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Abstract: The threatened eastern wolf is found predominantly in protected areas of central Ontario
and has an evolutionary history obscured by interbreeding with coyotes and gray wolves, which
challenges its conservation status and subsequent management. Here, we used a population genomics
approach to uncover spatial patterns of variation in 281 canids in central Ontario and the Great Lakes
region. This represents the first genome-wide single nucleotide polymorphism (SNP) dataset with
substantial sample sizes of representative populations. Although they comprise their own genetic
cluster, we found evidence of eastern wolf dispersal outside of the boundaries of protected areas,
in that the frequency of eastern wolf genetic variation decreases with increasing distance from
provincial parks. We detected eastern wolf alleles in admixed coyotes along the northeastern regions
of Lake Huron and Lake Ontario. Our analyses confirm the unique genomic composition of eastern
wolves, which are mostly restricted to small fragmented patches of protected habitat in central
Ontario. We hope this work will encourage an innovative discussion regarding a plan for managed
introgression, which could conserve eastern wolf genetic material in any genome regardless of their
potential mosaic ancestry composition and the habitats that promote them.
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1. Introduction

Neutral theory provides a strong foundation for the application of conservation genetics, which
identifies evolutionary distinct lineages that are vulnerable to genetic erosion or extinction due to
reductions in population sizes [1–3]. Historically, conservation studies have had to rely on a small
number of neutral loci for genetic surveillance, even though the consequences of reduced effective
population sizes may manifest genome-wide (e.g., [4]). The advent of modern genomic methods has
allowed the surveys of putatively neutral, unlinked loci distributed across the genome, enabling higher
confidence in genetic guidance of conservation efforts and policy, for example, when facing decisions
about isolated populations and the accompanying loss of genetic diversity.

Island species have been used as archetypal evolutionary models representing the consequences
of isolated populations that can persist despite low effective population sizes [5–8]. However, these
examples represent the simplest of scenarios, where closely related, potentially hybridizing congeners
are rarely a factor contributing to loss of genomic diversity. For many mainland species, genetic drift in
small populations may be only one of many evolutionary processes that threaten intraspecific diversity;
hybridization and introgression may represent an equal or greater threat to parental species’ genomic
integrity. As individuals disperse from isolated populations, they likely experience low densities of
conspecifics, and have an increasing probability of interbreeding with nearby congeners. If there is a lack
of reproductive isolating barriers, fertile admixed offspring can be produced (e.g., [9–12]). Assuming the
isolated population is of management concern (i.e., threatened/endangered species), the consequences
of natural source-sink dynamics can also result in challenges for species protection regulations.
Admixed individuals continue to carry fractions of their genome derived from the endangered or
managed parental species. However, the U.S. Endangered Species Act of 1973 lacks any specific
guidelines or regulation regarding admixed or hybrid individuals [13–15]. The Committee on the Status
of Endangered Wildlife in Canada (COSEWIC) does clarify that conservation decisions should consider
the consequences of hybridization, particularly anthropogenic hybrids that threaten the status of a
parental species [14,16]. Further, if hybrids actively supplement the genetic diversity of a depauperate
population under conservation consideration, COSEWIC supports hybrid conservation [14,16].

Two scenarios will accelerate deterioration of the hybrid genome representing the rare parental
species. First, extensive backcrossing with the more common parental species will result in rapid loss of
the divergent biodiversity found in the rarer parental species (e.g., [17–20]). Second, genome exclusion
can increase extinction risk if there is a lack of recombination between parental genomic fragments,
resulting in the lack of representation of one parental genome in each subsequent admixed offspring
(e.g., [21–23]). An example of genomic replacement has been documented in a newly discovered species
of canid, the African wolf, Canis anthus [24], recently reclassified as C. lupaster [25]. Consequently,
there is a call for conservation concern for the newly described and unique evolutionary legacy of
C. lupaster. This example illustrates the potential for misaligned policy if conservation units have been
established predominantly from mitochondrial DNA (mtDNA), a single linkage group that represents
the matriline that is difficult to interpret for interbreeding lineages with incomplete lineage sorting
(e.g., [26–28]).

