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REVIEW
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# The American Society for Experimental NeuroTherapeutics, Inc. 2015

Abstract In order to understand the consequences of the
mutation on behavioral and biological phenotypes rele-
vant to autism, mutations in many of the risk genes for
autism spectrum disorder have been experimentally gen-
erated in mice. Here, we summarize behavioral outcomes
and neuroanatomical abnormalities, with a focus on high-
resolution magnetic resonance imaging of postmortem
mouse brains. Results are described from multiple mouse
models of autism spectrum disorder and comorbid syn-
dromes, including the 15q11-13, 16p11.2, 22q11.2,
Cntnap2, Engrailed2, Fragile X, Integrinβ3, MET,
Neurexin1a, Neuroligin3, Reelin, Rett, Shank3, Slc6a4,
tuberous sclerosis, and Williams syndrome models, and
inbred strains with strong autism-relevant behavioral phe-
notypes, including BTBR and BALB. Concomitant be-
havioral and neuroanatomical abnormalities can strength-
en the interpretation of results from a mouse model, and
may elevate the usefulness of the model system for ther-
apeutic discovery.

Keywords Autism .Magnetic resonance imaging (MRI) .

Behaviour . Neuroanatomy

Introduction

Autism is a major neurodevelopmental disorder that is diag-
nosed by 2 categories of behavioral abnormalities: 1) unusual
reciprocal social interactions and social communication defi-
cits; and 2) stereotyped, repetitive behaviors with restricted
interests [1, 2]. The high prevalence of autism, currently esti-
mated at >1 % [3], underscores the need to discover the bio-
logical substrates of this unique but heterogeneous disorder,
including neuroanatomical abnormalities.

Genetic, epigenetic, and environmental causes of autism
are under intense investigation. Large numbers of de novo
genetic mutations and copy number variants are associated
with autism [4, 5]. To understand the role of each gene and
chromosomal locus in the symptoms of autism, mutations in
homologous genes have been generated in many knockout
(KO) and knockin (KI) mice, and several KO rats [6, 7]. The
initial fundamental question was how to assay autism-relevant
behaviors in mice and rats. Our group (JNC) took on this
challenge, beginning in 2000, by developing a set of mouse
social behavior assays relevant to social approach and appro-
priate reciprocal interactions, olfactory and ultrasonic vocali-
zation analyses of potential relevance to social communica-
tion, and quantitative measures of spontaneous motor stereo-
typies and repetitive behaviors, along with assessments of
mouse behavioral domains relevant to some of the associated
symptoms of autism, including intellectual disabilities, anxi-
ety, sensory reactivity, and hyperactivity [6, 8–14]. These be-
havioral tests, with high face validity to the diagnostic and
associated symptoms of autism, have been widely applied
by our laboratory and others to investigate a broad range of
g e n e t i c mou s e mode l s o f a u t i sm and r e l a t e d
neurodevelopmental disorders, as described below and in
Table 1. Simultaneously, our Mouse Imaging Centre (J.E.)
began systematically evaluating structural neuroanatomy in a
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Table 1 Examples of currently published neuroanatomical assessments, using magnetic resonance imaging (MRI), and behavioral assessments in
mouse models related to autism

Model MRI/DTI neuroanatomical
abnormalities*(yes/no)

Reference(s) Low social and/or repetitive
behaviors (yes/no)

Reference(s)

Comorbid syndromes

15q11-13 15q11-13 (patDp/+) Yes [144] Yes [143]

16p11.2 deletion and
duplication

16p11.2 deletion (+/−) Yes [28] No [28]

16p11.2 (df/+), (dp/+),
(df/dp)

Yes [54] †

22q11.2 22q11.2 (df/+) Yes [159] No [160]

FXS Fmr1 (−/y) (B6) No [115] Yes [161]

Yes [130, 162] No [30, 69]

Fmr1 (−/y) (FVB) Yes Submitted [163] †

Rett syndrome Mecp2 (−/y) – null Yes [116, 120, 121] Yes [164]

No [165, 166]

Mecp2 (−/y) – 308 Yes [163, 167] Yes [168]

Tuberous sclerosis Tsc1 (+/−) No‡ [126] Yes [19]

Turner syndrome XO Yes [163, 169] †

Williams syndrome Gtf2i (dp/dp) Yes [163] †
Gtf2i (+/−)

Genetic associations

Androgen receptor AndR (12Q/y) Yes [163] †
AndR (48Q/y)

CNTNAP2 Cntnap2 (−/−) No [163] Yes [17]

Engrailed2 En2 (−/−) Yes [163] Yes [20]

Ephrin-A EphrinA2(−/−)A3(−/−) † Yes [27]

Integrinβ3 Itgβ3 (−/−) Yes [133, 167] Yes [64]

Gabrb3 Gabrb3 (−/−) † Yes [21]

MET Met-fx Yes [170] †

Neurexin1α Nrxn1α (+/−) Yes [163] Yes [171, 172]
Nrxn1α (−/−)

