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Abstract

How do humans produce and comprehend language in prag-
matic ways? A variety of models of pragmatic inferences have
been proposed, and these models are often evaluated on their
ability to account for human inferences in reference game ex-
periments. However, these experiments are not tailored to
target theoretical differences between models or clearly tease
apart model predictions. We propose an optimal experiment
design approach to systematically construct reference games
that can optimally differentiate between models of human
pragmatic reasoning. We demonstrate this approach and ap-
ply it to four models that have been debated in the litera-
ture: Grammar-based, Iterated Best Response (IBR), Rational
Speech Act (RSA), and a recent variant of RSA grounded in
Rate–Distortion theory (RD-RSA). Using these optimal refer-
ence game experiments, we find empirical evidence favoring
iterated rationality models over the grammar-based model, as
well as support for the relevance of Rate–Distortion theory to
human pragmatic inferences. These results suggest that our
optimal reference game design framework may help adjudicate
between computational theories of pragmatic reasoning.
Keywords: pragmatics; rational speech act; optimal experi-
ment design; reference games

Introduction
When humans communicate, we convey and interpret mean-
ing beyond what is explicitly said (Grice, 1975; Horn, 1992).
The variation and context-dependence of such pragmatic be-
haviors have made it notoriously challenging to develop a
model of pragmatics that can make quantitative predictions.

In the past two decades, there have been a number of pro-
posals formalizing how pragmatic inferences are computed.
In particular, a recent debate has centered upon the role of
grammar versus game-theoretic reasoning in computing prag-
matic implicatures. The Grammatical approach proposes that
implicatures are derived entirely within the grammar via a
silent operator which essentially negates the meaning of rele-
vant alternatives (Chierchia, 2004; Fox, 2007; Fox & Katzir,
2021; Asherov, Fox, & Katzir, 2021b). In contrast, a class of
Iterated Rationality Models (IRMs) formulates speakers and
listeners as cooperative agents that reason about each others’
beliefs and goals. One well-known instance of an IRM is the
Iterated Best Response (IBR) model, which describes agents’
optimal strategies under rationality assumptions about their
partners (Jäger, 2011; Franke, 2011). Another prominent
IRM is the Rational Speech Act model (RSA; Frank & Good-
man, 2012; Goodman & Frank, 2016), which builds upon

Code and data: github.com/zhouire/pragmatics-oed

work in Bayesian cognitive modeling (Tenenbaum, Kemp,
Griffiths, & Goodman, 2011) as a way of representing un-
certainty over possible states of the world. More recently,
it has been shown that RSA can be grounded in Shannon’s
Rate–Distortion theory, yielding another model class called
RD-RSA (Zaslavsky, Hu, & Levy, 2020, 2021).

Given this diverse space of proposals, how can we com-
pare different models as candidate theories of pragmatics?
The general approach for comparing two models A and B is
as follows. Beginning with some shared input and model-
specific parameters, each model is run forward to generate
a set of predictions in response to the input. The input is
used to collect human behavioral data, which is compared
against each model’s predictions. Typically, the input is hand-
crafted to represent a specific phenomenon, such as scalar im-
plicature (e.g., Goodman & Stuhlmüller, 2013; Frank, Emils-
son, Peloquin, Goodman, & Potts, 2016), hyperbole (Kao,
Wu, Bergen, & Goodman, 2014), or free choice inference
(Champollion, Alsop, & Grosu, 2019).

While it is important to compare models’ predictions on
hand-crafted inputs, this approach faces two main issues in
practice. First, different models often make similar quantita-
tive predictions, making it difficult to discriminate between
them. Second, it is often unclear how to manually design
an experiment that is well-suited for exposing qualitative dif-
ferences between models. Indeed, while a large body of
work has conceptually compared IRMs (e.g., Franke & Jäger,
2014; Franke, 2017) or fit specific IRMs to human data, Benz
and Stevens (2018) write “there is no established criterion
that would enable an objective comparison” between them.
As such, the current empirical pragmatics landscape consists
of mixed results. On the one hand, there appears to be a large
body of empirical support for RSA (e.g., Goodman & Frank,
2016; Bergen, Levy, & Goodman, 2016), whereas recent
studies lend support to grammar-based theories over IRMs
(Franke & Bergen, 2020; Asherov, Fox, & Katzir, 2021a;
Asherov et al., 2021b). In addition, there have been alter-
natives proposed to RSA that are theoretically motivated but
have yet to be fully evaluated empirically (e.g., Zaslavsky et
al., 2020, 2021), further complicating the picture.