The eastern wolf (C. lycaon) is an endangered canid with an evolutionary history obscured
by recent hybridization with its North American congeners, the gray wolf (C. lupus) and recently
expanded coyote (C. latrans) (e.g., [29–36]). The genetic distinction of eastern wolves has been reported
with nuclear microsatellites in combination with maternal (mtDNA) and paternal (Y-chromosome)
markers [29,37]. Although conclusions from genomic analyses have been contradictory with respect to
their evolutionary origins (e.g., [33,34,36]) there has been consensus regarding the importance of eastern
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wolf conservation. Previous microsatellite surveys revealed eastern wolves were predominantly found
in several protected areas in central Ontario: Algonquin Provincial Park (APP; 7653 km2), Queen
Elizabeth II Wildlands Provincial Park (QEWPP; 225 km2), Killarney Provincial Park (KPP; 485 km2),
and Kawartha Highlands Provincial Park (KHPP; 376 km2) [37–39]. Eastern wolves have also been
found in unprotected areas in central Ontario [38,39], although their occurrence outside protected areas
is relatively rare where they experience high rates of human-caused mortality [40]. Numerical and
geographical expansion of eastern wolves outside of APP and the smaller protected areas appears to
be limited by human-caused mortality, hybridization, territoriality with other canids, and interactions
between these processes [39–41]. Both COSEWIC and the Committee on the Status of Species at Risk
in Ontario (COSSARO) have policies regarding genetic admixture and have formally recognized
the eastern wolf as a listable entity, with the latter recognizing admixture from gray wolves and
coyotes [14,16,42,43]. Collectively, past research has repeatedly raised the question of conservation
priorities, especially if the eastern wolf genome is geographically restricted.

Given the potential for widespread hybridization, introgression, and dispersal across the region,
we evaluated contemporary population genetic dynamics and conservation value to expand on the
study of Rutledge et al. [35] by using a similar genomic approach across a broader representation
of canids. Our objective was to uncover spatial patterns of genetic variation in canids across central
Ontario, Canada. We further tested the identity of samples obtained by a furbearer organization in
central Ontario to address the concern of species identification through non-genomic assessments. This
molecular approach enabled us to investigate genomic variation across a dense, regional representation
of over 300 North American canids for exploring landscape-level dynamics.

2. Materials and Methods

2.1. Sample Collection and DNA Extraction

We obtained blood, tissue, and DNA samples from 304 canids across the northeastern U.S. and
central Ontario (Figure 1) that specifically included 127 eastern coyotes and 96 Great Lakes type
gray wolves, which differ from their western counterparts in that they both have been impacted by
hybridization [30,32,34,44–46]. Great Lakes type gray wolves are distributed throughout much of the
Great Lakes states, Manitoba, Ontario, and Quebec [29]. Eastern coyotes are now widely distributed
throughout much of Ontario, Quebec, the eastern provinces in Canada, and across the northeastern
United States [32]. For this study, we hereafter refer to these Canis types as gray wolves and coyotes,
respectively. We also obtained samples from 30 eastern wolves and included tissue samples from
51 canids of unknown taxonomic affiliation from central Ontario to increase sampling density around
the focal geographic region surrounding APP. Samples were collected through state management
programs, government/state organizations (e.g., US Department of Agriculture, Department of Natural
Resources, Ontario Ministry of Natural Resources and Forestry, furbearers), or museum archives
(New York State Museum). In all cases, sample origin was known at the state or provincial level and
was associated with either a specific GPS location from the exact collection location or the township
nearest the collection site. We extracted high molecular weight genomic DNA with the DNeasy Blood
and Tissue Kit (Qiagen, Maryland, USA) or the BioSprint 96 DNA Blood Kit in conjunction with
a KingFisher Flex Purification platform (Thermo Fisher Scientific, Waltham, MA, USA) following
manufacturers’ protocols. We identified high-quality DNA as a high molecular weight band (>1 Kb)
on a 2% agarose gel with a 2-log DNA ladder (New England Biolabs, Ipswich, MA, USA), quantified
using either PicoGreen or Qubit 2.0 fluorometry (Thermo Fisher Scientific, Waltham, MA, USA),
and standardized to a concentration of 5 ng/µL.
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Figure 1. Map of the Great Lakes and central Ontario regions of North America with sample locations 
of three Canis species (site number indicated in symbol) for 30 eastern wolves, 96 gray wolves, 127 
coyotes, and 51 unknown canids. Eastern wolf site 1 is Algonquin Provincial Park (gray shaded 
region); eastern wolf site 2 is Queen Elizabeth II Wildlands Provincial Park. See Table S1 for details 
on each sample’s geographic location. 