Neuroligin2 Nl2 (+/−) † No [26]
Nl2 (−/−)

Neuroligin3 Nl3 (−/y) No [125] No [125]

Nl3 (−/y) R451C KI Yes [131, 132, 167] No, Yes [31–33]

Oxytocin Oxt (+/−) † No [24]
Oxt (−/−)

Oxytocin receptor Oxtr (−/−) † Yes [23]

Pten Pten (+/−) † Yes [18]

Reelin Reln Yes [173] No [173]

Ube3a Ube3a (2XTg) † Yes [22]

Shank1 Shank1 (+/−) † No [25]
Shank1 (−/−)

Shank3 Exon 4–9 Shank3 (+/−) Yes [163] Yes [15, 16, 47, 174, 175]
Shank3 (−/−)

Slc6a4 (SERT) Slc6a4 (−/−) No [163] Yes [29]
Slc6a4 (Ala56/Ala56)

(B6), (129)

Inbred strains

BALB/cJ BALBC/J Yes [154] Yes [45, 46]

BTBR BTBR Yes [149, 151, 152] Yes [10, 12, 37–40, 42–44, 52]

C58/J C58 † Yes [58]

Deer mice Deer Mice † Yes [59]

FXS fragile X syndrome; SERT Serotonin Transporter

*Neuroanatomical abnormalities mentioned here are defined by volumetric differences as measured by MRI and/or fractional anisotropy/mean diffu-
sivity differences as measured with diffusion tensor imaging (DTI)
†Experiments not done or not published
‡ It should be noted that while the paper on tuberous sclerosis reported no measures in volume and/or the DTI metrics of interest there were other
neurological findings
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broad range of genetic mouse models of autism and related
neurodevelopmental disorders, as described below and in
Table 1.

This article will review results to date, and discuss the
advantages of a combined behavioral and neuroanatomical
approach to understanding the consequences of a genetic mu-
tation found in people with autism. For the purposes of this
review we will examine a large number of mouse models of
autism spectrum disorder (ASD). These include: 1) models
that are genetically associated with autism or related to human
genes associated with autism, such as the SHANK3 mutation,
which appears in a relatively large number of cases of autism
and is central to Phelan–McDermid syndrome; 2) models that
represent comorbid syndromes, such as fragile X (FXS) and
Rett, in which a small percentage of patients meet the diag-
nostic criteria for ASD; and 3) models that display strong
behavioral face validity to ASD symptoms but have no known
genetic mutations associated with ASD, analogous to idio-
pathic cases of autism in which no genetic mutations have
been identified, such as the BTBRT+ Itpr3tf/J (BTBR) inbred
strain of mice.

Discoveries of Autism-relevant Behaviors in Mouse
Models

Social abnormalities are the primary diagnostic symptom and
represent the most specific, consistent feature of autism.
Social behavior assays have been conducted with many of
the mouse models in which imaging studies were conducted.
Employing our 3-chambered social approach task, a simple
yes-or-no assay for sociability [13], absence of sociability was
reported in mice with mutations in genes including Shank3
[15, 16], Cntnap2 [17], Pten [18], Tsc1 [19], En2 [20],
Gabrb3 [21], Ube3a triplication [22], and oxytocin receptor
knockouts [23]. Normal 3-chambered social approach ap-
peared in mice with mutations in genes including oxytocin
[24], Shank1 [25], Nlgn2 [26], Ephrin-A [27] and 16p11.2
deletion [28] Variable findings on social approach across lab-
oratories and in mouse lines generated on different genetic
backgrounds have been reported for mutations including
Fmr1 [29, 30], Nlgn3 [31–34], and Nlgn4 [35, 36]. Social
deficits on the 3-chambered sociability have been well-
replicated in 2 inbred strains of mice, BTBR [10, 12, 37–44]
and Balb/cJ [45, 46].

Fine-grained, quantitative assays of reciprocal social inter-
actions have been conducted in experimentally defined social
situations for some of these mutant mouse lines. Abnormal
reciprocal interactions in various social pairings were reported
in several mutant lines, including Shank3 [16, 47, 48], En2
[20, 49], Gabrb3 [50], Pten [51], Tsc1 [19], and BTBR [10,
52, 53].

Stereotyped repetitive behaviors with restricted interests
comprise the second diagnostic category. Spontaneous motor
stereotypies in mice include high levels of circling,
backflipping, vertical jumping, and sniffing one location.
Repetitive behaviors in mice include unusually long bouts of
self-grooming, digging, and burying foreign objects such as
marbles. High levels of stereotyped or repetitive behaviors
have been reported in mice with mutations in genes including
Shank3 [15], 16p11.2 deletion [28, 54], Cntnap2 [17], and
Ephrin-A [27] in the inbred strains of BTBR [6, 55–57],
C58/J [58], and in deer mice [59].