In this work, we address these challenges by proposing
a framework for optimal reference game design that can be
used to tease apart various models of pragmatic reasoning.
Specifically, we build on Myung and Pitt’s (2009) Optimal
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Experiment Design (OED) approach to facilitate a system-
atic comparison of models of pragmatics. Our approach takes
two models of pragmatics, and finds a design for a reference
game that yields maximally different predictions. These de-
signs can then be translated into an executable reference game
experiment in order to empirically evaluate the two models.
We demonstrate this approach for differentiating between the
four aforementioned models (Grammatical, IBR, RSA, and
RD-RSA). In particular, we first compare across the Gram-
matical and IRM model classes, and then within the class
of IRMs (IBR, RSA, RD-RSA). We find evidence favoring
IRMs over the Grammatical model, as well as empirical sup-
port for RD-RSA within the IRM class, which further sup-
ports the proposal that Rate–Distortion theory may help to
explain human pragmatic reasoning (Zaslavsky et al., 2020).

Background: Models of pragmatic reasoning
Before laying out our framework for optimal reference game
design, we begin by reviewing the four models of reasoning
which we aim to differentiate: the grammatical model, Iter-
ated Best Response (IBR), Rational Speech Act (RSA), and
Rate–Distortion Rational Speech Act (RD-RSA).

The grammatical model
Under the grammatical model, pragmatic implicatures are de-
rived within the grammar as part of a sentence’s meaning
(Chierchia, 2004; Fox, 2007; Fox & Katzir, 2021). The
Grammatical approach is executed in two parts: Innocent Ex-
clusion (Fox, 2007) and Innocent Inclusion (Bar-Lev & Fox,
2017). The approach starts with a speaker’s assertion S and
a set of alternative utterances M (which, in a reference game
format, may be inferred by the listener). Innocent Exclusion
states that an alternative m can be innocently excluded if m is
in all maximal sets of alternatives that can be negated without
contradicting the assertion S. After all innocently excludable
alternatives have been removed, Innocent Inclusion considers
maximal sets of alternatives that can be affirmed consistently
with the assertion S, and includes those that appear in all sets.

For simple, single-word utterances in a reference game, the
set of alternative utterances is assumed to be the set of single-
word utterances U represented in the lexicon, of which one
is chosen to be the speaker’s assertion S. All alternative ut-
terances U − S can be innocently excluded, and only S can
be innocently included. Thus, if a provided referent contains
only the asserted feature - and no other features - then the lis-
tener will choose that referent. If all referents containing the
asserted feature also contain an additional feature, then the
listener will be unable to determine which of those referents
is the intended meaning, and no implicature arises.1

1The “no-implicature” output of the Grammatical model is not
compatible with a forced-choice paradigm, as in the case of refer-
ence games. For consistency with the other models evaluated here,
we operationalize the lack of implicature as a uniform distribution
over all semantically viable referents. However, see Asherov et al.
(2021b) for an alternative method, and Jasbi, Waldon, and Degen
(2019) for more general discussion about linking hypotheses.

Iterated Rationality Models (IRMs)
Next, we turn to the class of Iterated Rationality Models
(IRMs). In contrast to the Grammatical model, IRMs de-
rive pragmatically enriched meaning “on top of” semantic
meaning by formulating speakers and listeners as cooperative
agents that reason about each other.

IBR. The Iterated Best Response model (IBR; Jäger
(2011)) describes the behavior of rational speakers and lis-
teners arranged under a cognitive hierarchy (Camerer, Ho, &
Chong, 2004). A level-0 player is constrained only by truth-
fulness, and a level-(t + 1) player acts rationally under the
assumption that their partner is a level-t player.

