
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title

Side-Channel Isn’t Sad Anymore: Towards the Leak-Free Network Stack---From DNS and
Beyond

Permalink

https://escholarship.org/uc/item/7mq9r73n

Author

Man, Keyu

Publication Date

2023

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7mq9r73n
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Side Channel Isn’t Sad Anymore: Towards the Leak-Free Network Stack—From
DNS and Beyond

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Keyu Man

December 2023

Dissertation Committee:

Dr. Zhiyun Qian, Chairperson
Dr. Heng Yin
Dr. Chengyu Song
Dr. Nael Abu-Ghazaleh

Copyright by
Keyu Man

2023

The Dissertation of Keyu Man is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

The journey towards completing my Ph.D. was paved with invaluable contributions from

numerous individuals, to whom I extend my heartfelt gratitude.

Firstly, profound gratitude goes to my Ph.D. advisor, Dr. Zhiyun Qian. Your

unwavering support, insightful guidance, and expert advice played an indispensable role

in my academic achievements, including the submission of three papers to top security

conferences and it was also you who unleashed my potential in the cybersecurity field.

Moreover, your mentorship in areas beyond academia, particularly your emphasis on aiming

high and practicing patience, have left an indelible mark on me. I consider myself fortunate

to have embarked on this journey. No matter how my life goes after graduation, my Ph.D.

career was a wonderful and successful experience of my life.

Secondly, I extend my sincere thanks to my co-authors: Dr. Yue Cao, Dr. Haixin

Duan, Dr. Zhongjie Wang, Mr. Shenghan Zheng, Mr. Xiaofeng Zheng, and Mr. Xin’an

Zhou1. Your foundational contributions were paramount to the success of our collaborative

endeavors. Your unwavering support, especially during critical submission deadlines, was

critical.

Thirdly, my profound appreciation goes to my spouse, Mr. Bowen Lu. Your

unwavering emotional support, especially during challenging times, has been my anchor.

Your presence has brought balance and stability to my personal life, for which I am eternally

grateful.

Forthly, a warm acknowledgment to my family and friends. While I choose not

to list names out of privacy concerns, please know that your support and companionship

1Unless otherwise noted, names are ranked alphabetically by the last name.

iv

have been invaluable. We spent a great leisure time during the Ph.D. career together and

you gave me lots of support aside from research. From playing video games and traveling

across the U.S. to playing tennis, you all have added joy and confidence to my life. Special

thanks should be given to my parents, who gave the life and raised me up.

Fifthly, I owe a debt of gratitude to my lab mates: Dr. Weiteng Chen, Mr. Qing

Deng, Mr. Xingyun Du, Mr. Yu Hao, Mr. Guoren Li, Mr. Haonan Li, Mr. Xingyu Li,

Mr. Juefei Pu, Dr. Yizhuo Zhai, Mr. Zheng Zhang, Mrs. Jinmeng Zhou, Mr. Pengxiong

Zhu, Dr. Shitong Zhu, and Mr. Xiaochen Zou. Special mention goes to Mr. Yu Hao, my

roommate of five years. I will never forget the days we settled down at Riverside and took

bus to setup utility accounts under 100◦F weather. Besides, despite we never collaborated

on my projects, as a program analysis expert, your help made me avoid pitfalls multiple

times. For the rest my beloved lab mates, the shared meals and engaging discussions on

research topics have enriched my Ph.D. experience immeasurably and your influence to my

life was unforgettable.

Sixthly, heartfelt thanks are extended to Dr. Qi Alfred Chen. While our endeavors

in connected vehicles research did not culminate in a publication, your mentorship has been

invaluable. Your guidance has illuminated my journey towards earning a Ph.D. degree, and

for that, I am deeply grateful.

Seventhly, my appreciation is directed to my dissertation defense committee mem-

bers: Dr. Nael Abu-Ghazaleh, Dr. Chengyu Song, and Dr. Heng Yin. Your feedback not

only enriched my dissertation but also trained my skills in presenting research to a diverse

v

audience. Your perspectives added depth and breadth to my work, enhancing its value to

the wider academic community.

Last but not least, I extend my gratitude to the National Science Foundation

(NSF) for funding my research endeavors. In an era driven by commercial pursuits, securing

funding for pure research has been pivotal in ensuring the continuity and integrity of my

projects. I sincerely hope humanity continues to channel its energies into the quest for

knowledge and enlightenment, rather than conflict and strife.

Bibliographical Notes. The thesis mainly composes of the research papers that

were mostly authored by myself. Specifically, Chapter 3 is the reproduction of “DNS Cache

Poisoning Attack Reloaded: Revolutions with Side Channels” [89], which is originally pub-

lished on ACM Conference on Computer and Communications Security 2020 (CCS‘20).

Chapter 4 is the reproduction of “DNS Cache Poisoning Attack: Resurrections with Side

Channels” [90], which is originally published on ACM Conference on Computer and Com-

munications Security 2021 (CCS‘21). Chapter 5 is the reproduction of “SCAD: Towards a

Universal and Automated Network Side-Channel Vulnerability Detection”, which is under

submission to The 21st USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI’23), at the time when this thesis is being finalized. Minor changes may apply

during the reproduction to improve the integrity of the thesis.

vi

To my beloved dogs River & Turbo, humanity and our civilization.

vii

ABSTRACT OF THE DISSERTATION

Side Channel Isn’t Sad Anymore: Towards the Leak-Free Network Stack—From DNS and
Beyond

by

Keyu Man

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2023

Dr. Zhiyun Qian, Chairperson

Network side channels have emerged as a notable threat vector in computer secu-

rity, often bypassing conventional safeguards due to their elusive nature. In such attacks,

the attacker leverages unintentionally leaked transformed information to derive the confi-

dential secret on the victim. This research delves into the intricacies of these attacks, with

an emphasis on DNS systems. While the vulnerabilities posed by TCP side channels have

been somewhat explored, this thesis unveils the broader spectrum, especially emphasizing on

UDP and ICMP side channels. The discovered flaws based on temporal and spatial shared

resources lead to potent DNS cache poisoning attacks by effectively circumventing ephemeral

port randomization defenses, which remains the critical defense of Dan Kaminsky’s attack,

rendering large portions of the Internet’s open resolvers vulnerable. Specifically, 34% of

these, including popular public resolvers like Quad 9, were found vulnerable.

Given these revelations, the pressing need for a robust, universal and automated

detection tool became evident. Addressing this, the research introduces SCAD, an auto-

mated tool built upon a novel methodology termed under-constrained dynamic symbolic

viii

execution. SCAD identifies violations of the non-interference property, recognized as the

underpinning of network side channels. Without relying on comprehensive prior modeling

and domain knowledge, SCAD scrutinizes multiple TCP and UDP implementations among

Linux, FreeBSD and lwIP, discovering 14 network side channels, including seven previously

undetected ones, at a false positive rate of 17.6%. The results reveal serious vulnerabilities,

including those that can be used to compromise the previously patched Linux and FreeBSD

kernels, making them susceptible to SADDNS attacks or off-path TCP exploits again.

Collectively, this thesis aims to enrich our comprehension of network side channels,

paving the way for more fortified defenses in the realm of computer network security.

ix

Contents

List of Figures xiii

List of Tables xiv

1 Introduction 1

2 Off-Path Network Attacks 5
2.1 Definition & Threat Model . 5

2.1.1 Definition . 5
2.1.2 Threat Model . 7

2.2 History of Off-Path Network Attacks . 8

3 SADDNS: Revive DNS Cache Poisoning Attacks With Temporal ICMP Rate
Limit Counter 12
3.1 Introduction . 12
3.2 Current State of DNS Cache Poisoning Attacks 15

3.2.1 State-of-the-Art(SOTA) Defenses . 16
3.2.2 New Attack Surface in the DNS Hierarchy 17

3.3 Attack Overview . 18
3.3.1 Attack Workflow . 19

3.4 Inferring DNS Query’s Source Port . 20
3.4.1 Analysis of UDP Source Port Scannability 20
3.4.2 ICMP Rate Limit Challenge . 22
3.4.3 Public-Facing Source Port Scan Method 23
3.4.4 Private Source Port Scan Method . 28
3.4.5 Vulnerable DNS Forwarder and Resolver Population 30

3.5 Extending the Attack Window . 33
3.5.1 Extending Window in a Forwarder Attack 33
3.5.2 Extending Window in a Resolver Attack 35

3.6 Practical Attack Considerations . 39
3.6.1 Bypassing the TTL of Cached Records 39
3.6.2 Timeouts and Retransmitted Queries 40

x

3.6.3 Handling Multiple Authoritative Nameservers 42
3.6.4 Handling Multiple Backend Servers Behind DNS Resolvers 42

3.7 End-to-End Attacks . 43
3.7.1 Attacking a Forwarder (Home Router) 43
3.7.2 Attacking a Production Resolver . 45

3.8 Discussion . 49
3.8.1 Attack Against Unbound vs. BIND 49
3.8.2 UDP Source Port Inference on Other Operating Systems 50
3.8.3 Other Vulnerable Protocols . 50

3.9 Best Practices in Configuring Response Rate Limiting (RRL) 50
3.9.1 Defenses . 51

3.10 Conclusion . 53

4 SADDNS 2.0: Resurrect DNS Cache Poisoning Attacks With Spatial Next
Hop Exception Cache 54
4.1 Introduction . 54
4.2 Background . 56
4.3 Attack Overview . 58
4.4 ICMP-Based Ephemeral Port Scans . 58

4.4.1 Analysis of ICMP Error Processing Logic 60
4.4.2 Public-Facing Port Number Inference 61
4.4.3 Private-Facing Port Number Inference 62
4.4.4 Finding IPs That Cause Hash Collisions 64
4.4.5 High-Speed Scans . 65

4.5 Vulnerable Population . 67
4.5.1 Conditions of Successful Attacks . 67
4.5.2 Open Resolvers . 71

4.6 Practical Concerns . 77
4.6.1 Small Attack Window . 77
4.6.2 Multiple Nameservers . 77
4.6.3 Multiple Backend Servers . 79
4.6.4 Dual-Stack Resolvers . 80
4.6.5 Noises . 80

4.7 Evaluation . 82
4.7.1 Resolver Attack . 83
4.7.2 Other Attacks . 87

4.8 Discussion . 87
4.8.1 Comparison With SADDNS . 87
4.8.2 PMTUD and DNS . 89
4.8.3 New Defenses Against SADDNS 2.0 90
4.8.4 Ethical Concerns . 91

4.9 Conclusion . 92

xi

5 SCAD: a Universal and Automated Network Side-Channel Vulnerability
Detection Tool 93
5.1 Introduction . 93
5.2 Insight & SCAD Overview . 95

5.2.1 Non-Interference Property . 95
5.2.2 Existing Approaches . 96
5.2.3 SCAD’s Novel Mode of Symbolic Execution 97
5.2.4 SCAD Architecture . 100

5.3 DSE Component . 100
5.3.1 Minimalistic Modeling of the Target 101
5.3.2 DSE Component Workflow . 102

5.4 NIPVC Component . 103
5.4.1 Path-Level Violation Checker . 103
5.4.2 NIPVC Loop . 106

5.5 Implementation . 107
5.6 Evaluation . 108

5.6.1 Evaluation Platform & Setup . 108
5.6.2 Comparison with SCENT . 109
5.6.3 Side-Channel Detection on SOTA TCP Implementations 112
5.6.4 Side-Channel Detection on UDP Implementation 113

5.7 Case Study . 114
5.7.1 Timestamp-Based Side Channels . 114
5.7.2 Randomness-Based Side Channel . 118
5.7.3 Queue-Length-Based Side Channels 120
5.7.4 Responsible Disclosure . 122

5.8 Mitigation . 122
5.9 Discussion . 124

5.9.1 Limitations . 124
5.9.2 Future Work . 126

5.10 Conclusion . 127

6 Related Work 129

7 Conclusions 130

Bibliography 133

A ICMP Redirect Attacks 143

B ICMP Rate Limit 145

C Resetting the Exception Cache State 146

xii

List of Figures

3.1 DNS Infrastructure With Multiple Layers of Caching 18
3.2 SADDNS Attack Workflow . 19
3.3 Fast Port Scanning of an Open Source Port 25
3.4 Fast Port Scanning of a Private Source Port 29
3.5 Example Rogue Response Acceptable by a Forwarder 34
3.6 Response Loss Rate Under Different Query Rate 37
3.7 DNS Response Used to Overwrite Cache . 39

4.1 Ephemeral Port Scan . 59
4.2 SADDNS 2.0 Ephemeral Port Number Inference 61

5.1 SCAD Architecture . 100
5.2 An Illustrative Example of Path Tree . 103
5.3 Exploits for Newly Found Side Channels by SCAD 115

xiii

List of Tables

2.1 Off-Path Network Attacks . 9

3.1 DNS Forwarder Behaviors in Home Routers 30
3.2 SADDNS Vulnerable Status of Public Resolvers 31
3.3 SADDNS Production Resolver Attack Results 45

4.1 Exploitability of Different DNS Software and Kernel Versions 68
4.2 SADDNS 2.0 Vulnerable Status of Public Resolvers 76
4.3 SADDNS 2.0 Resolver Attack Results . 83

5.1 Comparison Among Program Analysis Techniques 98
5.2 Side Channels Reported by SCAD . 110
5.3 Statistics of SCAD on Different Targets . 110

xiv

Chapter 1

Introduction

The evolution of computer networks has given rise to sophisticated attack vectors,

bypassing conventional security measures. Among these, network side channels stand out for

their subtle and elusive nature. Historically, the side-channel attack has always been an un-

derstated security threat. Such attacks enable adversaries to derive confidential information

from victims without directly accessing it. Instead, they exploit the data unintentionally

leaked through various channels. As computer systems became more intertwined, side chan-

nels began exploiting these intricate interactions, making them increasingly powerful and

problematic [8, 77, 84, 46, 99, 89, 90, 22, 104, 97]. As the digital landscape expanded, the

emphasis on understanding and mitigating such threats has grown significantly.

Domain Name System (DNS), which translates human-readable domain names

into machine-readable IP addresses, is paramount for the modern Internet. It underpins

various security services and its integrity impacts a vast range of applications and security

protocols, from certificate issuance [7] to routing security [82]. Given its significance, com-

1

promising DNS can lead to extensive security failures, unraveling the very fabric of Internet

trust. Kaminsky’s discovery in 2008 [71] showcased the potential of DNS cache poisoning,

where an off-path attacker could inject spoofed DNS responses, misleading resolvers.

Despite the advancements in DNS security, the system remains fragile. Measures

such as DNSSEC and DNS cookies [5], though standardized, saw limited deployment due

to compatibility concerns [33, 29]. This fragile nature of DNS, paired with the innovation

in side channel attacks, poses severe risks to the entirety of the digital domain.

This thesis delves deep into two novel side-channel-based DNS cache poisoning

attacks: SADDNS and SADDNS 2.0. Our exploration began with the analysis of the interaction

between application and OS-level behaviors. We identified a shared resource—specifically,

the ICMP global rate limit—that could be manipulated to infer the UDP ephemeral port

number, a critical component for DNS security, when probing with UDP packets. This

discovery led to the development of SADDNS, an attack that could poison a significant fraction

of the Internet’s DNS resolvers.

Building upon this discovery, our research extended into another dimension of DNS

vulnerabilities with SADDNS 2.0. In this iteration, the emphasis was on the often-overlooked

ICMP packets, which, when combined with subtle interactions across the ICMP, UDP, and

application layers, revealed even more potent side channels, through the cache of the next

hop exceptions (fnhe).

These discoveries highlight the vulnerabilities in popular DNS software as well as

mainstream OSes, posing potential risks to a vast number of systems, from DNS forwarders

on home routers to major DNS resolvers. The attacks were proven effective, requiring only

2

minutes to succeed, and affecting major components of the Internet infrastructure. From

our experiment, 34% of open resovlers, including 12/14 popular public resolvers like Quad

9, were found vulnerable to either of two SADDNS attacks.

To address the profound vulnerabilities unveiled by SADDNS and SADDNS 2.0, the

need for an automated, robust, and universal detection tool became indispensable.

This research introduces SCAD, a powerful analysis tool for automated side-channel

detection. By harnessing symbolic execution, SCAD delves deep into the state space of target

protocol implementations, systematically identifying potential non-interference property vi-

olations, which is the root cause of side channels, at path-level. However, symbolic execution

inherently faces scalability challenges. To circumvent these, we innovated a new symbolic

execution mode — under-constrained dynamic symbolic execution, enabling simultaneous

exploration of diverse state spaces while managing the notorious path explosion problem.

On application, SCAD delivered promising results. It identified 14 network side

channels, seven of which were previously unknown, with a false positive(FP) rate only

of 17.6%, highlighting the tool’s effectiveness and the depth of vulnerabilities within the

network domain.

Contributions. This thesis presents a comprehensive exploration of network side

channels, unveiling severe threats, and proposing robust solutions. The main contributions

are:

1. The discovery and extensive analysis of two novel side-channel-based DNS cache poi-

soning attacks, SADDNS and SADDNS 2.0, emphasizing their potential risks and ramifi-

cations.

3

2. The introduction of SCAD, a groundbreaking tool for automated side-channel detec-

tion, backed by an innovative symbolic execution mode, addressing the long-standing

challenges of automated side-channel detection.

3. A detailed exploration of the root causes of identified side channels, their implications,

and the development of effective mitigation strategies.

This journey underscores the imperativeness of understanding and addressing net-

work side channels, marking a significant step towards fortifying the future of computer

network security.

Organization. Chapter 2 will introduce the off-path attacks and side-channel

attacks. Chapter 3 & 4 will discuss the intricacies of SADDNS and SADDNS 2.0 respectively.

Chapter 5 will explore the methodology and results of SCAD. Chapter 6 will discuss the

related work. The Chapter 7 will summarize the findings and outline potential future

directions in this domain.

4

Chapter 2

Off-Path Network Attacks

2.1 Definition & Threat Model

2.1.1 Definition

In a narrow sense, network attacks refer to attacks targeting the computer net-

work communication, so that the integrity, confidentiality and authenticity of the network

communication would be compromised. A well-known threat model for network attacks

is “man-in-the-middle” model, in which the attacker sits in the path between two com-

munication endpoints (e.g., computers) and is able to eavesdrop, alter and even block the

communication. Such a malicious party can be an adversarial router or firewall along the

communication path. However, even if the middle boxes along the path could be trusted,

the communication can still be compromised by off-path attacks.

In the off-path network attack, the attacker is not assumed to sit in path and

therefore cannot eavesdrop the traffic between two endpoints (i.e., victims). Rather, they

5

just blindly inject packets to the communication by pretending they are one of the endpoint,

in order to break the integrity and authenticity of the communication. Obviously, off-path

attacks require the attacker to spoof the identify, which is enabled by the nature of IP

networks — destination-based routing, meaning the sender’s identity in most cases will not

be checked and thus spoofing IP source address is possible.

Most network protocols like DNS and TCP carry certain kinds of identifier for mul-

tiplexing, which inadvertently increased the entropy of the protocol payload and increased

difficulties for off-path attacks by introducing “secrets” to off-path attackers. For example,

DNS response packets contain transaction ID to differentiate among requests sent to the

same server and the off-path attacker must learn the randomly generated ID (i.e., secret)

before the injected packet can be accepted, if they were to inject rogue DNS responses

with wrong record. Blind injection carries the nature of brute forcing (e.g., enumerate all

possible IDs) and therefore is less favorable given the large entropy (e.g., at least 16-bit for

transaction ID without considering other secrets like ephemeral port number). To solve this

problem, off-path attacks are usually made possible by side channels.

Since the attackers cannot directly eavesdrop the traffic to obtain the secrets,

to retrieve it, they must infer it from other form of available information, which leaks

the secret through side channel. Side channel can be defined as a kind of implicit and

unattended information leakage where the secret information is leaked in a form that differs

from the original form. For example, the character typed on keyboard is designed to be

transferred using electric signal, however, by analyzing the keystroke sound, the character

typed can be leaked in the form of sound wave. Also the sound wave is the intrinsic

6

byproduct of the keystroke and therefore is unattended leak. Further, when the character

was input to the search box with typing prediction, the character can also be leaked by

analyzing network traffic shape or GPU memory usage [95], in the form of packet length

or performance statistics numbers, deviating from the original form of pixels on the screen

(showing the character). For off-path network attacks, side channels usually arise from

the shared resources like counters [89, 22], and cache [90]. Note that side channels should

leak information in an unattended manner, which serves the key difference between a side

channel and a covert channel. For example, leveraging the memory bus as antenna, an

unprivileged malicious agent on the victim system can extrapolate memory data by emitting

electromagnetic waves [108]. However, this is considered as a covert channel, because the

transformed information leakage is caused by an active and attended agent instead of the

system itself.

2.1.2 Threat Model

General Off-Path Network Attack Threat Model. As exemplified by [89,

90, 22, 104, 84, 97, 27], off-path network attack can be generalized into an universal threat

model. In such a model, as mentioned in Chapter 2.1.1, there is a secret that is defined

according to the specific protocol. Two victim hosts communicate, using the secret that is

unknown to an off-path attacker. By definition, an off-path attacker is unable to eavesdrop

or tamper with the communication between the victim hosts. However, they can leverage

IP spoofing (which is allowed in the majority of ASes according to a recent study [37, 86]

and is offered in some bullet-proof-hosting service with around $50/month), and therefore

can craft and send any packets using spoofed source IPs. The primary objective of such

7

attacks is to deduce secrets by sending a combination of spoofed and non-spoofed packets.

The deduction can be achieved by observing in-path packets, timing information and other

attacker-observables.

Off-Path DNS Cache Poisoning Threat Model. DNS cache poisoning at-

tack aims to let the resolver cache wrong DNS records by answering the queries with forged

malicious responses. If we fit the threat model into DNS cache poisoning attack, then the

secret becomes the ephemeral port number and transaction ID used in DNS requests, be-

cause all other fields are known and deterministic to the off-path attacker like the domain

name in the question field (as the query can be triggered by the attacker themselves), and

the attack goal is to infer the ephemeral port number.1 The victim hosts are defined as the

resolver(forwarder) and nameserver(resolver) as knowing the secrets allows the attacker to

inject rouge DNS responses by impersonating the nameserver(resolver). In addition, the at-

tacker needs to control a machine that is able to trigger a request out of resolver(forwarder).

In forwarder case, it can happen when an attacker can join a public wireless network in a

coffee shop, a shopping mall, or an airport where the forwarder in the LAN serves them. In

resolver case, it can happen when an attacker is an insider of an enterprise network or the

resolver is open to the public (e.g., Google DNS).

2.2 History of Off-Path Network Attacks

The first off-path TCP attack was created by Robert [93] in 1985 after TCP was

invented in 1974. Robert attacks the predicable initial sequence number(ISN) generator

1Transaction ID may also be inferred but we leave it as future work. In this work we assume the attacker
will brute-force it.

8

Year Author Finding Target

1985 Robert T. Morris [93] ISN is predictable in 4.2BSD. TCP

1989 Steven M. Bellovin [15] netstat service leaks SEQ. # TCP

1995 Kevin Mitnick Real-world exploit on predictable ISN TCP

1999 Nalneesh Gaur [51] First cache poisoning attack DNS

2001 Michal Zalewski [123] ISN is still predictable in most OSes. TCP

2004 Paul Watson [120] RST acceptance only requires SEQ# in window. TCP

2008 Dan Kaminsky [71] Real-world cache poisoning attack DNS

2010 Zhiyun Qian [99] IP spoofing bypasses SMTP blocking. EMail

2010 Roya Ensafi [46] IPID leaks packet emission event. IP

2012 Yossi Gilad [3] IPID leaks packet emission event, further secrets1. TCP

2012 Zhiyun Qian [97] Firewall behavior facilities off-path attacks. TCP

2012 Zhiyun Qian [98] OS shared states like stats & avail. ports leak secrets. TCP

2012 Amir Herzberg [60] Avail. ports on NAT gateway leaks port#2. DNS

2013 Amir Herzberg [61] Forging 2nd frag. to bypass port & TxID check. DNS

2013 Amir Herzberg [62] Time diff. from socket overloading leaks port#. DNS

2016 Yue Cao [22] Global challenge ACK counter leaks secrets. TCP

2018 Markus Brandt [17] Frag. needed ICMPs. forces NS to fragment responses. DNS

2019 Domien Schepers [104] Shared power save state in Linux kernel leaks TKIP key. Wi-Fi

2019 Fatemah Alharbi [10] Avail. ports on OS leaks port#. DNS

2020 Xiaofeng Zheng [125] Any response to forwarder can be fragmented w/o ICMP. DNS

2020 Amit Klein [75] IPID & port# predicts each other for shared generator. DNS

2020 Keyu Man [89] Global ICMP rate limit counter leaks port#.3 DNS

2021 Keyu Man [90] Next hot exception cache leaks port#.3 DNS

1 TCP secrets = SEQ# + ACK# + Client port#

2 DNS port# = UDP ephemeral port# used in a query

3 Detailed in this paper

Table 2.1: Off-Path Network Attacks

implemented in BSD, which is incremented by a constant amount once per second, and by

half that amount each time a connection is initiated [15]. Later on, in 1989, Steven exploits

the netstat service to acquire the TCP sequence number directly if one of the TCP end host

is down [15]. In 1995, Kevin observed that ISN used in X Terminal increased predictably

and launched real world attack. In 1999, Nalneesh invented the first off-path DNS cache

poisoning attack [51]. Two years later, 26 years after Robert found the predictable ISN

vulnerability, Michal surveyed more than 10 TCP implementations and found most of them

9

were still implementing the predictable ISN generator [123]. Instead of predicting the precise

sequence number, Paul found in 2004 that as long as the sequence number used in TCP

RST packet falls in the TCP receiving window, which is usually 64k bytes, the packet would

be considered valid and the connection would be reset, if such packet was received. This

reduces the sequence number entropy by 65536 times when resetting the connection off-

path and practical attacks succeeded in minutes [120]. In 2008, the famous talk ”It’s the

end of the cache as we know it” was given by Dan Kaminsky on Black OPS 2008, which

presented a real-world DNS cache poisoning attacks. At that time, most DNS software

used a fixed ephemeral port number to produce requests, which only left 16-bit entropy

from transaction ID to the attacker and Dan simply brute forced 16-bit transaction ID to

launch the attack. Two years later, in 2010, side channel attacks were applied to targets

other than DNS and TCP: Zhiyun discovered IP spoofing could be used to bypass SMTP

blocking and further enable the large scale email spam [99]; Roya proposed idle port scan

which leveraged global IPID counter to infer the packet transmission event on an arbitrary

host [46], which became the foundation of later attacks. In 2012, IPID side channel was used

to launch off-path TCP attack [3]. Unlike previous attacks which rely on ISN inference, this

attack managed to infer the TCP secrets after the connection was established. By observing

the packet transmission event, the attacker can learn whether the previous guess on TCP

SEQ#, ACK# or client port# was right. In the same year, Zhiyun found some shared

states in OSes and firewall can leak TCP secrets as well [97, 98]. Similarly, at the same

time, Amir found NAT can leak UDP ephemeral port#, due to the shared available port

number pool [60]. In 2013, Amir proposed two novel DNS cache poisoning attacks: first he

10

discovered that overloading socket would produce the side channel for inferring ephemeral

port number [62]; second he found the check on port# and transaction ID can be bypassed

completely when the IP is fragmented [61], and therefore the attacker can inject rogue

fragments to poison the cache. In 2016, Yue found global challenge ACK counter, which

was implemented in mainstream OSes, can be used to leak TCP credentials [22, 23]. In

2018, as a supplementary work, Markus found nameservers can be tricked to fragment DNS

responses if sent with ICMP fragment needed packets [17]. In 2019, similar to [98], Fatemah

found similar shared available port pool on a host can be used to infer the ephemeral port

number of DNS requests [10]. In the same year, Domien discovered the shared power save

state in Linux kernel can be used to leak TKIP key of a encrypted Wi-Fi network [104]. In

2020, leveraging the unique position of DNS forwarders, Xiaofeng discovered the attacker

can force fragmentation on the DNS responses sent by the upstream DNS resovler without

the need for ICMP fragment needed packets [125]. Also in 2020, leveraging the cryptography

properties, Amit was able to infer the next ephemeral port number selected by the OS after

observing the IPID sequences of the previous sent packets.