Nondiagnostic symptoms associated with autism, that is,
identified in a subset of cases, include seizures, anxiety, atten-
tion deficit hyperactivity disorder, intellectual impairment, de-
pression at older ages, unusual responses to sensory stimuli,
and gastrointestinal distress. Seizures have been reported in
lines of mice with mutations in Tsc1, Gbrb3, Cntnap2, Fmr1,
integrin β3 (Itgβ3), and others [17, 60–64]. Anxiety-related
behaviors on the elevated-plus maze and other conflict tasks
were seen in mice with mutations in several genes, including
Nlgn2, Tsc2, Mecp2, and α-neurexin II (Nrxn2a) [65–68].
Although anxiety is a common feature of FXS, Fmr1 KO
mice display low anxiety-like behaviors [69]. Low scores on
learning and memory tasks such as water maze spatial navi-
gation, fear-conditioned freezing, novel object recognition,
and touchscreen visual discrimination were seen in mice with
mutations in genes including Nf1, En2, 16p11.2 deletion, and
Plaur with decreased gamma-aminobutryic acid-ergic cortical
interneurons [20, 28, 70–72]. Further investigations of pheno-
types in mice that have face validity and neuroanatomical
construct validity to both diagnostic and associated symptoms
of autism may prove particularly revealing.

Discoveries of Neuroanatomical Abnormalities
in Mouse Models of Autism

In the human autism literature, meta-analyses examining neu-
roanatomical phenotypes have revealed some overlap across
studies [73–76]. However, definitive interpretations remain in
progress, as individual findings in vivo investigations of brains
of people with autism have been replicated in some publica-
tions, but display considerable inconsistencies in many as-
pects. The authors of these analyses highlight several possible
explanations for inconsistencies across studies, such as age
and IQ, which are certainly factors; however, genetic, envi-
ronmental, and behavioral heterogeneity are equally important
elements. A major advantage of a model system, such as the
mouse, lies in the ability to control experimentally almost all
factors with tightly controlled genetics, similar environments,
and standardized experimental designs.

Initial examinations of the neuroanatomy in mouse models
of autism focused on comorbid syndromes related to a specific
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gene. Table 1 summarizes the neuroanatomical phenotyping
that has been performed to date in mouse models related to
autism. Several of those papers will be discussed in the fol-
lowing paragraphs.

FXS is caused by a trinucleotide repeat expansion in X-
linked FMR1. Methylation of this promoter causes a silencing
of the gene and thus the loss of fragile X mental retardation
protein expression. Similarly, the mouse model simulates this
effect by knocking out Fmr1, thereby silencing the fragile X
mental retardation protein protein. In FXS, 25–67 % of males
and 6–23 % of females are also classified as having an ASD
[77–79]. The Fmr1 KO mouse, originally generated by the
Dutch–Belgium Fragile X Consortium [80], has been widely
used to conduct mechanistic studies to understand the disor-
der. The original 1994 study included neurological examina-
tions that measured brain weight, with no significant differ-
ences detected. Light microscopy was employed to examine
qualitative differences in several different structures, includ-
ing, but not limited to, the frontal, temporal, and occipital
cortices, the striatum, hypothalamus, brain stem, and cerebel-
lum. For example, pyramidal and other neurons in the hippo-
campus and Purkinje cells in the cerebellum did not differ
between Fmr1 KO mice and their wild-type (WT) controls.
The first abnormal neuroanatomical finding in the Fmr1mice
was abnormal dendritic spines in the visual cortex. Using a
Golgi stain, Comery et al. [81] and Irwin et al. [82] determined
that the dendritic spines were longer compared with the WT,
and often thin and tortuous. Similar dendritic spine shape ab-
normalities were reported in human patients with FXS [83].

Rett syndrome, which, like FXS, has a small percentage of
patients that meet the diagnostic criteria for autism, is also
related to a single genetic mutation involving MECP2.
Initial neuroanatomical assessments by Guy et al. [84] deter-
mined neurological phenotypes in Rett mice. Further studies
showed that the Mecp2-null mouse brains were decreased in
both size and weight. Cell bodies within the hippocampus,
cortex, and cerebellum were decreased in size and more
densely packed. Neurons in CA2 of the hippocampus were
15–25 % smaller in the Rett mouse than WT control [85].
Further immunohistological assessments were performed by
Shahbazian et al. [86], in which temporal changes of the
Mecp2-null were reported in different embryonic stages.

Immunohistological investigations were performed in the
late 1990s and early 2000s on several mouse models of syn-
dromes comorbid with autism. A mouse model related to
Smith–Lemli–Optiz syndrome, with a mutation in DHCR7,
which encodes the terminal enzyme required for cholesterol
biosynthesis, showed alterations in development of the sero-
tonergic system [87], which relate to the common findings of
hyperserotonemia in autism [88–90]. Oxytocin receptors were
found to differ in several brain regions, including specific
areas of the piriform, neo, and retrospenial cotices, as well
as the hippocampus, in the Reeler mouse [91]. A study in

the Mecp2-null mouse found delayed maturation of the neu-
ronal architecture in the cortex [92]. While there are several
benefits to using immunohistochemistry, such as the ability to
examine cellular mechanisms and specific neuronal and glial
differences, one of the main drawbacks is the lack of whole
brain coverage and assessment. A priori knowledge is often
necessary for histological assessment and even then, owing to
time/cost constraints, it may only be possible to examine a
limited number of regions.