More concretely, suppose there is a set of meanings M and
a set of possible utterances U. In order to convey a meaning
m ∈ M , a level-0 speaker selects uniformly at random from
all utterances u ∈ U that are literally true of m. For t > 0,
the level-t players are defined as producing the best response
with respect to the player at level t −1. This strategy assigns
equal probabilities to all best responses and zero otherwise:

Lt+1(m|u) ∝

{
1 if m = argmaxm∈M St(u|m)P(m)

0 o.w.
(1)

St+1(u|m) ∝

{
1 if u = argmaxu∈U Lt(m|u)
0 o.w.

(2)

In this paper, we describe IRM predictions in terms of it-
erative “depth”, which increments by 1 after a full iteration
through both speaker and listener has occurred. For consis-
tency, we establish that a level-t IBR player is at depth ⌊ t

2⌋.

RSA. Similar to IBR, the Rational Speech Act model
(RSA; Frank and Goodman (2012)) defines a hierarchy of
player types: literal players who are only constrained by
truthfulness, and pragmatic players who act rationally by tak-
ing their partners into consideration. Unlike IBR, however,
RSA players define probability distributions over responses.

The basis of an RSA model is a lexicon function L , which
takes an utterance u and meaning m and returns a value in
{0,1} indicating whether u is literally true of m. We ground
the RSA model in a literal speaker S0, which observes a
meaning m and defines a probability distribution over pos-
sible utterances u according to the lexicon:

S0(m|u) ∝ L(u,m) . (3)

Next, RSA defines a pragmatic level-t listener, which is
Bayesian with respect to the level-t speaker:

Lt(m|u) ∝ St(u|m)P(m) . (4)

Finally, RSA defines a pragmatic level-t speaker, which is a
distribution over utterances u conditioned on meaning m:

St(u|m) ∝ exp(α(logLt−1(m|u)−κ(u))) . (5)
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Figure 1: Diagram of our approach, based upon optimal experiment design for model discrimination (Myung & Pitt, 2009). We
exhaustively generate all designs and compare the predictions of the two models using a divergence metric D. The design that
maximizes D is selected as optimal and automatically translated into an executable reference game experiment.

The level-t speaker maximizes the likelihood that a level-
(t − 1) listener will recover m upon observing u, and mini-
mizes the cost κ(u) of producing u. The sharpness of the dis-
tribution is controlled by a free parameter α > 0, representing
the degree to which the speaker seeks to maximize utility. For
RSA, the iterative depth of a player is equivalent to its level.

RD-RSA. Recently, Zaslavsky et al. (2020) showed that
with a relatively simple modification, RSA can be grounded
in Rate–Distortion theory (Shannon, 1959; Berger, 1971),
yielding the RD-RSA model. The listener in RD-RSA is sim-
ilar to the RSA listener; i.e., it is Bayesian with respect to the
speaker. Importantly, however, the pragmatic speaker in RD-
RSA differs from the RSA speaker. In RD-RSA, the prag-
matic speaker takes into account the marginal probability of
producing the utterance u:

St(u|m) ∝ St(u)exp(α(logLt−1(m|u)−κ(u))) (6)

St(u) = ∑
m

St(u|m)P(m) , (7)

where St(u) is not fixed but rather updated as the speaker
reasons about the listener. While RSA and RD-RSA may
appear relatively similar, the two models have interesting
theoretical differences. For example, they are derived from
different optimization principles, and the RSA speaker has
a bias toward random utterance production while RD-RSA
does not (Zaslavsky et al., 2020).

With these four models in mind, we turn to our proposed
framework for optimally designing reference game experi-
ments for teasing apart models of pragmatic reasoning.