11

Chapter 3

SADDNS: Revive DNS Cache

Poisoning Attacks With Temporal

ICMP Rate Limit Counter

3.1 Introduction

Domain name system (DNS) is an essential part of the Internet, originally de-

signed to translate human-readable names to IP addresses. Nowadays, DNS has also been

overloaded with many other security critical applications such as anti-spam defenses [70],

routing security (e.g., RPKI) [20]. In addition, DNS also plays a crucial role in bootstrap-

ping trust for TLS. TLS certificates are now commonly acquired by proving the ownership

of a domain [7]. Therefore, compromising the integrity of DNS records can lead to catas-

12

trophic security failures, including fraudulent certificates being issued that can compromise

the underpinning of public key cryptography [17].

Historically, the very first DNS cache poisoning attack was invented in 1999 [51].

The first well-known DNS cache poisoning attack was presented by Kaminsky [71] in 2008,

who demonstrated that an off-path attacker can inject spoofed DNS responses and have

them cached by DNS resolvers. This has led to a number of DNS defenses being deployed

widely, including source port randomization [66] and “birthday protection” [59, 60]. Other

defenses such as 0x20 encoding [36] and DNSSEC [11] have also gained some traction. Un-

fortunately, due to reasons such as incentives and compatibility, these two defenses are still

far from being widely deployed as reported in recent studies [29, 67, 105, 85, 34, 33]. To

summarize, source port randomization becomes the most important hurdle to overcome in

launching a successful DNS cache poisoning attack. Indeed, in the past, there have been

prior attacks that attempt to derandomize the source port of DNS requests [62, 60]. As

of now, they are only considered nice conceptual attacks but not very practical. Specifi-

cally, [62] requires an attacker to bombard the source port and overload the socket receive

buffer, which is not only slow and impractical (unlikely to succeed in time) but also can be

achieved only in a local environment with stringent RTT requirement. In [60], it is assumed

that a resolver sits behind a NAT which allows its external source port to be derandomized,

but such a scenario is not applicable to resolvers that own public IPs.

In contrast, the vulnerabilities we find are both much more serious and gener-

ally applicable to a wide range of scenarios and conditions. Specifically, we are able to

launch attacks against all layers of caches which are prevalent in modern DNS infrastruc-

13

ture [106, 14, 10], including application-layer DNS caches (e.g., in browsers) [10], OS-wide

caches [10], DNS forwarder caches [64] (e.g., in home routers), and the most widely tar-

geted DNS resolver caches. The vulnerabilities also affect virtually all popular DNS software

stacks, including BIND [35], Unbound [80], and dnsmasq [72], running on top of Linux and

potentially other OSes, with the major requirement being the victim OS allowed to generate

outgoing ICMP error messages. Interestingly, these vulnerabilities result from either design

flaws in UDP standards or subtle implementation details that lead to side channels based

on a global rate limit of ICMP error messages, allowing derandomization of source port

with great certainty.

To demonstrate the impact, we devise attack methods targeting two main sce-

narios, including DNS forwarders running on home routers, and DNS resolvers running

BIND/Unbound. With permissions, we also tested the attack against a production DNS

resolver that serves 70 million user queries per day, overcoming several practical challenges

such as noises, having to wait for cache timeouts, multiple backend server IPs behind the

resolver frontend, and multiple authoritative nameservers. In our stress test experiment,

we also evaluate the attack in even more challenging network conditions and report positive

results.

In this chapter, we make the following contributions:

1. We systematically analyze the interaction between application- and OS-level behav-

iors, leading to the discovery of general UDP source port derandomization strategies,

the key one being a side channel vulnerability introduced by a global rate limit of

outgoing ICMP error messages.

14

2. We research the applicability of the source port derandomization strategies against

a variety of attack models. In addition, to allow sufficient time in conducting the

derandomization attack, we find methods to extend the attack window significantly,

one of them again leveraging the rate limiting feature (this time in the application

layer).

3. We conduct extensive evaluation against a wide variety of server software, config-

uration, and network conditions and report positive results. We show that in most

settings, an attacker needs only minutes to succeed in an end-to-end poisoning attack.

We also discuss the most effective and simple mitigations.

3.2 Current State of DNS Cache Poisoning Attacks

The classic DNS cache poisoning attack in 2008 [71] targeted a DNS resolver

by having an off-path attacker tricking a vulnerable DNS resolver to issue a query to an

upstream authoritative nameserver. Then the attacker attempts to inject rogue responses

with the spoofed IP of the nameserver. If the rogue response arrives before any legitimate

ones, and if it matches the “secrets” in the query, then the resolver will accept and cache

the rogue results. Specifically, the attacker needs to guess the correct source/destination

IP, source/destination port, and the transaction ID (TxID) of the query. The transaction

ID is 16-bit long. At the time when both the source and destination port (i.e., 53) were

fixed, 16-bit is the only randomness. Thus an off-path attacker can simply brute force all

possible values with 65,536 rogue responses, not to mention a few optimizations such as

birthday attacks that can speed the attack even further.

15

3.2.1 State-of-the-Art(SOTA) Defenses

A number of defenses have since then been promoted to mitigate the threat of

DNS cache poisoning. They effectively render the original attack no longer feasible. We

describe below the most widely known and deployed defenses:

• Randomization of source port [66] is perhaps the most effective and widely deployed

defense as it increases the randomness from 16 bits to 32 bits. As an off-path attacker

has to guess both the source port and TxID at the same time.

• “Birthday protection” [59, 60] by removing duplicate queries. Kaminsky’s attack

optimized the attack success rate by triggering multiple outgoing requests (all using

the same source and destination port), and therefore greatly improves the likelihood

that an off-path attacker guesses one correct TxID out of all the outstanding ones.

The defense simply disallows more than one outstanding query of the same domain

name and it is also widely deployed.

• Randomization of capitalization of letters in domain names, i.e., 0x20 encoding [36].

The offered randomness depends on the number of letters and can be quite effective

also, especially for long names. Unfortunately, even though it is a simple change

to the protocol, in practice it has significant compatibility issues with authoritative

nameservers encountered on the Internet [34, 39]. Therefore, most popular public

resolvers now refrain from using 0x20 encoding by default. For example, Google DNS

uses it only for a set of whitelisted nameservers [39]; Cloudflare has even recently

disabled 0x20 encoding altogether [33]. As of the year 2020, we found only two (i.e.,

16

openNIC and Verisign) out of the 16 popular public DNS services we measured (see

the other 14 in Table 3.2) use it by default to a test nameserver we setup. And the

result roughly matches what was observed in a study [105].

• Randomization of the choice of nameservers (server IP addresses) [61]. The offered

randomness depending on the number of nameservers. In practice, most domains

employ less than 10 nameservers, translating to only 2 to 3 bits. In addition, it has

been shown that an attacker can induce query failures against certain nameservers

and therefore effectively “pinning” a resolver to the one remaining nameserver [60].

• DNSSEC [11]. The success of DNSSEC depends on the support of both resolvers and

authoritative nameservers. However, only a small fraction of domains is signed —

0.7% for .com domains, 1% for .org domains, and 1.85% for Top Alexa 10K domains,

as reported in 2017 [29]. In the same study, it is also reported that only 12% of the

resolvers enabling DNSSEC actually attempt to validate the received records. As a

result, the overall deployment rate of DNSSEC is far from satisfactory.

3.2.2 New Attack Surface in the DNS Hierarchy

As alluded to earlier, modern DNS infrastructure has multiple layers of caching.

Figure 3.1 provides a concise view: a client application often initiates a DNS query (through

an API call such gethostbyname()) to an OS stub resolver — typically a separate system

process that maintains an OS-wide DNS cache. The stub resolver does not perform any iter-

ative queries; instead, it always forwards the request to the next layer up, a DNS forwarder

which also forwards queries to its upstream recursive resolver. DNS forwarders are com-

17

Stub
Resolver

Forwarder Recursive
Resolver

Authoritative
name servers

Figure 3.1: DNS Infrastructure With Multiple Layers of Caching

monly found in Wi-Fi routers (e.g., in a home) and they maintain a dedicated DNS cache

also. It is the recursive resolver that does the real job to iteratively query the authoritative

nameservers. The answers are then returned and cached in each layer.

All layers of caches are technically subject to the DNS cache poisoning attack.

Unfortunately, most newly proposed attacks were focused on resolvers [62, 60, 59, 17], and

very limited investigations have been done on stub resolvers [10] and forwarders [107].

3.3 Attack Overview

We propose a general and novel attack, under the threat model presented in Chap-

ter 2.1.2, applicable to all modern DNS software stack, influencing all layers of DNS caching.

The key characteristic is that it defeats the most effective and commonly deployed defense

— randomization of source port.

18

3.3.1 Attack Workflow

1.vctm.com A ?

②Muting (§5)

1.vctm.com A ? sp=x, dp=53, id=y

1.vctm.com A v.c.t.m

1.vctm.com A a.t.k.r, sp=53, dp=x

1.vctm.com A a.t.k.r

dp=0, 1, 2, ……, x

① Port Scan (§4)

Cached

vctm.com NSDNS ServerAttacker

id=0, 1, 2, ……, y

sp=source port
dp=dest port
a.t.k.r=malicious IP

Figure 3.2: SADDNS Attack Workflow

Regardless of a forwarder or resolver, as illustrated in Figure 3.2, our newly pro-

posed attacks always start from triggering either one to send a DNS query, followed by two

key steps as outlined below:

1. Inferring source port. To overcome the randomization of source port, we leverage

a novel and universal side channel in networking stacks to scan and discover which

source ports were used to initiate a DNS query, at a speed of at most 1,000 guesses

per second.

2. Extending attack window. Normally an outstanding query will receive a reply from the

upstream server in a matter of tens or hundreds of milliseconds. This is insufficient,

19

given that the attacker needs time to infer the source port and to inject rogue DNS

replies. We discover effective and novel strategies (different for forwarder and resolver

attack) that can greatly extend the attack window to at least seconds (and even more

than 10s), allowing realistic cache poisoning opportunities. We will discuss this in

Chapter 3.5.

Once the source port number is known, the attacker simply injects a large number

of spoofed DNS replies bruteforcing the TxIDs, which can be done in high speed, given that

most servers have sufficient network bandwidth.

3.4 Inferring DNS Query’s Source Port

In this section, we will describe the idea and procedure of inferring DNS source

ports. We will also measure the vulnerable software and in-the-wild population when fea-

sible.

3.4.1 Analysis of UDP Source Port Scannability

UDP is a stateless protocol and hence fundamentally different from TCP. More

specifically, it is stated in the UDP programming guideline (RFC 8085 [79]) that “UDP

datagrams may be directly sent and received, without any connection setup. Using the

sockets API, applications can receive packets from more than one IP source address on a

single UDP socket.” Furthermore, to ensure that an application will receive data from only

one particular source address, “these applications MUST implement corresponding checks

20

at the application layer or explicitly request that the operating system filter the received

packets.”

These are surprisingly under-scrutinized statements. On a first glance, they may

be interpreted as applicable to UDP servers only, which can bind to a local port, and

subsequently receive packets from “any remote IPs”. Surprisingly, from our experiments,

it applies to UDP clients as well — a client calling sendto() on a specific remote IP and

subsequently recvfrom() on the same socket can technically receive packets from “any other

IPs” as well. We have verified this behavior on all modern operating systems, including

Windows, Linux, and MacOS.

This nuanced behavior has a profound impact on what an attacker can learn

through a trivial UDP port scan — when a DNS server issues a query, its source port

effectively becomes open to the public. This allows an attacker to simply scan the ephemeral

port range with any UDP packet, which will trigger nothing upon hitting the correct port

(as the probe will be accepted by the OS but discarded at the application layer), or an

ICMP port unreachable message upon missing it (by design).

Next, the UDP programming guideline (RFC 8085) further states that “Many

operating systems also allow a UDP socket to be connected, i.e., to bind a UDP socket to

a specific pair of addresses and ports.” Indeed, modern socket APIs allow connect() on a

UDP socket but “this is only a local operation that serves to simplify the local send/receive

functions and to filter the traffic”. As a result, when a DNS query is issued from a source

port to a particular destination IP address and port, the OS will accept incoming packets

from only the same remote IP and port. Specifically, when testing the behavior on real

21

network stacks, we find that they will reject a packet with either a wrong IP or port, and

respond with an ICMP port unreachable message (as if the packet was a port scan attempt).

This effectively prevents the source port of a DNS query from being scanned directly.

In summary, the scannability of source port is dependent on the implementation of

DNS software, i.e., whether a connect() API call is issued on the UDP socket. Interestingly,

we find that out of the three most popular DNS forwarder and resolver software BIND,

Unbound, and dnsmasq, only BIND uses connect(). Nevertheless, we develop different scan

methods that can work for each (described in Chapter 3.4.3 and Chapter 3.4.4, overcoming

the challenge outlined in the next section).

3.4.2 ICMP Rate Limit Challenge

A major hurdle to scan UDP source ports efficiently is the commonly deployed

rate limit of outgoing ICMP error messages on endhosts. Even in the simple case where a

source port is public-facing and can be scanned directly by any IP address, an attacker’s

scanning speed is limited by the number of allowable ICMP packets per second (a signal

indicating a source port is not in use).

Historically, ICMP rate limit was first recommended to limit the resource consump-

tion on a router (described in RFC 1812 [13]) where an attacker can force it to generate

a high volume of ICMP error messages. Today, the rate limit mechanism is universally

implemented by all major OSes. Here we focus on the Linux’s ICMP rate limiting behavior

as it is the most popular server OS, but will briefly describe the behaviors of other OSes

afterwards.

22

For Linux, there are both a per-IP and global rate limit on how many ICMP error

packets can be sent out per second. The per-IP rate limit was historically introduced in

the very early versions of Linux, i.e., present in kernel 2.4.10. The global rate limit was

introduced in kernel 3.18 as a way to alleviate the expensive per-IP rate limit check (e.g.,

red-black tree operations) [42].

By default, the per-IP rate limit is one per second (with an accrued max burst of

6) which will severely restrict the scanning speed; the global rate limit is effectively 1,000

(with periodic max allowable bursts of 50). Both are implemented in token bucket style,

with the per-IP tokens recovering at a rate one per second and the global token recovering

at a “nominal” rate of one per millisecond (but the actual token increment happens only

after at least 20ms has elapsed since the last increment). The number of available tokens

is capped at 50 at all times.

We also tested Windows Server 2019 (version 1809), macOS 10.15 and FreeBSD

12.1.0, all of which have global ICMP rate limits. Specifically, their limits are 200, 250 and

200 respectively. Besides, none of them has a per-IP rate limit.

3.4.3 Public-Facing Source Port Scan Method

Even though a source port can be directly probed by any attacker IP in this case,

e.g., as in unbound and dnsmasq, it is imperative to bypass the per IP rate limit (present in

Linux primarily) to achieve faster scan speed. We develop three different probing methods

that can overcome the ICMP rate limit challenge:

23

i. If the attacker owns multiple IP addresses, either multiple bot machines or a single

machine with an IPv6 address, then it is trivial to bypass the per IP limit. IPv6

address allocation states that each LAN is given a /64 prefix [63], effectively allowing

any network to use 264 public IP addresses. We have tested this from a machine in a

residential network that supports IPv6 and picked several IPs within the /64 to send

and receive traffic successfully.

ii. If an attacker owns only a single IPv4 address, it is still possible to ask for multiple ad-

dresses using DHCP. We verified that multiple private IPv4 addresses can be obtained

in a home network. In addition, we have tested this in an educational network where

a single physical machine is able to acquire multiple public IPv4 addresses through

this method as well.

iii. If an attacker owns a single IPv4 address and the above method fails for some reason

(e.g., statically assigned IPs), then the last method is to leverage IP spoofing to bypass

the per IP rate limit, and the global rate limit as a side channel to infer whether the

spoofed probes have hit the correct source port or not, i.e., with or without ICMP

responses. As have been shown in the context of TCP recently, global rate limit can

introduce serious side channels [22, 24, 46]. Here we leverage the ICMP global rate

limit to facilitate UDP port scans which we describe next.

Figure 3.3 illustrates this. In observing the maximum globally allowable burst of

50 ICMP packets in Linux, the attacker first sends 50 spoofed UDP probe packets each with

a different source IP (bypassing the per-IP rate limit). If the victim server does not have any

24

Spoofed
Packets

50 Probe Packets

50 ICMP
Replies

Verification Packet

50 Probe Packets

50−n ICMP
Replies

Verification Packet

ICMP Reply

Off-path
Attacker

Arbitrary
Hosts

Victim Server
with no ports open

Arbitrary
Hosts

Victim Server
with n ports open

Global
Counter=50

Global
Counter=0

Global
Counter=50

Global
Counter=n

Global
Counter=n-1

each spoof a
different IP

Figure 3.3: Fast Port Scanning of an Open Source Port

source port open among the 50, then 50 ICMP port unreachable messages will be triggered

(but they are not directly observable to the attacker). If the victim server does have n open

ports, then only 50−n ICMP packets will be triggered (as the n UDP probing packets will

be silently discarded at the application layer). Now, the attacker sends a verification packet

using its real IP address, e.g., a UDP packet destined to a known closed port, such as 1. It

will either get no response (if the global rate limit is drained), or an ICMP reply otherwise.

If no port is found in the first batch, the attacker waits for at least 50ms for the rate

limit counter to recuperate, and then start the next round. Effectively, the scanning speed

will be capped at 1,000 per second. It therefore takes mote than one minute to enumerate

the entire port range consisting of 65536 ports. Nevertheless, it is a winning battle as the

attacker can simply repeat the experiment and the probability that one experiment will

succeed increases drastically (we note that this is a simple Bernoulli trial).

25

Time Consideration. This approach does have a strong timing requirement.

The only thing the attacker has to make sure is to send 50 spoofed probing packets and

the verification packet in a burst so that they are all processed within a 20ms window;

otherwise, the victim may start recovering additional tokens. The other requirement is that

the attacker has to wait long enough for the 50 max tokens to recover. If the network

condition is not ideal, the attacker can simply wait longer than 50ms.

Binary Search to Narrowing Down to an Exact Port. Assuming there is

a single open port out of the 50 in a specific probing round, we can then employ a simple

binary search to quickly narrow down to the exact port. During each round of binary search,

we always probe the left half of range first. If it is a match, i.e., 50 spoofed probing packets

triggered 49 replies and the attacker can observe one reply to its verification packet, then

we continue to search its left half. Otherwise, we assume the port lies in the right half

and will conduct a binary search there. Note that we will need to send “padding packets”

to ensure the global rate limit is drained when none of the 50 guesses hit a correct port.

Padding packets are spoofed packets destined to known closed UDP ports, e.g., 1, that are

guaranteed to trigger ICMP replies.

Handling Noises. DNS servers usually serve multiple clients at the same time,

creating multiple outstanding DNS queries and source ports. As a result, the source port

scan will likely discover many irrelevant ports. However, most such queries are transient,

and the port scan process can quickly discover an open source port disappearing during the

binary search and return to the linear search. In contrast, we assume that the attacker-

26

triggered DNS queries will last significantly longer, e.g., on the order of seconds instead of

milliseconds (see Chapter 3.5).

Another source of noises comes from packet losses and reordering. This may lead

to both FPs, e.g., loss probing packets or their replies, reordering between verification and

probing packets, and false negatives(FNs), e.g., lost of the verification packet or its reply

(although very rare in practice). To mitigate reordering (which may happen frequently if

the jitter is large), we insert a delay, which is empirically determined to be larger than twice

the jitter, between probe packets and the verification packet. When FPs do occur, they are

handled automatically in the binary search process–it will detect no real port being open

and return to linear search.

Even though they can be handled, excessive FPs will drain the per-IP rate limit

quickly. Specifically, given the token is recovered at the slow rate of one per second, a

FP rate that is higher than that will force the scan to halt until the token is recovered.

Effectively, a per-IP token is a “pass to scan”. To solve this problem, the attacker may use

two or more real IPs to gain more “passes”.

In addition, DNS servers themselves may be subject to random UDP port prob-

ing and therefore generate ICMP unreachable messages. This would cause FNs: we may

mistakenly think there is no open port but in fact there is because the verification packet

will not trigger any ICMP unreachable replies due to the noise draining the rate limit. For-

tunately, not all ICMP replies are subject to rate limit. For example, the most commonly

triggered ICMP echo replies are not subject to the limit.

27

3.4.4 Private Source Port Scan Method

As described in Chapter 3.4.1, if connect() is performed on a UDP socket, the

port effectively becomes “private” to the remote peer, invalidating the previous method.

Our idea then is to send spoofed UDP packets with the source IP of the upstream

DNS server. In the example of a DNS resolver being the victim, we can send UDP packets

probing different source ports with spoofed IP of the authoritative nameserver. If it hits the

correct source port, then no ICMP reply will be generated. Otherwise, there will be. We

can then use the same global ICMP rate limit as a side channel to infer if such an ICMP

message has been triggered. At first glance, this method can work but at a low speed of

one port per second, due to the per-IP rate limit on ICMP messages.

Surprisingly, after we analyze the source code of the ICMP rate limit implementa-

tion, we find that the global rate limit is checked prior to the per-IP rate limit. This means

that even if the per-IP rate limit may eventually determine that no ICMP reply should

be sent, a packet is still subjected to the global rate limit check and one token is deducted.

Ironically, such a decision is consciously made by Linux developers to avoid invoking the

expensive check of the per-IP rate limit [42], involving a search process to locate the per-IP

data structure.

This effectively means that the per-IP rate limit can be disregarded for the purpose

of our side channel based scan, as it only determines if the final ICMP reply is generated

but has nothing to do with the global rate limit counter decrement. As a result, we can

continue to use roughly the same scan method as efficient as before, achieving 1,000 ports

per second. Figure 3.4 illustrates the slightly modified scan workflow. Similar to Figure 3.3,

28

Spoofed
Packets

50 Probe Packets

1 ICMP
Reply

Verification Packet

50 Probe Packets

1 ICMP
Reply

Verification Packet

ICMP Reply

Off-path
Attacker

Upstream
Server

Victim Server
no active query

Upstream
Server

Victim Server
has n active queries

Global
Counter=50

Global
Counter=0

Global
Counter=50

Global
Counter=n

Global
Counter=n-1

all spoof the IP of
upstream server

Figure 3.4: Fast Port Scanning of a Private Source Port

the attacker first sends 50 probes where this time all of which uses the spoofed IP of the

upstream server. Due to per-IP rate limit, the victim server will always generate only one

ICMP reply (in steady state) as long as there is at least one inactive port scanned, which is

the case in both the left and right side of the figure. In the case where the 50 probes hit n

private open ports (to the upstream server), the global rate limit counter still decrements

to n because the victim attempted to generate 50− n ICMP replies. In contrast, when all

50 probes hit inactive ports (left side of the figure), the counter decrements to 0.

The rest of the procedure is identical as before, where a binary search can be

launched to narrow down to a specific port.

Influence on Public-Facing Source Port Scan. With this knowledge, we can

improve method iii. in Chapter 3.4.3 as follows: instead of spoofing 50 different IPs in each

round of probing, we only need to use a single spoofed IP (or a 2nd IP the attacker owns)

instead of many different IPs (which sometimes can be a hurdle).

29

Handling Noises. We point out that there is inherently less noise in this scan

compared to the one on public-facing source ports. This is because every source port is now

effectively “open” to only one single remote IP which is originally specified in connect().

Therefore, assuming the victim is a resolver, most of its queries (i.e., noise) will be destined

to a different nameserver than a specific attack target. Other noise conditions such as packet

loss and reordering still apply. Similarly, noise handling techniques also apply (e.g., using

more than one IP to alleviate the per-IP ICMP rate limit).

3.4.5 Vulnerable DNS Forwarder and Resolver Population

A forwarder or resolver is considered vulnerable if the UDP source port of a DNS

query can be inferred successfully, or more specifically if it supports the global ICMP rate

limit, and/or if it does not use connect() (which makes the port public).

Router ICMP Rpl. Global Rate Lim. connect() Pub. IP Spoof in LAN Vuln.

Verizon Fios Gateway (G1100) Y N Y N/A N

Xiaomi (R3) Y N N Y Y1

Huawei A1 (WS826) N N/A N/A N/A N

Netgear (WNDR3700v4) Y N N N Y2

Arris Spectrum Gateway (TR4400) Y N N Y Y1

TP-Link (Archer C59) Y N N Y Y1

Y1: vulnerable to an insider attack. Y2: vulnerable to an attack requiring collaboration between an insider and outsider.

Table 3.1: DNS Forwarder Behaviors in Home Routers

Vulnerable Forwarders. We surveyed six home router devices, all of which act

by default as a forwarder supporting DNS caching. Their behaviors are summarized in

Table 3.1.

Only one router (Huawei A1) fails to respond with even the ICMP port unreach-

able message, which is a basic requirement of the port scan. The Verizon Gateway is not

30

vulnerable because it is the only one using connect() yet without the global rate limit. We

find that all routers are running old Linux kernel versions in the range of 2.6 to 3.10, which

is why global rate limit is not observed. We do believe that routers of newer generations

will eventually inherit the global rate limit. Nevertheless, since most of them do not use

connect() on the UDP socket, the source port of a DNS query can be easily probed with-

out leveraging the side channel based on the global ICMP rate limit. In addition, we also

measured the IP spoofing capability within the LAN network. Specifically, if an attacker

can spoof the public IP of the resolver from within the LAN network, which often operates

on a private IP range, the end-to-end attack can be conducted from a machine in the LAN

alone without any external collaborator. The result shows that three routers fall under this

category (Y1), and one can be attacked from an outside machine capable of spoofing the

resolver’s IP (Y2).

Name Address Example Backend Addr. # of Backends ICMP Global Rate Lim. connect() Vuln.

Google 8.8.8.8 172.253.2.4 15 Y Y N Y

Cloudflare 1.1.1.1 172.68.135.169 2 Y Y Y Y

OpenDNS 208.67.222.222 208.67.219.11 107 Y Y Y Y

Comodo 8.26.56.26 66.230.162.182 2 Y Y N Y

Dyn 216.146.35.35 45.76.11.166 1 Y Y N Y

Quad9 9.9.9.9 74.63.16.243 11 Y Y Y Y

AdGuard 176.103.130.130 66.42.108.108 3 Y Y N Y

CleanBrowsing 185.228.168.168 45.76.171.37 1 Y Y Y Y

Neustar 156.154.70.1 2610:a1:300c:128::143 2 Y Y N Y

Yandex 77.88.8.1 77.88.56.132 19 Y Y Y Y

Baidu DNS 180.76.76.76 106.38.179.6 16 Y Y Y Y

114 DNS 114.114.114.114 106.38.179.6 11 Y N N Y

Tencent DNS 119.29.29.29 183.194.223.102 45 Y N N N1

Ali DNS 223.5.5.5 210.69.48.38 160 N N/A N/A N

1 Though meeting the requirements, it is not vulnerable due to interference of fast UDP probing encountered (likely

caused by firewalls).

Table 3.2: SADDNS Vulnerable Status of Public Resolvers

31

Vulnerable Resolvers. We study a list of 14 popular DNS providers shown in

Table 3.2 and show that 12 of them are vulnerable which is very serious. Interestingly, we

find that due to firewall policies encountered in several providers, the source port of the

probing packet must be set to 53 and the destination port should be in the ephemeral port

range in order to trigger ICMP responses on some servers.

Note that we also report the number of backend server IPs behind the anycasted

frontend IP (e.g., 8.8.8.8). These backend IPs correspond to the reachable servers on which

we can scan ports. The presence of multiple such IPs increases the attack’s difficulty as

we need to decide which IP(s) to scan. To discover the backend IPs, we simply send

100 queries from the same machine to the frontend and record the observed IPs at an

authoritative nameserver that we own. For the cases where we encounter only a few IPs, we

can simply scan all of them simultaneously. For the cases of OpenDNS and AliDNS which

have over 100, we discuss possible techniques to handle them later in Chapter 3.6. Note

that OpenDNS and AliDNS exhibit more than 100 IPs because our authoritative nameserver

intentionally discards incoming queries and they decide to retry with potentially new IPs

every time before giving up.

