric
simulation for robot learning of everyday household tasks. In Conference on Robot
Learning (CoRL). 11, 50

Li, C., Zhang, R., Wong, J., Gokmen, C., Srivastava, S., Martín-Martín, R., Wang, C.,
Levine, G., Lingelbach, M., Sun, J., et al. (2022). BEHAVIOR-1K: A benchmark for
embodied AI with 1,000 everyday activities and realistic simulation. In Conference on
Robot Learning (CoRL). 11, 13

177

Li, G., Hammoud, H. A. A. K., Itani, H., Khizbullin, D., and Ghanem, B. (2023).
Camel: Communicative agents for “mind” exploration of large scale language model
society. arXiv preprint arXiv:2303.17760. 18

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B., Florence, P., and Zeng,
A. (2022). Code as policies: Language model programs for embodied control. In arXiv
preprint arXiv:2209.07753. 18, 105

Lin, J., Guo, X., Shao, J., Jiang, C., Zhu, Y., and Zhu, S.-C. (2016). A virtual
reality platform for dynamic human-scene interaction. In SIGGRAPH ASIA 2016
Virtual Reality Meets Physical Reality: Modelling and Simulating Virtual Humans and
Environments, page 11. ACM. 8

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer
vision, pages 2980–2988. 46, 47

Lin, X., Wang, Y., Olkin, J., and Held, D. (2020). SoftGym: Benchmarking deep
reinforcement learning for deformable object manipulation. In Conference on Robot
Learning (CoRL). 12, 13, 51

Liu, C., Hamrick, J. B., Fisac, J. F., Dragan, A. D., Hedrick, J. K., Sastry, S. S., and
Griffiths, T. L. (2016). Goal inference improves objective and perceived performance in
human-robot collaboration. In Proceedings of the 2016 International Conference on
Autonomous Agents and Multiagent Systems, pages 940–948. International Foundation
for Autonomous Agents and Multiagent Systems. 14

Liu, H., Zhang, Y., Si, W., Xie, X., Zhu, Y., and Zhu, S.-C. (2018). Interactive robot
knowledge patching using augmented reality. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 1947–1954. IEEE. 72

Liu, M., Li, X., Ling, Z., Li, Y., and Su, H. (2022a). Frame mining: A free lunch for
learning robotic manipulation from 3D point clouds. In Conference on Robot Learning
(CoRL). 54

Liu, O., Rakita, D., Mutlu, B., and Gleicher, M. (2017a). Understanding human-robot
interaction in virtual reality. In RO-MAN 2017 - 26th IEEE International Symposium
on Robot and Human Interactive Communication. 10

Liu, X., Guo, D., Liu, H., and Sun, F. (2022b). Multi-agent embodied visual seman-
tic navigation with scene prior knowledge. IEEE Robotics and Automation Letters,
7(2):3154–3161. 15

Liu, X., Li, X., Guo, D., Tan, S., Liu, H., and Sun, F. (2022c). Embodied multi-
agent task planning from ambiguous instruction. Proceedings of Robotics: Science and
Systems, New York City, NY, USA, pages 1–14. 12, 15, 17, 151

178

Liu, X., Yu, H., Zhang, H., Xu, Y., Lei, X., Lai, H., Gu, Y., Ding, H., Men, K., Yang, K.,
et al. (2023). AgentBench: Evaluating llms as agents. arXiv preprint arXiv:2308.03688.
146

Liu, Y., Wei, P., and Zhu, S.-C. (2017b). Jointly recognizing object fluents and tasks in
egocentric videos. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2924–2932. 13, 21

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3D surface
construction algorithm. ACM SIGGRAPH Computer Graphics, 21(4):163–169. 53

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel, O., and Mordatch, I. (2017).
Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in
Neural Information Processing Systems, 30. 17

Lu, J., Batra, D., Parikh, D., and Lee, S. (2019). ViLBERT: Pretraining task-agnostic
visiolinguistic representations for vision-and-language tasks. Advances in Neural Infor-
mation Processing Systems (NeurIPS). 50