Optimal reference game design
Our approach for generating optimal reference games builds
on the long tradition of Optimal Experiment Design (OED)
in statistics (e.g., Atkinson and Donev (1992)) and psycho-
logical research (e.g., McClelland (1997); Holling (2013)).
Our goal is to systematically find inputs for which models
under comparison are likely to make different predictions.
One challenge for comparing models of pragmatics is han-
dling parameters that can freely be adjusted to fit experimen-
tal data. Ideally, an experiment should discriminate between

two models over a wide range of parameter settings. There-
fore, we leverage Myung and Pitt’s (2009) OED paradigm
for model discrimination, which handles free nuisance pa-
rameters via the T-optimality criterion (Atkinson & Donev,
1992; Ponce de Leon & Atkinson, 1991; Uciński & Bogacka,
2005). This criterion is useful for finding designs that max-
imally discriminate between candidate models of a psycho-
logical process.

For the models compared in this study, an input (or “ex-
perimental design”) consists of two parts: a binary lexi-
con representing the features and referents in the context,
and a row/column of that lexicon corresponding to an utter-
ance/referent used to prompt a listener/speaker. In our study
we focus on the listener task. Thus, a particular input or de-
sign d consists of a lexicon-row pair (L ,r).

Figure 1 illustrates the process of finding an optimal de-
sign. We first generate predictions from the models under
comparison for each design in the search space. The model
prediction for each design d is produced by computing the
listener distribution conditioned on row r of lexicon L , which
corresponds to a specific utterance. We then evaluate the
difference between the model predictions using a divergence
metric. The optimal design d∗ = (L∗,r∗) is the one that re-
sults in the greatest difference under this measure.

Finding an optimal design
We adapt Myung and Pitt’s (2009) approach as follows. Sup-
pose, given a design d and parameters θA, model A generates
data yA; in our case, this is the distribution predicted by model
A. We can attempt to fit model B to yA by finding the best-fit
parameter vector θ∗B that minimizes the divergence measure
DB(d,θA,yA). Because we do not know the parameters θA
that will best fit human data, we can assess the quality of the
design d using the expected value of DB(d,θA,yA) assuming
a prior distribution over the parameters P(θA) as follows:2∫

DB(d,θA,yA)P(θA)dθA . (8)

2Note that this works even for models with different parameters.
For example, RSA and RD-RSA both have a free “rationality” pa-
rameter α, unlike IBR and the Grammatical model. We discuss spe-
cific parameter priors when we describe each experiment in detail.
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This expression quantifies the badness-of-fit of model B con-
ditioned on model A, but we must also take into account
the badness-of-fit of model A conditioned on B, resulting in
the following global utility function to be maximized, where
P(A) and P(B) are model priors (generally uniform):

U(d) = P(A)
∫

DB(d,θA,yA)P(θA)dθA+

P(B)
∫

DA(d,θB,yB)P(θB)dθB (9)

In practice, we evaluate this integral numerically. By fit-
ting each model to predictions made by the other, we assume
that the generating model is the true model that captures hu-
man behavior, while the fitting model is an impostor model.
By maximizing the badness-of-fit of the impostor model, we
maximize the likelihood that, given the experimental data, we
will select the true model as the better model.

Divergence function. As demonstrated by Equation (9),
the divergence function determines what experimental de-
signs emerge as “optimal”. For models that output probability
distributions (e.g., RSA and RD-RSA), some natural options
include distance metrics such as Jensen-Shannon Divergence.
In our study, we used maximum rank difference (MRD) as the
divergence function. Taking LA and LB to be the listener dis-
tributions predicted by models A and B, respectively,
{

maxm(|LA(m|u)−LB(m|u)|) if ∃u s.t. R(LA(u)) ̸= R(LB(u))
0 o.w. ,

(10)
where R is the standard competition ranking. MRD is an
interpretable measure of lexicon optimality, whereby model
predictions are only considered different if the referents are
ranked differently in the resulting probability distribution.

Lexicons. We evaluated all valid 4x4 lexicons,3 defined as
binary matrices with no all-0 or all-1 rows/columns, and no
duplicate rows/columns. Additionally, we aimed to minimize
the effects of experimental noise by only considering designs
in which the selected row contained two 1s (matching exactly
two meanings), thus giving participants only two reasonable
referent choices. In an experimental setting, the lexicon is
interpreted indirectly from the visual context; we discuss this
in detail in the following section.