In addition, we also measured the general population of open resolvers. Compared

with public resolvers, which are usually advertised and intended to serve the public, open

resolvers, however, are generally unlisted and are intended to serve smaller numbet of clients.

We obtain a list of open resolvers from Censys [44] and managed to probe a set of 138,924

live IPs, among which there are 70,503 whose backend and frontend IPs are identical,

indicative of the absence of anycast. Further, 41.3% of the 138,924 cases generate ICMP

32

replies (following the same practice of using source port 53 in the probing packets), out of

which 67.56% exhibit a global rate limit, and 53.93% use connect() on the socket. Overall,

34.36% of all cases are vulnerable because they either support the global rate limit or do

not use connect()). Most of them are not vulnerable simply because of the lack of ICMP

replies.

3.5 Extending the Attack Window

The longer the attack window, the more ports an attacker can scan, and also more

time to inject rogue records. Therefore, our goal is to “mute” upstream servers and prevent

them from being able to respond to the DNS queries triggered by the attacker. Depending

on the attack target (i.e., a forwarder or resolver), we come up with two novel strategies.

Ironically, one of the strategies again leverage the “rate limiting” feature commonly deployed

at the application layer, which can be turned to the attacker’s advantage.

3.5.1 Extending Window in a Forwarder Attack

We propose a novel strategy as follows: the attacker first sends a query of his

own domain, e.g., www.attacker.com to the forwarder, which will eventually trigger the up-

stream resolver to query the attacker-controlled authoritative nameserver. The nameserver

is intentionally configured to be unresponsive so that the forwarder would wait maximum

amount of time possible (as the resolver is also halted) while leaving an open source port.

At a first glance, this is pointless because we are not interested in poisoning an attacker’s

33

own domain. However, due to the unique role of DNS forwarders [64], they rely completely

on upstream resolvers to perform validations on responses.

More specifically, according to RFC 8499 [64], recursive resolvers’ responsibility

is to handle the complete resolution of a name and provide a “final answer” to its client.

This includes recursively handling referrals and CNAMEs and assemble a final answer,

including any CNAME redirects by design. More importantly, resolvers are required to

perform integrity checks such as the bailiwick check [45], whereas forwarders are not. This

means that forwarders by design trust the upstream resolvers and its response. This is not

a security flaw; rather, it is a design choice to prevent forwarders from duplicating the work

of resolvers. This observation is also made a in recent study dedicated to the security of

DNS forwarders [125].

Answer www.attacker.com CNAME www.victim.com

www.victim.com A 1.2.3.4

Figure 3.5: Example Rogue Response Acceptable by a Forwarder

As a result, a rogue response (potentially injected by an attacker from either LAN

or outside) shown in Figure 3.5 will be accepted by a forwarder and both the attacker’s and

victim’s domain records will be cached. This strategy is extremely effective because we can

impose the maximum wait time on the forwarder (i.e., creating the largest possible attack

window). Specifically, most forwarders have a very lenient timeout (sometimes close to a

minute e.g., in dnsmasq), and will stop mostly because the upstream resolver failing first

(ranging from 5 to 30 seconds) generating a SERVFAIL response (or NXDOMAIN) message.

To prevent resolvers from generating such messages too early, we also employ a technique

34

that can sometimes keep a resolver engaged longer. The trick is to have the attacker-owned

authoritative nameserver respond in a slow pace with a chain of CNAME records, creating

an illusion that it is making progress. This can delay resolver’s response for over a minute

in some cases (e.g., Cloudflare).

3.5.2 Extending Window in a Resolver Attack

We propose to take advantage of the security feature of rate limiting in authorita-

tive nameservers, as a way to mute nameservers and extending window in a resolver attack.

Modern DNS nameserver software such as BIND, NSD, PowerDNS, all support a common

security feature called response rate limiting (RRL) [116, 114], as a mitigation of the DNS

amplification attack [114] where a large number of malicious DNS queries are issued to

authoritative nameservers spoofing a victim’s IP address. To limit the number of ampli-

fied DNS reply packets, the RRL feature allows a configurable per-IP, per-prefix, or even

global limit of triggered responses. Specifically, if the limit is reached, then responses are

either getting truncated or dropped. There are also dedicated DNS firewalls with similar

features [31].

Ironically, this feature can be leveraged maliciously to mute a nameserver if an

attacker can inject spoofed DNS queries (with the target resolver’s IP) at a rate higher

than the configured limit. Depending on the actual limit (some are configured to be very

low), it may be trivial to create a sufficiently high “loss rate” so that the resolver’s legitimate

query has an extremely low probability of getting a response. To understand how likely

such a strategy can succeed, we conduct an experiment to measure the response rate of

nameservers used by top 10K Alexa websites.

35

Measurement Methodology. To trigger RRL, we send 1k queries per sec-

ond(qps) for 15 seconds, followed by another around of 4kqps test of 15 seconds to each

nameserver IP; the two tests are separated by a two-second gap to avoid interference. If

there are multiple nameservers for a given domain, we pick the first one. In both cases,

the queries are uniformly distributed (instead of sent in bursts) all attempting to ask the

A record of the www subdomain. The rational is that 1kqps and 4kqps represent sufficiently

low throughput, roughly 0.6Mbps and 2.5Mbps respectively, which is easily achievable by

any attacker on the Internet.

Ethical Considerations. We consciously took a number of measures to limit

the impact on the operations of these servers. First, we ask for A records in our queries,

which generally result in smaller responses, to conserve the target network’s resources; yet,

a prior report [115] suggests that rate limiting behaviors are generally agnostic to the type

of queries (so this would not impact the result of our measurement). Second, the domain

names in the queries are always the same, resulting in minimal processing overhead on the

server (the result is likely cached in memory and easy to fetch). Third, we choose to send

evenly spaced queries (instead in burst) to avoid stressing the server. In general, the traffic

of 4kqps is small compared to a normal load experienced by a nameserver of a Top Alexa

site. Finally, we set up a web server on the IP address used to conduct the probing, serving

a webpage with opt out instructions (we also configured the reverse DNS name of the IP to

direct visitors to our webpage). In total, we received and honored four requests.

Results. We sort the domains by the loss rate observed in the 4kqps test in

descending order and present the results in Figure 3.6. Overall, there are about 25% domains

36

Figure 3.6: Response Loss Rate Under Different Query Rate

whose nameservers experienced higher than 1% loss rate. This is in line with a recent

measurement reporting about 17% cases with loss behaviors [38]. The difference is likely

due to their lower rate of queries at 500qps.

We now try to analyze what fraction of these domains are vulnerable (can be

muted successfully). Here we define a domain to be vulnerable if its nameserver exhibits

an induced loss rate of 66.7% or higher; the threshold is determined empirically as will be

discussed in Chapter 3.7.2. Specifically, there are 13,110 domains that would already satisfy

the criteria and fall victim to a simple DoS attack at a rate of 4kqps.

In addition, we also inspect the remaining cases where the loss rate increased from

the 1kqps test to the 4kqps one. There are roughly 5,000 cases where the diff is 2% or higher.

We believe that the majority of them can be further increased given increased probe rate,

37

and therefore potentially vulnerable as well. Therefore, we have a total of 18,110 (13,110

and 5,000) cases out of the 100k (18%) which we consider vulnerable.

Finally, out of the 75% cases where both 1kqps and 4kqps tests experienced no loss,

we believe there may be many more vulnerable cases which we simply cannot uncover due to

the relatively low probing speed. Due to ethical concerns, however, we refrain from probing

at an even higher speed. To peek into those cases, we manage to obtain permission from a

collaborator to test an authoritative nameserver configured for non-profit website. We are

able to probe the server at a much higher rate (late at night to avoid disruption). Initially

when probed at a rate 4kqps, no loss is observed. Interestingly, it started to experience

loss when the probing rate is increased to 25kqps. Specifically, when the rate is increased

to 50kqps, the loss rate jumps to 75%. We checked with our collaborator on whether the

server is indeed configured to use such a high rate limit. To our surprise, there is no rate

limit configured at all. To understand this behavior, we replicate a BIND server locally

(replicating the configuration) and verified that indeed it is fairly easy to trigger high loss

rate with comparable probing speeds. We find that it is because the application (i.e., BIND)

not reading from the socket queue fast enough, which causes overflows. Indeed, historical

DoS attacks similar to this, e.g., by flooding queries with random names, have been observed

in practice [83]. To mitigate such threats, the official BIND explicitly guideline recommends

rate limit [102], which would paradoxically make it vulnerable to our attack instead.

In addition, we can leverage this technique to extend the attack window against a

forwarder since RRL is also deployed on resolvers to limit the rate of incoming queries. By

following the same procedure and ethical standard in the previous measurements and a rate

38

of 4kqps probing against the resolver IPs obtained on 14, 2019 from Censys [44], we observe

surprisingly 121,195 out of 136,547 exhibit a loss rate of more than 66.7%, indicating it is

generally possible to mute resolvers on the Internet.

3.6 Practical Attack Considerations

3.6.1 Bypassing the TTL of Cached Records

If an attacker attempts to poison a benign domain such as www.victim.com by

directly triggering DNS queries of www.victim.com on a resolver, it may cache the unwanted

legitimate A record, for example, due to occasional failures to mute their upstream servers.

This forces the attacker to wait for the cache timeouts before initiating the next attack

attempt.

Field Value

Question {nonce}.www.victim.com

Answer

Authoritative www.victim.com NS ns.attacker.com

Additional

Figure 3.7: DNS Response Used to Overwrite Cache

However, according to a recent study [76], the cached A record of www.victim.com

could be overwritten by injecting a non-existent NS record of www.victim.com. Specifically,

an attacker always sends queries asking for A records of domain names with random pre-

fixes, e.g., {nonce}.www.victim.com where {nonce} is a random value. This forces the

resolver to initiate a new query to the authoritative nameserver of victim.com as the

39

record is not cached. Then the attacker attempts to inject a rogue response as shown in

Figure 3.7, claiming that www.victim.com is a standalone zone with its own authoritative

server ns.attacker.com. The resolver will then query ns.attacker.com for all future re-

quests asking for A record of www.victim.com, after the original cached record expires.

This is because the attack has effectively inserted a new NS record of the www.victim.com

zone. And resolvers are by design advised to use the most accurate delegation it has in

the cache, which in this case is the NS record of www.victim.com instead of the one of

victim.com [76]. We have verified that this method works against the latest versions of

both BIND and Unbound.

3.6.2 Timeouts and Retransmitted Queries

When a DNS query is triggered either on a forwarder or resolver and there is no

legitimate reply received from their upstream, they will not wait forever. Most of them have

a timeout determining when to close the current socket (and therefore the corresponding

source port) and retransmit. This means that some of these source ports may be short-lived

and difficult to catch. Therefore, it is important to understand their behaviors in more

depth.

In most DNS software such as BIND and Unbound, we conduct controlled ex-

periments with the help of documentation and source code analysis, and summarize their

behaviors (which generally match what we observe in real resolvers). Specifically, when con-

figured as forwarders, they have a similar behavior to resolvers but typically have a longer

timeout (and it is generally easier to extend their attack window using different strategies).

So, we focus on resolvers’ behaviors below.

40

In the case when there is no failure, both BIND and Unbound maintain a default

retransmission timeout (RTO) — 0.8s for BIND, and a dynamically computed value based

on RTT (to the authoritative nameserver) for Unbound. If timeouts occur (e.g., the name-

server is unresponsive or muted), they will contact another nameserver in a round robin

manner if more than one is available. If all of them failed to respond, they will exponentially

back off by doubling the RTO — BIND starts the backoff only after 3 consecutive failure

whereas Unbound does it after every failure). Finally, there is another hard-stop condition

— default 10s total wait time for BIND and 16 to 32 trials for Unbound (depending on the

type of query). A SERVFAIL will be sent back to the client if the hard-stop condition is met.

Here we refer to the RTO as the “attack window” as it represents the duration

where a source port remains unchanged. When the window ends, a different source port

will be chosen, nullifying any previous port scan progress — a new port may happen to

pop back into the range that is just scanned. It is important to note that when the attack

window is too small (e.g., 1s), even if the port is correctly identified, it will still take time

to inject 64k rogue DNS records (at a flooding rate of 100k packets per second(pps), it may

still take a few hundred milliseconds), which may not finish before the window closes.

Generally speaking, if the authoritative nameserver is muted for an extended du-

ration, we do expect to see larger attack windows (as RTOs double over failed attempts).

With BIND being more reluctant in doubling the RTO and having a tighter hard-stop condi-

tion (default 10s), we believe it is a more difficult attack target. We describe an experiment

against such a difficult case in Chapter 3.8.

41

3.6.3 Handling Multiple Authoritative Nameservers

Many domains in practice are configured with multiple authoritative nameserver

IPs, for redundancy and security. Some consider this as a specific defense against DNS

cache poisoning attacks against resolvers (called “IP randomization”) [61], as it increases

the randomness of a DNS query. According to a recent measurement study [94], second

level domains like example.com under TLDs like .com, .net and .org have a median of only

2 NS only (and a mean of 2.3, 2.4, and 2.4), therefore this is not a strong defense by itself.

There are two ways to handle this. First, a general strategy is to simultaneously

mute all the authoritative nameservers, given that on average few of them exist. This will

help the RTO to grow exponentially after a resolver experiences repeated failures when

contacting all the nameservers.

Second, if a resolver is Unbound, it has a unique behavior where it will stop contact-

ing a nameserver (blacklisting the server) and switch “permanently” (i.e., minutes) to other

available ones, should it repeatedly fail to hear from the originally-contacted server [61].

The authors in [61] therefore take advantage of this behavior to perform what they call

“nameserver pinning”. In our case, we need to allow periodic successful responses (by

suspending the muting process); this is to avoid the last nameserver being blocked as well.

3.6.4 Handling Multiple Backend Servers Behind DNS Resolvers

As described in Chapter 3.4.5, many public DNS resolvers have multiple backend

servers (with different IPs) that perform the actual queries. Interestingly, we find that the

backend server selection is typically heavily skewed towards a few (even when we do see

42

100+ in total for some providers), likely determined based on location and past performance

measurements. This allows us to focus on only a few IPs at the same time, which is easily

achievable consider each IP only requires a scan traffic of 1kpps.

3.7 End-to-End Attacks

In this section, we evaluate our attack in realistic settings, including a forwarder

used in a home, and a production resolver with a realistic configuration and network con-

ditions.

3.7.1 Attacking a Forwarder (Home Router)

Experiment Setup. Given that most vulnerable routers have a fairly similar

behavior shown in Table 3.1, we choose Xiaomi R3 (a Wi-Fi home router) as a representative

case study to launch end-to-end attacks. It is used as the one and only gateway in an actual

home where 10 to 15 devices are connected to the Internet through the wireless router all the

time. In addition, Xiaomi R3’s upstream DNS server is set to Cloudflare DNS (1.1.1.1).

Its DHCP server is by default configured to provide 253 IPv4 addresses in a /24 network.

Finally, the attack machine is a Raspberry Pi, which also connects to the router wirelessly.

Since Xiaomi R3 does not deploy global ICMP rate limit and its forwarder software

does not call connect() on UDP sockets, we use strategy ii. in Chapter 3.4.3 (obtaining

multiple IPs through DHCP) to bypass its per-IP rate limit. For extending the attack

window, we use strategy described in Chapter 3.5.1 with a malicious nameserver.

43

Attack Process. The attack is divided into two phases, In Phase I, the attacker

tries to acquire 240 IP addresses using the DHCP strategy. Afterwards, the attack goes into

Phase II where the following repeats: the attacker issues a query to the forwarder asking

for an arbitrary subdomain, e.g., nonce.attacker.com. If SERVFAIL/NXDOMAIN is received

or if an attacker has waited for longer than one minute, indicating something is wrong, we

will repeat the attack process by issuing another query. Otherwise, if a NOERROR response

is received, it means a forged response is injected successfully. In Phase II, the attacker

uses acquired IP addresses to scan open ports on the router. We rotate among the available

IPs and make sure that we never go above the per-IP rate limit (which is 1pps in steady

state). After a port is found open, we confirm that it stays open for at least one second

by repeatedly probing the same port. If it does, we start injecting rogue responses. The

experiment is repeated 20 times and we report the success rate, average time-to-succeed,

and other statistics.

Results. Overall, the attack is very effective, with a success rate of 100% out

of the 20 experiments (we consider it a success if the attack finishes within 30 minutes).

The average time-to-succeed is 271s, with a breakdown of 103s in Phase I and 168s in

Phase II. The standard deviation of Phase II is 109s with the maximum of 739s and the

minimum of 83s. The variance is large because the attack time is mainly determined

by the attack window size, which is the timeout before a resolver decides to give up and

return SERVFAIL/NXDOMAIN, as mentioned in Chapter 3.5.1, and the timeout on Cloudflare’s

resolver varies a lot (from seconds to more than one minute for unknown reasons). Also,

the attack needs to scan 36,325 ports on average to succeed; the average port scan speed

44

is 210 ports per second(PPS), which roughly matches the expected rate of 240PPS when

using 240 IPs to scan. Besides, the attack generates 78 MB of traffic.

3.7.2 Attacking a Production Resolver

Even though the attack can work in principle against a large fraction of public

DNS resolvers, due to obvious legal and ethical concerns, we refrain from targeting any

of them. Fortunately, we obtained authorization to test the attack against a production

resolver managed by a collaborator.

Experiment Setup. The resolver processes about 70 million queries daily with

thousands of real users across multiple institutions and is configured as an open resolver.

Because of this, it will be noisy and representing a challenging attack target. Another be-

havior noteworthy is that it has two backend servers, both of which appear to use connect()

on the UDP sockets. Interestingly, we were told that they are running Unbound, and we

suspect that the connect()-like behavior can be due to stateful UDP firewalls responsible

for filtering out-of-state packets. We are given an attack machine in an adjacent network —

4 hops away from the resolver, which has a 1Gbps Ethernet and can perform IP spoofing.

Exp. RTT Probe Loss NS Mute Lvl. Avg. Time Used Succ. Rate

Base(D) 0.2-1.2ms ∼0% 80% 504s 20/20∗

Base(M) 0.2-1.2ms ∼0% 80% 410s 20/20∗

Mute Lv. 0.2-1.2ms ∼0% 75% 1341s 18/20∗

Mute Lv. 0.2-1.2ms ∼0% 66.7% 2196s 20/20#

Mute Lv. 0.2-1.2ms ∼0% 50% 8985s 9/20#

Altered 37-43ms 0.20% 80% 930s 5/5∗

*: 1-hour threshold. #: 3-hour threshold. D: Day. M: Midnight

Table 3.3: SADDNS Production Resolver Attack Results

45

Also, we setup a test domain and host it on an authoritative server controlled by

us so that we poison only our own test domain. We configure the BIND software with a

response rate limit at a low rate of 10pps to minimize the impact on the network. Once the

limit is reached, we allow 1 out of 5 responses — an effective loss rate of 80%. This forms

the setup of Base experiments, and we have conducted 20 rounds of them with one group

in daytime(D) and the other group at midnight(M) local time (as shown in Table 3.3). In

addition, to understand the effect of response rate limit on the authoritative nameserver,

we vary the mute level by allowing a loss rate of 75%, 66.7%, to 50% — the lower the loss

rate, the more difficult the attack is.

As a comparison, we also simulated more realistic network conditions by imposing

additional delay, jitter, and loss on the same attack machine. The exact numbers are

presented in Table 3.3 where the Base represents the unmodified network condition and

Altered represents the simulated condition. We take the numbers with reference to recent

Internet measurements [47][32]. We believe an attacker is likely able to find networks

with even better conditions. To deal with increased FPs caused by the simulated network

condition, we used two IPs to launch the attack in the Altered experiment; this is to avoid

halting the scan too frequently due to the per-IP token being drained (see Chapter 3.4.3).

Finally, we are also interested in understanding the influence of the parameter

“nameserver mute level”, on the viability of the attack and will conduct a controlled ex-

periment varying the “mute level” where all other parameters are the same as those in

Base.

46

Attack Process. The process similarly starts from the attacker generating queries

asking for nonce.attacker.com. Since the resolver has two backend server IPs, we launch

the port scans on both IPs simultaneously. At the same time, we mute all authoritative

nameservers with queries at a rate of 20qps so that the resolver will experience a constant

loss rate of 80%. The experiment is repeated 20 times and 5 times for the Base and Altered

respectively.

Results. As shown in Table 3.3, we achieved a perfect 100% success rate for the

first Base experiment Base(D), with an average time of 504s to succeed. The standard

deviation is 399s with the maximum being 1404s and the minimum being 13s (which is

simply due to luck). On average, only 69 MB of attack traffic is generated, which is similar to

that in the forwarder attack even though resolver attacks take much longer to succeed. This

is because a forwarder attack is much more likely to enter the TxID bruteforce phase (6 times

vs. twice), which generates about 10 MB of traffic every time. Specifically, strategy ii.(in

Chapter 3.4.3) used in the forwarder attack does not have a binary search phase and an

open port is simply confirmed twice before it enters the TxID bruteforce phase whereas the

binary search phase employed in the resolver attack checks repeatedly the existence of an

open port.

After inspecting the detailed log, we found that even though Base(D) experiment

has a near perfect network condition, many more packets were sent compared to the for-

warder attack. This is because of the frequent change of source ports caused by either

resolver retries (i.e., RTOs) or new queries initiated by the attacker (if the resolver happens

to receive a legitimate response), resulting in many small and fragmented attack windows.

47

In fact, we find more than half of these fragmented attack windows to be smaller than

1s, making them undesirable. Interestingly, we do find a decent fraction of large attack

windows (10% of them with a 30s or larger). Such long attack windows match the profile

of an Unbound resolver — 16 maximum allowed retransmissions, each doubling the RTO.

In Chapter 3.8, we demonstrate that a BIND attack with much smaller attack windows

appears to be still feasible but taking much longer time to succeed.

As shown in Table 3.3, the Base(M) experiment has the same exact setup as the

Base(D) except that it is conducted after midnight where background traffic and noises will

be generally lower. We observe the same 100% success rate and the average time to succeed

decreasing from 504s to 410s. This is expected as our attack is sensitive to noises.

In addition, for the mute level experiments shown in Table 3.3, all but 50% mute

level (i.e., loss rate) can still achieve a near perfect success rate and can finish generally

within an hour (note the threshold of success being 3 hours for the 66.7% mute level). For

50% mute level, the attack succeeded only 9 out of 20 cases. Moreover, the average time

taken is 8,985s or 2.5 hours.

Finally, for the Altered experiment, we also achieved a perfect 100% success rate.

Specifically, the time to succeed is 2005s, 538s, 792s, 1287s and 29s respectively. On average,

the attack time is 930s and 131 MB of traffic is generated. Note that the scan speed in the

Altered experiment is higher than that in the Base experiment. This is because we used

two IPs in the Altered experiment, reducing the frequency of halting during scans.

We also find that the increased loss rate and jitter causes more FPs, where we

incorrectly consider a port discovered (as the verification packet successfully solicits an

48

ICMP). This is commonly caused by any loss of probing packets which can create two

problems: (1) we waste much time filtering these FPs during the binary search stage,

reducing the effective scanning speed; (2) The scan can still be halted because of frequent

draining of the per-IP ICMP tokens even though we used two IPs.

3.8 Discussion

3.8.1 Attack Against Unbound vs. BIND

As mentioned previously, a BIND attack would be much tougher than Unbound as

most of the fragmented attack windows will be generally smaller, as it is more reluctant in

doubling the RTO and have a tighter hard-stop condition (as discussed in Chapter 3.6). To

understand if is ever feasible to attack a BIND resolver, we construct an extreme experiment

with 4 nameservers, and a default hard-stop condition of 10s wait time on the BIND resolver,

resulting in the resolver almost always stuck in a small attack window of 0.8s, as querying

4 nameservers for 3 rounds already take 9.6s (before the RTO backoff can kick in). The

experiment is conducted in a similar network environment to Base. Surprisingly, we run the

experiment twice and both succeeded (one in 0.54 hours and the other in 1.25 hours). We

find that it is indeed possible to succeed in scanning a port as well as injecting rogue records

all in a 0.8s window. One attack we inspected showed that the port scan took 600ms and

the record injection took 200ms.

49

3.8.2 UDP Source Port Inference on Other Operating Systems

In addition to Linux, we have verified that other major OS kernels are vulnerable

as well, albeit with lower global rate limit — 200 in Windows and FreeBSD, and 250 in

MacOS. It is concerning that not a single OS is aware of the side channel potential of global

rate limits, despite the recent serious side channels specifically leverage a challenge ACK

global rate limit in TCP [22]. We argue that all global rate limits in networking stacks need

to be scrutinized regardless of their original design goal. We believe this work can serve as

another valuable reference.

3.8.3 Other Vulnerable Protocols

Any protocols based on UDP are affected by the source port inference. A promi-

nent example is QUIC [68] and HTTP/3 [87] which are poised to replace the traditional

TCP-based web protocols with a much more efficient UDP-based protocols. They are al-

ready widely deployed in Google’s web services [110]. In addition, VoIP, video streaming,

and delay-sensitive online games may also use UDP, which are subject to port inference,

and even off-path packet injection attacks.

3.9 Best Practices in Configuring Response Rate Limiting

(RRL)

Even though response rate limit on authoritative nameservers is an important

mitigation against DNS reflection/amplification attacks, if not done carefully, it can allow

the extension of attack window in a DNS cache poisoning attack. We endorse the RRL

50

behavior (which was configurable but not always used) where a server still responds with

truncated messages when a rate limit is reached [116] instead of being silent. This way, the

amplification factor is no longer favorable to a DDoS attacker. Yet, it sends a strong signal

to the resolver indicating something bad is going on, and the resolver should immediately

react, e.g., either switching the source port and sending a new query, or falling back to TCP

altogether (as recommended in [116]). This strategy can reduce the susceptibility of RRL

being maliciously taken advantage of, compared to the cases where a server is completely

muted (with 100% loss). Unfortunately, as we show in the resolver attack, even a 66.7% drop

rate would already make a server vulnerable, not to mention that a determined attacker

with more resources can simply flood the server with expensive queries (e.g., to non-existing

domains [83]).

3.9.1 Defenses

The proposed attack is fundamentally an off-path attack and therefore can be

mitigated by additional randomness and cryptographic solutions. Besides DNSSEC and

0x20 encoding, there is also an emerging feature called DNS cookie that is standardized in

RFC 7873 [5] in 2016. At a high level, it requires both client and server to exchange some

additional secrets unknown to an off-path attacker; it therefore has the potential to defeat

most (if not all) off-path DNS attacks. Note that this feature requires both resolvers and

authoritative nameservers to upgrade in order to see benefits. As of now, only BIND has

implemented this feature and have it turned on by default in 9.11.0 forward [53] (released in

2016). We find about 5% of the open resolvers that we measured have enabled this feature

by default. However, as any other unproven technology (the lesson regarding 0x20 [33]), it

51

remains to be seen if issues such as compatibility will prevent it from being widely adopted.

Interestingly, we already found both DNSPod (operated by Tencent) and a resolver in a

private company drop queries with DNS cookie options, likely for compatibility concerns.

In addition, our attack relies on the two fundamental components: (1) inferring

source port of a DNS query; (2) extending attack window. Each of them can be a security

threat on its own and therefore we discuss how to address both.

For (1), the simplest mitigation is to disallow outgoing ICMP replies altogether (as

is done by many servers), at the potential cost of losing some network troubleshooting and

diagnostic features. Otherwise, we need to address the global rate limit. As with patches

on TCP global counters [100], we suggest a randomized ICMP global rate limit, including

possibly randomizing the max allowable burst (currently 50), minimum number of tokens

recovered each time (currently 20), minimum idle time to recover tokens (currently 20ms),

and number of token recovered per time unit (currently 1 per millisecond). When the side

channel is mitigated, we also recommend resolvers adopt the use of connect() on their

UDP sockets so that their source ports will not be public-facing and directly scannable.