2.2. Reduced Representation Sequencing and Data Processing 

We followed the modified restriction site associated DNA sequencing (RADseq) protocol [47] to 
prepare genomic libraries for 30 eastern wolves, 96 gray wolves, 127 coyotes, and 51 canids of 
unknown taxonomic affiliation from central Ontario (Figure 1, Table S1). Further, we constructed a 
second dataset of 317 canids, which included the original 304 wild canids with the addition of 13 
domestic dogs to ensure that genetic structuring is not driven largely by admixture or hybridization 
with domestic dogs (for all details pertaining to this dataset, see Appendix). 

Genomic DNA samples were digested with sbfI followed by ligation of a unique 8 bp-barcoded 
biotinylated adapter. We pooled 96–153 samples, which were then randomly sheared to 400 bp on a 
Covaris LE220. We enriched for adapter ligated fragments using a Dynabeads M-280 streptavidin 
bead binding assay (Thermo Fisher Scientific). We then prepared these final genomic libraries using 
either the NEBnext Ultra DNA Library Prep Kit or the NEBnext UltraII DNA Library Prep Kit as per 
the manufacturer’s instructions (New England Biolabs, Ipswich, MA, USA). We selected for genomic 
fragments between 300–400 bp in size using Agencourt AMPure XP magnetic beads. We then 
standardized libraries to 10nM, which were then paired-end sequenced (2 × 150 nt) on two lanes of 
the Illumina HiSeq 2500 at Princeton University’s Lewis-Sigler Institute for Integrative Genomics core 
facility. Using a custom perl script, we aligned both the forward and reverse raw sequencing reads 
to retain the read that contained the sbfI cut site along with a barcode and discarded all other reads. 

We demultiplexed reads using the process_radtags function and a 2 bp mismatch in STACKS v1.42 
[48]. With a sliding window approach (with a step size of 15% of the read length), we discarded reads 
that contained either uncalled bases or had low-quality scores (Q < 10). We subsequently removed 
PCR duplicates using the paired end filtering option with the clone_filter function. Samples with a 
minimum of 500,000 reads were retained and mapped using STAMPY v1.0.20 [49] with default 
parameters to the reference dog genome (CanFam3.1) [50]. Sites with low mapping quality (MAPQ < 96) 

Figure 1. Map of the Great Lakes and central Ontario regions of North America with sample locations of
three Canis species (site number indicated in symbol) for 30 eastern wolves, 96 gray wolves, 127 coyotes,
and 51 unknown canids. Eastern wolf site 1 is Algonquin Provincial Park (gray shaded region); eastern
wolf site 2 is Queen Elizabeth II Wildlands Provincial Park. See Table S1 for details on each sample’s
geographic location.

2.2. Reduced Representation Sequencing and Data Processing

We followed the modified restriction site associated DNA sequencing (RADseq) protocol [47]
to prepare genomic libraries for 30 eastern wolves, 96 gray wolves, 127 coyotes, and 51 canids of
unknown taxonomic affiliation from central Ontario (Figure 1, Table S1). Further, we constructed
a second dataset of 317 canids, which included the original 304 wild canids with the addition of
13 domestic dogs to ensure that genetic structuring is not driven largely by admixture or hybridization
with domestic dogs (for all details pertaining to this dataset, see Appendix A).