From design to data: Reference games
In order to obtain human behavioral data to evaluate the mod-
els, we need to translate the output of the OED algorithm (an
optimal design) into an executable experiment. Any experi-
mental paradigm that is characterized by a lexicon – or any
unique setting for the initial conditions of the model(s) of in-
terest – can be used. Here, we use one-shot reference games,

3The approach can be applied to lexicons of arbitrary size (in-
cluding non-square dimensions). However, relatively small lexicons
are preferred because they are more straightforwardly translated into
reference games, and the search cost is more tractable.

which are a popular experimental tool for studying ad-hoc
scalar implicatures (Stiller, Goodman, & Frank, 2015; Frank
et al., 2016). A reference game is defined by a set of ut-
terances U and referents (“meanings”) M , and involves two
players: a speaker, who attempts to communicate a meaning
m ∈ M by selecting an utterance u ∈ U; and a listener, who
attempts to recover m upon observing u. The players share
the goal of the listener correctly recovering m.

We choose reference games as the experimental paradigm
for this study, as a game can be represented by a lexicon
matrix. The speaker’s task can be represented by a column
from this matrix (conditioning on an intended meaning), and
the listener’s task can be represented by a row (conditioning
on an observed utterance). Despite their simplicity, reference
games elicit pragmatic behaviors by requiring partners to rea-
son about context to achieve a shared goal.

Experiment 1: Grammatical vs. IRMs
We begin illustrating our approach by comparing across the
Grammatical and IRM model classes. As mentioned earlier,
recent studies have found empirical support for grammar-
based theories over IRMs (Franke & Bergen, 2020; Asherov
et al., 2021a, 2021b).

Optimal lexicon. We ran the OED algorithm described
above, pairing the Grammatical model with each of the three
IRMs. We made several simplifying assumptions to make the
integration over parameters tractable: a uniform prior over
meanings, no utterance cost, and iterative depth 1.4 For both
RSA and RD-RSA, we set the prior over α to be uniform over
the interval [1,3], reflecting minimal expectations about rea-
sonable values of α based on existing empirical studies and
the theoretical role of α (Zaslavsky et al., 2020). We leave a
detailed treatment of priors to future work.

For each model comparison, we obtained a list of experi-
mental designs ranked from most to least optimal (highest to
lowest global utility U(d)). After removing the designs that
produced a global utility of zero for at least one of the model
comparisons, the same design was ranked first for all three
comparisons. This optimal lexicon is shown in Figure 2a,
with the optimal row (corresponding to utterance u∗) high-
lighted. Each subplot corresponds to a particular utterance-
meaning pair (u∗,m), with model listener predictions L(m|u∗)
shown as bars. By design, the Grammatical and IRM lis-
teners make qualitatively differing predictions for u∗. Be-
cause no referent contains only the asserted feature (“ball”
in Figure 2a), the Grammatical model predicts a listener to
be equally likely to choose between the two compatible ref-
erents R3 and R4. In contrast, the IRMs predict a preference
for R3 over R4 – if a pragmatic speaker had meant R4, they
could have unambiguously used the first utterance (“apple” in
Figure 2a).

4While different cost functions and meaning priors will likely
induce differences in model predictions, we chose not to manipulate
them because it is unclear how to control them in an experiment.
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Figure 2: Comparison across Grammatical and IRM classes (Exp. 1). (a) Optimal design selected by OED approach, with
human selection rates and model predictions (using α = 1 and uniform prior) shown for optimal row. (b) Correlation between
model predictions and human data as a function of α (RSA/RD-RSA parameter). Literal represents RSA/RD-RSA at depth 0.