Lynch, C. and Sermanet, P. (2021). Language conditioned imitation learning over
unstructured data. Robotics: Science and Systems (RSS). 12

Lynch, C., Wahid, A., Tompson, J., Ding, T., Betker, J., Baruch, R., Armstrong, T.,
and Florence, P. (2022). Interactive language: Talking to robots in real time. arXiv
preprint arXiv:2210.06407. 12

Ma, L., Meng, J., Liu, S., Chen, W., Xu, J., and Chen, R. (2023). Sim2Real2:
Actively building explicit physics model for precise articulated object manipulation. In
International Conference on Robotics and Automation (ICRA). 13

Ma, X., Yong, S., Zheng, Z., Li, Q., Liang, Y., Zhu, S.-C., and Huang, S. (2022).
SQA3D: Situated question answering in 3D scenes. In International Conference on
Learning Representations (ICLR). 51

Macklin, M. and Müller, M. (2013). Position based fluids. ACM Transactions on
Graphics (TOG), 32(4):1–12. 53

Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey, K., Macklin, M., Hoeller, D.,
Rudin, N., Allshire, A., Handa, A., et al. (2021). Isaac Gym: High performance GPU-
based physics simulation for robot learning. Advances in Neural Information Processing
Systems Datasets and Benchmarks Track (NeurIPS Datasets and Benchmarks). 53

McCormac, J., Handa, A., Leutenegger, S., and Davison, A. J. (2017). SceneNet RGB-
D: Can 5M synthetic images beat generic imagenet pre-training on indoor segmentation?
In Proceedings of the IEEE International Conference on Computer Vision, volume
2017-Octob, pages 2697–2706. 9

Mees, O., Hermann, L., and Burgard, W. (2022a). What matters in language condi-
tioned robotic imitation learning over unstructured data. IEEE Robotics and Automa-
tion Letters (RA-L). 51

179

Mees, O., Hermann, L., Rosete-Beas, E., and Burgard, W. (2022b). CALVIN: A
benchmark for language-conditioned policy learning for long-horizon robot manipulation
tasks. IEEE Robotics and Automation Letters (RA-L). 12, 13, 17, 51, 89, 93

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence, 267:1–38. 15

Min, S. Y., Chaplot, D. S., Ravikumar, P., Bisk, Y., and Salakhutdinov, R. (2022).
Film: Following instructions in language with modular methods. In International
Conference on Learning Representations (ICLR). 93

Mirchandani, S., Xia, F., Florence, P., Ichter, B., Driess, D., Arenas, M. G., Rao, K.,
Sadigh, D., and Zeng, A. (2023). Large language models as general pattern machines.
arXiv preprint arXiv:2307.04721. 105

Mittal, M., Yu, C., Yu, Q., Liu, J., Rudin, N., Hoeller, D., Yuan, J. L., Tehrani,
P. P., Singh, R., Guo, Y., et al. (2023). ORBIT: A unified simulation framework for
interactive robot learning environments. arXiv preprint arXiv:2301.04195. 13

Mu, T., Ling, Z., Xiang, F., Yang, D., Li, X., Tao, S., Huang, Z., Jia, Z., and Su,
H. (2021). ManiSkill: Generalizable manipulation skill benchmark with large-scale
demonstrations. Advances in Neural Information Processing Systems Datasets and
Benchmarks Track (NeurIPS Datasets and Benchmarks). 13, 53, 57, 64

Nagarajan, T. and Grauman, K. (2018). Attributes as operators: Factorizing unseen
attribute-object compositions. In European Conference on Computer Vision (ECCV).
13

Nagarajan, T. and Grauman, K. (2020). Learning affordance landscapes for interaction
exploration in 3D environments. In Advances in Neural Information Processing Systems
(NeurIPS). 50

Nair, S., Mitchell, E., Chen, K., Savarese, S., Finn, C., et al. (2022). Learning
language-conditioned robot behavior from offline data and crowd-sourced annotation.
In Conference on Robot Learning (CoRL). 12