When the neuroanatomical phenotype is unknown, 3-
dimensional (3D) imaging techniques at the mesoscopic scale
(between microscopic and macroscopic) can detect very sub-
tle differences, which can highlight an area or region of inter-
est for further examination at the microscopic scale [93].
There are several different 3D imaging techniques that can
be used to examine the mouse brain at the mesoscopic scale.
Computed tomography is one example, which is often used to
examine high-density structures like bone or vascular trees
(filled with X-ray opaque contrast agents) [94–96], and, more
recently, examine mouse embryos, which relies on the use of
an iodine contrast agent to enhance the soft tissue contrast
[97–99]. Ultrasound biomicroscopy, commonly used for car-
diac imaging in the mouse [100–102], is also useful for study-
ing embryonic development [103]. Positron emission tomog-
raphy or single photon emission computed tomography re-
quire the use of exogenous contrast agents that can be tagged
to any molecule, nanoparticle, or cell. However, positron
emission tomography and single photon emission computed
tomography are difficult to scale down to the mouse [104].
Optical projection tomography, basically fluorescence com-
puted tomography, has also been used to examine fixed sam-
ples of the mouse brain and embryo [105, 106]. Lastly, mag-
netic resonance imaging (MRI) has been used extensively in
humans, rats, and mice [107]. Examining neuroanatomical
differences, using MRI, in the brains in multiple mouse
models will be the focus of this neuroanatomical phenotyping
review.

Arguably, MRI has the best soft tissue contrast of all the 3D
techniques mentioned above. This contrast comes about be-
cause the water in different regions of the brain interacts dif-
ferently with the surrounding environment. With MRI, these
differences can be harnessed and the MRI sequences can be
manipulated to produce several different tissue contrasts pro-
viding a wealth of information about the shape of the brain
and the underlying tissue microstructure. Owing to decreased
signal, as less water is present within the comparable voxel
(human voxel dimensions=1 mm isotropic, mouse voxel di-
mensions in vivo=0.125 mm isotropic, ex vivo=0.056 mm
isotropic) required for the mouse scale, MRI is not easily
scaled down from the human to the mouse. Imaging in the
mouse requires significant hardware and sequence upgrades
compared with standard human clinical scanners. However,
despite the technical hurdles involved in mouse imaging,
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several mouse imaging centers have had success in imaging
mouse brains with high neuroanatomical resolution
[108–113], including ours at the Mouse Imaging Centre at
the Hospital for Sick Children in Toronto [93, 94, 114].

Initial Investigations with MRI (1994–2010)

Similar to the initial histological examinations, examining the
neuroanatomical phenotype started with single gene comorbid
syndromes related to autism. Shortly, after the generation of
the Fmr1KOmouse in 1994 [80], the first MRI neuroanatom-
ical assessment of the Fmr1 was performed [115]. Kooy et al.
[115] looked at the brains of 22 anesthetized mice in vivo (11
Fmr1 KO and 11 WT). Images were acquired with high spa-
tial resolution along the long axis of the mouse brain to assess
the surface area of several different structures, including the
total brain, cerebellum (anterior and posterior), fourth ventri-
cle, subcortical gray matter, and hippocampus. Additionally,
3D assessments of the entire brain, fourth ventricle, and cere-
bellum were calculated. No differences were found between
the Fmr1 KO mice and their corresponding WT. Despite this,
the authors here presented a highly reproducible technique
that could be used in future neuroanatomical assessments
and were the first high-resolution MRI examinations of a
transgenic mouse model. In 2006, Saywell et al. [116] exam-
ined the hemizygous male Mecp2 KO mouse. The authors
calculated the volume of many different structures including
the cerebellum, caudate, putamen, hippocampus, thalamus,
olfactory bulbs, and lateral ventricles. In addition to these
volumes, the authors also assessed the thickness of both the
corpus callsoum and motor cortex. Differences throughout the
brain included a smaller overall brain size and a thinner motor
cortex and corpus callosum. Brain metabolism was examined
with magnetic resonance spectroscopy, detecting several met-
abolic differences in theMecp2 KO mice. This overall reduc-
tion in brain size is a common finding in the human Rett
syndrome phenotype; similarly, the decreased thickness of
the corpus callosum and motor cortex are also commonly
found in human Rett [117–119]. However, the authors do note
that the neuroanatomy of the Mecp2 KO mouse does have
some differences compared with human patients. For exam-
ple, the caudate nucleus and thalamus were not decreased in
size in the mouse, which is a common finding in the human
population. In 2008, Ward et al. [120] performed a longitudi-
nal study on the brains of the Mecp2 KO mouse from 21 to
42 days of age. MRI was employed to calculate 4 different
neuroanatomical measures: total brain volume, cerebellar vol-
ume, ventricular volume, and motor cortex thickness. Similar
to the study by Saywell et al. [116], smaller total brain vol-
umeswere found in theMecp2KOmice at all time points. The
cerebellar volume was also decreased initially, but was nor-
malized at 42 days of age. Surprisingly, the motor cortex thin-
ning that was found in the study by Saywell et al. [116] was

not replicated in the study by Ward et al. [120] at any time
point. The same group later assessed the response to environ-
mental enrichment on these same regions [121]. In that study
it was shown that environmental enrichment not only im-
proved the performance of the Mecp2 KO mouse on several
behavioral tasks, but it also showed that the ventricular vol-
ume negatively correlated with improved locomotor activity,
which was the first indication of a relationship between the
neuroanatomical and behavioral phenotype in a mouse model
of a neurodevelopmental disorder.