Genomic DNA samples were digested with sbfI followed by ligation of a unique 8 bp-barcoded
biotinylated adapter. We pooled 96–153 samples, which were then randomly sheared to 400 bp on
a Covaris LE220. We enriched for adapter ligated fragments using a Dynabeads M-280 streptavidin
bead binding assay (Thermo Fisher Scientific). We then prepared these final genomic libraries using
either the NEBnext Ultra DNA Library Prep Kit or the NEBnext UltraII DNA Library Prep Kit as
per the manufacturer’s instructions (New England Biolabs, Ipswich, MA, USA). We selected for
genomic fragments between 300–400 bp in size using Agencourt AMPure XP magnetic beads. We then
standardized libraries to 10nM, which were then paired-end sequenced (2 × 150 nt) on two lanes of
the Illumina HiSeq 2500 at Princeton University’s Lewis-Sigler Institute for Integrative Genomics core
facility. Using a custom perl script, we aligned both the forward and reverse raw sequencing reads to
retain the read that contained the sbfI cut site along with a barcode and discarded all other reads.

We demultiplexed reads using the process_radtags function and a 2 bp mismatch in STACKS
v1.42 [48]. With a sliding window approach (with a step size of 15% of the read length), we discarded
reads that contained either uncalled bases or had low-quality scores (Q < 10). We subsequently
removed PCR duplicates using the paired end filtering option with the clone_filter function. Samples
with a minimum of 500,000 reads were retained and mapped using STAMPY v1.0.20 [49] with
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default parameters to the reference dog genome (CanFam3.1) [50]. Sites with low mapping quality
(MAPQ < 96) were removed. We used Samtools V. 0.1.18 [51] to convert files to BAM format and
discovered single nucleotide polymorphism (SNP) variants in STACKS following the recommended
pipeline for data mapped to a reference genome (i.e., pstacks→ cstacks→ sstacks→ populations), with
the –m 3 flag to identify stacks that had a minimum of 3-fold coverage. A repeated analysis with a
10-fold coverage filter resulted in identical findings (data not shown). We executed the populations
module twice to optimize the final sample selection, which works to reduce both missing data and
biases resulting from uneven sampling across geographic locations and genetic groups. We reported
only the first SNP per locus (–write_single_snp) and did not apply any missing data thresholds.
We used PLINK [52] to calculate the total missingness per individual and removed individuals with
>85% missing data. In the second execution of populations, we only reported loci that were genotyped
in 90% of individuals (-r 0.9) and again restricted our analysis to only the first SNP per locus.

We estimated observed (Ho) and expected (He) heterozygosity, genetic differentiation (FST),
and the number of private alleles per evolutionary lineage within and between each evolutionary
lineage and sampling location using populations in STACKS. We estimated private allelic richness in
ADZE v. 1.0 with missing data tolerance set to 25% [53].

2.3. Clustering and Genetic Structure Analysis

To obtain a statistically unlinked set of SNP loci, we filtered for linkage disequilibrium (LD) in
PLINK using the flag and parameters –indep-pairwise 50 5 0.5. We then filtered SNPs to retain those in
Hardy–Weinberg Equilibrium (HWE) in PLINK (–hardy; p > 0.05). We additionally filtered to retain
sites with a minor allele frequency of 1%. The expectation is that this SNP set contains putatively
neutral loci useful for population genetic and demographic analyses, hereafter referred to as the
“neutral SNP set”.

We visualized clustering using a principal component analysis (PCA) with the program
flashPCA [54]. We next evaluated genetic structure using a maximum likelihood approach implemented
in ADMIXTURE v1.3 with the cross-validation flag for K = 2–10 [55]. We analyzed both the full SNP
and neutral SNP sets in ADMIXTURE, although such methods often assume the use of neutral markers,
random mating, and a lack of immigration, with no violations in this subset of loci and population.
The goal was to balance the signal between a full data set, which includes loci potentially under
selection, and the identified neutral SNP set.