Nan, Z., Shu, T., Gong, R., Wang, S., Wei, P., Zhu, S.-C., and Zheng, N. (2020).
Learning to infer human attention in daily activities. Pattern Recognition, 103:107314.
6

Ng, A. Y. and Russell, S. (2000). Algorithms for inverse reinforcement learning. In
International Conference on Machine Learning (ICML). 23

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. Y. (2011). Multimodal
deep learning. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 689–696. 20

Nikolaidis, S., Kwon, M., Forlizzi, J., and Srinivasa, S. (2018). Planning with verbal
communication for human-robot collaboration. ACM Transactions on Human-Robot
Interaction (THRI), 7(3):1–21. 15

180

OpenAI (2023). GPT-4 technical report. 145

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C.,
Agarwal, S., Slama, K., Gray, A., et al. (2022). Training language models to follow
instructions with human feedback. In Advances in Neural Information Processing
Systems (NeurIPS). 145

Padmakumar, A., Thomason, J., Shrivastava, A., Lange, P., Narayan-Chen, A., Gella,
S., Piramuthu, R., Tur, G., and Hakkani-Tur, D. (2022). TEACh: Task-driven embodied
agents that chat. In AAAI Conference on Artificial Intelligence (AAAI). 50, 151

Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R., Liang, P., and Bernstein, M. S.
(2023). Generative agents: Interactive simulacra of human behavior. arXiv preprint
arXiv:2304.03442. 17, 151

Pashevich, A., Schmid, C., and Sun, C. (2021). Episodic transformer for vision-and-
language navigation. In International Conference on Computer Vision (ICCV). 50,
99

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G., Schneider,
J., Tobin, J., Chociej, M., Welinder, P., et al. (2018). Multi-goal reinforcement
learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464. 8

Pooresmaeili, A. and Roelfsema, P. R. (2014). A growth-cone model for the spread of
object-based attention during contour grouping. Current Biology, 24(24):2869–2877. 40

Premack, D. and Woodruff, G. (1978). Does the chimpanzee have a theory of mind?
Behavioral and Brain Sciences, 1(4):515–526. 70

Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S., and Torralba, A. (2018).
VirtualHome: Simulating household activities via programs. In Conference on Computer
Vision and Pattern Recognition (CVPR). 9, 11

Puig, X., Shu, T., Li, S., Wang, Z., Tenenbaum, J. B., Fidler, S., and Torralba, A.
(2020). Watch-And-Help: A challenge for social perception and human-AI collaboration.
arXiv preprint arXiv:2010.09890. 18, 151

Qiu, W. and Yuille, A. (2016). UnrealCV: Connecting computer vision to unreal engine.
In Lecture Notes in Computer Science, volume 9915, pages 909–916. Springer. 10

Qureshi, F. and Terzopoulos, D. (2008). Smart camera networks in virtual reality.
Proceedings of the IEEE, 96(10):1640–1656. 2, 8

Rabie, T. F. and Terzopoulos, D. (2000). Active perception in virtual humans. In
Vision Interface, volume 2000. 2, 8

181

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models
from natural language supervision. In International Conference on Machine Learning
(ICML). 50, 60, 66, 139

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research (JMLR). 66, 141

Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G., Foerster, J., and Whiteson,
S. (2020). Monotonic value function factorisation for deep multi-agent reinforcement
learning. The Journal of Machine Learning Research, 21(1):7234–7284. 17

Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., and Ré, C. (2017). Snorkel:
Rapid training data creation with weak supervision. Proceedings of the VLDB Endow-
ment, 11(3):269–282. 11

Reddy, S., Dragan, A., and Levine, S. (2018). Where do you think you’re going?:
Inferring beliefs about dynamics from behavior. In Advances in Neural Information
Processing Systems, pages 1454–1465. 14

Rohrbach, M., Amin, S., Andriluka, M., and Schiele, B. (2012). A database for fine
grained activity detection of cooking activities. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 1194–1201. 8

Ross, S., Gordon, G. J., and Bagnell, J. A. (2010). A reduction of imitation learning
and structured prediction to no-regret online learning. In Proceedings of AISTATS,
volume 15, pages 627–635. 10, 36