The first de novo mutations found to be specifically asso-
ciated with autism were in the Shank and Neuroligin families
of genes [122–124]. In 2009, Radyushkin et al. [125] exam-
ined the neuroanatomy of the neuroligin3 KO mouse. Despite
the careful measurements of the lateral and third ventricles,
brainstem, olfactory bulbs, and cerebellum, the only neuroan-
atomical finding reported was a decrease in the total brain
volume, excluding olfactory bulbs, cerebellum, and
brainstem, in the Nl3 knockouts compared with WT controls.

These initial neuroanatomical studies highlighted the ne-
cessity of further investigations. All of the above studies were
performed in vivo. Scan times were short and therefore the
imaging resolution suffered. Accurate quantification was pos-
sible in only a small number of regions that were easily delin-
eated. One particular study, in the tuberous sclerosis 1 hetero-
zygous Tsc1 (+/−) mouse, examined ex vivo brain samples at
quite high resolution [126]. However, the goal of that study
was to look for cerebral lesions consistent with those found in
human patients with tuberous sclerosis complex patients, and
therefore no volume measurements were made.

Outside of the autism field, substantial improvements were
being made in mouse imaging technology. To obtain compa-
rable image quality in the mouse consistent with the current
state of human imaging, sequences had to be optimized. That
optimization and the smaller voxels needed for the mouse
brain required 12–24 h scan times, which raised the practical
need to image multiple mice in the same scan [107, 127].
Furthermore, improved image analysis techniques [94, 108,
111, 128] and mouse atlases [129] were created to aid in the
neuroanatomical analysis of the mouse. All of these improve-
ments allowed dramatic advances in the neuroanatomical as-
sessments in mouse model of human disease.

Recent Investigations (2010–14)

Building on these initial examinations and using the new anal-
ysis and high-throughput methods, several of the models listed
above were re-examined at higher resolution in ex vivo sam-
ples. This method allowed a greater specificity in order to
determine subtle changes that may or may not have been seen
in the previous in vivo examinations. In 2010, the Fmr1 KO
mouse was revisited on a C57BL/6 J background using high-
resolutionMRI [130], which reported volumes for 62 different
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brains regions [129], encompassing the whole brain, as well as
voxel-wise differences that highlight local differences found
within those regions [128]. Similar to the initial Fmr1 exam-
ination by Kooy et al. [115], no differences were found in total
brain volume. However, in 3 specific regions of interest,
trends were seen for a larger parietotemporal lobe and a small-
er striatum, and a significantly smaller arbor vita (white matter
and deep cerebellar nuclei) of the cerebellum was detected.
Further investigation into the differences in the cerebellum
were localized in the fastigial nucleus and nucleus
interpositus. These changes were also examined using histol-
ogy to determine the cause of the volume differences in these
regions. Loss of neurons and a subsequent increase in astro-
cytes due to reactive gliosis was determined to be responsible
for the differences. This work demonstrates that neuroanatom-
ical imaging using MRI is not the end of the investigation.
Rather, MRI results highlight possible areas of interest within
the brain that can be investigated further. This work also
showed the ability of high-resolution ex vivo MRI to detect
subtle phenotypes in mouse models related to autism.

The Neuroligin3 mutation, was also re-examined, with the
Neuroligin3 R415C KI (Nl3KI) mouse model [131], which is
related to a specific human mutation found in a Swedish fam-
ily [122]. Similar to the original study done in 2009, a reduced
total brain volume was found. Moreover, of the 62 regions
examined, 20 were found to be significantly different. The
most significant regional differences were a smaller hippo-
campus, striatum, and thalamus. Several white matter regions
were smaller, including the corpus callosum, fimbria, fornix,
and internal capsule, all of which contributed significantly to
the overall white matter deficit of 8 %. These findings were
recently replicated in 2014 by Kumar et al. [132], using a
larger sample with 3 different ages.