Methods. We used the optimal lexicon and row to conduct
a one-shot reference game experiment. Participants were as-
signed to either the Listener task or the Prior Elicitation task.
Following standard methodology (Frank et al., 2016), partic-
ipants were introduced to a speaker (“Bob”) who attempts to
describe a target referent using a one-word utterance. On the
critical screen, participants were asked to click on the ref-
erent that they believed Bob was referring to, based on his
utterance (see Reference Game Experiment in Figure 1). In
the Listener task, this utterance corresponded to the optimal
row identified along with the optimal lexicon, naming a fea-
ture present on one or more of the displayed referents. In
the Prior Elicitation task, participants were prompted with a
masked utterance (“Bob says: **** (you could not hear what
he said)”). Afterwards, participants completed a brief exit
survey, which contained demographic questions and an atten-
tion check asking them to recall the speaker’s name.

The referents displayed on the critical screen were con-
structed using the following method. We first randomly as-
signed each row of the optimal lexicon to a commonplace ob-
ject (e.g., apple). Then, we mapped each lexicon column to a
“bag of objects” by overlaying images of the objects with a 1
in its corresponding row on top of a neutral tray background
(see top of Figure 2a for examples). Object groupings and ref-
erent order were randomized. To control for visual salience
across referents, all images were displayed in grayscale.

270 participants were recruited via Amazon Mechanical
Turk (MTurk) and compensated $0.20. We restricted this
sample to participants with IP addresses in the United States
and a 95% approval rating on previous tasks, and prevented
users from participating in the study more than once. 25 par-
ticipants were excluded for incorrectly answering the atten-
tion check. The remaining 245 were assigned to either the
Listener task (N=111) or the Prior Elicitation task (N=134).

Results. Given u∗ (e.g., “ball” in Figure 2a), human par-
ticipants chose the 2-feature referent (R3, 71.2%) more fre-
quently than the 4-feature referent (R4, 24.3%). We compare
the human responses to the predictions made by the Gram-
matical model and IRMs (RSA, RD-RSA, IBR) at depth 1.

For the IRMs, we use the experimentally elicited prior dis-
tribution over meanings. Figure 2b shows the correlation
(Pearson’s ρ) between the model predictions and behavioral
data as a function of α. For RSA, the best-fit correlation
(ρ = 0.998) lies at α = 1.4, while for RD-RSA, the best-fit
correlation (ρ = 0.998) lies at α = 2.4. These α values rep-
resent a tradeoff that favors maximizing informativeness over
minimizing communicative effort, which is consistent with
existing empirical investigations of RSA-style models. The
similarly high correlations for RSA and RD-RSA is also con-
sistent with prior work suggesting that RD-RSA can account
for human behavior as well as RSA (Zaslavsky et al., 2020,
2021). IBR and the Grammatical model achieve lower cor-
relation with the human data (ρ = 0.946 and ρ = 0.807, re-
spectively). This suggests that probabilistic IRMs (RSA and
RD-RSA) are better able to explain the human data than the
Grammatical model or IBR, a non-probabilistic IRM.

Experiment 2: Comparing within IRMs
Next, we use our approach to further compare IBR, RSA, and
RD-RSA. While Experiment 1 suggests that RSA and RD-
RSA may outperform IBR, it is not yet clear whether RSA
and RD-RSA can always account similarly for human behav-
ior. Therefore, our approach could be particularly useful for
teasing these two models apart.

Optimal input. We ran the OED algorithm described
above, comparing RSA vs. RD-RSA, RSA vs. IBR, and RD-
RSA vs. IBR. As in Experiment 1, we set the prior over α

to be uniform over [1,3], and assumed a uniform prior over
meanings, zero utterance cost, and depth 1. Both comparisons
produced the same optimal design, shown in Figure 3a. The
IRM listeners make qualitatively different predictions for this
utterance (“ball”): RSA predicts the listener to prefer R3 over
R4, because R4 can be uniquely described with the first utter-
ance (“apple”). However, RD-RSA predicts the listener to
prefer R4 over R3, because “ball” has higher marginal proba-
bility to be spoken than “apple”, which gives it higher weight
under the pragmatic speaker and thus increases the pragmatic
listener’s confidence that the speaker would say “ball” to de-
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Figure 3: Comparison within the IRM model class (Exp. 2). (a) Optimal design selected by OED approach, with human
selection rates and model predictions (using α = 1 and uniform prior) shown for optimal row. (b) Correlation between model
predictions and human data as a function of α. IBR converges at depth 1. Literal represents RSA/RD-RSA at depth 0.

scribe R3. The IBR listener chooses R4 because a literal
speaker is more likely to choose the “ball” out of 2 features,
as opposed to the 3 features in R3.