Ruiz, N., Chong, E., and Rehg, J. M. (2018). Fine-grained head pose estimation
without keypoints. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 2074–2083. 47

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour, S. K. S.,
Ayan, B. K., Mahdavi, S. S., Lopes, R. G., et al. (2022). Photorealistic text-to-image
diffusion models with deep language understanding. In Advances in Neural Information
Processing Systems (NeurIPS). 50

Savva, M., Chang, A. X., Dosovitskiy, A., Funkhouser, T., and Koltun, V. (2017).
MINOS: Multimodal indoor simulator for navigation in complex environments.
arXiv:1712.03931. 9

Seemann, A. (2011). Joint attention: New Developments in Psychology, Philosophy of
Mind, and Social Neuroscience. MIT Press. 40

Sharma, V., Goyal, P., Lin, K., Thattai, G., Gao, Q., and Sukhatme, G. S. (2022).
CH-MARL: A multimodal benchmark for cooperative, heterogeneous multi-agent
reinforcement learning. arXiv preprint arXiv:2208.13626. 17

182

Shirley, P. and Morley, R. K. (2008). Realistic Ray Tracing. AK Peters, Ltd. 54

Shridhar, M., Manuelli, L., and Fox, D. (2022a). CLIPort: What and where pathways
for robotic manipulation. In Conference on Robot Learning (CoRL). 12, 13, 50, 51, 89,
95, 98, 100, 140

Shridhar, M., Manuelli, L., and Fox, D. (2022b). Perceiver-Actor: A multi-task
transformer for robotic manipulation. Conference on Robot Learning (CoRL). 12, 50,
51, 54, 60, 61, 62, 128, 139

Shridhar, M., Manuelli, L., and Fox, D. (2023). Perceiver-actor: A multi-task trans-
former for robotic manipulation. In Conference on Robot Learning, pages 785–799.
PMLR. 89

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R., Zettlemoyer,
L., and Fox, D. (2020a). ALFRED: A benchmark for interpreting grounded instructions
for everyday tasks. In Conference on Computer Vision and Pattern Recognition (CVPR).
12, 13, 17, 51, 89

Shridhar, M., Yuan, X., Côté, M.-A., Bisk, Y., Trischler, A., and Hausknecht, M.
(2020b). ALFworld: Aligning text and embodied environments for interactive learning.
arXiv preprint arXiv:2010.03768. 151

Shu, T., Gao, X., Ryoo, M. S., and Zhu, S.-C. (2017). Learning social affordance
grammar from videos: Transferring human interactions to human-robot interactions.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages
1669–1676. IEEE. 72

Shu, T., Xie, D., Rothrock, B., Todorovic, S., and Zhu, S.-C. (2015). Joint inference of
groups, events and human roles in aerial videos. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4576–4584. 72

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den
Driessche, G., Graepel, T., and Hassabis, D. (2017). Mastering the game of go without
human knowledge. Nature, 550(7676):354–359. 20

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D., Tremblay, J., Fox, D., Thomason,
J., and Garg, A. (2023). Progprompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 11523–11530. IEEE. 16

Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D. V.,
and Kragic, D. (2012). Dual arm manipulation—a survey. Robotics and Autonomous
systems, 60(10):1340–1353. 16

Smith, L. and Gasser, M. (2005). The development of embodied cognition: Six lessons
from babies. Artificial life, 11(1-2):13–29. 1, 2, 20, 21, 122

183

Song, S., Yu, F., Zeng, A., Chang, A. X., Savva, M., and Funkhouser, T. (2017).
Semantic scene completion from a single depth image. In Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, volume 2017-
Janua, pages 190–198. 9, 28

Sreedharan, S., Srivastava, S., and Kambhampati, S. (2018). Hierarchical expertise
level modeling for user specific contrastive explanations. In IJCAI, pages 4829–4836.
15

Srivastava, S., Li, C., Lingelbach, M., Martín-Martín, R., Xia, F., Vainio, K. E., Lian,
Z., Gokmen, C., Buch, S., Liu, K., et al. (2022). BEHAVIOR: Benchmark for everyday
household activities in virtual, interactive, and ecological environments. In Conference
on Robot Learning (CoRL). 11, 13, 51