In 2012, Ellegood et al. [133] also examined the Itgβ3 KO
mouse model. Similar to the Nl3 KI model, the Itgβ3 model
had a smaller total brain volume and a considerable white
matter deficit, with 16 of the 23 white matter structures in
the atlas found to be significantly smaller. Further, the corpus
callosum differences found in the Itgβ3 mouse model were
remarkably similar to those changes found in the Nl3KI mod-
el. White matter differences have become a common finding
in human autism, leading to speculation that children experi-
ence a period of abnormal white matter development [134].
Also, connectivity deficits are commonly reported in the au-
tistic population where connectivity is measured either func-
tionally [with functional MRI (fMRI)] or anatomically [with
diffusion tensor imaging (DTI) metrics]. This abnormal con-
nectivity has been reported to be both decreased and underde-
veloped [135–137], or overconnected in human autism [138].
Findings in both the Nl3 KI and Itgβ3models were consistent
with a decreased anatomical connectivity in these mice.

Copy number variations are quite common in the human
population, and several specific copy number variants have

been associated with autism. Mouse models of 15q11-13,
16p11.2, and 22q11.2 have all been linked to autism and
neuroanatomically examined using MRI. Horev et al. [54]
generated 3 different syntenic mouse models, a 16p11.2 dele-
tion (df/+), a duplication (dp/+), and a deletion/duplication
(df/dp). Significant relative volume differences were found
only in the 16p11.2 (df/+) model in 8 different regions.
These regions were localized to subcortical midline structures
including the basal forebrain, medial septum, midbrain, and
hypothalamus, all of which were found to be larger than their
corresponding WT. There was also an apparent dosage
affect, where the 16p11.2 (df/+) was larger than the WT
that was larger than the 16p11.2 (dp/+). The 16p11.2
deletion was recently re-examined on a different back-
ground that was independently generated [28]. Portmann
et al. [28] examined the 16p11.2 deletion (+/−) model at
a different age (postnatal day 7) than Horev et al. [54];
however, similar to the study by Horev et al. [54], sev-
eral relative volume increases were seen in midline
structures throughout the brain [28]. Comparisons be-
tween the voxel-wise maps between both 16p11.2 dele-
tion studies showed remarkable overlap considering the
different generation of the mice, as well as different
backgrounds, ages, and sex.

The 22q11.2 deletion (df/+), which is related to both
schizophrenia and autism, and the 15q11-13 duplication
models have also been recently examined. The 22q11.2 dele-
tion mouse model displayed several differences that mirrored
what has been found in human 22q11.2 deletion syndrome
[139–141]. Specifically, the larger striatum, smaller cerebel-
lum, and smaller amygdala in the mouse model are all consis-
tently found in human patients. Conversely, the 15q11-13 du-
plication mouse model, which was examined with both a ma-
ternal and paternal duplication, did not necessarily replicate
what is seen in the human population, as the majority of hu-
man patients with 15q11-13 duplication have maternally
inherited duplications [142]. The differences found in the
mice, both behaviorally and neuroanatomically [143, 144],
were found only in the paternally inherited duplication.
Interestingly, there has been increasing evidence for paternally
inherited 15q11-13 duplications in patients with autism [145,
146]. These studies highlight the importance of both construct
and face validity in examining mouse models related to hu-
man disease.

In addition to the genetically associated mouse models re-
lated to autism, several inbred strains of mice display autism-
relevant behavioral phenotypes, including unusually low so-
cial and unusually high repetitive scores. The most well de-
scribed and examined is the BTBR T+ Itpr3tf/J (BTBR) in-
bred strain, in which deficits in a variety of social tasks, along
with high repetitive self-grooming, marble burying, and dig-
ging, have been replicated by many laboratories [10, 37, 38,
40]. In addition, the BALB/cJ (BALB) inbred strain displays
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strong social deficits at juvenile ages [45, 147, 148], and the
C58/J inbred strain displays repetitive jumping [52]. The fact
that the models are inbred strains without known genetic ab-
normalities reflecting risk genes for autism poses an issue for
the selection of the appropriate control, but normally the be-
havioral comparisons were made against the C57BL/6 J (B6)
inbred strain, which is a commonly used background strain
with normal social behaviors and low repetitive behaviors.
The BTBR mouse has been examined in 3 different studies.
The first compared the BTBR mouse with both C57BL/6 J
and FVB/AntJ [149], investigating both volume differences
and tissue microstructure differences using DTI. DTI is a tech-
nique that examines the underlying tissue microstructure
based on the diffusion of water throughout the brain. Themost
striking difference between BTBR and both of the control
strains was the almost complete lack of a corpus callosum,
as previously reported [150]. Cerebral white matter as a whole
was significantly reduced, specifically 10 of 14 with matter
regions were smaller. Dodero et al. [151] replicated what was
found in the study by Ellegood et al. [133], similarly compar-
ing BTBR with B6, but also reported resting-state fMRI con-
nectivity differences in the BTBR mouse, including a signif-
icant reduction in the cerebral blood volume that is indicative
of a reduced basal metabolism. The same group also examined
dopaminergic neurotransmission in BTBR mice using fMRI,
highlighting possible dysfunctions in the dopaminergic sys-
tem [152]. These findings in BTBR mice implicate abnormal-
ities in white matter, in particular interhemispheric connec-
tions, as common phenotypes across mouse models of autism.
Regions implicated in these mouse model studies have also
been reported in human autism studies and support the valid-
ity of mouse phenotyping strategies.