For (2), we have discussed best practices to use RRL to prevent an attacker from

muting authoritative nameservers easily.

Other simple mitigation strategies include: (a) setting the timeout of DNS queries

more aggressively (e.g., always below 1s). This way, the source port will be short-lived and

disappear before the attacker can start injecting rogue responses. The downside, however,

is the possibility of introducing more retransmitted queries and overall worse performance.

52

And (b) Employing anycast to make it harder for an attacker to DoS a specific authoritative

nameserver used by a victim resolver.

Responsible Disclosure. SADDNS was assigned as CVE-2020-25705 and was

largely patched at the time when this thesis is being finalized. Specifically, after our sugges-

tion, Linux patched SADDNS by introducing the randomness to the global ICMP rate limit

counter. Specifically, instead of deducting one token from the bucket, after patching, either

0, 1 or 2 tokens will be deducted from the bucket, and the attacker therefore cannot predict

the number of tokens in the bucket precisely. Both FreeBSD and macOS patched SADDNS

as well. Comprehensive patching details and the severe real world impact of SADDNS can

be found through the link listed on SADDNS website [88]. Nevertheless, in Chapter 5, we

will show how SCAD discovered unexpected side channels that would revive SADDNS attack

even after patching. Note we tried our best to provide the comprehensive patches against

SADDNS attack when we discovered it in 2020 and we were not even aware of the unique

attack angle reported by SCAD at that time.

3.10 Conclusion

This chapter presents a novel and general side channel based on global ICMP

rate limit, universally implemented by all modern operating systems. This allows efficient

scans of UDP source ports in DNS queries. Combined with techniques to extend the attack

window, it leads to a powerful revival of the DNS cache poisoning attack, demonstrated with

real-world experiments under realistic server configuration and network conditions. Finally,

we suggest practical mitigations that can be used to raise the bar against such attacks.

53

Chapter 4

SADDNS 2.0: Resurrect DNS Cache

Poisoning Attacks With Spatial

Next Hop Exception Cache

4.1 Introduction

In SADDNS, which we introduced in Chapter 3, the key insight is that a shared

resource (i.e., ICMP global rate limit) between the off-path attacker and victim, can be

leveraged to send spoofed UDP probes and infer which ephemeral port is used. Unfor-

tunately, it is unclear how many more such side channels exist in the network stack. In

this chapter, we explore a non-conventional type of port scan packets (i.e., ICMP packets)

which are by design error messages and cannot solicit any explicit response. This is distinct

from SADDNS where it has considered UDP packets which are conventional port scan pack-

54

ets. Even though it is known that ICMP can interact with UDP/TCP [96, 6], e.g., shutting

down a socket (with an ICMP port unreachable message), it is not immediately obvious how

ICMP probes can allow an off-path attacker to infer the ephemeral port number selected

for a UDP socket. Surprisingly, we uncover novel side channels that have been lurking in

the Linux network stack for over a decade and yet were not previously known.

The successful exploitation of these side channels in the context of DNS hinges on

the subtle interactions among three different layers (i.e., ICMP, UDP, and application).

Interestingly, due to the lack of documentation and awareness, such interactions are often

neglected and misconceived, leading to many exploitable scenarios. In addition to novel

side channels, we also find that ICMP messages can be used to DoS DNS transactions,

indirectly assisting the cache poisoning attack.

We have comprehensively characterized the impact of the side channels. They

affect the most popular DNS software including BIND, Unbound, and dnsmasq running on

top of Linux. In addition, we estimate that they affect 13.85% of open resolvers. Finally,

we evaluate the end-to-end attack on the latest BIND resolver and a home router and find

that it is reliable and takes only minutes to succeed. To mitigate the attack, we suggest

setting proper socket options, randomizing the caching structure, and rejecting specific

ICMP messages when possible.

We summarize our contributions as the followings:

• We discovered novel side channels that allow us to use ICMP probes to scan UDP

ephemeral ports.

55

• We thoroughly analyzed the root cause of the discovered side channels and developed

powerful DNS cache poisoning attacks based on that.

• We measured their impact in the real world and proposed corresponding mitigations.

4.2 Background

In this section, we will introduce the necessary background regarding the ICMP

messages that interact with UDP in interesting ways.

As first introduced in RFC 792 [96], ICMP is a diagnostic protocol used to signal

errors during the delivery of IP packets. This can happen, for example, when a router

discards the packet and return an ICMP TTL expired message back to the source after it

detects that the TTL of the forwarded packets reaches zero. To allow the source to distin-

guish which packets have encountered errors, a partial copy of the packet is embedded in

the ICMP message, which includes the source and destination address, source and desti-

nation port. According to recent RFCs [54], the source should accept such messages only

if the wrapped four-tuple matches an existing socket. Upon validating the correctness of

such an ICMP message, depending on the nature of the error and the socket options set by

the application, the source may ignore the error, remedy the situation by taking actions in

the OS kernel (e.g., updating routing entries) and/or reporting the error to the application

layer through the socket interface.

Below we describe a few relevant ICMP message types that have interesting inter-

actions with UDP:

56

• Fragmentation Needed. Such messages are typically sent by a router to signal

the source that the size of its packet has exceeded the MTU of the next hop [91, 6].

Specifically, they are called “fragmentation needed and DF set” or “packet too big”

for IPv4 and IPv6 respectively. The desired MTU is included in the message so that

the source OS can take actions (e.g., updating its PMTU cache for the corresponding

destination) and reducing the size of all future packets with the same destination

address.

• Redirect. Redirect messages [96, 113] are usually sent back to the source by the

next-hop router (e.g., gateway) to signal a shorter route to a destination. After the

source receives such a message, it will update its routing table and route all future

packets to that destination through the new gateway, which is specified in the redirect

packet. This message is only supposed to be sent by the gateway, and therefore, the

OS of the source usually checks the source IP of the ICMP message before accepting

the redirection [113].

• Host/Port Unreachable. Such messages are used to signal the source that the

original packet was sent to the wrong host or port and thus cannot be delivered [96, 6].

According to RFCs [16, 6], upon receiving such messages, the OS must notify the

application as long as a socket is found based on the embedded four-tuple in the

ICMP message.

57

4.3 Attack Overview

SADDNS 2.0 takes the same threat model and attack workflow as SADDNS, which is

presented in Chapter 3.3. In summary, there are 6 steps of the attack:

1. Identify the victim resolver, the domain to poison, and its nameserver.

2. Slow down nameservers and prevent them from responding to the victim resolver to

give the attacker more time.

3. Start triggering the query on the resolver.

4. Infer the ephemeral port of the query using our new side channels (Chapter 4.4).

5. Once the port is known, inject 65,536 rogue responses with different TxIDs to the

victim resolver by spoofing the nameserver’s IP.

6. Check if the cache is poisoned. If not, go back to (3).

4.4 ICMP-Based Ephemeral Port Scans

In contrast with the traditional methods of UDP-based port scans, as mentioned

in Chapter 3.4, in this chapter, we investigate the ICMP-based port scans. As mentioned in

Chapter 4.2, an ICMP message embeds the header of the original packet from the source,

including the source and destination port information. This opens up an opportunity to

craft an ICMP message embedding a guessed port number, which is used to match a specific

socket on the receiver end [96, 6]. However, the challenge is that ICMP messages are

by design error messages useful for diagnostic purposes only, which do not solicit explicit

58

UDP dport=53

UDP dport=67

ICMP: 67 closed

Attacker Victim Server
Listen on 53

ICMP
(UDP dport=53)

ICMP
(UDP dport=67)

Attacker

(a) UDP-based Port Scan (SADDNS) (b) ICMP-based Port Scan (This Work)

Victim Server
Listen on 53

Figure 4.1: Ephemeral Port Scan

responses [16]. This means that regardless of whether a port number is guessed correctly, the

receiver will not provide any response, as shown in Figure 4.1(b), making the ICMP-based

port scans seem infeasible.

Surprisingly, we observe that an attacker does not necessarily have to rely on the

explicit feedback from an ICMP probe. Instead, even if the processing of ICMP probes is

completely silent, as long as there is some shared resource whose state is influenced, we

may find ways (other probes) to observe the changed state of the shared resource. This is

a generalization of the prior probing methods that rely on spoofed probes that by design

can solicit responses from the victim. In addition to SADDNS whose probes are designed to

solicit ICMP responses, it is also the case for the series of TCP side channels [22, 27, 84].

Specifically, [22] leveraged TCP probes that can solicit challenge ACKs; [27, 84] required

TCP probes that can solicit any response. In summary, it requires a leap of faith to realize

the potential of the ICMP-based probes to scan UDP ports.

In this chapter, we systematically investigate all types of ICMP and narrowed

them down to two that are useful for port scans: ICMP fragmentation needed (or ICMP

59

packet too big in IPv6) and ICMP redirect. Next, we will describe their processing logic in

the Linux kernel and the corresponding shared resources that form side channels.

4.4.1 Analysis of ICMP Error Processing Logic

We use the ICMPv4 (ICMPv6 is similar) in the Linux kernel 5.11.16 as an example

to illustrate this. When the OS receives an ICMPv4 message with an embedded UDP

packet, it will invoke udp4 lib err() to handle the error. Here the four-tuple in the

wrapped UDP packet is first checked with the socket table (udp4 lib lookup()) to verify

the legitimacy of the ICMP packet (i.e., it is indeed triggered by the packet the host sent

before). If it passes the check, the ICMP error will be handled according to the type of

error. Additionally, the ICMP error may optionally be delivered to the application if the

OS has received the proper socket options (which will be described in Chapter 4.5.1).

To handle the ICMP fragmentation needed and redirect, two corresponding ker-

nel functions are invoked respectively: ipv4 sk redirect() and ipv4 sk update pmtu().

Both of them will update a global resource maintained in the routing module, called the

next hop exception (fnhe) cache. We refer to it as “exception cache” in short from here on.

It stores various states including the non-default MTU for specific remote IPs (updated by

ICMP fragmentation needed messages), and the non-default gateway IP for specific remote

IPs (updated by ICMP redirect messages). These exception cache entries affect the routing

decisions for all future outgoing packets destined to the remote IPs in the entries. These

entries are cached for some time unless explicitly evicted due to a limit on the total number

of entries (details are provided in Chapter 4.4.3).

60

One thing worth noting is that the OS does not check the source IP address of the

ICMP fragmentation needed messages. This is by design as such messages can be generated

by any router along the path. And due to the dynamic nature of the Internet, the victim

resolver cannot easily verify if a given IP belongs to the routers along the path. This has an

interesting implication that the attacker’s probes of ICMP fragmentation needed messages,

which we will describe next, do not need to spoof the source IP address at all.

Frag Needed Probe

Verify Ping

Off-path

Attacker a
Victim r
port n open

Victim r
port n closed

Verify Reply Frag1

Verify Reply Frag2

PMTU of a
1200

D=r S=r, D=aM=1200 SP=n

D=r PING 1300 bytes

D=a, MF=1 PING 1152 bytes

D=a, MF=0 148 bytes

Frag Needed Probe

Verify Ping

Verify Reply

D=r S=r, D=aM=1200 SP=n

D=r PING 1300 bytes

D=a PING 1300 bytes

IP Header

ICMP Header

UDP Header

Data

Redirect Probe

Verify Ping

Off-path

Attacker a
Victim r
port n open

Victim r
port n closed

GW of a
1.1.1.100

(blackhole)

S=gw, D=r S=r, D=aRedir SP=n

D=r PING

Verify Reply

D=a PING

GW of a
gw

Spoofed

Legend:

Verify Reply

D=a PING
1.1.1.100

Redirect Probe

Verify Ping

S=gw, D=r S=r, D=aRedir SP=n

D=r PING

Frag Needed Probe

Verify Ping

Off-path

Attacker c1
Victim r
port n open

Victim r
port n closed

Verify Reply Frag0

Verify Reply Frag1

D=r S=r, D=auM=1200 SP=n, DP=53

D=r PING 1300 bytes

D=c1, MF=1 PING 1152 bytes

D=c1, MF=0 148 bytes

Verify Ping

Verify Reply

D=r PING 1300 bytes

D=c1 PING 1300 bytes

PMTU of c1:1200

5 Plant Packets

D=r S=r, D=cnM=1200 PING

fnhe Cache:
c1->c2->c3->c4->c5

fnhe Cache:
au->c2->c3->c4->c5

PMTU of c1: default

5 Plant Packets

D=r S=r, D=cnM=1200 PING

fnhe Cache:
c1->c2->c3->c4->c5

Frag Needed Probe

D=r S=r, D=auM=1200 SP=n, DP=53

(a) Frag-Needed-Based Public Port Inference (b) Redirect-Based Public Port Inference (c) Frag-Needed-Based Private Port Inference

Keys: D=Destination IP, S=Source IP, M=PMTU, SP=Source Port, DP=Destination Port, MF=More Fragment, cn(c1-c5)=Colliding IPs, au=Authoritative Name Server

PMTU of a
default

Figure 4.2: SADDNS 2.0 Ephemeral Port Number Inference

4.4.2 Public-Facing Port Number Inference

We illustrate the basic idea of public-facing ephemeral port scan in Figure 4.2(a)

& 4.2(b). For ICMP fragmentation needed, all we need to do is to send an ICMP frag-

mentation needed message with the attacker’s own IP address (which is unchecked by the

resolver as mentioned above). The message embeds a UDP header with a guessed source

port and a destination port of 53. It is also supposed to contain the source and destination

IP addresses, which should be the resolver’s IP and nameserver’s IP respectively. However,

61

some popular DNS software such as Unbound (IPv4 only) and dnsmasq produce public-

facing ephemeral ports (also called wildcard sockets in the kernel terminology). It turns

out that Linux (and other OSes) treat such public-facing ports much more liberally and

accept any inner destination IP address in an ICMP message, as long as the inner source

address matches the resolver’s IP and inner source port matches the ephemeral port. This

effectively means that against such public-facing ports, one can easily trick the resolver to

update the MTUs for any remote IPs (even though the resolver may not have even talked

to them before). Therefore, in the attacker’s probe packets, we will use its own IP address

to fill the destination IP of the embedded packet such that the MTU for the attacker’s IP

will be lowered if the guessed ephemeral port is correct.

To observe the change in the cache, the attacker can simply send a PING or

any other packet (verification packet) that will trigger a reply (verification reply) from the

resolver, and observe if the response will be fragmented as a result of the lowered MTU. As

shown in Figure 4.2(b), if ICMP redirect is used for probing, the effect is that the victim

resolver becomes unresponsive because the traffic to the attacker will now be redirected to

a wrong gateway IP (potentially black hole) set in the redirect message.

4.4.3 Private-Facing Port Number Inference

Most DNS software (e.g., BIND) will produce private-facing ephemeral ports, ren-

dering the previous method invalid. The first adjustment we have to make is to set the inner

destination IP address to the IP of the nameserver. This is because udp4 lib lookup()

will check the complete four-tuple of the embedded UDP packet to locate the socket that

has previously been “connected” to a specific remote IP and port. The exception cache

62

state change is therefore also “private” to the nameserver and not directly observable by

the attacker. For example, even if the MTU for the nameserver is reduced, an off-path at-

tacker cannot directly observe the change because fragments will go towards the nameserver

directly. Interestingly, it turns out that there is another method to indirectly observe the

state change.

The key idea is to leverage the limited number of total slots in the global exception

cache. By default, Linux organizes such a global exception cache as a 2048-bucket hash table

which uses the destination IP address as the key and has a linked list of length 5 and 6

slots (for IPv6 and IPv4 respectively) to solve collisions for each bucket. When the linked

list reaches the limit, the oldest exception will always be evicted and replaced with a newly

inserted exception.

The requirement is that the attacker needs to create hash collisions with the name-

server’s IP. As shown in Figure 4.2(c), the attacker first needs to find 5 IPs (in the case

of IPv6) that can be hashed into the same bucket as the nameserver’s IP on the victim

resolver’s exception cache and control at least one IP c1 (the other 4 IPs can be spoofed).

For now, we assume the attacker can find the 5 colliding IPs but will describe our tested

strategy in Chapter 4.4.4.

As shown in Figure 4.2(c), once the colliding IPs are collected, the attacker first

fully occupies the 5 allowed slots in the linked list using the 5 different IPs. This can be

done by sending a series of ICMP fragmentation needed or ICMP redirect packets wrapping

a PING reply packet [49]. The kernel blindly accepts ICMP errors caused by PING replies

because they are sent by the kernel with no sockets and therefore matching the socket before

63

accepting is not possible. Subsequently, the attacker would proceed with the ephemeral port

scan by probing different source ports with ICMP messages. If a probe happens to hit the

correct ephemeral port, a new exception regarding the nameserver is to be inserted into the

linked list and evict the first exception (i.e., c1) prepared by the attacker. The attacker

can observe this by a verification packet, in the case of MTU caches, checking the current

MTU for c1.

4.4.4 Finding IPs That Cause Hash Collisions

Finding IP collisions has been studied before when leveraging IPID side channels [9,

48], where they needed to find a single IP address that collides within the same IPID bucket

as the victim. [9] states owning 10,000 IPs would bring the colliding rate to an arbitrary IP

over a 2048-entry hash table to more than 98%. Unfortunately, this naive brute force does

not transfer well to our attack. Specifically, in order to observe a collision in the case of the

exception cache, we know that we need 5 or 6 IP addresses to fully occupy a bucket entry.

This means that we need to find at least 50,000 to 60,000 IPs to have a good chance. This

is still easily achievable in IPv6 because ISPs often assign a /64 address block by default.

However, for IPv4, we consider it possible but a very strict requirement. We therefore come

up with an alternative strategy as follows.

Instead of finding the collision set directly, we choose to infer the secret used in

the keyed hash function that computes the index into the 2048 buckets. First of all, the

hash function is public (listed in the kernel source code). Secondly, since the secret is only

32-bit and persists until reboots, it is possible to crack it once and use it subsequently to

check which IPs collide with a given nameserver’s IP. This allows us to target a resolver and

64

potentially poison an arbitrary domain name after a single cracking. To infer the secret,

the basic idea is to find some collision set (of 6 IPs in the case of IPv4) that allows us to

test which secret can produce the collision set. The key is that in this process we no longer

require a collision with a specific IP, i.e., the IP of a nameserver, and therefore we can benefit

from the birthday paradox [112] — it is much more probable to observe a collision at any

bucket rather than a given bucket. Based on our empirical evaluation, we only need 3,500

IPv4 addresses to reliably find one or more collision sets on some buckets. In particular,

we rented 3,500 AWS EC2 instances to acquire 3,500 different random public IPs. Given

that each tiny instance only costs less than one cent per hour, renting instances for sending

probing packets is cheap. In practice, we found that one round of probing with 3,500 IPs is

usually sufficient to find enough collision sets that allow us to uniquely pinpoint the secret

— this takes only minutes computationally with 3,500 tiny CPU cores. In the rare event

that we fail, we can simply re-acquire another set of 3,500 IPs and redo the probing. Finally,

we also tested the same methodology with IPv6 where only 1,500 addresses were needed to

achieve the same result because an IPv6 hash bucket has only 5 slots instead of 6.

4.4.5 High-Speed Scans

As one can expect, for either public-facing or private-facing ports, an attacker can

probe multiple source ports simultaneously to learn if any of the guesses match the correct

ephemeral port. We confirmed with small-scale experiments that both ICMP fragmentation

needed and redirect messages are not rate limited on the Internet (see Appendix B). We

consider two options below.

65

Batch Scan. We can probe many ports at once, and check whether any of them

has hit the correct port. If it does, we can then re-probe a smaller sub-range (e.g., a

binary search) to narrow down on the exact port. In this strategy, every round of probes

will incur at least one round trip time between the attacker and victim (as mentioned in

Chapter 3.4.3). Note that we will need to somehow reset the exception cache state once

we hit the correct port in a batch. This is because we have already evicted one of the

exceptions we planted earlier. We will describe the methods in detail in Appendix C.

Single Packet Scan. An alternative strategy is to scan only a single port in

each batch (batch size equal to 1). This means that every scan will be accompanied by

an additional verification packet. Even though this sounds like a sub-optimal strategy, we

point out that the probes can in fact be initiated in a pipeline, without having to wait for

feedback for previous probes. This is because our verification packet can encode a unique

ID (e.g., ping ID) that can differentiate after which batch of probes, an update in the

exception cache has taken place. Of course, we can also use a larger batch size. However, as

mentioned, it will incur additional round trips to narrow down the search. In contrast, the

single packet scan (a batch size of 1) will allow us to precisely pinpoint which port is open

without the additional round trips. The tradeoff is that for every ephemeral port we scan,

two packets need to be sent (i.e., one is the probe, the other is the verification packet).

As the attack is highly time-sensitive, we favor fewer round trips over higher band-

width consumption. We wish to point out that this allows us to scan at a much higher speed

than 1,000 per second which was the limit in SADDNS.

66

4.5 Vulnerable Population

In this section, we will first study the necessary conditions for the vulnerabil-

ity to be present and exploitable. Then we study the vulnerable combination of OS and

DNS software. Interestingly, the outcome is determined by both the OS and DNS software

(sometimes either one). In addition, we also explored historical versions of OS and DNS

software because a large fraction of resolvers on the Internet may not be running the latest

software. We then conduct a measurement study to measure the vulnerable population

of open resolvers on the Internet that satisfy the vulnerable conditions. Due to measure-

ment constraints, we also conduct a small-scale experiment on ICMP redirect attack (see

Appendix A).

4.5.1 Conditions of Successful Attacks

Below we summarize the key necessary conditions for a resolver to be considered

exploitable:

C1. Must check the port number in the embedded UDP packet of an ICMP error before

processing it. [OS]

C2. Must cache the MTU or next-hop information. [OS]

C3. Must not ignore the ICMP fragment needed or ICMP redirect messages in the kernel.

[APP/OS]

C4. Must not shutdown or retransmit the query after receiving ICMP messages. [AP-

P/OS]

67

For C1. & C2., they form the basis of side channels in the kernel. As mentioned

earlier, the latest Linux kernel satisfies both conditions.

For C3., interestingly the latest Linux kernel allows applications to pass special

socket options (either IP PMTUDISC OMIT or IP PMTUDISC INTERFACE) which will cause the

kernel to ignore the fragmentation needed messages for the corresponding sockets. However,

this feature was introduced in Linux kernel 3.15. Therefore, whether or not the condition

is satisfied depends on both the kernel and DNS application. Nevertheless, ICMP redirect

messages are not affected by any socket option and are always processed in the kernel.

For C4., it is a necessary condition because the port scan assumes the ephemeral

port stays the same after it is successfully detected. If an application decides to shutdown

the connection or retransmit the query after receiving an ICMP message (embedding the

correct ephemeral port), then the detected ephemeral port will be effectively forfeited.

Interestingly, this is again determined by the OS kernel as well as the application. First of

all, the OS kernel has to expose the ICMP error messages to the application layer (again

ICMP redirect never gets exposed). Secondly, an application may choose to react to such

errors in different ways.

Kernel Ver. 3.6− 3.14 3.15− 4.14 > 4.15

DNS BIND BIND BIND BIND BIND BIND Unbound dnsmasq
Version 9.3− 9.11 > 9.12 9.3− 9.11 > 9.12 9.3− 9.11 > 9.12 > 1.5.2 ANY

IP Ver. 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4/6

C1. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C2. ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Redir Vuln. Vpriv ✗ Vpriv ✗ Vpriv ✗ ✗ ✗ Vpriv Vpriv ✗ Vpriv ✗ Vpriv
1 Vpub

C3. ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

C4. ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Frag Vuln. Vpriv ✗ Vpriv ✗ Vpriv ✗ ✗ ✗ Vpriv Vpriv ✗ Vpriv ✗ Vpriv
1 Vpub

Vuln. in Any ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

1: Vpub before 1.13.0. Note: Vpub and Vpriv indicate vulnerable to public-facing or private-facing port scans respectively.

Table 4.1: Exploitability of Different DNS Software and Kernel Versions

68

In Table 4.1, we summarize the vulnerable combinations of Linux kernel and DNS

software according to the above conditions. We break down the Linux kernel versions into

three groups, representing three major changes that affect the above conditions. Similarly,

we break down BIND into two groups because of some key changes in behaviors. As we

can see, C1. is always satisfied in all recent kernel versions. Regarding C2., the Linux

kernel since 3.6 is vulnerable in IPv4 because of the introduced exception cache. It took

Linux some time until 4.15 to port the same exception cache to IPv6. Therefore, IPv6

redirect attacks, which only require C1. & C2. to work, are only exploitable on kernel

versions newer than 4.15. Regarding C3., Since Linux 3.15, the socket options mentioned

above become available and BIND decides to use IP PMTUDISC OMIT since 9.12 for IPv4

sockets, leaving the condition satisfied for IPv6 sockets only. For C4., since Linux 3.15

and BIND 9.12, IP PMTUDISC OMIT on IPv4 sockets similarly causes the kernel to notify the

application regarding ICMP fragmentation needed errors for sockets that have private-facing

ports (therefore does not apply to older Unbound versions and dnsmasq). Furthermore,

BIND will retransmit the query (with a different ephemeral port) upon receiving such a

notification. As we can see, the interactions between the kernel and application layer are

very much inconsistent and evolving constantly. We will discuss the reasoning behind them

in Chapter 4.8.2.

In summary, for the latest versions of BIND and Unbound on the latest kernels,

their IPv6 sockets can be exploited for the ephemeral port scan. In contrast, dnsmasq is

always vulnerable as it does not set any special socket option. Nevertheless, in practice, IPv6

is gaining significant traction in deployment [55]. In fact, as we will show in Chapter 4.5.2,

69

half of the popular public DNS resolvers support IPv6. Furthermore, our attack is fully

capable of exploiting a dual-stack (IPv4/IPv6) resolver, combined with techniques such as

nameserver muting (as will be discussed in Chapter 4.6.4).

Due to practical concerns, we did not show the analysis results of historic ver-

sions of dnsmasq and Unbound in Table 4.1. For dnsmasq, it is vulnerable on all kernel

versions since 3.6. For Unbound, it has a similar road map as BIND and starts to use

IP PMTUDISC OMIT since 1.5.2. The only difference is that it used public-facing ports in the

past. This leads Unbound to be not only vulnerable in the IPv4 of kernel versions between

3.15 and 4.14, but also IPv6 in the same kernel ranges. This is because the public-facing

ports can be successfully scanned (as shown in Figure 4.2) as long as the MTU or redirect

information is stored somewhere in the kernel. In practice, for kernel version 3.15 to 4.14,

such info is stored in a tree which can only time out as opposed to being forcefully evicted.

Other Operating Systems. We have additionally analyzed FreeBSD (whose

networking stack is also used by macOS) and Windows with regard to the previously de-

scribed conditions.

For FreeBSD, it is not vulnerable because both C1. and C2. are broken for ICMP

fragmentation needed and redirect respectively. For ICMP fragmentation needed messages,

even though the OS will check the embedded four-tuple and act accordingly, it does not store

any PMTU information in any kernel-maintained data structure and thus breaking C2..

Instead, it simply forwards the error to the application layer. This is actually not compliant

with RFC1191 [91] which explicitly states that ”the IP layer should associate each PMTU

value that it has learned with a specific path” and ”it (a host) should be able to cache

70

a per-host route for every active destination”. For ICMP redirect packets, surprisingly,

FreeBSD will blindly accept them without checking the embedded four-tuple and therefore

breaks C1..

For Windows, we reverse-engineered tcpip.sys and ntoskrnl of a Windows 10

copy. We found that there is a similar hash table storing the path information (including

the MTU). However, we did not find any eviction algorithm and it will only stop inserting

new exceptions after the kernel runs out of memory. Although the attacker can still leverage

this as a side channel, due to the large and different memory configurations, it is hard to

do so in practice. However, lacking a cap on memory consumption of the hash table would

lead to a potential DoS attack on the entire system. Despite this, our ongoing research

shows the preliminary results that it is possible to use other behaviors to observe whether

the PMTU hash table was modified or not.