Methods. The experimental methods were identical to
those of Experiment 1. 280 participants were recruited, with
18 participants excluded for incorrectly answering the atten-
tion check. The remaining 262 were assigned to the Listener
task (N=119) or the Prior Elicitation task (N=143).

Results. Given the utterance corresponding to the optimal
row of the lexicon (e.g., “ball” in Figure 3a), human par-
ticipants chose the 2-feature referent (R4, 71.4%) more fre-
quently than the 3-feature referent (R3, 22.7%).

We first compare the distribution of human responses to
the predictions made by RSA, RD-RSA, and IBR at iterative
depth 1, using the experimentally elicited prior over mean-
ings. Figure 3b shows the correlation (Pearson’s ρ) between
the model predictions and behavioral data as a function of
α. IBR, which does not use the α parameter and converges
at depth 1, has a correlation of ρ = 0.958 with human data,
which lies between the best-fit of RSA and RD-RSA at depth
1. Thus, in contrast to Experiment 1, in this case IBR appears
to be comparable with RSA; however, its performance is still
below that of RD-RSA. For RSA and RD-RSA, the best fit is
achieved at α = 0.01 (ρ = 0.933) and α = 0.05 (ρ = 1.000)
respectively. These values of α correspond to a strong bias
for random utterance production in RSA, and almost entirely
non-informative communication in both models (Zaslavsky
et al., 2020). This suggests that at least for depth 1, both
RSA and RD-RSA predict a non-informative speaker, while
attaining high correlation with the human listener data. In-
terestingly, however, at depth 2 we see an important qualita-
tive difference between RSA and RD-RSA (Figure 3b, dashed
lines): RD-RSA achieves maximal performance for a range
of αs reaching α = 1, whereas the performance of RSA re-
mains high only for values of α near zero.

We further evaluate this using the Fisher Exact Test. The
human data is significantly distinct (p < 0.025) from IBR and
RSA at any α, for depth 1 and 2. In contrast, RD-RSA is

not significantly distinct from human data over α∈ [0.01,0.9]
at depth 1 and α ∈ [0.03,0.95] at depth 2. Therefore, these
results lend empirical support to RD-RSA over RSA and IBR.

Discussion

In this work we have proposed a method for optimally de-
signing reference game experiments and used it to tease apart
four models of pragmatic reasoning: the Grammatical model
and three Iterated Rationality Models (IRMs): IBR, RSA,
and RD-RSA. From these experiments, we found evidence fa-
voring IRMs over the Grammatical model, and favoring RD-
RSA over RSA and IBR. These findings further support the
proposal that Rate-Distortion theory may help to explain hu-
man pragmatic reasoning (Zaslavsky et al., 2020), and sug-
gest that our proposed optimal design framework can be used
to adjudicate models of pragmatic reasoning.

One limitation of our approach is the computational cost
of searching over possible inputs. While an exhaustive search
is feasible for low-dimensional binary lexicons, this is gen-
erally not tractable. In future work, approximate optimiza-
tion methods may be used to help improve scalability (e.g.,
Ouyang, Tessler, Ly, & Goodman, 2018; Foster et al., 2019).
Another potential concern is a lack of interpretability of the
optimal lexicons identified by the OED approach. The space
of possible lexica is so large that an arbitrary lexicon may
not correspond to a well-known pragmatic phenomenon. We
acknowledge that the OED approach should be seen as a com-
plement to a researcher’s judgement.