Stavridis, S., Falco, P., and Doulgeri, Z. (2021). Pick-and-place in dynamic environments
with a mobile dual-arm robot equipped with distributed distance sensors. In 2020
IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids), pages
76–82. IEEE. 16

Stepputtis, S., Bandari, M., Schaal, S., and Amor, H. B. (2022). A system for
imitation learning of contact-rich bimanual manipulation policies. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 11810–11817.
IEEE. 16

Stepputtis, S., Campbell, J., Phielipp, M., Lee, S., Baral, C., and Ben Amor, H. (2020).
Language-conditioned imitation learning for robot manipulation tasks. Advances in
Neural Information Processing Systems (NeurIPS). 12

Stone, P., Kaminka, G. A., Kraus, S., and Rosenschein, J. S. (2010). Ad hoc au-
tonomous agent teams: Collaboration without pre-coordination. In Twenty-Fourth
AAAI Conference on Artificial Intelligence. 15

Stone, P. and Veloso, M. (2000). Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, 8:345–383. 105

Struckmeier, O., Racca, M., and Kyrki, V. (2019). Autonomous generation of robust
and focused explanations for robot policies. In 2019 28th IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN), pages 1–8. IEEE. 15

Suhr, A., Yan, C., Schluger, C., Yu, S., Khader, H., Mouallem, M., Zhang, I., and
Artzi, Y. (2019). Executing instructions in situated collaborative interactions. arXiv
preprint arXiv:1910.03655. 151

Syed, U. and Schapire, R. E. (2008). A game-theoretic approach to apprenticeship
learning. In Advances in Neural Information Processing Systems 20, volume 20, pages
1–8. 10

184

Szot, A., Clegg, A., Undersander, E., Wijmans, E., Zhao, Y., Turner, J., Maestre, N.,
Mukadam, M., Chaplot, D. S., Maksymets, O., et al. (2021). Habitat 2.0: Training
home assistants to rearrange their habitat. Advances in Neural Information Processing
Systems (NeurIPS). 11, 12, 13, 15, 51

Tabrez, A., Agrawal, S., and Hayes, B. (2019). Explanation-based reward coaching
to improve human performance via reinforcement learning. In 2019 14th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pages 249–257. IEEE. 15

Takata, K., Kiyokawa, T., Ramirez-Alpizar, I. G., Yamanobe, N., Wan, W., and
Harada, K. (2022). Efficient task/motion planning for a dual-arm robot from language
instructions and cooking images. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 12058–12065. IEEE. 16

Tan, S., Xiang, W., Liu, H., Guo, D., and Sun, F. (2020). Multi-agent embodied
question answering in interactive environments. In European Conference on Computer
Vision, pages 663–678. Springer. 12, 15, 17

Terzopoulos, D. and Rabie, T. F. (1995). Animat vision: Active vision in artificial
animals. In Proceedings of IEEE International Conference on Computer Vision, pages
801–808. IEEE. 2, 8

Thomason, J., Murray, M., Cakmak, M., and Zettlemoyer, L. (2020). Vision-and-dialog
navigation. In Conference on Robot Learning (CoRL). 50

Todorov, E., Erez, T., and Tassa, Y. (2012). MuJoCo: A physics engine for model-based
control. In IEEE International Conference on Intelligent Robots and Systems. 8

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov,
N., Batra, S., Bhargava, P., Bhosale, S., et al. (2023). Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288. 145

Tseng, W.-C., Liao, H.-J., Yen-Chen, L., and Sun, M. (2022). CLA-NeRF: Category-
level articulated neural radiance field. In International Conference on Robotics and
Automation (ICRA). 13

Tu, K., Pavlovskaia, M., and Zhu, S.-C. (2013). Unsupervised structure learning of
stochastic and-or grammars. In Advances in neural information processing systems,
pages 1322–1330. 72