To conduct population assignment testing, we used two methods. The first test was a discriminant
analysis of principal components (DAPC) completed with the function dapc in R’s adegenet library [56].
This multivariate approach uses a sequential K-means clustering method on SNP genotypes
transformed using their principal components to conduct a discriminant analysis without violation.
Although PCA is a computationally rapid tool to identify underlying genetic structure in a large
data set, it only summarizes patterns in the data and lacks formal assessment methods. DAPC
maximizes the model that explains between-group variation while minimizing that found within
groups, and identifies the best fit number of genetic clusters. Additionally, we used discriminant
analysis to probabilistically assign individuals to each genetic cluster identified.

We next obtained posterior probability population assignments for the 51 canids of unknown
taxonomic affiliation in a Bayesian approach using the neutral SNP set in STRUCTURE [57–60].
We used the parameters USEPOPINFO = 1, PFROMPOPFLAGONLY = 1, MIGPRIOR = 0.01,
and GENSBACK = 2 with 5000 burnins and 10,000 reps. We classified individuals as “reference”
if they had high assignments (Q ≥ 0.9) to their corresponding clusters from the ADMIXTURE analysis.

Finally, we constructed an unrooted neighbor-joining (NJ) tree [61] based on pairwise nucleotide
distances to estimate the clustering among all North American canids using the neutral SNP set. The NJ
tree was estimated in PAUP* v4.0a159 [62] with ties broken randomly and no topological constraints
defined during the tree search. We also constructed an unrooted maximum likelihood tree with the
Kimura 2-parameter model using W-IQ-TREE [63,64]. The topology from this analysis was largely
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concordant with that from the NJ analyses, and therefore, we only report the results from the latter
analysis. The final output tree file (.tre) was saved and visualized using FigTree v1.4.3 [65].

We used TreeMix v1.13 [66] to infer population relationships, allowing up to 10 migration events
(-m 0 to 10) across the neutral SNP set. Samples were grouped by region for analysis (see Table S1 for
results of group membership).

2.4. Spatially Explicit Bayesian Clustering

We implemented two spatially explicit models in Geneland within the R framework [67]. We
applied a stricter minor allele frequency filter of 3% to the neutral SNP dataset and retained a total
of 985 SNPs for this analysis. For all runs, we converted latitude and longitude of sample locations
(recorded in decimal degrees) to a planar coordinate system (UTM, Zone 17N) using the R package
PBSmapping [68] to avoid distortion resulting from spherical coordinates, which is magnified as one
approaches the poles. For each run, we used default settings in Geneland, except for the following:
number of populations tested (Min = 1, Max = 8), maximum number of nucleotides (n = 985), number
of iterations (1,000,000), and thinning (100). We ran multiple independent runs for each dataset and
checked for convergence.

For each dataset used as input for Geneland (see below), we ran both an uncorrelated and a
correlated allele [69] frequency model, to build spatially-explicit demographic structure maps that
incorporate genomic structure, geography, and potential admixture. The uncorrelated allele frequency
model assumes each population’s allele frequencies are completely independent of other population
allele frequencies, and as such likely estimates a conservative probabilistic assignment of populations.
The correlated allele frequency model assumes that allele frequencies in populations tend to be similar
across populations, and may therefore detect more subtle differences between them (for example, small
frequency differences in a rare allele in two populations will affect probability assignments greater
using a correlated model). These models are typically seen as more speculative than the uncorrelated
models [67].

We ran each of these models on two datasets: (1) all 281 canids and (2) a subset of 122 samples
that included 36 coyotes, 30 eastern wolves, 13 gray wolves, and 43 canids of unknown taxonomic
affiliation from geographic locations adjacent to and surrounding APP (Table S1). We processed and
visualized the results of these models in QGIS [70] as follows. For each group Ki identified from
the total Kt (selected by choosing the one with the highest estimated density of all clusters tested),
we selected a color representing that group and calculated the mean probability of membership of Ki.
For all pixels identified as below the mean probability of membership for Ki, we visualized these pixels
as transparent (no color). For all pixels identified as above the mean probability of membership for Ki,
we assigned these pixels the corresponding color, with an intensity weighted by the actual probability
score. In the final map, all pixels with values above the mean probability of membership for any Ki
will be colored with some color value, and all the pixels that did not score at least the mean probability
of membership for any Ki will not be colored.