In future work, the general approach could be leveraged
not only to discriminate between established models (as illus-
trated here), but also to aid researchers in theory-building by
identifying points of disagreement between model variants.
Indeed, the approach can be applied at several scales of com-
parison: across model classes (Grammatical vs. IRM), within
a model class (IBR vs. RSA vs. RD-RSA), and even within a
single framework (e.g., speaker- vs. listener-initialized RSA).
This enables an objective comparison of models that are oth-
erwise difficult to tease apart, facilitating a more systematic
empirical investigation of models of pragmatics.

1173



Acknowledgments

We would like to thank members of the MIT Computational
Psycholinguistics Lab and anonymous reviewers for their
helpful feedback and discussion. JH was supported by an
NSF Graduate Research Fellowship. NZ was supported by
a BCS Fellowship in Computation and a K. Lisa Yang In-
tegrative Computational Neuroscience (ICoN) Postdoctoral
Fellowship. RPL acknowledges support from NSF grants
BCS-1551866 and BCS-1456081, a Google Faculty Research
Award, Elemental Cognition, and the MIT Quest for Intelli-
gence.

References
Asherov, D., Fox, D., & Katzir, R. (2021a). On the irrele-

vance of contextually given states for the computation of
scalar implicatures. In Linguistic society of america 2021
annual meeting.

Asherov, D., Fox, D., & Katzir, R. (2021b). Reference
games and the nature of exhaustification. Retrieved from
https://lingbuzz.net/lingbuzz/006257

Atkinson, A. C., & Donev, A. N. (1992). Optimum Experi-
mental Designs. Clarendon Press.

Bar-Lev, M. E., & Fox, D. (2017). Universal Free Choice and
Innocent Inclusion. In Proceedings of the 27th Semantics
and Linguistic Theory Conference.

Benz, A., & Stevens, J. (2018). Game-Theoretic Approaches
to Pragmatics. Annual Review of Linguistics, 4(1), 173–
191.

Bergen, L., Levy, R., & Goodman, N. D. (2016). Prag-
matic reasoning through semantic inference. Semantics and
Pragmatics, 9.

Berger, T. (1971). Rate distortion theory; a mathematical
basis for data compression. Prentice-Hall.

Camerer, C. F., Ho, T.-H., & Chong, J.-K. (2004, August).
A Cognitive Hierarchy Model of Games. The Quarterly
Journal of Economics, 119(3), 861–898.

Champollion, L., Alsop, A., & Grosu, I. (2019). Free choice
disjunction as a rational speech act. In Proceedings of the
29th Semantics and Linguistic Theory Conference.

Chierchia, G. (2004). Scalar implicatures, polarity phenom-
ena and the syntax/pragmatics interface. In Structures and
Beyond (pp. 39–103). Oxford University Press.

Foster, A., Jankowiak, M., Bingham, E., Horsfall, P., Teh,
Y. W., Rainforth, T., & Goodman, N. (2019). Variational
bayesian optimal experimental design. Advances in Neural
Information Processing Systems, 32.

Fox, D. (2007). Free Choice Disjunction and the Theory of
Scalar Implicatures. In U. Sauerland & P. Stateva (Eds.),
Presupposition and Implicature in Compositional Seman-
tics (pp. 71–120). Palgrave Macmillan.

Fox, D., & Katzir, R. (2021). Notes on Iterated Rationality
Models of Scalar Implicatures. Journal of Semantics.

Frank, M. C., Emilsson, A. G., Peloquin, B., Goodman,
N. D., & Potts, C. (2016). Rational speech act models of

pragmatic reasoning in reference games. Retrieved from
psyarxiv.com/f9y6b

Frank, M. C., & Goodman, N. D. (2012). Predicting Prag-
matic Reasoning in Language Games. Science, 336(6084),
998–998.

Franke, M. (2011). Quantity implicatures, exhaustive inter-
pretation, and rational conversation. Semantics and Prag-
matics, 4, 1–82.

Franke, M. (2017). Game Theory in Pragmatics: Evolution,
Rationality, and Reasoning. Oxford University Press.

Franke, M., & Bergen, L. (2020). Theory-driven statistical
modeling for semantics and pragmatics: A case study on
grammatically generated implicature readings. Language,
96(2).
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