Urbanek, J., Fan, A., Karamcheti, S., Jain, S., Humeau, S., Dinan, E., Rocktäschel, T.,
Kiela, D., Szlam, A., and Weston, J. (2019). Learning to speak and act in a fantasy
text adventure game. arXiv preprint arXiv:1903.03094. 151

von Ahn, L. and Dabbish, L. (2008). Designing games with a purpose. Communications
of the ACM. 23

185

Wan, W., Geng, H., Liu, Y., Shan, Z., Yang, Y., Yi, L., and Wang, H. (2023).
UniDexGrasp++ : Improving dexterous grasping policy learning via geometry-aware
curriculum and iterative generalist-specialist learning. arXiv preprint arXiv:2304.00464.
50

Wan, Y., Mao, J., and Tenenbaum, J. (2022). HandMeThat: Human-robot communi-
cation in physical and social environments. Advances in Neural Information Processing
Systems, 35:12014–12026. 18, 151

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., Fan, L., and Anandku-
mar, A. (2023a). Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291. 18, 105, 145

Wang, H., Wang, W., Zhu, X., Dai, J., and Wang, L. (2021). Collaborative visual
navigation. arXiv preprint arXiv:2107.01151. 15

Wang, N., Pynadath, D. V., and Hill, S. G. (2016). Trust calibration within a
human-robot team: Comparing automatically generated explanations. In The Eleventh
ACM/IEEE International Conference on Human Robot Interaction, pages 109–116.
IEEE Press. 15

Wang, S., Han, M., Jiao, Z., Zhang, Z., Wu, Y. N., Zhu, S.-C., and Liu, H. (2024).
LLM 3: Large language model-based task and motion planning with motion failure
reasoning. arXiv preprint arXiv:2403.11552. 18

Wang, X., Huang, Q., Celikyilmaz, A., Gao, J., Shen, D., Wang, Y.-F., Wang, W. Y.,
and Zhang, L. (2019). Reinforced cross-modal matching and self-supervised imitation
learning for vision-language navigation. In Conference on Computer Vision and Pattern
Recognition (CVPR). 50

Wang, Z., Cai, S., Liu, A., Ma, X., and Liang, Y. (2023b). Describe, explain, plan and
select: Interactive planning with large language models enables open-world multi-task
agents. arXiv preprint arXiv:2302.01560. 18, 105

Wang, Z., Chen, Y., Liu, T., Zhu, Y., Liang, W., and Huang, S. (2022). HUMANISE:
Language-conditioned human motion generation in 3D scenes. In Advances in Neural
Information Processing Systems (NeurIPS). 50

Wei, F., Chabra, R., Ma, L., Lassner, C., Zollhoefer, M., Rusinkiewicz, S., Sweeney, C.,
Newcombe, R., and Slavcheva, M. (2022a). Self-supervised neural articulated shape
and appearance models. In Conference on Computer Vision and Pattern Recognition
(CVPR). 13

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, A. M.,
and Le, Q. V. (2021). Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652. 106

186

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D.,
et al. (2022b). Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:24824–24837. 106

Weng, Y., Wang, H., Zhou, Q., Qin, Y., Duan, Y., Fan, Q., Chen, B., Su, H., and
Guibas, L. J. (2021). CAPTRA: Category-level pose tracking for rigid and articulated
objects from point clouds. In International Conference on Computer Vision (ICCV).
13

Wu, S. A., Wang, R. E., Evans, J. A., Tenenbaum, J. B., Parkes, D. C., and Kleiman-
Weiner, M. (2021). Too many cooks: Bayesian inference for coordinating multi-agent
collaboration. Topics in Cognitive Science, 13(2):414–432. 17, 151, 159, 160

Wu, Y., Wu, Y., Gkioxari, G., and Tian, Y. (2018). Building generalizable agents with
a realistic and rich 3D environment. arXiv preprint arXiv:1801.02209. 9

Xia, F., Shen, W. B., Li, C., Kasimbeg, P., Tchapmi, M. E., Toshev, A., Martín-Martín,
R., and Savarese, S. (2020). Interactive Gibson benchmark: A benchmark for interactive
navigation in cluttered environments. IEEE Robotics and Automation Letters (RA-L).
50