Two studies that examined the BALB mouse evaluated
neuroanatomywith DTI [153, 154]. Kim et al. [153] measured
the fractional anisotropy (FA; a measure of order in the tissue)
and mean diffusivity (MD; a measure of the average diffusiv-
ity of water) in the BALB mouse. In several white and gray
matter regions, FA and MD correlated with the social scores
[153]. The second study, by Kumar et al. [154], examined FA
and MD differences between BALB and B6 mice in 8 differ-
ent gray and white matter structures at several different time
points. Differences were found in the corpus callosum, exter-
nal capsule, cortex, hippocampus, and amygdala. The authors
highlighted several findings that were consistent with human
autism.

Large-scale Discovery (2014)

In 2014, a collaboration between 16 different centers and 34
different researchers examined 26 different mouse models re-
lated to ASD. This study hypothesized that by clustering au-
tism based solely on the neuroanatomy, and identifying strong
connections based on those models, similarities would be

discovered that could provide neuroanatomical biomarkers
for predicting treatment response. Choices derived from all 3
categories mentioned above: comorbid syndromes, genetic
associations, and inbred strains with autism-relevant behavior-
al phenotypes. The 26 models were clustered into 3 different
groups based on their neuroanatomical phenotype. Group 1
[consisting of En2 and Fmr1 (on both the FVB and B6 back-
grounds), Nrxn1α, and Shank3] had increases in large white
matter structures, including the corpus callosum, fimbria, and
fornix, as well as increases in the frontal and parietotemporal
lobe and decreases in the cerebellar cortex. Conversely, group
2 [consisting of AndR, BTBR,Gtf2i (dp/dp), Itgβ3, 15q11-13,
Slc6A4 KI (129 background), and Nl3 KI] had decreases in
white matter structures such as the cerebral peduncle, corpus
callosum, and internal capsule, as well as the globus pallidus,
hippocampus, and striatum. Group 3 [consisting of 16p11,
BALB/c, Cntnap2 (−/−), Gtf2i (+/−), Mecp2, Slc6A4 KI (B6
background), Slc6A4KO, and XO] had a mixture of increases
and decreases, where the frontal and parietotemporal lobes
were decreased in size and the cerebellum was increased. An
overarching outcome of this large-scale project was the recog-
nition that the neuroanatomical heterogeneity across cases of
autism in the human population is similarly present across the
multiple mouse models related to autism. Similarities and dif-
ferences across the 26 models highlighted the parietotemporal
lobe, frontal lobe, cerebellum, hypothalamus, and striatum as
the most affected regions across models, all of which have
been implicated in human autism. Furthermore, the models
were stratified into subgroups with similar neuroanatomical
abnormalities, which suggested previously unrecognized sim-
ilarities between genetic models, for example Neurexin1α,
Fmr1, and Engrailed2.

There are several benefits in determining the neuroanatom-
ical phenotype of a mouse model of human disease. The first
major benefit is whole brain coverage, which allows exami-
nation of a mouse model without any prior knowledge.
Further, several different techniques are available for the as-
sessment of the brain using MRI. Aside from the volume
differences, the underlying tissue microstructure can be
assessed with DTI [131, 149, 151], functional information
can be assessed using fMRI [151], and metabolic differences
can be assessed with magnetic resonance spectroscopy [116].

The largest benefit of neuroanatomical imaging with MRI
is the reproducibility of the findings. This can be seen with the
similarities between 2 independent studies of Nl3 KI [131,
132], and the 2 independent BTBR studies [149, 151].
However, perhaps the most significant overlap is seen in the
similarities between the 16p11.2 models [28, 54], in which the
mice were created in 2 different laboratories, with 2 different
techniques, and were inconsistent in age and sex, but still had
strikingly similar findings. There are, however, some draw-
backs to neuroanatomical phenotyping with MRI. The most
significant is the lack of specificity about the cause of the
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volumetric differences. MRI neuroanatomical phenotyping is
highly specific at the mesoscopic scale but the microscopic
differences leading to these differences need to be investigated
further with other histological methods.

When evaluating animal models of autism, an impor-
tant point to note is that autism is behaviorally defined.
While we can correlate anatomical findings with behav-
ioral measures, it seems likely that recovery or improve-
ment of symptoms will be ultimately judged based on the
behavioral criteria that define autism. Behavioral deficits
in the social and repetitive domain in many mouse models
of autism, summarized above and in Table 1, may provide
useful outcome measures for therapeutic intervention.
Concomitant neuroanatomical and behavioral deficits in
the same mouse models may offer 2 linked outcome mea-
sures to evaluate treatment efficacy. Several studies to
examine that possibility are currently underway. While
developmental treatments could have a profound effect
on neuroanatomy at a young age when there is pro-
nounced plasticity, treatment may not have the same ef-
fect on neuroanatomy at an older age. Therefore, at an
older age, behavioral phenotypes may be more malleable
and thus the outcome measure of choice.