4.5.2 Open Resolvers

Now we move on to measure the vulnerable population in the real world. Note in

this section we focus on the attack leveraging ICMP fragmentation needed messages only.

This is because ICMP redirect based attacks require IP spoofing even for port scans, and

we are concerned that it is invasive to conduct such a large-scale IP spoofing experiment.

Instead, we defer to Appendix A for a small-scale measurement of the conditions of the

redirect-based attacks.

Setup and Dataset. Open resolvers represent hosts that provide recursive DNS

lookup services to the public. We obtain a list of open resolvers from Censys.io [44], which

contains 1.84M IPv4 addresses, serving as the dataset used in our measurement. Unfor-

71

tunately, the list does not contain IPv6 open resolver addresses. Nevertheless, these IPv4

addresses only correspond to the frontend IPs. In practice, most open resolvers will go

through backend servers that conduct the actual DNS query on behalf of the frontend.

Therefore, we design a method to solicit queries from IPv6 backend servers. Specifically,

we control two domain names whose NS records point to an IPv4 and an IPv6 address

respectively. For each frontend IP, we always send two queries asking for the IPv4 and IPv6

domain names respectively. For the domain where its NS record points to an IPv6-only

address, it will force a backend server to use its IPv6 address to contact our nameserver. In

the end, we are able to receive 129,196 queries from IPv4 addresses and 27,541 from IPv6

addresses.

Methodology. When a backend server (either IPv4 or IPv6) contacts our name-

server, we will perform the following four tests that approximately correspond to the four

conditions we discussed earlier.

T1. The rejection of the ICMP error when the embedded source port is incor-

rect. To verify C1. in Chapter 4.5.1, we first send a PING to the resolver and record

the reply. Then we craft an ICMP fragment needed packet wrapping the DNS query

we received to signal that the PMTU is lowered. Before we send it, we deliberately

change the source port of the embedded UDP packet to a different random value to

check whether the resolver will blindly accept ICMP packets without checking the

port number. After sending that forged packet, we send another PING and check if

the ICMP is accepted. If the PING reply is not fragmented, we consider the resolver

rejects the ICMP error and thus meets C1..

72

T2. The existence of the next hop exception cache. To verify C2. in Chapter 4.5.1,

ideally we would want to directly test the existence of an exception cache. However,

as described in Chapter 4.4.4 this will require us to find 5 or 6 IPs that would be

hashed into the same bucket, causing the hash collision. Although it is a one-time

effort, targeting every single open resolver will require sending a large amount of traffic

which can be overly invasive. Therefore, we decide to resort to nmap to fingerprint

the OS version of the resolver and check whether the cache exists according to the

OS version discussed in Chapter 4.5.1. Note that nmap may not be perfect, especially

when considering backend servers may not always have open TCP ports, through

which most of the fingerprints are extracted by nmap. Nevertheless, we can use the

distribution obtained from resolvers that do have open ports and extrapolate to those

that do not. To minimize the impact, we sampled 20 out of 8,141 backend resolver IPs

that have a valid nmap signature and performed the collision test using 3,500 rented

IPs following the methodology described in Chapter 4.4.4. Note that this is still an

intrusive test (we do slow down the packet speed to about 1,000pps to minimize any

disruption) and thus cannot scale. The results show 16 out of 20 servers support

nmap’s conclusion and therefore we estimate the accuracy of nmap 80%.

T3. The acceptance of the ICMP error. To verify C3. in Chapter 4.5.1, we use a

similar test to T1. but without modifying the port number to verify if the resolver is

willing to accept the ICMP packet at all. Additionally, if there is no PING reply at

all, we will send a truncated DNS response to solicit the TCP query from the resolver.

If the MSS in the TCP header is decreased according to the PMTU value indicated in

73

our ICMP packet (which we verify to be the behavior of modern Linux kernels), it also

means the resolver has accepted the PMTU value inside the ICMP packet. Besides,

we will conduct another test by changing the destination IP address in the wrapped

IP packet if we find the resolver accepts the original ICMP. If the resolver also accepts

the modified ICMP, it means its port is open to the public, and otherwise, we consider

its ephemeral port as private-facing.

T4. The open-port status after receiving the ICMP error. To verify C4. in Chap-

ter 4.5.1, after the ICMP fragment needed is sent during T3., we follow up with

a “truncated response” (if it is not sent in T3.) indicating the response is too big

which will cause the resolver backend to switch to TCP. If we observe a TCP hand-

shake, it indicates that the ICMP error did not cause the resolver to close the original

ephemeral port, therefore supporting the attack. In the more rare cases, even if we

did not observe any TCP connection attempt, it is still possible that the ephemeral

port is open and it is simply due to the resolver not supporting DNS over TCP. In

such cases, we will check whether the nameserver will receive a retransmitted query

(with a different ephemeral port) from the resolver immediately, which potentially

indicates that the ICMP has induced the DNS software to close the ephemeral port

and transmit another query. To distinguish between the ICMP-induced retransmis-

sion and the timeout-induced retransmission, we record the time delay between the

ICMP transmission and the time we received the retransmitted query. Specifically,

if the delay is close to RTT, which we collect in T1. by measuring the time delay

between the PING response and the request (i.e., within a 10% margin of difference),

74

we consider the retransmission to be caused by the ICMP. Otherwise, if the delay is

larger than RTT, we will consider the retransmission to be timeout-induced (and thus

still supporting the attack).

Results. Overall, out of the 156,737 backend resolver IPs that reach our name-

servers, 13.85% of them are estimated to be vulnerable. If we count by frontend resolver

IPs, out of the 1.84M, 37.72% are estimated vulnerable. This is because a large number of

frontend IPs share the same backend. To further break down the total 13.85% vulnerable

population in the backend, we find that 13,914 (8.9%) are clearly vulnerable to public-facing

port scans. However, when we count the vulnerable population regarding the private-facing

port scans, it requires a more accurate estimate of the Linux kernel version from nmap.

Unfortunately, as mentioned earlier, we find nmap has a relatively low success rate of OS

fingerprinting: only 63.26% for IPv4 addresses and 1.06% for IPv6 addresses. We therefore

use the distribution of kernel versions observed from the 63.26% IPv4 hosts to estimate the

total vulnerable population. In particular, within these IPv4 hosts, we find that 58.66% of

them have the IPv4 exception cache only or also the IPv6 exception cache. We then apply

the 58.66% to the 13,277 resolver backends that are suspected to be vulnerable (passing all

other tests), resulting in an estimate of 7,788 backends being vulnerable to private-facing

port scans.

The results indicate that the majority of the vulnerable population is not actually

running BIND. Instead, they could be running an older Unbound, dnsmasq, or other DNS

resolver software that we have not explicitly tested. Among the servers that are not vulner-

75

able, most of them are simply because they do not accept the ICMP fragmentation needed

messages (including cases that we cannot tell) and fail in T3..

Public Resolvers. We also highlight the results of a few well-known public DNS

services and summarize the result in Table 4.2. Overall, we find 6 out of 12 to be definitely

vulnerable as of 2021, 3 in IPv4 and 3 in IPv6, including famous providers such as OpenDNS

and Quad9. Interestingly, although the most popular DNS software BIND is not vulnerable

in IPv4 in its latest releases, there are still 3 public resolvers vulnerable in IPv4, indicating

that they are either running an older BIND version or a different DNS software (we know

Cloudflare runs Knot [4]). Note that currently only 6 providers support IPv6 (others are

marked as N/A) and we expect more DNS services to be impacted as they start supporting

IPv6.

Name Frontend IP
IPv4 Backend IPv6 Backend

T1. T2. T3. T4. Vuln. T1. T2. T3. T4. Vuln.

Google 8.8.8.8 ✓ ✗ ✗ ✓ ✗ ✓ ? ✗ ✓ ✗

Cloudflare 1.1.1.1 ✓ ✓ ✓ ✓ Vpriv ✓ ✗ ✓ ✓ ✗

OpenDNS 208.67.222.222 ✓ ? ✓ ✓ Ppub ✓ ✓ ✓ ✓ Vpriv

Comodo 8.26.56.26 ✓ ✓ ✗ ✓ ✗ N/A N/A

Quad9 9.9.9.9 ✓ ✓ ✗ ✓ ✗ ✓ ? ✓ ✓ Vpub

AdGuard 94.140.14.14 ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ Vpriv

CleanBrowsing 185.228.168.168 ✓ ✓ ✗ ✗ ✗ N/A N/A

Neustar 156.154.70.1 ✓ ✓ ✓ ✓ Vpub ✗ ? ✓ ✓ ✗

Yandex 77.88.8.1 ✓ ✓ ✗ ✓ ✗ N/A N/A

Baidu 180.76.76.76 ✓ ✓ ✓ ✓ Vpriv N/A N/A

114 114.114.114.114 ✓ ✓ ? ✓ ? N/A N/A

Ali 223.5.5.5 ✓ ✓ ✗ ✓ ✗ N/A N/A

Table 4.2: SADDNS 2.0 Vulnerable Status of Public Resolvers

The most common reason for not being vulnerable is again because they failed T3.

(i.e., the ICMP fragment needed messages do not appear to trigger the MTU to decrease).

As shown in Table 4.2, there are still a few cases where we are unable to fingerprint the

76

kernel versions even after we tried testing a few custom fingerprints in addition to nmap

(marked with “?” in T2. column). For such cases, we simply mark them as “Possibly

Vulnerable” (Ppriv/pub) when they pass all other tests, since it is likely their public servers

are well-maintained and using a newer Linux kernel.

4.6 Practical Concerns

In this section, we will describe a few practical considerations which will influence

the success and reliability of the attack.

4.6.1 Small Attack Window

In addition to the methods described in Chapter 3.5 & 3.6.1 that can be used to

extend the attack window, coincidentally, one of the ICMP messages, ICMP redirect, can

be also used for nameserver muting. The idea is to send the malicious ICMP redirect to

either the victim resolver or the nameserver to reroute the traffic destined to each other

to a black hole. Since the query/response is lost after it reaches the wrong next hop, the

victim resolver would keep the ephemeral port open for responses until the query timeouts

(can be several seconds) and therefore creates a huge attack window.

4.6.2 Multiple Nameservers

It is also quite common for domains to have multiple nameservers. Resolvers may

choose to query these nameservers in a round-robin fashion (where the order is randomized).

77

In fact, this is considered a defense against DNS cache poisoning attacks [89]. However,

this defense has little impact on our attacks for the following reasons.

For resolvers with private-facing ephemeral ports, we can infer the ports specific

to different nameservers simultaneously by running multiple scanning instances. Since it is

unlikely the nameservers’ IPs will share the same hash bucket given that most second-level

domains (e.g., ucr.edu) only have three or fewer nameservers, the side channels can be

independently leveraged without self-interference.

For resolvers with public-facing ports, the attacker can just scan the port as if

there was only one nameserver since the kernel does not check the destination IP address

wrapped in the ICMP probe. The only difference lies in the TxID brute-forcing, where

the attacker would inject multiple groups of 65,536 fake response packets, where each group

uses a spoofed IP of a different nameserver. Due to the low number of nameservers typically

configured, this additional load of packets is not really a fundamental hurdle.

In addition to the above, we propose two new methods for “nameserver pinning”

based on ICMP messages (i.e., either host/port unreachable or redirect). In the case of

BIND resolvers, every time when a query is initiated, we can immediately flood 65,536

(representing the worst cases. BIND uses only 23,232 ports by default) ICMP host/port

unreachable messages containing all possible ephemeral ports with a specific nameserver’s

IP as the destination IP address in the embedded IP header. This will cause BIND to give

up a particular nameserver in the duration of a query session (up to 10 seconds by default).

This is because the OS will pass the host/port unreachable messages to BIND, which will

make the subsequent decision to forgo the nameserver (one of the 65536 guessed ports will

78

match the ephemeral port). Alternatively, we can apply targeted nameserver muting as

mentioned in Chapter 4.6.1 and targeted ICMP redirect to achieve a similar effect.

In the case of Unbound, ICMP redirect can be used as described above to mute

specific nameservers. This is because Unbound has special logic to “blacklist” nameservers

that are non-responsive repeatedly. Therefore, the ICMP redirect will have a prolonged

pinning effect beyond a single query session.

4.6.3 Multiple Backend Servers

Finally, large DNS resolvers tend to have multiple backend servers behind a single

frontend IP — usually an anycast one (e.g., 8.8.8.8). These backend servers are the actual

workers that talk to the nameservers and they are the ones that maintain DNS caches.

Therefore the backend servers should be the actual attack target. An attacker can map out

the IPs of the backend servers by setting up an attacker-controlled nameserver and issuing

a query of the attacker-controlled domain. This will create an additional challenge to the

attacker, as a particular query may get routed to a randomly selected backend IP not known

to the attacker. This will mean that the attacker needs to target m × n pairs of resolver

backends and nameservers, where m is the number of backend IPs and n is the number of

nameservers. Otherwise, if the attacker picks only a single backend server to attack, it will

have a reduced probability of 1
m (assuming the probability of choosing backend servers is

uniformly distributed) to succeed. Fortunately, when m is large, it is typically a heavily

distributed system that the selection of the backend IPs is actually not random at all.

Instead, it is typically based on location. In other words, backend servers that are located

closer to a nameserver will be more likely to be picked for a given query (destined to the

79

nameserver). In such cases, the attacker only needs to target a small number of backend

servers simultaneously or even a single one and is still able to achieve a decent success rate.

4.6.4 Dual-Stack Resolvers

As mentioned earlier in Chapter 4.5.1, the latest BIND and Unbound will instruct

the Linux kernel to ignore ICMP fragmentation needed messages for IPv4 sockets. There-

fore, the vulnerability applies to only IPv6 sockets against them. In practice, both IPv4 and

IPv6 are enabled by default in recent Linux distributions (e.g., Ubuntu 20.04 and Red Hat

7). Therefore, we need to understand how to target their IPv6 sockets in the presence of

IPv4 sockets. Specifically, BIND and Unbound by default will query different nameservers

in a round-robin fashion regardless of whether the IP address is IPv4 or IPv6. As a re-

sult, we can apply the same strategy as outlined in Chapter 4.6.2 & 4.6.3 to handle them.

Specifically, we can apply nameserver pinning to cause the IPv4 nameserver to become

non-responsive and never (or rarely) used by a resolver.

4.6.5 Noises

Background Traffic. There are two potential sources of background traffic at

the resolver that can influence the ephemeral port scan. First, the victim resolver may have

multiple outstanding queries at the same time. During the port scan, it is possible that the

ephemeral port we find belongs to a different query. It is not a serious concern for private-

facing ports as they are “visible” to only specific nameservers, and there are typically few,

if any, outstanding queries towards the same nameserver (in addition to the one triggered

by the attacker). However, it can affect the public-facing ports because the ephemeral port

80

of any outstanding query to any nameserver can show up during a scan. Nevertheless, we

point out that any of the strategies described in Chapter 4.6.1 that can extend the attack

window will automatically mitigate this concern. This is because the outstanding query

triggered by the attacker would then last for much longer (possibly seconds) while other

ordinary queries will only last for hundreds of milliseconds at most. Therefore, we can

simply confirm that the port lives long enough before deciding to brute force the TxID.

Another type of background traffic is the benign ICMP error messages a resolver

may receive during a port scan. They can create additional entries in the exception cache.

This has little impact on public-facing ports because the attack requires only one entry to

be created in the cache and it is highly unlikely that there are many naturally-occurring

ICMP errors that will hash into the same bucket as the attacker’s entry and evict it, during

a short time frame of an attack. For private-facing ports, the attack does require all five

exception entries in the same hash bucket to be intact during the scan. However, it is still

unlikely to have a hash collision from benign ICMP messages during a short time period.

Even if it does occur in practice, it will just interfere with one attack attempt (triggering a

FP) and the next attack attempt will follow immediately.

Packet Losses. Although unlikely, if the probing ICMP containing the correct

ephemeral port happens to be lost, FNs can arise. In such cases, the attacker simply moves

on to the next attempt. If the loss is on the verification or verification reply packets, it

will not affect the attack since the attacker can easily notice and retransmit the verifica-

tion packet. This is because a verification reply is always supposed to come back either

fragmented or not (depending on whether the ephemeral port is guessed correctly).

81

Packet Reordering. Reordering can cause FNs on public-facing port scans and

both FPs and FNs on private-facing port scans. Specifically, if the verification packet

accidentally arrives before the ICMP probe containing the correct ephemeral port, it will

fail to detect the exception cache change and lead to FNs. Furthermore, if the private-facing

port is being scanned, such a FN would mislead the attacker into continuing the scan despite

the fact that one of the planted exceptions has already been evicted. This is guaranteed to

lead to a FP in the scanning of the next batch of ports, as the eviction will be detected by

the next verification packet. To mitigate such problems, a small time gap can be inserted

between the probing and the verification packets. To mitigate the risk of FPs and flooding

the resolver with too many packets, we always double-check whether a detected port is a

true positive before deciding to brute force the TxID.

4.7 Evaluation

To evaluate the efficiency of our attacks without causing real-world damage, we

tested the attack in a controlled environment with different server configurations and sim-

ulated network conditions. Overall, our attacks can succeed in minutes and have a near-

perfect success rate. Note that inferring private-facing ephemeral ports requires inferring

the colliding IPs as described in Chapter 4.4.4. However, since it is only a one-time effort for

each resolver, the time used for the attack does not include the time for inferring colliding

IPs.

82

4.7.1 Resolver Attack

Attack Setup. In this attack, we evaluate the power of the fragment needed

attack based on the private-facing port scan. There are 3 hosts involved in the attack: the

attacker host, the victim resolver and the nameserver, all of which are controlled by us.

The attack program is executed on the attacker host, which is a MacBook running macOS

(Darwin 19.6.0) and is connected to the victim resolver via a wired router (1Gbps). The

victim resolver is a PC (with a single CPU of Intel Core i7-9700) running BIND 9.16.13

on Ubuntu 20.04 (Linux 5.11.16). The nameserver, where our domain’s records are kept,

is hosted on AWS and also running BIND 9.16.13. The attacker’s host, and the victim

resolver are at home and connected to the nameserver via residential Internet and all of the

traffic is sent in IPv6. The goal of the attack is to poison the cache of the victim resolver

so that our own domain’s A record will be altered in the cache.

Exp. Pkt. Loss RTT/ms NS Mute # of NS Batch Size(N) Bg. Noise Avg. Time/s Succ.

Base 0% 0.3-1.2 100% 1 1 0 80 20/20

Loss 0.20% 0.3-1.2 100% 1 1 0 83 20/20

RTT 0% 37-43 100% 1 1 0 149 20/20

ML 0% 0.3-1.2 50% 1 1 0 713 5/6

NS 0% 0.3-1.2 100% 3 1 0 347 20/20

Batch 0% 0.3-1.2 100% 1 1024 0 496 5/5

Real 0.20% 37-43 80% 2 1 0 410 20/20

Real1 0.20% 37-43 80% 2 1 810 659 10/10

Real2 0.20% 37-43 80% 2 1 810+10 933 10/10

Table 4.3: SADDNS 2.0 Resolver Attack Results

We conducted 9 groups of experiments to evaluate the impact of the different server

configurations, network conditions, and levels of background query traffic on our attack as

shown in Table 4.3. Specifically, we first performed a baseline (Base) attack, where the

attacking conditions are ideal. Then we changed one configuration or network condition at

83

a time to check how they would influence the attack. Then, we tested the performance of

our attack against a more realistic configuration and network condition to simulate a real-

world scenario (Real). Finally, we introduced the background query traffic to the resolver

and evaluate how the interfering query traffic affects our attack. Specifically, in Real1, we

reproduced the similar workload on a production resolver, as mentioned in Chapter 3.7.2,

with 70M queries per day, averaging at 810 queries per second. To simulate the worst-case

scenario, the domains in these queries are randomly sampled from the Alexa top 1M to

reduce the cache hit, leading to more open ports. In Real2, we added another 10 queries

per second asking for the same domain that the attacker is trying to poison (which would

cause confusion to our port scan).

To stay stealthy, we limit the rate of our packets to 7kpps (including both the

probes and verification packets), which is 3.5k ports scanned per second. Note that 7kpps

applies to the port scan phase only. During the TxID brute-forcing phase, we limit our brute

force speed to 40kpps and 70kpps for Real1 and Real2 (to compete with the background

traffic). We simulate varying degrees of packet losses, jitters, and delays according to the

representative numbers reported on the Internet [32, 47]. Besides, we also evaluated how

the nameserver muting level and the number of nameservers affect our attack. Although

the nameserver can be completely muted (i.e., 100% muting level) using ICMP redirects as

mentioned in Chapter 4.6.1, we also evaluate the scenario where it is difficult to completely

mute a nameserver (e.g., leveraging response rate limit). As mentioned in Chapter 4.4.5,

we also studied the impact on the attack performance when using different batch sizes (i.e.,

the number of ports scanned in a batch).

84

Results. Overall, we find our attacks can succeed on average in 1.3 to 15.6

minutes, depending on the setup. Note that we consider a test failed if it still does not

succeed after an hour. In both baseline (Base) and packet loss (Loss) experiments, the

attack succeeds in around 80s, indicating the minimal impact of moderate packet losses.

This is expected as discussed in Chapter 4.6.5. In the RTT experiments, we found the delay

and jitter do affect our attack. Under such unstable networks, the attack may experience

FPs as the verification packet may be received before the probe. Fortunately, our attack can

still succeed because we have inserted time gaps to minimize reordering (see Chapter 4.6.5).

For nameserver muting levels, we find they do have a significant impact on our

attack but are much smaller compared to the impact on SADDNS, as indicated in Chap-

ter 3.7.2. Under the same muting level (50%), our attack (ML) is 10x faster than SADDNS.

This should be attributed to the substantially faster scan speed and the fact that we do

not need to perform iterative probes to narrow down the search space. As a result, this

allows our attack to fare better under smaller attack windows. Experiment Batch further

confirms this. With N=1024, the average success time increased by five times compared

to the baseline where N=1. Note in ML, there is one attack attempt that failed (after an

hour) likely due to a link-layer issue that we are unable to reproduce.

We also notice it would take about 4x the amount of time to poison a domain with

3 nameservers (NS). This is due to the limit of 7kpps packet sending rate, which forces us

to scan for each nameserver at 1/3 of the total rate. However, if an attacker scans with 3

times the bandwidth, the result would have been close to the baseline.

85

In the real world scenario experiments (Real), we succeeded in 410s on average,

which is 2x the speed of SADDNS with the same setting, despite the fact that the test is

against BIND which is known to have a much smaller attack window (about only 2s as

experienced in our experiments) than Unbound (more than 30s).

Finally, for the background query traffic experiment Real1, we found random

domain queries do not significantly impact the attack performance. As expected, we do not

find our scan being confused by the additional open ephemeral ports because they are all

private ports and not visible to the nameserver which hosts the target domain name (see

Chapter 4.6.5). Instead, we find that the increase of time-to-succeed is mostly attributed

to the machine being slowed down in processing these query packets. Compared to Real1,

Real2 experienced worse results because the additional 10 queries per second can generate

ephemeral ports that are visible to the target nameserver, therefore creating confusion to

our scan. Looking into the detailed logs, we see that Real2 experiences 22 failed TxID

brute force attempts on average whereas Real1 experiences only 11. The majority of the

additional failed brute force attempts are due to the failure in inferring the correct port

number.

In general, we make two additional general observations on the results. First, the

overall attack time is spent predominantly on repeated port scans (starting from the smallest

port to the largest), accounting for 96% to 98% of the time. The remaining time is spent

on brute-forcing the TxIDs. Second, the time-to-succeed varies significantly depending on

how close the correct port is to the beginning of the port scan. In many cases, we see the

86

time-to-succeed being a few seconds, whereas in the worse case (especially when noise is

introduced), it can take 30 minutes to find the port and succeed in brute-forcing the TxIDs.

4.7.2 Other Attacks

Forwarder Attack. To evaluate the performance of the public-facing port scan,

we launched the attack against an ASUS AX6600 Wi-Fi router which has a built-in DNS

forwarder. We used a similar setup as the Base experiment in the resolver attack where the

attacker is a LAN machine that can trigger DNS queries on the forwarder. In this attack,

we used the IPv4 network and set the upstream resolver as 8.8.8.8, which the attacker needs

to spoof when brute-forcing the TxIDs. Finally, the attack succeeded in 13s.

Redirect Attack. Similar to Base, we launched the redirect-based attack under

the same settings, with the only change of replacing IPv6 with IPv4, to demonstrate the

private port scan under different IP versions. Finally, the attack succeeded in around 150s.

Public Resolver Attack. We obtained authorization to test our attack against

an anonymized popular public resolver listed in Table 4.2 and it took about 30s and 180s

to succeed in two attack attempts respectively, with the NS mute level set to 75%.

4.8 Discussion

4.8.1 Comparison With SADDNS

Ephemeral Port Inference Method. As mentioned in Chapter 4.4, the first

and foremost difference is the use of ICMP probes in SADDNS 2.0. By design, ICMP messages

are considered errors that should not solicit any responses [16]. This makes them an unlikely

87

avenue to probe any secret. Nevertheless, we demonstrate a superior understanding of the

nature of side channels, making ICMP probes a successful entry point in UDP ephemeral

port scans.

Side-Channel Type. SADDNS 2.0 leverages the space resource limit ((i.e., t)he

space for storing the next hop exception cache is limited) while SADDNS’ side channel lever-

ages the time resource limit (i.e., ICMP error generating rate is limited). Moreover, SADDNS

2.0 arises when processing incoming ICMP packets (and this is why we can still infer the

ephemeral port despite no reply to the ICMP probing packet is sent) while SADDNS’ side

channel arises when processing outgoing ICMP packets.

Port Scan Speed. Thanks to the novel space-constraint side channel arising in

the packet receiving path, the ICMP-based ephemeral port scan rate can be theoretically

unlimited. In practice, the attacker can also adjust the scan rate and strategy flexibly to

achieve a higher success rate according to different network conditions. SADDNS, however,

only allows the fixed 1000 pps slow port scan due to the nature of the time-constraint side

channel it uses. The slow scan rate leads directly to a lower success rate when racing against

legitimate DNS responses.

Resistance to the Noise. Unlike the global counter used in saddns, which is

shared across all remote IPs, the exception cache used in our side channel is a hash-based

structure and is only shared with a smaller range of IPs, which reduces the noise level of

our side channel — it is less likely to be interfered with by background traffic associated

with random IPs. Besides, SADDNS requires a strong 50-ms time block synchronization,

88

which can be hard to achieve with noise. In contrast, our attack does not have such a strict

synchronization requirement.

Preparation of the Attack. Compared to SADDNS, our attack requires an ad-

ditional step of inferring colliding IPs that hash into the same bucket. Nevertheless, as

described in Chapter 4.4.4, it is only a one-time effort for each resolver we target.

4.8.2 PMTUD and DNS

It has been a controversial decision to enable Path MTU Discovery (PMTUD) on

DNS packets. Historically, [12] indicates ICMPv6 packet too big messages could benefit the

responsiveness of DNS queries while [57] argues the opposites claiming that it could lead

to fragmentation-based DNS cache poisoning attacks. As a result, we see DNS software

(especially BIND) changing back and forth regarding its socket options related to PMTUD.

Recently, there appears to be a convergence as both BIND and Unbound start to

set the socket option of IP PMTUDISC OMIT, which instructs the kernel to never reduce the

MTU. This is mostly in fear of the fragmentation-based DNS cache poisoning attacks that

rely on tricking the nameserver to fragment its responses [57]. Interestingly, this option is

now enabled for the sockets on both the nameservers and resolvers (even though the concern

was mostly on nameservers). In addition, both BIND and Unbound decide to enable this

option for IPv4 sockets only and leave IPv6 unchanged.

The reason for leaving IPv6 sockets unchanged is likely that fragmentation can be

avoided most of the time as the minimum MTU is increased to 1280. This means that any

link carrying IPv6 datagrams must be able to handle at least 1280 bytes of payload. This

89

is large enough to transmit most DNS packets and makes the fragmentation-based attacks

unlikely to succeed.