Xia, F., Zamir, A. R., He, Z., Sax, A., Malik, J., and Savarese, S. (2018). Gibson Env:
Real-world perception for embodied agents. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 9

Xiang, F., Qin, Y., Mo, K., Xia, Y., Zhu, H., Liu, F., Liu, M., Jiang, H., Yuan, Y.,
Wang, H., et al. (2020). SAPIEN: A simulated part-based interactive environment. In
Conference on Computer Vision and Pattern Recognition (CVPR). 52, 54

Xing, E., Gupta, A., Powers, S., and Dean, V. (2021). KitchenShift: Evaluating
zero-shot generalization of imitation-based policy learning under domain shifts. In
NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications.
13

Xiong, C., Shukla, N., Xiong, W., and Zhu, S.-C. (2016). Robot learning with a spatial,
temporal, and causal and-or graph. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 2144–2151. IEEE. 72

Xu, A. and Dudek, G. (2015). Optimo: Online probabilistic trust inference model
for asymmetric human-robot collaborations. In 2015 10th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pages 221–228. IEEE. 15

Xu, Y., Wan, W., Zhang, J., Liu, H., Shan, Z., Shen, H., Wang, R., Geng, H.,
Weng, Y., Chen, J., et al. (2023). UniDexGrasp: Universal robotic dexterous grasping
via learning diverse proposal generation and goal-conditioned policy. arXiv preprint
arXiv:2303.00938. 50

187

Yao, B., Yang, X., and Zhu, S.-C. (2007). Introduction to a large-scale general purpose
ground truth database: Methodology, annotation tool and benchmarks. In Energy
Minimization Methods in Computer Vision and Pattern Recognition: 6th International
Conference, EMMCVPR 2007, Ezhou, China, August 27-29, 2007. Proceedings 6, pages
169–183. Springer. 2

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., and Cao, Y. (2023). Re-
act: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR). 18, 105, 146

Yuan, L., Gao, X., Zheng, Z., Edmonds, M., Wu, Y. N., Rossano, F., Lu, H., Zhu, Y.,
and Zhu, S.-C. (2022). In situ bidirectional human-robot value alignment. Science
robotics, 7(68):eabm4183. 117

Zeng, A., Attarian, M., Choromanski, K. M., Wong, A., Welker, S., Tombari, F., Purohit,
A., Ryoo, M. S., Sindhwani, V., Lee, J., et al. (2022). Socratic models: Composing zero-
shot multimodal reasoning with language. In The Eleventh International Conference
on Learning Representations. 12

Zeng, A., Florence, P., Tompson, J., Welker, S., Chien, J., Attarian, M., Armstrong, T.,
Krasin, I., Duong, D., Sindhwani, V., et al. (2021). Transporter networks: Rearranging
the visual world for robotic manipulation. In Conference on Robot Learning (CoRL).
13, 17, 60, 93

Zhang, C., Yang, K., Hu, S., Wang, Z., Li, G., Sun, Y., Zhang, C., Zhang, Z., Liu,
A., Zhu, S.-C., et al. (2023a). Proagent: Building proactive cooperative AI with large
language models. arXiv preprint arXiv:2308.11339. 17

Zhang, H., Du, W., Shan, J., Zhou, Q., Du, Y., Tenenbaum, J. B., Shu, T., and Gan, C.
(2023b). Building cooperative embodied agents modularly with large language models.
arXiv preprint arXiv:2307.02485. 17, 151

Zhang, H., Lai, P.-J., Paul, S., Kothawade, S., and Nikolaidis, S. (2019). Learning
collaborative action plans from YouTube videos. In The International Symposium of
Robotics Research, pages 208–223. Springer. 16

Zhang, Y. and Chai, J. (2021). Hierarchical task learning from language instructions
with unified transformers and self-monitoring. In Findings of the Association for
Computational Linguistics (ACL-IJCNLP Findings). 50