As displayed in Table 1, social deficits or repetitive
behaviors were detected in many of the same lines of
mice in which neuroanatomical abnormalities were detect-
ed. In fact, 11 of the 17 models, or 65 % of the studies in
Table 1 in which both measures were assessed displayed
either a consistent neuroanatomical phenotype with a be-
havioral phenotype, or were normal on both neuroanatom-
ical and behavioral phenotypes. Had those studies been
performed on the same animals, that is, behavioral testing
of the animals with either in vivo imaging concurrently
and/or ex vivo imaging after sacrifice, it is likely that there
would be even more consistency. In a previous report,
both behavioral and neuroanatomical phenotypic out-
comes were detected in 17 of 19 different mouse models
[155]. To build upon this further, it has been shown that
behavioral training can directly influence the neuroanato-
my. Lerch et al. [156] found that after only 5 days of
training in the Morris water maze, highly significant vol-
ume differences in the mouse brain can be seen.
Furthermore, in the BTBR study by Ellegood et al.
[149], several neuroanatomical differences were found to
correlate with behavioral measures across the 3 strains of
mice examined [149]. For example, repetitive behaviors,
specifically grooming time, in BTBR mice significantly
correlated with striatal volume. Similarly, Kumar et al.
[132] found significant correlations between anxiety in
Nl3 KI mice and the internal capsule and medulla vol-
umes [132]. All these examples display the tight relation-
ship that can exist between the neuroanatomical and be-
havioral phenotypes.

Conclusions

The fundamental question for preclinical discovery of treat-
ment targets for autism is the predictive value of phenotypes
detected in the animal models. Three underlying issues need
to be carefully addressed. First is the replicability of findings
across cohorts of mice with a targeted mutation in the same
gene, within the same laboratory, and across laboratories.
High replicability of a strong phenotype is essential to evalu-
ate therapeutic efficacy of an intervention. Second is the
choice of phenotypes, analogous to the choice of outcome
measures for clinical trials. Different schools of thought exist
concerning this preclinical issue. Mouse behavioral assays
with face validity to the human symptoms, such as social
deficits and repetitive behaviors, have value in terms of their
relevance to the human symptoms that will be used as out-
come measures. Neuroanatomical, physiological, and bio-
chemical markers that track behavioral abnormalities would
elevate interpretations. Third is thematch between phenotypes
in the animal model and in the human disease. Evidence that
the same neural circuitry and neuropharmacology underlies
the mouse and the human behavioral domains will increase
confidence that a pharmacological intervention, which re-
verses deficits in the animal model will similarly reverse def-
icits in the human condition. MRI and DTI imaging studies
summarized in Table 1, along with the earlier histological
approaches mentioned [81, 82, 85, 86, 91, 92], and forefront
techniques such as optogenetics [157, 158], are yielding high-
quality information about circuitry-mediated social and repet-
itive behaviors in mice and humans. For example, repetitive
self-grooming has shown to be correlated with the striatum,
globus pallidus, and thalamus, and sociability with the frontal
lobe, amygdala, and nucleus accumbens [149]. Furthermore,
neuroanatomical differences have been linked to learning
tasks, such as the Morris water maze, which highlighted dif-
ferences in the hippocampus [156]. All these studies support
the benefits of using multiple methods for investigating the
differences and phenotypes in these mouse models of autism.
Determining the behavioral, neuroanatomical, and histologi-
cal phenotypes allows one to localize the difference, establish
the cellular mechanism, and directly relate these differences to
the behavior, all of which will be required for an accurate
assessment of both the model and possible rescues by
interventions.

We propose that the best animal models for autism will 1)
incorporate a mutation in a risk gene frequently found in in-
dividuals with ASD; 2) display well-replicated social deficits
along with stereotyped or repetitive behaviors, and possibly
other associated phenotypes such as seizures or cognitive def-
icits; 3) display well-replicated abnormalities in brain struc-
tures and pathways that recapitulate abnormalities reported in
many cases of autism, or in a well-defined subgroup of autism;
4 ) d i s p l a y w e l l - r e p l i c a t e d a b n o rm a l i t i e s i n
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electrophysiological properties in brain structures and path-
ways relevant to symptoms of autism; 5) display well-
replicated abnormal scores on a biological assay that is simple
and quantitative, in which abnormal scores on an analogous
biological measure are reported in many cases of autism or a
well-defined subgroup. Confidence in the mouse model will
be strongest if all of these criteria are met. However, this is a
high bar to reach. The research field has not yet achieved this
level of replication, assay corroboration, or biomarker
validation.

The search is ongoing for autism biomarkers that appear
universally in autism, or which can be used to stratify subject
groups for targeted therapeutic interventions. As multiple cor-
roborative outcome measures are elaborated, displaying con-
cordance in human and animal studies, neuroanatomical and
other biomarkers may be discovered that track with social
deficits, repetitive behaviors, and other symptoms of autism
in both animal models and in people with autism. Knowledge
gained from the best mouse models of autism will serve to
increase confidence in the usefulness of preclinical strategies
for the discovery of medical treatments for autism.
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