4.8.3 New Defenses Against SADDNS 2.0

In addition to the existing defenses mentioned in Chapter 3.2.1, we also propose

a set of orthogonal and near-term solutions to mitigate SADDNS 2.0. We will further discuss

the generalized defense against the network side channels in Chapter 5.8.

Set Proper Socket Options. The most direct way is to use the socket option

IP PMTUDISC OMIT, which instructs the OS not to accept the ICMP fragmentation needed

messages and therefore eliminates the side-channel related processing in the kernel. How-

ever, legitimate ICMP fragmentation needed messages can be sent by a router which will be

ignored also. In such cases, we recommend that the application can retransmit the query

using TCP to avoid failing to transmit a UDP query due to real problems with the MTU.

Randomize the Caching Structure. Similar to the solutions to other network

side channel attacks [89, 22, 23, 24, 100], sufficiently randomizing the shared resource would

make the side channel practically unusable. With regard to the exception cache, we recom-

mend a few places where randomization can take place: (1) the max length of the linked list

used for solving hash collisions, (2) the eviction policy (currently the oldest will always be

evicted), and (3) the secret of the hash function (i.e., re-key periodically (every few seconds

or tens of seconds)).

Reject ICMP Redirects. Redirects are originally designed for a network with

multiple gateways (similar to a router with multiple next-hop options). If a DNS server

has only one default gateway, the administrator should consider ignoring ICMP redirect

90

messages to prevent redirect-based attacks, which can be configured via sysctl (see Ap-

pendix A).

4.8.4 Ethical Concerns

We conduct our experiments with ethics as a top concern. During the measurement

of the vulnerable population in the wild, we attempt to minimize the impact of our probes

by (1) querying our own domain and (2) at a mild speed for each resolver (under 1,000

packets per second). Also, we avoid sending suspicious-looking packets, e.g., an excessive

number of ICMP packets or packets with spoofed IPs that can potentially trigger firewall

alerts.

In the evaluation section, since it requires flooding fake DNS responses to finish

the end-to-end attack, we refrain from attacking any real resolver and performed the attack

in the local setup instead.

Responsible Disclosure. We reported our findings to the key stakeholders in

the DNS community, including BIND, Cloudflare, and Linux. SADDNS 2.0 was assigned as

CVE-2021-20322. To patch it, Linux applied two fixes on both IPv4 and IPv6 stacks to

randomize the depth of the linked list storing the exceptions. Besides, Linux also increased

the hashing secret from 32-bit to 64-bit to reduce the likelihood to be brute-forced. BIND

also began to set IP PMTUDISC OMIT on IPv6 sockets from 9.16.20. More details can also be

found on SADDNS website [88].

91

4.9 Conclusion

This chapter presents novel side channels (i.e., SADDNS 2.0) during the process of

handling ICMP errors, a previously overlooked attack surface. We find that side channels

can be exploited to perform high-speed off-path UDP ephemeral port scans. By leveraging

this, the attacker could effectively poison the cache of a DNS server in minutes. We show

that side channels affect many open resolvers and thus have serious impacts. Finally, we

present mitigations against the discovered side channels.

92

Chapter 5

SCAD: a Universal and Automated

Network Side-Channel

Vulnerability Detection Tool

5.1 Introduction

While the threat to network security is undeniable given the presence of SADDNS

and SADDNS 2.0, the discovery of most network side channels remains largely a manual

endeavor. Despite the proliferation of tools for automated microarchitectural side channel

detection [19, 40, 41, 117], only a handful cater to network side channels1 [24, 26].

The existence of side channels can be fundamentally formulated as violations of

the non-interference property [52], where some shared resources between the attacker and

1For the rest of the chapter, the term “side channel” will specifically refer to “network side channel”,
unless otherwise specified.

93

victim causes some sensitive data to leak through such resources to the attacker. How-

ever, automation attempts, such as PacketGuardian [26], instead of looking for violations

of the non-interference property, looked for less distinctive patterns through program anal-

ysis, which resulted in numerous FPs. Conversely, SCENT [24] adopted a more principled

strategy, leveraging model checking, to detect non-interference property violations and, by

extension, side channels. Yet, the significant reliance on manual interventions (e.g., ex-

traction of relevant functions, abstraction of external functions,) and heuristics bound to

protocol implementations (e.g., downscaling) limits its generality, usability, and even com-

pleteness. As will be demonstrated in our evaluation, it misses important side channels that

are found by our solution.

Given the current landscape, we see a gap in addressing the issue of side-channel

attacks. Specifically, we see a lack of reusable tools that can be easily applied to a variety

of protocol implementations (including future ones). To fill this gap, we introduce SCAD

(Side-ChAnnel Detector)—an analysis tool for automated side-channel detection, based

on the threat model presented in Chapter 2.1.2. Since timing information carries with

noises (and thus difficult to measure) and only few previous network side-channel attacks

leveraged timing variable, SCAD only counts the in-path packet transmission (i.e., destined

to the attacker) event and its content as attacker-observable. Other attacker-obervables like

timing variance can also be detected with some modeling. At a high level, SCAD employs

symbolic execution to explore the state space of a target protocol implementation. For

each path, it summarizes the associated data flows regarding (1) how a secret propagates to

various shared variables in the protocol along each execution path, and (2) how the value of

94

shared variables may influence attacker-observables (e.g., presence or absence of a response,

or differences in a response). Then, it pairs different paths and their associated data flow

behaviors to look for any non-interference property violations.

This solution has several challenges. First, network side channels may be revealed

only after multiple packets are processed by the victim [89, 90, 22], making the desirable part

of the state space difficult to reach. Second, symbolic execution by design is not scalable,

and may not be able to finish exploring all paths and the state space in time (also known

as the path explosion challenge). To overcome these challenges, we develop a novel mode

of symbolic execution that allows for the exploration of multiple parts of the state space

simultaneously and at the same time manages the path explosion.

To evaluate SCAD, we applied it to diverse targets, including the TCP implemen-

tations of Linux, FreeBSD, and lwIP, and the UDP implementation of Linux, while also

incorporating other protocols that interact with these protocols, e.g., ICMP. With a mini-

mal effort of specifying the secrets and attacker-observables for each target, SCAD seamlessly

runs on these targets. With a 48-hour symbolic execution run for each target, SCAD reports

17 side channels, of which 14 were true positives(TPs), and unveiling 7 previously unknown

side channels.

5.2 Insight & SCAD Overview

5.2.1 Non-Interference Property

Network side channels can be modeled as violations of the non-interference prop-

erty [24]. Formally, consider a protocol implementation P with a memory state M , which

95

can be divided into a low (sensitivity) part ML (e.g., storing input packets from attack-

ers) and a high (sensitivity) MH (e.g., storing the ephemeral port number of sockets) (note

both the input and output part of M). P adheres to non-interference property if and

only if, for any two initial memory states M1 and M2 with the same low-sensitivity mem-

ory (i.e., ML1 = ML2), after executing P , the resulting low-sensitivity memory snapshots

remain identical (i.e., (P (M1))L = (P (M2))L) [52, 111, 2]. In essence, the processing of

low-sensitivity memory snapshots should remain unaffected by variations in high-sensitivity

memory snapshots. Conversely, a violation of non-interference property allows an attacker

to deduce differences between MH1 and MH2 by observing disparities between P (M1)L and

P (M2)L, forming the basis for side channel attacks. Note non-interference property viola-

tion is orthogonal to the semantics of the memory (e.g., randomness). In fact randomness

only reduces the entropy of the useful information deduced by the attacker but it does

not govern the violation of non-interference property (and therefore the existence of side

channels, as shown in Chapter 5.7.2 & 5.8).

5.2.2 Existing Approaches

To identify non-interference violations, we can in principle apply a variety of auto-

mated formal methods and testing techniques, e.g., static analysis, fuzzing, model checking,

and symbolic execution. Each of these methods offers unique strengths and weaknesses

when tailored to the specific problem. In the ensuing discussion, we compare them to

motivate the design choice of our solution.

Static analysis. While PacketGuardian [26] employed static taint analysis to

detect ”implicit information leakage”, which is an approximation of the violations of non-

96

interference property. However, since it is much less precise, it incurs a high FP rate,

primarily attributed to the absence of path sensitivity [74].

Fuzzing. As a dynamic analysis technique that feeds random inputs to test pro-

gram behaviors by executing them concretely. The advantage of fuzzing is that whatever

bugs or violations of non-interference must be true positives, as they can be proven with con-

crete inputs and executions. Although [81] utilized fuzzing to test non-interference property

violations, it is by design probabilistic and its sporadic exploration raises concerns regarding

comprehensive coverage.

Model checking. In contrast to fuzzing, model checking assures exhaustive cov-

erage of the test target. SCENT [24] leveraged a model checker to formally systematic search

for the existence of non-interference property violations in TCP implementations. A key

practical challenge lies in the creation of a self-contained model, which demands substan-

tial manual effort, domain expertise, and consequently, limits the generality, usability, and

completeness of the tool. Specifically, SCENT needs to extract relevant code from actual

TCP implementations and turn them into models, where researchers need to specify which

functions are in scope and which ones should be pruned for simplification, and abstract

away certain details. Due to these issues, we find [24] missed some side channels that are

discovered by SCAD (as will be shown in our evaluation).

5.2.3 SCAD’s Novel Mode of Symbolic Execution

Dynamic Symbolic Execution. The root cause of the need for modeling is the

lack of a concrete execution environment, and dynamic symbolic execution (DSE) emerges

97

Technique Precision Coverage Versatility

Static Analysis ✗ ✓ ✓

Fuzzing ✓ ✗ ✓

Model Checking ✓ ✓ ✗

Symbolic Execution ✓ ✓ ✓

Table 5.1: Comparison Among Program Analysis Techniques

as a solution to the challenge. Unlike traditional static symbolic execution, DSE operates

on a system with concrete memory and under each state, every symbol maintains a possi-

ble concrete value. Under DSE, one can selectively symbolize a subset of memory (e.g.,

within a predefined range) and concretely execute any ”external functions” (e.g., memcpy())

outside the range. In addition to alleviating the modeling requirements, this approach still

achieves a precise (path-sensitive) analysis of the critical part of the program, while simul-

taneously improving performance by concretely executing functions that are external. The

concreteness nature and the more precise nature makes DSE superior than static analysis

approaches where significant FPs can arise. When compared with fuzzing, DSE offers supe-

rior coverage due to its systematic path exploration strategy. As summarized in Table 5.1,

DSE stands out as the most appropriate solution for a universal side-channel detector.

Under-Constrained State Variables Over DSE. While the original dynamic

mode of symbolic execution offers a compelling advantage over other techniques, it still

faces the well-known scalability challenge when processing high-order inputs (sequences of

packets). S2E, the SOTA DSE engine, is designed to support only symbolic inputs (and

everything else is concrete, e.g., protocol states). Notably, prior side channels necessitated

multiple (dozens to several hundreds) packet inputs to trigger [89, 90, 22], and in some

scenarios, the number of input packets could be theoretically limitless. Handling a large

98

number of symbolic packets can be a significant challenge for symbolic execution (including

DSE mode) [118, 119].

Nevertheless, our key insight is that most input packets primarily steer the system

towards a specific state where the non-interference property violation becomes possible; once

this state is achieved, a single packet suffices to trigger the violation of non-interference.

Therefore, we invented a novel mode of symbolic execution based on DSE that is more

suitable for side channel detection: instead of relying on multiple packets to reach this

state, one can assume the system to already be in arbitrary states using the notion of

“under-constrained state variables”. In other words, in addition to symbolizing the input

packets, we will also symbolize state variables (we will describe what part of the memory

is considered state variables in Section 5.3.2). This ensures that the symbolic execution

engine can explore execution paths for any packet under arbitrary protocol states.

Taking SADDNS vulnerbility as an example, if the global ICMP rate limit counter

(i.e., icmp global.credit) is symbolized, the path summary will directly show a reply

will or will not be solicited when icmp global.credit is not or is zero when the input

is a UDP packet, without the need to send 49 repeated packets in advance to reduce the

concrete value of icmp global.credit from 50 to 1.

Compared with SCENT, SCAD obviates the need for heuristic-based downscaling [24]

that also aims to solve the high-order inputs problem, but with a more principled approach,

based our novel mode of symbolic execution.

99

System Snapshot

Secrets & Interfaces

Paths & SummaryDynamic Symbolic Execution

Engine

Non-Interference Property Violation Checker

Secret Node Finder

Path-Pair Generator Path-Pair Checker

Side-Channels

w/Proof

Figure 5.1: SCAD Architecture

5.2.4 SCAD Architecture

The SCAD framework, as depicted in Figure 5.1, consists two components : the

DSE component and the Non-Interference Property Violation Checker (NIPVC) compo-

nent. The DSE component conducts symbolic execution of the target and generates “path

summaries” regarding the data flows concerning the high input (e.g., presence of an active

ephemeral port), and low output (i.e., attacker-observables). The NIPVC component in-

gests the path summaries, orchestrates paths to form path-pairs, and subsequently conducts

checks for non-interference property violations across these pairs. The outcome is a list of

detected side channels, represented as execution traces and corresponding path summaries.

In essence, SCAD is a white/grey-box symbolic detector for side channels based on the sym-

bolic summary, while SCENT is a black-box concrete detector for side channels based on

concrete packet outputs.

5.3 DSE Component

In this section, we will present the detail of the novel mode of symbolic execution

as mentioned in Chapter 5.2.3.

100

5.3.1 Minimalistic Modeling of the Target

While SCAD aspires to be a versatile tool, adaptable across diverse targets, a mod-

icum of modeling remains indispensable. side-channel attacks, being data-oriented [65],

derive significance within the framework of target-specific logic. For example, there will

be no non-interference property violation without a clearly-defined high-sensitivity memory

(e.g., secret variable). Unlike tools like SCENT, which necessitate extensive manual modeling

over implementation details, SCAD mandates a target-specific threat model complemented

by a few interfaces for symbolic execution. The following enumerates the essential models

required by SCAD:

System Memory Snapshot. As alluded to in Chapter 5.2.3, a snapshot, fur-

nishes the concrete memory essential for DSE. This snapshot is instrumental in dynamically

establishing the target-specific threat model. Taking TCP as an example target, according

to the threat model of [22, 24], the snapshot should contain two established connections

with one for the attacker and one for the victim.

Secrets. Integral to the threat model, secrets, define the parameters that SCAD

seeks to protect. These secrets, delineated based on protocol specifications, typically en-

compass parameters like UDP ephemeral port numbers or TCP sequence numbers [22, 24,

89, 90].

Interfaces of the Target. Given the nature of DSE, it’s imperative for the

symbolic execution engine to discern the commencement and termination points of execu-

tion. Specifically, SCAD starts symbolic execution when the execution passes the start point,

terminates the current path when the execution reaches termination point and switches

101

to concrete execution when the execution is beyond the symbolic execution address range.

Therefore, as a part of model, start point, termination point, and symbolic execution ad-

dress range must be explicitly provided to guide the engine.

5.3.2 DSE Component Workflow

Upon encountering the start point, the DSE component initiates its operation by

substituting the input packet with symbols, transitioning to symbolic execution. Typically,

the start point corresponds to the entry point of the function processing the protocol pay-

load. Taking Linux TCP implementation as an example, DSE will hook tcp v4 rcv() [50]

as start point and replace the TCP header in skb with a symbol when reached.

State Variable Symbolization. During the symbolic execution, state variables

need to be symbolized to implement the novel mode of symbolic execution. The symbol-

ization, executed in a ”lazy initialization” manner [73], treats all non-stack variables as

state variables, which includes heap and global variables that have a lifetime longer than

processing a single packet. Specifically, when a variable is accessed for the first time, if the

access is a read, then DSE engine will symbolize it and the read returns a new symbol, as

there is no existing constraint over it and thus DSE assumes it can take any value. But if

it is write, DSE will not symbolize it because the write essentially adds the constraint that

the variable must be equal to the value written. In other words, at the current state of the

path, the variable written is totally determined by other variables, and thus symbolizing

it (assuming it can take any value) is unnecessary and can potentially introduce infeasible

paths.

102

Path Summary Computation. Throughout its execution, the DSE component

seamlessly toggles between concrete and symbolic modes, contingent on the symbolic ex-

ecution address range. We will present the range selection in Chapter 5.6.1. During the

symbolic execution mode, it computes the path summary by logging data flows relating to

symbols (input or state variables) for subsequent use by the NIPVC.

Upon reaching the termination point, the engine concludes the current path, out-

putting both path constraints and the corresponding path summary. These termination

points typically signify the end (e.g., the return of the packet processing function) of input

packet processing or the detection of a fatal error (e.g., kernel panic).

5.4 NIPVC Component

5.4.1 Path-Level Violation Checker

Root Node

Secret Node

Node

Leaf Node

Path 𝑝𝑡

Path 𝑝𝑓

Figure 5.2: An Illustrative Example of Path Tree

103

The NIPVC component processes the paths and summaries generated by the DSE

component, as outlined in Section 5.2. Figure 5.2 provides a visual representation of a typical

path tree generated by symbolic execution, where nodes represent forking events and edges

signify sequential execution without branching. The root and leaf nodes demarcate the

beginning and end of a path execution, respectively.

Given the definitions of non-interference property and the associated threat model,

a violation implies that, 1) given the same sequence of probing packets crated by an off-

path attacker (same low input), 2) depending on the different values of the secret (different

high memory), 3) the resulting attacker-observable output will be different (different low

output). Since the non-interference property is a hyperproperty [30] that requires two traces

to verify, in the context of symbolic execution, this translates to the existence of two paths

that satisfy the following:

I. the two paths can assign the same value to symbolic inputs (i.e., attacker sending

the same crafted packet and two paths refer to the same system state other than the

unknown secret).

II. one of them takes the true branch and the other takes the false branch after forking

from a node representing the secret (secret node in Figure 5.2) – this implies the path

summary will likely differ depending on the value of the secret (high memory); and

III. the two paths write to at least one state variable differently (e.g., one updates the

state variable and the other does not).

I.- III. corresponds to 1) - 3). The NIPVC’s primary objective is to ascertain the existence

of such path pairs. The most straightforward way is to pair paths that go through the same

104

secret node together and check if they meet I.- III., but it is not hard to find that two paths

must intersect at the secret node in order to not break I., because otherwise it will cause

contradiction: if two paths intersect at any other node (note that two paths must intersect,

at least at the root node, as shown in Figure 5.2), and I. requires them to assign the same

value to the non-secret symbols in the forking condition, then two paths must take the same

branch, which contradicts with the intersecting at the node. Note that the secret symbol is

allowed to take different values on either path as it belongs to high-sensitivity memory.

To find non-interference property violation for a secret, based on the above obser-

vation, NIPVC first traverses the path tree to gather all secret nodes, which can be easily

differentiated from the forking conditions. For each secret node, it arranges paths, that

pass through the secret node, in pairs, and perform the above check for them, and report

the found violation.

To formally express the conditions for non-interference property violation, denote

the secret symbol as s, non-secret symbols as setN , and the path constraints of the path-pair

(pt, pf), as shown in Figure 5.2, as assertions Ct(s,N) and Cf (s,N) (is true) respectively. To

satisfy II., two paths need to take different secret values, therefore a shadow secret symbol s′

is used for the false (or true) branch to replace s and then its constraint becomes Cf (s
′, N).

Satisfying I. then becomes satisfying Ct(s,N)∧Cf (s
′, N). Note that additionally satisfying

s ̸= s′ is unnecessary as s = s′ will dissatisfy I. by introducing the similar contradiction

as mentioned above. As stated in Section 5.3.2, DSE component records the memory write

summary of variable v on path pq as an expression W v
q (s,N). Therefore, III. can be written

as assertion ∃n ∈ N,Wn
t (s,N) ̸= Wn

f (s
′, N). Putting everything together, a pair of path

105

violates non-interference property is equal to (Ct(s,N)∧Cf (s
′, N))∧ (∃n ∈ N,Wn

t (s,N) ̸=

Wn
f (s

′, N))) can be satisfied. This problem can be solved by SAT solver like Z3. In the real

implementation, the checker will enumerate all possible n and return every n that satisfies

the assertion.

5.4.2 NIPVC Loop

Using SADDNS as an example, the overarching non-interference property violation

is a composite of multiple path-level violations: port match result interferes with the rate

limit counter and the counter interferes with the ICMP reply generation, which is visible

to the attacker. And there is no path that takes a single packet (note only one packet

is symbolized in DSE component) to make port match result directly interfere with the

ICMP reply generation. To uncover end-to-end side-channel attacks, it is imperative to

chain multiple non-interference property violations.

NIPVC operates iteratively, akin to taint analysis, executing the path-level check

in a graph traversal fashion. The overarching goal is to trace a chain of violations from the

secret to an output observable by the attacker. To achieve this, NIPVC maintains a variable

set P that ∀vp ∈ P , vp can be interfered by the secret s through the chain of interference

and initially only s ∈ P . During the loop, NIPVC will take a variable vp ∈ P , that has

not been checked, as the secret, to run the path-level checker. If a possible n ∈ N , where

N is the set of non-secret symbols, is identified, then a propagation vp ⇒ n, along with

the proving path-pair, will be recorded and the intermediate variable n will be added to

106

P .2, unless vo is the packet output buffer prepared for the attacker (va)
3, which is already

visible to the attacker and no further propagation is needed. Arguably, the ”propagation”

gets its name because it reads the secret implicitly embedded in vp and encode it to n. This

iterative process continues until all variables in P have been examined. Upon completion,

a directed acyclic graph(DAG) is generated, mapping the propagation relationships among

variables, with s as the root node (i.e., 0 in-degrees). NIPVC then traverses this graph to

ascertain if a path exists from s to va, subsequently outputting the identified propagation

chain and the details of each propagation. Note this DAG should not be confused with path

tree as shown in Figure 5.2. In fact, each edge of DAG represents a propagation associated

with a path-pair.

5.5 Implementation

DSE Component. DSE Component is constructed atop the S2E framework [28],

which itself is built upon the foundations of KLEE [21] and Z3. This choice was motivated by

the success of similar systems such as those presented in [118, 119]. The DSE component of

SCAD is realized as a plugin for S2E. This plugin, crafted in C++, spans approximately 2,300

lines of code (LoC) and is responsible for under-constrained state variable symbolization

and the collection of memory operation summaries. In addition to the S2E plugin, we had

to make non-trivial modifications, encompassing hundreds of lines of code, to the S2E engine

itself, in order to support the new mode of symbolic execution we proposed. The changes

2If n depends on vp in data-flow, a propagation will also be produced.
3This can be separated by checking path constraints.

107

include its KLEE and libcpu components. During this process, we identified and rectified

three critical logic bugs in S2E, one of which only manifested under high workloads.

NIPVC Component. The output from the DSE component, presented in a

human-readable log format, serves as the input for the NIPVC component. This com-

ponent, written in C++ for enhanced concurrency, spans approximately 5000 LoC. Its

architecture comprises three asynchronous services, depicted in Figure 5.1. These services

operate concurrently, optimized to utilize all available CPU cores. The Secret Node Finder

service processes the log to identify all secret nodes for a given secret, subsequently passing

this data to the Path-Pair Generator. This generator, after eliminating duplicates, pairs

paths and forwards these pairs to the Path-Pair Checker. This checker, leveraging Z3 as

its SAT solver, implements the algorithm detailed in Chapter 5.4.1. It outputs path-level

non-interference property violations for the current secret and also feeds interfered variables

back to the Secret Node Finder, establishing a feedback loop.

5.6 Evaluation

5.6.1 Evaluation Platform & Setup

Our evaluation platform comprises a server equipped with an AMD EPYC 7542

26-Core processor4 and 2.0TB RAM, running Ubuntu 20.04 with the Linux kernel 5.4.0.

Given that most side-channel attacks [89, 90, 22, 104, 84, 97] typically involve a

single intermediate variable with two steps of non-interference property violations (propa-

gations) (i.e., s ⇒ vp ⇒ va with the notations defined in Chapter 5.4.2), we configured SCAD

4Only 26 of the 32 cores are utilized to ensure server availability.

108

to detect side channels that only involves one intermediate variable as well. We therefore

refer to the intermediate variable accessed by both the attacker and victim in the threat

model (as discussed in Chapter 2.1.2) as the “shared variable”. To classify side channels, we

adopt the shared variable as the distinguishing factor, in line with previous works [26, 24].

To manage the inherent complexities of symbolic execution, we set a loop limit

of 2 to prevent path explosion. We also empirically determined the timeout for the SAT

solver (Z3) and restricted the DSE component’s runtime to 48 hours. For each side channel

report generated by SCAD, we manually verified its validity. For both TCP & UDP targets,

besides the protocol implementation was included in the symbolic execution address range,

ICMP implementation was also included, as it interacts with TCP & UDP closely.

For each target, as delineated in Chapter 5.3.1, individual snapshot construction

and identification of secrets and interfaces are requisite. However, the inherent generality of

SCAD ensures that the modeling process for any given target does not exceed a single person-

day. This efficiency stands in contrast to [24], which necessitated 2.5 weeks to construct a

self-contained model.

5.6.2 Comparison with SCENT

Setup. To benchmark against SCENT, we applied SCAD to the TCP stack of Linux

kernel 4.8 (L4 in Table 5.2 & 5.3), the same version used in the evaluation of SCENT [24].

To replicate the threat model, we emulated a victim server scenario by creating a listening

socket and establishing two connections, representing the attacker’s and victim’s connec-

tions. These connections were differentiated using distinct client IPs and port numbers.

109

Target Shared Variable TP/FP Secret1 New? Variable Type

1 L4 inet csk(sk)->icsk accept queue->young TP CP Y Queue Length

2 L4 tcp memory allocated TP SN&RN N Memory Limit

3 L4&L6 challenge timestamp TP CP&SN&RN Y Timestamp

4 L4&L6 inet csk(sk)->icsk accept queue->qlen TP CP N Queue Length

5 L4&L6 challenge count TP CP&SN&RN N Rate Limit

6 L4&L6 req->rsk rcv wnd FP CP

7 L6 skb (output) FP CP&SN&RN

8 L6U icmp global.stamp TP CP Y Timestamp

9 L6U icmp global.credit TP CP N Rate Limit

10 F V icmplim curr jitter TP CP Y Randomness

11 F cr->cr ticks TP CP Y Timestamp

12 F cr->cr rate TP CP N Rate Limit

13 LW tcp pcb listen->accepts pending TP CP Y Queue Length

1 CP=Client Port # RN=rcv nxt SN=snd nxt

Table 5.2: Side Channels Reported by SCAD

Target Paths/k # of Symbols CPU Hours

L4 2,763 527 3,089

L6 2,762 596 1,348

L6U 774 107 1,306

F 3,856 538 1,867

LW 33 103 27

Table 5.3: Statistics of SCAD on Different Targets

A packet with a symbolized IP header5 and TCP header served as the input, simulating

an off-path attacker with IP spoofing capabilities. We also designated the foreign client

port number, expected sequence number (rcv nxt), and expected acknowledgment number

(snd nxt) as secrets from the perspective of the victim server.

Performance. As shown in Table 5.3, SCAD required 3,089 CPU hours to eval-

uate the Linux 4.8 kernel. The DSE component consumed 1,248 of these hours, with the

remainder attributed to the NIPVC component. Despite the longer runtime compared to

SCENT, beyond all side channels discovered by SCENT (#2, #4 and #5 in Table 5.2, cor-

responding to class B, C and D in [24]), SCAD also identified two new side channels (#1

54-tuple matching logic is inside symbolic execution address range

110

and #3). Besides, after examining the log of NIPVC, we found it only took 4.5 CPU

hours to find all 6 side channels (including one FP) listed in Table 5.2 and the remaining

1,836.5h are spent on exploring side-channel possibilities over other variables. This is due

to short-circuit evaluation—if two propagations of a shared variable are found, then there is

no need to continue checking on this variable. Furthermore, for DSE component, we found

the paths explored in first 234 CPU hours are sufficient for NIPVC component to find all 6

side channels, which means all side channels had already been found in 238.5 CPU hours.