Zhang, Y., Sreedharan, S., Kulkarni, A., Chakraborti, T., Zhuo, H. H., and Kambham-
pati, S. (2017). Plan explicability and predictability for robot task planning. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages 1313–1320.
IEEE. 15

Zheng, K., Chen, X., Jenkins, O. C., and Wang, X. E. (2022). VLMbench: A compo-
sitional benchmark for vision-and-language manipulation. Advances in Neural Infor-
mation Processing Systems Datasets and Benchmarks Track (NeurIPS Datasets and
Benchmarks). 12, 13, 17, 50, 51, 54, 60, 62, 89, 93, 128

188

Zhu, Y., Gordon, D., Kolve, E., Fox, D., Fei-Fei, L., Gupta, A., Mottaghi, R., and
Farhadi, A. (2017). Target-driven visual navigation in indoor scenes using deep
reinforcement learning. Proceedings of the IEEE International Conference on Computer
Vision, 2017-Octob(1):483–492. 23

Ziebart, B. D., Maas, A., Bagnell, J. A., and Dey, A. K. (2008). Maximum entropy
inverse reinforcement learning. In Proc. AAAI, pages 1433–1438. 23

189

	1 Introduction
	1.1 Contributions of the Thesis
	1.2 Outline of the Thesis

	2 Related Work
	2.1 Simulation Platforms
	2.2 Imitation Learning
	2.3 VR for AI
	2.4 Datasets for Computer Vision Tasks
	2.5 Simulators for Embodied AI
	2.6 Language Conditioned Manipulation
	2.7 Continuous State Understanding
	2.8 Human-Aware Planning
	2.9 Goal-Driven Explainable AI
	2.10 Visual Multi-Agent Collaboration
	2.11 Bimanual Robot Manipulation
	2.12 Visual Robot Task and Motion Planning
	2.13 Multi-Agent Coordination
	2.14 Planning With LFMs
	2.15 Benchmarks Using Games

	I Simulation Environments
	3 VRKitchen: An Interactive 3D Virtual Environment for Task-Oriented Learning
	3.1 Introduction
	3.2 The VRKitchen Environment
	3.3 Python-UE4 Bridge
	3.4 Performance
	3.5 Environment Interactions
	3.6 Data Generation From Virtual Environment
	3.7 Generate Data From Ground Truth
	3.8 Summary

	4 ARNOLD: A Benchmark for Language-Grounded Task Learning With Continuous States in Realistic 3D Scenes
	4.1 Introduction
	4.2 The ARNOLD Benchmark
	4.3 Experiments
	4.4 Summary

	II Multi-Agent Collaboration
	5 Joint Mind Modeling for Explanation Generation in Complex Human-Robot Collaborative Tasks
	5.1 Introduction
	5.2 Single Agent Mind Model
	5.3 Joint Mind Modeling for Human-Robot Collaborations
	5.4 Explanation-Based Task Coaching
	5.5 User Study
	5.6 Summary

	6 LEMMA: Learning Language-Conditioned Multi-Robot Manipulation
	6.1 Introduction
	6.2 Problem Formulation
	6.3 LEMMA Benchmark
	6.4 Baseline Models
	6.5 Experiments
	6.6 Summary

	7 MindAgent: Emergent Gaming Interaction
	7.1 Introduction
	7.2 The CuisineWorld Game
	7.3 MindAgent Gaming AI Infrastructure
	7.4 Experiments and Results
	7.5 Ablation Study for Multi-Agents
	7.6 Emergent Abilities
	7.7 Novel Game Adaptation
	7.8 Summary

	8 Conclusions
	8.1 Summary
	8.2 Future Directions

	A ARNOLD Benchmark Details
	A.1 Environment
	A.2 Task Details
	A.3 Data Collection
	A.4 Implementation Details

	B MindAgent Details
	B.1 Prompt Examples
	B.2 Prompt Engineering Details
	B.3 LFM Settings
	B.4 CuisineWorld Task Details
	B.5 Additional Results in CuisineWorld
	B.6 Additional CuisineWorld Details
	B.7 Minecraft
	B.8 Additional Information on Human Evaluation

	References