In total, DSE component explored 2.76M paths after identified and symbolized 527 state

vairables, as a result of under-constrained state variables. Note the number of explored

paths, rather than branch coverage, is widely used to evaluate symbolic execution-based

tools [118, 119, 124], as symbolic execution is a path-sensitive analysis. Therefore, the

branch coverage of SCENT is not directly comparable.

Results. Among the side channels reported by SCAD (i.e., #1-#6 in Table 5.2),

#1 and #3 were previously undiscovered. Specifically, similar to #4, #1 creates a ”SYN-

backlog-based side-channel” [24]. #3 (challenge timestamp) is used to implement the

replenishing logic of challenge ack counter. Even after challenge ack counter side channel [22]

has been fixed [100], SCAD found challenge timestamp can still be leaky when paired with

challenge count(#5).

Nevertheless SCENT did not manage to discover them, because [24] did not model

time and limited the TCP state to ESTABLISHED or SYN RECV only, for scalability concerns,

according the authors of SCENT, after we present #1 and #3 to them. This also proves the

111

advantage of dynamic symbolic execution and under-constrained state variables of SCAD,

respectively.

There is one FP identified due to an implementation oversight regarding under-

constrained state variables. This FP arose from the binary-level emulation of SCAD, which

uses memory addresses as unique variable identifiers. However, this approach can lead to

ambiguities when two paths dynamically allocate memory after snapshot creation. For #6,

even though the allocated addresses of the request sockets (i.e., req) are the same in two

paths, they actually refer to different sockets and therefore becomes an FP, because two

paths execute separately and the allocator is unaware of each other. The root cause is that

the variable information is not available in the binary and SCAD runs binary-level emulation

as a result of using S2E and also for better performance with native concrete execution. If

DSE component runs over IR (e.g., LLVM), then this problem could be better addressed.

Despite this limitation, the overall FP rate remained relatively low at 17.6%(3/17)6 They

could also be easily filtered out with a little bit of domain knowledge.

5.6.3 Side-Channel Detection on SOTA TCP Implementations

Setup. To show the effectiveness of SCAD for finding new side channels, we applied

SCAD to three distinct SOTA TCP implementations: Linux 6.1.32 (L6), FreeBSD 13.2 (F),

and lwIP 2.2.0 RC1 (LW), using the same setup as in Chapter 5.6.2.

Performance. Table 5.3 indicates that the DSE component explored a similar

number of paths for both Linux 4.8 and 6.1.32 within the 48-hour limit. This consistency

is expected given the stability of the Linux TCP stack across versions. It is also noticed

6Side channels of L4 & L6 are counted twice.

112

that L6 takes shorter time to finish, and again this is due to short-circuit evaluation used

in NIPVC component as the path-pairs are randomly chosen to check for non-interference

property violation. For lwIP, DSE component finished exploring all possible paths in 25.76

CPU hours. This is expected as lwIP is a relatively light weight user-space network stack

designed for embedded devices [1] and the TCP implementation of lwIP only consists 8,000

lines of C code. This also proves SCAD is an universal tool that can be applied to user-space

targets as well.

Results. For Linux 6.1.32, SCAD identified five side channels, including one new

side channel challenge timestamp and two FPs due to semantic discrepancies between

variables and memory addresses. Compared with L4, #1 and #2 is no longer found by

SCAD in L6. After investigation, we found #1 is implicitly patched to fix the logic flaw when

accepting a SYN packet [43] in Linux 4.10, but #2 is not. Finally we found this is because we

increased solver timeout from 5s to 20s for L6, which enables DSE component to explore the

deeper part of a path, like the output TCP header generation logic, and causes it to identify

skb, instead of tcp memory allocated on another path, given the limited execution time.

For FreeBSD, three side channels related to rate limits were reported, with two being novel.

Ironically, V icmplim curr jitter, which was used to introduce randomness to the rate

limit counter to patch SADDNS, creates another side channel that forfeits the randomization

effort. In the case of lwIP, SCAD detected a “SYN-backlog-based side-channel” #13.

5.6.4 Side-Channel Detection on UDP Implementation

Setup. To showcase the versatility of SCAD, we evaluated the UDP stack of Linux

6.1.32 (L6U). Similar to the threat model of SADDNS [89, 90], the snapshot models a victim

113

DNS resolver talking to the nameserver. Specifically, we create a listen socket on UDP port

53 to resemble the server side of a DNS resolver. We also created two connected sockets

to resemble the state where the client side of the resolver sent queries to the upstream

nameserver and is waiting for the response. Two sockets represent the naive nameserver

which hosts the domain to be poisoned, and the attacker-controlled nameserver, respectively.

The ephemeral port number of the naive socket was set as the secret, as its exposure could

lead to cache poisoning attacks [89, 90]. A packet with symbolized IP header and UDP

header is served as the input.

Results. SCAD identified two side channels related to the ICMP global rate limit

counte, the foundation of the SADDNS attack. The discovered icmp global.stamp can be

used to revive the SADDNS attack.

5.7 Case Study

5.7.1 Timestamp-Based Side Channels

#3, #8 and #11 in Table 5.2 are timestamp-based side channels. The shared

variables of them all serve the purpose of resetting rate limit counters (i.e., #5, #9 and

#12 respectively) and is an indivisible part of the rate limit implementation.

Taking FreeBSD as an example (#11), it limits the rate of outgoing RST to 200

packets per second (pps). Therefore, aside from the counter (cr rate) counting how many

RSTs have been sent within 1s, it also records the last time when the counter was reset as

a timestamp (cr ticks). Every time the counter is accessed (i.e., a RST is solicited), the

114

216 ACKs 216 ACKs

Off-Path

Attacker

Naïve

Peer

Victim w/o

Connection
Naïve

Peer

Victim w/

Connection

ticks=now

rate=216

ticks<now

↓
rate=0

ticks==now

↓

no rate clear

ticks=before ticks=before

Within 1s
now unchanged

Spoofed

Legit

<=216 RSTs

RST

ACK ACK

ACKs

(a) Timestamp Side Channel #11

216 PINGs 216 PINGs

Off-Path

Attacker

Naïve

Peer

Victim w/o

Connection
Naïve

Peer

Victim w/

Connection

jitter=j

limit=200+j

jitter=j

limit=200+j

Learns jitter=j

200+j PONGs

200+j ACKs 200+j ACKs

RST

200+j RSTs

ACK

200+j PONGs

199+j RSTs

ACKrate=200+j rate=199+j

(b) Randomness Side Channel #10

255 SYNs 255 SYNs

Off-Path

Attacker

Naïve

Peer

Victim w/o

Connection
Naïve

Peer

Victim w/

Connection

pending=255

pending=0 pending=0

SA=SYNACK

255 SAs

SA

SYN SYN

254 SAs

pending=254

pending=255

(c) Queue Length Side Channel #13

Figure 5.3: Exploits for Newly Found Side Channels by SCAD

115

current time will be compared with the timestamp. If the timestamp is more than 1s old,

the counter will be reset to 0 and the timestamp itself will be updated to the current time.

Previous side-channel attacks [24] leveraged the (cr rate) as the shared variable to infer

the source port of an established TCP connection, as the counter value is interfered by port

matching result.

Later on the side channel was patched by introducing a random jitter (V icmplim curr jitter)

to the hard limit 200pps, to patch SADDNS, and the now every time the the counter needs

to be reset, the real limit will be calculated by adding the hard limit with the jitter. By

default, with the jitter rangeing [-16, 16], the real limit ranges between [184, 216]. This

destroyed counter-based side channel as the attacker will not predict counter value precisely

and thus cannot effectively correlate their observance with the probing result.

Nevertheless, SCAD provides us a new perspective to the same logic by indicating

cr ticks can also be used to infer the port match result. According to the output of SCAD,

the generation of a RST packet can set cr ticks to the current time (when 1s has elapsed

since the last reset) which can leak the port inference result to cr ticks. This is because

cr ticks can decide whether the RST transmission will occur or not.

Figure 5.3a depicts the end-to-end exploit. Since the attacker does not know the

exact value of the limit, to make the cr rate meet or exceed the limit, they first send

the max possible amount (i.e., 216) of spoofed ACKs to a guessed port. If there is no

connection, meaning a port guess was wrong, then RST packets will be solicited and the

following events will happen in order: 1) upon receiving the very first ACK packet, cr ticks

will be set to now, assuming 1s has elapsed since the last reset of cr rate. cr rate will

116

first be reset to 0 and then incremented to 1 immediately upon generating a RST packet

in response; 2) up to an additional 215 RST packets will be generated in response to the

attacker’s ACK probes, and 3) cr rate will increment to 216 (its value can go beyond the

rate limit).

If there is a connection, challenge ACK packets will be returned instead, leaving

anything related to RST rate limit unchanged. As we can see now, cr ticks is updated

when the guess of a port is incorrect, and remains if the guess is correct. To observe such a

difference in value of cr ticks, within 1s of sending the previous 216 spoofed ACK probes,

the attacker sends one single non-spoofed ACK packet to a known closed port to solicit a

RST. If cr ticks was just updated to now, then cr rate will not be reset to 0, and no

RST will be sent to the attacker; this is because cr rate is 216 which already exceeds the

limit. If cr ticks has not been recently updated, the counter will be reset, and a RST will

be sent. By observing the presence or absence of the RST packet, the attacker will learn

the result of the guess, indirectly through cr ticks. Note that even if cr rate is patched

to be per-IP as opposed to global, cr ticks can still be leveraged to perform this attack.

In other words, the shared variable of cr ticks is the culprit here.

The exploit allows an off-path attacker to scan client ports at the speed of 1 port/s,

as cr ticks needs to be reset before the next trial. We implemented the PoC exploit by

limiting the port scan range to 100 ports and it can figure out the correct port number for

10 out of 10 times.

The exploit for Linux UDP (#8) and TCP (#3) side channels are similar. For

UDP port scan, the only difference is that we would target the ICMP error rate limit

117

(instead of FreeBSD’s RST rate limit) which is 20 tokens per 20ms, where each packet

consumes 0, 1, or 2 tokens for randomness. To ensure the limit is reached, an attacker

would empirically send 150 spoofed packets per 20ms. Note that since the tokens are reset

every 20ms (as opposed to 1s), the effective port scan speed increases to 50 ports per second,

which essentially revives SADDNS. For TCP port scan, we would target the challenge ACK

rate limit [22]. However, to exhaust the global challenge ACK rate limit using spoofed

packets, the attacker must pass the per-socket challenge ACK rate limit, which is much

smaller than the global one, making the attack infeasible (unless such values are adjusted

by admins through configuration changes).

To demonstrate the revival of SADDNS, we implemented the end-to-end attack based

on timestamp side channel found in Linux UDP stack. Similar to the evaluation setup in

SADDNS [89], we setup attacker, victim resovler and nameserver host on AWS with Linux

kernel 6.2.0. The nameserver drops 80% of replies with response rate limit feature and the

resolver runs unbound 1.13.1. We repeated the experiment for 5 times and on average it

took 4586s to successfully poison the resolver’s cache, which is about 10x slower compared

with SADDNS. Given the slower probing speed, this result is of expectation. Note that despite

it took 76 minutes to poison the cache, we argue this is an one time effort as the attacker

can set a large TTL to make the poisoning persist longer.

5.7.2 Randomness-Based Side Channel

One of the most unexpected side channel is #10, as the jitter (V icmplim curr jitter)

itself was introduced to mitigate the rate limit counter (cr->cr rate) side channel, as men-

tioned in Chapter 5.7.1.

118

In FreeBSD, the jitter is only reset (i.e., pick another value from [-16, 16]) af-

ter the counter (cr rate) exceeds the previous real limit, as otherwise, by counting the

number of received RST packets, an attacker could reveal the jitter value and thus void

the randomization effort. However, jitter is not immediately reset after reaching the limit,

instead, it is reset along with the counter, as resetting the jitter (and therefore real limit)

without resetting counter will cause instability and increase the complexity for the counter

design. Since the rate limit logic is completely synchronous, both the counter and the jitter

will only be reset next time the RST is sent, after exceeding the previous real limit, which

means jitter will remain unchanged if no RST is solicited.

This seems to be a flawless scheme not leaking the jitter, as when probing starts,

the previously learnt jitter will be immediately reset. Nevertheless, since jitter is shared

across protocols but the counter and timestamp (cr->cr ticks) are not, it is possible to use

one protocol to retrieve the jitter value without resetting it, and then use it to de-randomize

another protocol’s rate limit.

Figure 5.3b shows an exploit. Since both ICMP echo reply (PONG) and TCP RST

packet are rate limited using the same V icmplim curr jitter, the attacker first sends

216 (the max possible real rate limit) ping packets to reveal jitter j by counting received

ping replies. With the knowledge of j, the victim system is degraded to become vulnerable

to the counter-based attacks for inferring client port number. Similar to [22, 24, 89], the

attacker then sends 200 + j probing ACK packets with each destined to a different port.

If one of the probed port has a connection, 199 + j RSTs and 1 ACK will be sent, and

the cr rate will become to 199 + j. If there is no connection, the cr rate will become

119

to 200 + j after sending 200 + j RSTs. To differentiate between these two possible values

of cr rate, similar to previous exploits, the attacker sends a legitimate ACK to a closed

port and check if they can get the RST back, which depends on the value of cr rate,

and thus reveals the probing result. Note the probing result only reveals whether there is

a port open among probed ports without specifying the open port number, and therefore

binary search should follow [89, 90]. Since V icmplim curr jitter is added to FreeBSD to

patch SADDNS after 2020, SCENT, which was published in 2019, would not have a chance to

discover this side channel. But similar to the timestamps, which were explicitly excluded

in [24], randomness were also excluded in order to obtain a self-contained model. Therefore

it would be impossible to SCENT to uncover this randomness-based side channel.

The exploit enables an off-path attacker to scan the TCP client port for around

200 ports per second and similarly the limitation lies on the 1s cr rate reset interval. The

exploit can also be used for UDP and SCTP ephemeral port inference, as they both share

the same V icmplim curr jitter. We implemented the PoC exploit without binary search.

By limiting the port scan range to 5000 ports, it can correctly figure out the correct port

number range for 10 out of 10 times.

5.7.3 Queue-Length-Based Side Channels

Unlike temporal side channels discussed in Chapter 5.7.1 & 5.7.2, #1 and #13 are

spatial side channels that leverage the limited queue size for half-open TCP connections.

Taking #13 as an example, in lwIP, accepts pending represents the length of the

backlog queue that stores the new TCP connection requests that have not been finished

(i.e., half-open). The queue belongs to a listen socket that can be accessed by any host,

120

and the length will increase by one when the socket received a SYN packet and decrease by

one when 3-way handshake is finished. If the queue length exceeds the maximum backlog

limit, then new SYN packet will be dropped to prevent DoS attacks. Similarly, by observing

whether the queue is full, the attacker can learn whether the client port guessed is correct

or not.

Figure 5.3c shows the exploit of #13. Since in FreeBSD, the limit of the backlog

queue is 255 by default, the attacker sends 255 probing SYN packets with each destined

to a different port. If none of the probed port has a connection, the backlog queue will be

saturated with half-open connections (i.e., accepts pending becomes 255), as the SYN will

be treated as new connection requests, and the attacker never sends ACKs to finish the 3-

way handshake. If one of the probed port has a connection, there will be one remaining slot

in the queue (i.e., accepts pending becomes 254), as one of the SYN packet will solicit an

challenge ACK of the existing connection. To detect the difference in accepts pending, the

attacker tries to inject another half-open connection by sending a legitimate SYN packet,

and if they can receive the SYNACK reply, meaning the queue is not full and thus a

connection is found and otherwise it is not found. Similarly, a binary search should follow

to pinpoint the exact open port.

This side channel allows an attacker to scan 255 client ports in 20s, which is 12.75

ports per second. Since continuous port scanning requires resetting the queue, the scan

speed is thus constrained by the 20-second purging interval of backlog queue of lwIP. There

is no way for an off-path attacker to purge the queue earlier by either finishing the 3-way

handshake or by force aborting (i.e., sending RST packet) half-open connections, because

121

both require the valid ACK number of the SYNACK packet, which, however, was not

delivered to the attacker.

We implemented the PoC exploit without binary search. By limiting the port scan

range to 1,000 ports, it can correctly figure out the correct port number range for 10 out of

10 times.

Similarly, #1 represents the number of half-open connections of a listen socket plus

the number of orphaned half-open connection that the listen socket has received (which is

unlike #4). Therefore the exploit largely remains the same. The differences are the default

limit of backlog queue is 128 in Linux 4.4 and it requires a full accept queue, which stores

TCP connection requests that have finished 3-way handshake but have not been accepted

by the user-space application yet, to trigger. The default size of accept queue is also 128

in Linux 4.4. Given most application will accept connections using best effort, unless the

system is under load, it is unlikely to make accept queue saturated in order to trigger the

side channel.

5.7.4 Responsible Disclosure

We are in the process of reporting the discovered side channels to the Linux/FreeB-

SD/lwIP maintainers when this thesis is being finalized.

5.8 Mitigation

A primary approach to mitigate side channels is to infuse randomness into shared

variables. From the perspective of the non-interference property, this introduces an addi-

122

tional interference source to the variable, alongside the secret interference. Consequently,

this renders the alterations to shared variable unpredictable, effectively increasing entropy,

or in simpler terms, making its change independent of the secret. For instance, randomizing

the interval between counter resets can counteract timestamp-based side channels.

However, it’s crucial to understand that randomization merely increases the en-

tropy of the side channel without truly sealing the channel. Even if randomness is integrated

into the shared variable, the interference between the variable and the secret persists. This

only elevates the challenge of exploiting the side channel. To illustrate, in the Linux UDP

stack, prior to introducing randomness to icmp global.credit, SADDNS could deduce the

ephemeral port at a rate of 1000pps. Post-randomization, as identified by SCAD, by utilizing

icmp global.stamp, the ephemeral port can still be scanned, albeit at a reduced rate of

50pps.

To eradicate this interference, it’s imperative to isolate the variable. For queue-

length-based side channels (#1, #4, and #13), narrowing the sharing scope by substituting

per-socket SYN backlog queues with per-IP queues can effectively dismantle the side chan-

nel. This is because the port match result will no longer influence the attacker’s queue.

While retaining the per-socket queue, a global control can be introduced. However, akin

to icmp global.credit, it should be: 1) randomized in size, 2) inserted only after per-

IP queue is successfully inserted, and 3) larger than per-IP queue in terms of capacity.

Given that #2 behaves like a global queue length variable, with each addition of a half-

open connection to the queue also increasing memory usage, a similar patching strategy

can be employed. For timestamp-based side channels (#3, #8, and #11) and rate-limit-

123

counter-based side channels (#5, #9, and #12), their sharing scope can be minimized by

transitioning to a per-IP equivalent. A global counterpart can be retained, provided it

adheres to the aforementioned three criteria. For randomness-based side channel #10, to

curtail the sharing scope, V icmplim curr jitter can be made a distinct member of cr,

aligning its scope with that of the counter and timestamp in the cr. This ensures that

attackers cannot deduce the jitter using other protocol counters.

In essence, when developing network software, it’s pivotal to account for off-path

attackers in the security threat model [92]. With this consideration, variables should have

the narrowest possible sharing scope. If feasible, individual variables should be preferred

over global ones. While manual tracking and analysis of potential side-channel inducers

can be difficult, SCAD, when provided with the threat model (including secrets, inputs, and

outputs), can automate the identification of side-channel vulnerabilities for developers.

5.9 Discussion

5.9.1 Limitations

Path Explosion. Symbolic execution inherently grapples with the path explo-

sion challenge, where the number of potential paths grows exponentially with the branching

points involving symbols [25]. This exponential growth can hinder the engine’s ability to ex-

plore all paths within a feasible timeframe, leading to FNs in SCAD. Notably, both [118, 119]

could only symbolize three input TCP packets when executing symbolic execution on the

Linux TCP stack to circumvent this issue. The incorporation of symbolic state variables

in SCAD exacerbates this problem due to the increased symbol count. However, SCAD can

124

complete symbolic execution for lighter targets like lwIP. Potential solutions for path ex-

plosion such as path merging [78, 122] and function modeling [109] have been proposed.

However, to maintain SCAD’s generality and versatility, these manual interventions may not

be optimal.

Over-Approximation. Other than path explosion, symbolizing state variables

can lead to the exploration of system states that may never be encountered in practice. For

instance, in Table 5.2, the 32-bit variable icmp global.credit of #9 will never surpass 50

according to the rate limit logic. Yet, SCAD assumes it can adopt any valid 32-bit integer

value. If a side channel is contingent on this counter exceeding 50, it results in a FP. The

underlying issue is that a program will not process inputs based on unreachable states.

Erroneous Concretization. Merging the under-constrained mode with the dy-

namic mode in symbolic execution introduces a unique erroneous concretization challenge.

Specifically, erroneous concretization pertains to situations where an under-constrained vari-

able, due to relaxed constraints, might be concretized to a value that is only locally or stat-

ically feasible, but globally infeasible (e.g., concretize icmp global.credit to 51). This

not only risks identifying side channels in unareachable states but can also cause system

crashes, for instance, by concretizing a pointer that was just symbolized, to 0, leading to

FNs. In theory, this can be circumvented by forking and concretizing the variable for each

feasible value under the current constraint. However, this approach might negate the ben-

efits of concrete execution. To address this, SCAD employs heuristics, such as avoiding the

symbolization of pointers.

125

High-Sensitivity Over Execution Range Selection. While SCAD offers flexi-

bility for easy execution range adjustment, determining the optimal range remains crucial.

An overly broad range might cause SCAD to waste time on irrelevant logic, given the lim-

ited time budget, leading to FNs. Conversely, a narrow range might overlook certain side

channels if the non-interference property violation code executes concretely, also resulting

in FNs. This challenge is intrinsically domain-specific and contingent on the threat model,

lacking a universal or formal solution. For instance, available memory can serve as a shared

variable to leak secrets, such as port matching results, with exploits akin to those discussed

in Chapter 5.7.3. Given the difficulty for an attacker to deplete memory, we excluded

memory management logic from the symbolic execution range.

Despite these limitations, as highlighted in Chapter 5.2, DSE with symbolized

state variables remains the most suitable approach for SCAD.

5.9.2 Future Work

Automatic Exploit Generation (AEG). Currently the roadblock for SCAD to

perform AEG is that despite SCAD can generate the concrete input and the value of state

variables to trigger the side channel discovered, it does not know how to drive the vic-

tim system to that specific state. Given that SCAD has the capability to summarize the

memory operations of any input over any system state (see Chapter 5.2.3), it is possible

to autonomously engineer a weird machine [18] over the victim system using integer pro-

gramming, to drive the system from initial state to the target state, as a part of AEG. This

can also mitigate the FPs caused by over-approximation as if a state cannot be driven into

from the initial state, then the side channel discovered in that state should be filtered out.

126

In practice, similar to SAT problem, integer programming is also NP-complete, which can

be hard to solve. Also without finishing the symbolic execution, the state driving will be

fundamentally unsound.

Detection of Side Channels Involving Multiple Shared Variables In this

work, we used SCAD to detect side channels that only involve one intermediate variable,

but SCAD is also capable of detecting a chain of non-interference property violations (i.e.,

multiple intermediate variables) as mentioned in Chapter 5.4.2. Nevertheless, such chain

of side channels have not been widely studied and theoretically the exploit of them may

be difficult due to the accumulation of the noises arising from each individual propagation,

which may reduce the entropy leaked from the attacker-observable. Besides, FP rate will also

increase exponentially due to the accumulation of FPs of individual propagations. AEG is

necessary to perform at each individual propagation to increase the report precision. Finally,

despite SCAD is already capable to detect multiple intermediate variables, the performance

remains a problem, and some optimization over the algorithm will alleviate it.

5.10 Conclusion

In this chapter, we introduced SCAD, a generic and automated tool designed for

the detection of network side channels. Utilizing the power of under-constrained dynamic

symbolic execution, SCAD explores the state space of protocol implementations. Through the

pairing of identified paths, SCAD pinpoints path-level non-interference property violations,

which subsequently lead to interferences between individual variables. By constructing

and analyzing the interference (propagation) graph, SCAD systematically identifies chains

127

of non-interference property violations, culminating in the interference between secrets and

attacker-observable outputs.

When compared with SCENT, the versatility of SCAD becomes evident, offering a

plug-and-play approach across diverse protocol implementations. Our evaluations spanned

multiple protocol implementations, encompassing Linux, FreeBSD, and lwIP. Impressively,

across five distinct targets, SCAD identified 17 side channels, with 14 being true positives.

Notably, 7 of these vulnerabilities hwere never discovered before. For each newly discovered

side channel, we demonstrated its exploitability, specifically in inferring the client port

number. Our proof-of-concept exploits consistently achieved a 100% success rate. The

adaptability of SCAD unveiled novel attack vectors, even on previously patched side channels,

enabling us to rejuvenate attacks such as SADDNS [89, 90] and off-path TCP exploits [22, 24].

In our pursuit of a safer networking landscape, we also delineated variable isolation

as a robust strategy to counteract side-channel attacks, proposing potential mitigations for

all 14 identified vulnerabilities. With SCAD as a universal tool in their arsenal, we anticipate

developers will be better equipped to preemptively address side-channel vulnerabilities prior

to software releases.

128

Chapter 6

Related Work

Other than the previous off-path side channel attack and DNS cache poisoning

attack mentioned in Chapter 2, the realm of automated side-channel detection has seen

various methodologies. PacketGuardian [26] employed static analysis to identify ”implicit

information leakage”, essentially a form of side channel. However, it yielded a significant

number of FPs and was limited to detecting leaks to statistical counters, which remain

inaccessible to off-path attackers. An enhancement over this was presented in [103], which

improved upon [26] by focusing on leaks observable to attackers, (i.e., packet outputs).

Despite the advancements, it still grappled with a high FP rate. The study in [24] adopted

model checking to pinpoint side channels within the TCP stack. However, as delineated in

Chapter 5.2.2, its versatility remains limited. On the preventive front, [121] introduced a

novel approach to ensure non-interference property at the programming language level by

integrating new notations for Java. While promising, this method demands rewriting exist-

ing applications under the new framework, posing challenges for its widespread adoption.

129

Chapter 7

Conclusions

The research embodied in this thesis has undertaken a significant exploration into

the domain of network side channels, an area that has emerged as a major threat to the

cybersecurity. This journey, spanning the discovery of potent attack vectors to the devel-

opment of pioneering detection tools, underscores the multifaceted nature of the challenge

posed by network side channels. By comprehensively examining the intricacies of these

side channels and proposing robust defenses, this thesis makes substantial strides towards

fostering a safer and more resilient network.

The investigations commenced with the discovery and subsequent analysis of SADDNS,

a novel side-channel attack rooted in the global ICMP rate limit counter. By derandom-

izing the ephemeral UDP port numbers in DNS queries using the side channel found in

the counter, SADDNS revived the traditional DNS cache poisoning attacks that were first

introduced in 1990s. The global counter is prevalent in most modern OSes and the real-

130

world experiments under realistic server configurations confirmed the revival of DNS cache

poisoning attacks, reinforcing the gravity of the vulnerabilities inherent in the DNS system.

Building upon the foundations established by SADDNS, our research ventured fur-

ther into the realm of network side channels with the introduction of SADDNS 2.0. This

iteration elucidated the side channels present during the handling of ICMP errors—an at-

tack surface previously overlooked. Similar to SADDNS, the alarming revelations from our

findings showed that these side channels could be leveraged to execute high-speed off-path

UDP ephemeral port scans, jeopardizing the integrity of numerous open resolvers. How-

ever, SADDNS 2.0 showed side channels can also arise in spatial constraints, in addition to

the temporal constraints, which were exploited in the original SADDNS.

Recognizing the urgent need for robust defenses in light of these groundbreak-

ing discoveries, this thesis introduced SCAD, a universal and automated tool tailored for

the detection of network side channels. Designed to capitalize on the strengths of under-

constrained dynamic symbolic execution, SCAD delves deep into the state space of protocol

implementations. Through this approach, SCAD systematically identifies non-interference

property violations, offering insights into the complex interplay of individual variables that

give rise to side channels. Our empirical evaluations of SCAD elucidated its power, revealing

novel vulnerabilities across SOTA protocol implementations and even rejuvenating previous

patched attacks by showing the unusual and ignored angle of side channel exploitation.

Given the vast implications of these findings, the thesis also explored potential

countermeasures to bolster defenses against these side-channel attacks. The emphasis was

placed on variable isolation as a cornerstone strategy to thwart potential adversaries. With

131

tools like SCAD at the disposal of developers, the path to preemptively addressing these

vulnerabilities becomes considerably more navigable.

This thesis, through its multifaceted exploration of network side channels, has

undoubtedly enriched our understanding of the domain. The discoveries of SADDNS and

SADDNS 2.0 have magnified the urgency of addressing the vulnerabilities in DNS systems.

In parallel, the advent of SCAD has brought forth a new dawn in the realm of automated

side-channel detection.

In reflection, this research underscores the pursuit in the domain of network secu-

rity. As the digital landscape continually evolves, so too must our defenses. Armed with

the insights and tools unveiled through this thesis, we are poised to make informed strides

towards securing the future of computer networks. The hope is that subsequent endeavors

in this domain will continue to build upon the foundations established here, steering us

closer to an era where the sanctity of our digital ecosystems is uncompromised.

132

Bibliography

[1] lwip. https://en.wikipedia.org/wiki/LwIP).

[2] Non-interference (security). https://en.wikipedia.org/wiki/Non-interference_
(security).

[3] Off-Path attacking the web. In 6th USENIX Workshop on Offensive Technologies
(WOOT 12), Bellevue, WA, August 2012. USENIX Association.

[4] Introducing dns resolver, 1.1.1.1 (not a joke). https://blog.cloudflare.com/

dns-resolver-1-1-1-1/, 2018.

[5] D. Eastlake 3rd and M. Andrews. RFC 7873: Domain Name System (DNS) Cookies.
Technical report, May 2016.

[6] S. Deering A. Conta and Ed. M. Gupta. RFC 4443: Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification. Technical report,
March 2006.

[7] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley, Alan
Flores-López, J Alex Halderman, Jacob Hoffman-Andrews, James Kasten, Eric
Rescorla, et al. Let’s encrypt: An automated certificate authority to encrypt the
entire web. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 2473–2487, 2019.

[8] G. Alexander and J. R. Crandall. Off-path round trip time measurement via tcp/ip
side channels. In 2015 IEEE Conference on Computer Communications (INFOCOM),
2015.

[9] Geoffrey Alexander, Antonio M Espinoza, and Jedidiah R Crandall. Detecting tcp/ip
connections via ipid hash collisions. Proceedings on Privacy Enhancing Technologies,
2019(4), 2019.

[10] Fatemah Alharbi, Jie Chang, Yuchen Zhou, Feng Qian, Zhiyun Qian, and Nael Abu-
Ghazaleh. Collaborative client-side dns cache poisoning attack. In IEEE INFOCOM
2019-IEEE Conference on Computer Communications, pages 1153–1161. IEEE, 2019.

133

[11] D. Atkins and R. Austein. RFC 3833: Threat Analysis of the Domain Name System
(DNS). Technical report, August 2004.

[12] Hanieh Bagheri, Victor Boteanu, Willem Toorop, and Benno Overeinder. Making do
with what we’ve got: Using pmtud for a higher dns responsiveness, 2013.

[13] F. Baker. RFC 1812: Requirements for IP Version 4 Routers. Technical report, June
1995.

[14] Adib Behjat. Dns forwarders. https://www.isc.org/blogs/dns-forwarders/,
2011.

[15] S. M. Bellovin. Security problems in the tcp/ip protocol suite. SIGCOMM Comput.
Commun. Rev., 19(2):32–48, apr 1989.

[16] R. Braden. RFC 1122: Requirements for Internet Hosts – Communication Layers.
Technical report, October 1989.

[17] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, and Michael Waid-
ner. Domain validation++ for mitm-resilient pki. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages 2060–2076.
ACM, 2018.

[18] SERGEY Bratus, MICHAEL E Locasto, MEREDITH L Patterson, L Sassaman, and
ANNA Shubina. Exploit programming. From buffer overflows to “Weird Machines”
and theory of computation. USENIX: login, 2011.

[19] Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, and Mahmut Kandemir.
Casym: Cache aware symbolic execution for side channel detection and mitigation.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 505–521. IEEE, 2019.

[20] R. Bush and R. Austein. RFC 8210: The Resource Public Key Infrastructure (RPKI)
to Router Protocol, Version 1. Technical report, September 2017.

[21] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation, OSDI’08,
page 209–224, USA, 2008. USENIX Association.

[22] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V. Krishnamurthy, and
Lisa M. Marvel. Off-path tcp exploits: Global rate limit considered dangerous. In
25th USENIX Security Symposium (USENIX Security 16), pages 209–225, Austin,
TX, August 2016. USENIX Association.

[23] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V. Krishnamurthy,
and Lisa M. Marvel. Off-path tcp exploits of the challenge ack global rate limit.
IEEE/ACM Transactions on Networking, 26(2):765–778, 2018.

134

[24] Yue Cao, Zhongjie Wang, Zhiyun Qian, Chengyu Song, Srikanth V. Krishnamurthy,
and Paul Yu. Principled unearthing of tcp side channel vulnerabilities. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’19, page 211–224, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[25] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. Unleash-
ing mayhem on binary code. In 2012 IEEE Symposium on Security and Privacy,
pages 380–394. IEEE, 2012.

[26] Qi Alfred Chen, Zhiyun Qian, Yunhan Jack Jia, Yuru Shao, and Zhuoqing Mor-
ley Mao. Static detection of packet injection vulnerabilities: A case for identify-
ing attacker-controlled implicit information leaks. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15, page
388–400, New York, NY, USA, 2015. Association for Computing Machinery.

[27] Weiteng Chen and Zhiyun Qian. Off-path tcp exploit: How wireless routers can
jeopardize your secrets. In 27th USENIX Security Symposium (USENIX Security
18), pages 1581–1598, 2018.

[28] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: a platform for
in-vivo multi-path analysis of software systems. In Rajiv Gupta and Todd C. Mowry,
editors, Proceedings of the 16th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2011, Newport Beach, CA,
USA, March 5-11, 2011, pages 265–278. ACM, 2011.

[29] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chandrasekaran, David
Choffnes, Dave Levin, Bruce M. Maggs, Alan Mislove, and Christo Wilson. A lon-
gitudinal, end-to-end view of the DNSSEC ecosystem. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1307–1322, Vancouver, BC, August 2017.
USENIX Association.

[30] Michael R Clarkson and Fred B Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, 2010.

[31] CloudFlare. Shield your dns infrastructure from ddos attacks with cloudflare’s dns
firewall. https://www.cloudflare.com/dns/dns-firewall/.

[32] European Commision. Quality of broadband services in the eu. http://ec.europa.
eu/newsroom/dae/document.cfm?action=display&doc_id=10816, 2014.

[33] Cloudflare community. Case randomization recently disabled? https://community.

cloudflare.com/t/case-randomization-recently-disabled/61376, 2018.

[34] Cloudflare community. Incorrect resolution for my domain. https://community.

cloudflare.com/t/incorrect-resolution-for-my-domain/17966, 2018.

[35] Internet Systems Consortium. Bind 9. https://www.isc.org/bind/, 2020.

135

[36] David Dagon, Manos Antonakakis, Paul Vixie, Tatuya Jinmei, and Wenke Lee. In-
creased dns forgery resistance through 0x20-bit encoding: Security via leet queries. In
Proceedings of the 15th ACM Conference on Computer and Communications Security,
CCS ’08, 2008.

[37] Tianxiang Dai and Haya Shulman. Smap: Internet-wide scanning for spoofing. In
Annual Computer Security Applications Conference, ACSAC ’21, 2021.

[38] Casey Deccio, Derek Argueta, and Jonathan Demke. A quantitative study of the
deployment of dns rate limiting. In 2019 International Conference on Computing,
Networking and Communications (ICNC), pages 442–447. IEEE, 2019.

[39] Google Public DNS. Introduction: Dns security threats and mitigations. https:

//developers.google.com/speed/public-dns/docs/security, 2019.

[40] Goran Doychev, Dominik Feld, Boris Kopf, Laurent Mauborgne, and Jan Reineke.
CacheAudit: A tool for the static analysis of cache side channels. In 22nd USENIX
Security Symposium (USENIX Security 13), pages 431–446, Washington, D.C., Au-
gust 2013. USENIX Association.

[41] Goran Doychev and Boris Köpf. Rigorous analysis of software countermeasures against
cache attacks. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 406–421, 2017.

[42] Eric Dumazet. icmp: add a global rate limitation. https://github.com/torvalds/
linux/commit/4cdf507d54525842dfd9f6313fdafba039084046, 2014.

[43] Eric Dumazet. tcp/dccp: drop syn packets if accept queue is full.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/

commit/?id=5ea8ea2cb7f1d0db15762c9b0bb9e7330425a071, 2022.

[44] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and J. Alex Halder-
man. A search engine backed by Internet-wide scanning. In 22nd ACM Conference
on Computer and Communications Security, October 2015.

[45] R Elz and R Bush. Rfc 2181: Clarifications to the dns specification. https://tools.
ietf.org/html/rfc2181, 1997.

[46] Roya Ensafi, Jong Chun Park, Deepak Kapur, and Jedidiah R. Crandall. Idle port
scanning and non-interference analysis of network protocol stacks using model check-
ing. In Proceedings of the 19th USENIX Conference on Security, USENIX Security’10,
page 17, USA, 2010. USENIX Association.

[47] FCC. Eighth measuring broadband america fixed broadband report. https:

//www.fcc.gov/reports-research/reports/measuring-broadband-america/

measuring-fixed-broadband-eighth-report, 2018.

136

[48] Xuewei Feng, Chuanpu Fu, Qi Li, Kun Sun, and Ke Xu. Off-path tcp exploits of
the mixed ipid assignment. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’20, page 1323–1335, New York, NY,
USA, 2020. Association for Computing Machinery.

[49] Linux Foundation. net/ipv4/icmp/c. https://github.com/torvalds/linux/blob/
v5.9/net/ipv4/icmp.c\#L268, 2020.

[50] Linux Foundation. net/ipv4/tcp ipv4/c. https://github.com/torvalds/linux/

blob/v6.1/net/ipv4/tcp_ipv4.c#L1924, 2022.

[51] Nalneesh Gaur. Securing name servers on unix. Linux J., 1999(68es):5–es, dec 1999.

[52] J. A. Goguen and J. Meseguer. Security policies and security models. In 1982 IEEE
Symposium on Security and Privacy, pages 11–11, 1982.

[53] Suzanne Goldlust, Cathy Almond, and Mark Andrews. Dns cookies in bind 9. https:
//kb.isc.org/docs/aa-01387, 2017.

[54] F. Gont. RFC 5927: ICMP Attacks against TCP. Technical report, Jult 2010.

[55] Google. Ipv6 adoption statistics. https://www.google.com/intl/en/ipv6/

statistics.html, 2021.

[56] Hang Guo and John Heidemann. Detecting icmp rate limiting in the internet. In
International Conference on Passive and Active Network Measurement, pages 3–17.
Springer, 2018.

[57] Matthias Göhring, Haya Shulman, and Michael Waidner. Path mtu discovery consid-
ered harmful. In 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), pages 866–874, 2018.

[58] Brendon Harris and Ray Hunt. Tcp/ip security threats and attack methods. Computer
communications, 22(10):885–897, 1999.

[59] Amir Herzberg and Haya Shulman. Unilateral antidotes to dns poisoning. In In-
ternational Conference on Security and Privacy in Communication Systems, pages
319–336. Springer, 2011.

[60] Amir Herzberg and Haya Shulman. Security of patched dns. In Sara Foresti, Moti
Yung, and Fabio Martinelli, editors, ESORICS 2012, 2012.

[61] Amir Herzberg and Haya Shulman. Fragmentation considered poisonous, or: One-
domain-to-rule-them-all. org. In 2013 IEEE Conference on Communications and Net-
work Security (CNS), pages 224–232. IEEE, 2013.

[62] Amir Herzberg and Haya Shulman. Socket overloading for fun and cache-poisoning. In
Proceedings of the 29th Annual Computer Security Applications Conference, ACSAC
’13, 2013.

137

[63] R. Hinden and S. Deering. IP Version 6 Addressing Architecture. Technical report,
February 2006.

[64] P. Hoffman, A. Sullivan, and K. Fujiwara. RFC 8499: DNS Terminology. Technical
report, January 2019.

[65] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena, and
Zhenkai Liang. Data-oriented programming: On the expressiveness of non-control
data attacks. In 2016 IEEE Symposium on Security and Privacy (SP), pages 969–
986, 2016.

[66] A. Hubert and R. van Mook. RFC 5452: Measures for Making DNS More Resilient
against Forged Answers. Technical report, January 2009.

[67] Geoff Huston. The state of dnssec validation. https://blog.apnic.net/2019/03/

14/the-state-of-dnssec-validation/, 2019.

[68] Ed. J. Iyengar, Ed. andM. Thomson. QUIC: A UDP-Based Multiplexed and Secure
Transport. Technical report, February 2020.

[69] J. Mogul J. McCann, S. Deering and Ed. R. Hinden. RFC 8201: Path MTU Discovery
for IP version 6. Technical report, July 2017.

[70] A. J. Kalafut, C. A. Shue, and M. Gupta. Touring dns open houses for trends and
configurations. IEEE/ACM Transactions on Networking, 19(6):1666–1675, 2011.

[71] Dan Kaminsky. Black ops 2008: It’s the end of the cache as we know it. Black Hat
USA, 2008.

[72] Simon Kelley. Dnsmasq - network services for small networks. http://www.

thekelleys.org.uk/dnsmasq/doc.html, 2020.

[73] Sarfraz Khurshid, Corina S. PĂsĂreanu, and Willem Visser. Generalized symbolic
execution for model checking and testing. In Hubert Garavel and John Hatcliff,
editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
553–568, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[74] Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. Implicit flows: Can’t live
with ‘em, can’t live without ‘em. In Proceedings of the 4th International Conference
on Information Systems Security, ICISS ’08, page 56–70, Berlin, Heidelberg, 2008.
Springer-Verlag.

[75] Amit Klein. Cross layer attacks and how to use them (for dns cache poisoning, device
tracking and more), 2020.

[76] Amit Klein, Haya Shulman, and Michael Waidner. Internet-wide study of dns cache
injections. In IEEE INFOCOM 2017-IEEE Conference on Computer Communica-
tions, pages 1–9. IEEE, 2017.

138

[77] Jeffrey Knockel and Jedidiah R. Crandall. Counting packets sent between arbitrary
internet hosts. In 4th USENIX Workshop on Free and Open Communications on the
Internet (FOCI 14), San Diego, CA, August 2014. USENIX Association.

[78] Alfred Kölbl and Carl Pixley. Constructing efficient formal models from high-level de-
scriptions using symbolic simulation. International Journal of Parallel Programming,
33:645–666, 2005.

[79] R. G. Fairhurst L. Eggert and G. Shepherd. RFC 8085: UDP Usage Guidelines.
Technical report, March 2017.

[80] NLnet Labs. Unbound dns resolver. https://nlnetlabs.nl/projects/unbound/

about/, 2020.

[81] Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. Coverage guided,
property based testing. In Proceedings of the ACM Conference on Object-Oriented
Programming Languages, Systems, and Applications (OOPSLA), October 2019.

[82] M. Lepinski and S. Kent. RFC 6480: An Infrastructure to Support Secure Internet
Routing. Technical report, Feburary 2012.

[83] Cricket Liu. A new kind of ddos threat: The “nonsense
name” attack. https://www.networkworld.com/article/2875970/

a-new-kind-of-ddos-threat-the-nonsense-name-attack.html, 2015.

[84] lkm. Blind tcp/ip hijacking is still alive. http://phrack.org/issues/64/13.html,
2007.

[85] Chaoyi Lu, Baojun Liu, Zhou Li, Shuang Hao, Haixin Duan, Mingming Zhang, Chun-
ying Leng, Ying Liu, Zaifeng Zhang, and Jianping Wu. An end-to-end, large-scale
measurement of dns-over-encryption: How far have we come? In Proceedings of the
Internet Measurement Conference, IMC ’19, page 22–35, New York, NY, USA, 2019.
Association for Computing Machinery.

[86] Matthew Luckie, Robert Beverly, Ryan Koga, Ken Keys, Joshua A. Kroll, and k claffy.
Network hygiene, incentives, and regulation: Deployment of source address validation
in the internet. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’19, page 465–480, New York, NY, USA, 2019.
Association for Computing Machinery.

[87] Ed. M. Bishop. Hypertext Transfer Protocol Version 3 (HTTP/3). Technical report,
June 2020.

[88] Keyu Man. Saddns website. https://www.saddns.net/.

[89] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng Zheng, Youjun Huang, and Haixin
Duan. Dns cache poisoning attack reloaded: Revolutions with side channels. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’20, page 1337–1350, New York, NY, USA, 2020. Association for Com-
puting Machinery.

139

[90] Keyu Man, Xin’an Zhou, and Zhiyun Qian. Dns cache poisoning attack: Resurrections
with side channels. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’21, page 3400–3414, New York, NY, USA, 2021.
Association for Computing Machinery.

[91] J. Mogul and S. Deering. RFC 1191: Path MTU Discovery. Technical report, Novem-
ber 1990.

[92] J. Mogul and S. Deering. RFC 3552: Guidelines for Writing RFC Text on Security
Considerations. Technical report, July 2003.

[93] Robert Tappan Morris. A weakness in the 4.2 bsd unix tcp/ip software, 1985.

[94] Moritz Müller, Giovane C. M. Moura, Ricardo de O. Schmidt, and John Heidemann.
Recursives in the wild: Engineering authoritative dns servers. In Proceedings of the
2017 Internet Measurement Conference, IMC ’17, page 489–495, New York, NY, USA,
2017. Association for Computing Machinery.

[95] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-Ghazaleh. Ren-
dered insecure: Gpu side channel attacks are practical. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS ’18, page
2139–2153, New York, NY, USA, 2018. Association for Computing Machinery.

[96] J. Postel. RFC 792: INTERNET CONTROL MESSAGE PROTOCOL. Technical
report, September 1981.

[97] Zhiyun Qian and Z Morley Mao. Off-path tcp sequence number inference attack-
how firewall middleboxes reduce security. In 2012 IEEE Symposium on Security and
Privacy, pages 347–361. IEEE, 2012.

[98] Zhiyun Qian, Z. Morley Mao, and Yinglian Xie. Collaborative tcp sequence number
inference attack: How to crack sequence number under a second. In Proceedings of the
2012 ACM Conference on Computer and Communications Security, CCS ’12, page
593–604, New York, NY, USA, 2012. Association for Computing Machinery.

[99] Zhiyun Qian, Z. Morley Mao, Yinglian Xie, and Fang Yu. Investigation of triangular
spamming: A stealthy and efficient spamming technique. In 2010 IEEE Symposium
on Security and Privacy, pages 207–222, 2010.

[100] Alan Quach, Zhongjie Wang, and Zhiyun Qian. Investigation of the 2016 linux tcp
stack vulnerability at scale. Proc. ACM Meas. Anal. Comput. Syst., 1(1), jun 2017.

[101] Riccardo Ravaioli, Guillaume Urvoy-Keller, and Chadi Barakat. Characterizing icmp
rate limitation on routers. In 2015 IEEE International Conference on Communica-
tions (ICC), pages 6043–6049, 2015.

[102] Vicky Ris, Suzanne Goldlust, and Alan Clegg. Bind best practices - authoritative.
https://kb.isc.org/docs/bind-best-practices-authoritative, 2020.

140

[103] Kaiqi Ru, Yaning Zheng, Xuewei Feng, and Dongxia Wang. The side-channel vulner-
ability in network protocol. In Proceedings of the 2021 11th International Conference
on Communication and Network Security, ICCNS ’21, page 1–8, New York, NY, USA,
2022. Association for Computing Machinery.

[104] Domien Schepers, Aanjhan Ranganathan, and Mathy Vanhoef. Practical side-channel
attacks against wpa-tkip. Asia CCS ’19, page 415–426, New York, NY, USA, 2019.
Association for Computing Machinery.

[105] Paul Schmitt, Anne Edmundson, Allison Mankin, and Nick Feamster. Oblivious dns:
Practical privacy for dns queries. In PoPETS, 2019.

[106] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. On measuring
the client-side dns infrastructure. In Proceedings of the 2013 conference on Internet
measurement conference, pages 77–90. ACM, 2013.

[107] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. Dns record
injectino vulnerabilities in home routers. http://www.icir.org/mallman/talks/

schomp-dns-security-nanog61.pdf, 2014. Nanog 61.

[108] Cheng Shen, Tian Liu, Jun Huang, and Rui Tan. When lora meets emr: Electromag-
netic covert channels can be super resilient. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 1304–1317, 2021.

[109] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis. In IEEE Symposium on Security and Privacy, 2016.

[110] Sergio De Simone. The status of http/3. https://www.infoq.com/news/2020/01/

http-3-status//.

[111] Geoffrey Smith. Principles of secure information flow analysis. In Mihai Christodor-
escu, Somesh Jha, Douglas Maughan, Dawn Song, and Cliff Wang, editors, Malware
Detection, pages 291–307, Boston, MA, 2007. Springer US.

[112] Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday para-
dox for multi-collisions. In International Conference on Information Security and
Cryptology, pages 29–40. Springer, 2006.

[113] W. Simpson T. Narten, E. Nordmark and H. Soliman. RFC 4861: Neighbor Discovery
for IP version 6 (IPv6). Technical report, September 2007.

[114] US-Cert. Alert (ta13-088a) - dns amplification attacks. https://www.us-cert.gov/
ncas/alerts/TA13-088A, 2019.

[115] Paul Vixie. On the time value of security features in dns. http://www.circleid.

com/posts/20130913_on_the_time_value_of_security_features_in_dns/, 2019.

141

[116] Paul Vixie and Vernon Schryver. Dns response rate limiting (dns rrl). https://ftp.
isc.org/isc/pubs/tn/isc-tn-2012-1.txt, 2012.

[117] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael B Abu-Ghazaleh, Srikanth V
Krishnamurthy, Edward JM Colbert, and Paul Yu. Unveiling your keystrokes: A
cache-based side-channel attack on graphics libraries. In NDSS, 2019.

[118] Zhongjie Wang, Shitong Zhu, Yue Cao, Zhiyun Qian, Chengyu Song, Srikanth V.
Krishnamurthy, Kevin S. Chan, and Tracy D. Braun. Symtcp: Eluding stateful deep
packet inspection with automated discrepancy discovery. In 27th Annual Network and
Distributed System Security Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020. The Internet Society, 2020.

[119] Zhongjie Wang, Shitong Zhu, Keyu Man, Pengxiong Zhu, Yu Hao, Zhiyun Qian,
Srikanth V. Krishnamurthy, Tom La Porta, and Michael J. De Lucia. Themis:
Ambiguity-aware network intrusion detection based on symbolic model comparison.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’21, page 3384–3399, New York, NY, USA, 2021. Association for
Computing Machinery.

[120] Paul Watson. Slipping in the window: Tcp reset attacks. Presentation at, 2004.

[121] Jian Xiang and Stephen Chong. Co-inflow: Coarse-grained information flow control
for java-like languages. In 2021 IEEE Symposium on Security and Privacy (SP), pages
18–35, 2021.

[122] Yichen Xie and Alex Aiken. Scalable error detection using boolean satisfiability.
In Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 351–363, 2005.

[123] Michal Zalewski. Strange attractors and tcp/ip sequence number analysis. https:

//lcamtuf.coredump.cx/oldtcp/tcpseq.html, 2001.

[124] Xiaodong Zhang, Zijiang Yang, Qinghua Zheng, Yu Hao, Pei Liu, and Ting Liu. Tell
you a definite answer: Whether your data is tainted during thread scheduling. IEEE
Transactions on Software Engineering, 46(9):916–931, 2020.

[125] Xiaofeng Zheng, Chaoyi Lu, Jian Peng, Qiushi Yang, Dongjie Zhou, Baojun Liu, Keyu
Man, Shuang Hao, Haixin Duan, and Zhiyun Qian. Poison over troubled forwarders:
A cache poisoning attack targeting DNS forwarding devices. In 29th USENIX Secu-
rity Symposium (USENIX Security 20), pages 577–593. USENIX Association, August
2020.

[126] Pengxiong Zhu, Keyu Man, Zhongjie Wang, Zhiyun Qian, Roya Ensafi, J. Alex Hal-
derman, and Haixin Duan. Characterizing transnational internet performance and the
great bottleneck of china. Proc. ACM Meas. Anal. Comput. Syst., 4(1), May 2020.

142

Appendix A

ICMP Redirect Attacks

We performed the following small-scale experiments to measure the four conditions

(outlined in Chapter 4.5.1) for redirect-based attacks.

University Network Experiment. We verified the conditions of successful attacks

against resolvers in a university network. Since we are able to craft ICMP redirect messages

with the spoofed IPs inside the university network, we target 9 resolvers by redirecting the

packets destined to our test machine to an IP that is considered nearby of the resolver.

The result shows 3 out of 9 resolvers are vulnerable, (i.e., meeting all four conditions).

Most resolvers are not vulnerable because they do not accept ICMP redirect packets at all,

which breaks C3.. In practice, the acceptance of redirects can be configured via sysctl on

Linux and the default value varies on different Linux distributions. Two resolvers are not

vulnerable because they run FreeBSD which blindly accepts redirects and invalidates C1..

Delivery of ICMP Redirect on Internet. Since ICMP redirects are potentially danger-

ous [58], one concern is that such messages may be dropped on the Internet and only work

143

in local networks. We therefore performed a small-scale experiment by having 8 vantage

points (corresponding to 8 ASes) distributed across the world (i.e., in five continents) to

send ICMP redirect messages to each other. Specifically, our vantage points reside in AWS

(multiple continents), Google Cloud Platform, China educational network, US university

campus network, and China residential network. The result shows ICMP redirects can

successfully traverse the Internet in all pairs of experiments.

144

Appendix B

ICMP Rate Limit

ICMP traffic is generally considered as control-plane traffic and it has been pro-

posed that the source should rate-limit the generation of such packets [13, 101]. If such

traffic is rate limited not only at the source but also during transit (for ICMP PING [56]),

the port scan speed can be significantly hampered. As a result, we conduct a small-scale ex-

periment using the same setup as mentioned in Appendix A and send ICMP fragmentation

needed or redirect messages to each other at a rate of 10kpps. We find that none except one

Chinese residential host showed packet losses, which confirms rate-limiting in the transit

network is not a popular policy. Even for the Chinese residential host, we find that the

losses seem to be affected by the nationwide slowdown effect as reported recently [126]. We

had the suspicion because UDP packets destined to the same residential host experienced

similar losses also.

145

Appendix C

Resetting the Exception Cache

State

Since the search of the ephemeral port we conduct requires multiple rounds of

probes, the attacker has to reset the cache state after getting a positive response (i.e., a

probing packet in a batch hitting the correct open ephemeral port or the false positive caused

by noises). Generally speaking, this can be done similarly to the cache planting phase in

the private-facing port scan where the attacker finds 5 hash-collision IPs (note these can

be done via IP spoofing instead of direct ownership) to evict the cache entry containing his

primary scanning IP. Note that an easier method exists specifically for the public-facing

port scans using ICMP fragmentation needed messages. This is because when a correct

port is hit, the resolver will reduce the MTU for the attacker’s host to that specified in

the ICMP fragmentation needed message. The attacker can continue to lower the MTU

in future rounds of probes. Each time the MTU is decreased, an attacker can simply send

146

a PING verification packet to infer if the new MTU is now in effect. Note that it is not

possible to raise the MTU using this method according to the specification [69, 91]. As a

result, if the minimum MTU is reached, the attacker would have to fall back to the general

method (i.e., replanting the cache).

147