3. Results

3.1. Eastern Wolves Are a Genetically Isolated Population of Wolves

We identified a total of 16,587 SNP loci in 304 canids from the Great Lakes region and central Ontario.
The proportion of genotype missingness was moderate across all samples (average = 0.07, sd = 0.09,
max = 0.45, median = 0.03, mode = 0.00) (Table S1). We found only 23 individuals had significantly high
missingness (i.e., ≥92nd percentile of the missingness distribution or missingness ≥ 0.25): 13 coyotes
(all sampled from Pennsylvania) and 10 gray wolves (Great Lakes region n = 5, Ontario n = 5). These
23 individuals were removed from all subsequent analyses of the remaining 281 canids (coyote n = 114,
eastern wolf n = 30, gray wolf n = 86, unknown canids n = 51). We then filtered the SNP set to retain
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sites with a minor allele frequency of 1%, resulting in 5665 SNPs. Additionally, we filtered further to
retain 3067 unlinked loci in HWE, representing the neutral SNP set.

Eastern wolves had significantly lower estimates of expected heterozygosity in both SNP sets
compared to gray wolves and coyotes (1-tailed t-test of unequal variance p < 0.01) (Table S2). We
noted the highest level of genetic differentiation was found between coyotes and gray wolves in the
5K SNP set (FST: coyote-gray wolf = 0.029, gray wolf-eastern wolf = 0.022, coyote-eastern wolf = 0.021),
with a similar trend noted for the neutral SNP set (FST: coyote-gray wolf = 0.018, gray wolf-eastern
wolf = 0.016, coyote-eastern wolf = 0.015). We found that across the 5K SNP set, eastern wolves
displayed the fewest number of private alleles and lowest allelic richness (n, private alleles: eastern
wolf = 12, gray wolf = 395, coyote = 1157; prop. richness: eastern wolf = 1.49, gray wolf = 1.54,
coyote = 1.65) (Table S3A), with eastern and gray wolves comparable in their allelic diversity after
adjusting for sample size differences (Fig. S1).

A principal component analysis (PCA) of all 281 canids reveals substantial genetic distinction of
each species, with PC1 explaining 4.7% of the variation, while PC2 (1.7% of variation) separates eastern
wolves from coyotes and gray wolves (Figure 2A and Figure S2). In the genetic structure analysis of
the neutral SNP set, we found negligible differences in cross-validation estimates between the two-
and three-cluster analyses (Figure 2B and Figure S3). We selected the K = 3 level of partitioning, which
represents the genetic groups of coyotes, eastern wolves, and gray wolves with high assignments
to their respective clusters (average Qcoyote = 0.95, Qeastern wolf = 0.96, Qgray wolf = 0.88 (Figure 2B).
However, there was noticeable substructure within all groups at higher levels of partitioning, with
samples of different species from different geographic regions distinctly clustering. For example,
a fourth partition separated eastern coyotes (sites 1, 3–9, 10–12) from Great Lakes coyotes (sites 2,
14–15) (Figure 2B). Further, we observed shared assignments between eastern wolves and gray wolves
(sites 15–22; average Q to eastern wolf cluster = 0.32) and coyotes (sites 10–12; average Q to eastern
wolf cluster = 0.10) of central Ontario (Table S1). Averages of Q values at K = 3 for each geographic site
revealed the spatial distribution of eastern wolf cluster membership proportions (Figure 2C). Average
Q values across geographic sites suggest that there is a reduced yet detectable presence of eastern
wolf genetic material in gray wolves and coyotes of central Ontario, with the highest concentration of
eastern wolf alleles found within the canids sampled in APP and QEWPP (Figure 2C and Figure S4).
We further included 13 domestic dogs in a genetic structure analysis and found that their inclusion did
not explain the genetic clustering of eastern wolves, which carry minor proportions of dog ancestry at
best although we encourage caution for interpretation of this result due to a small representation of
dogs (check Supplementary).

We constructed a neighbor-joining tree from pairwise genetic distances among 281 canids and
found that coyotes and gray wolves broadly formed two distinct clusters, with eastern wolves
representing a group within the gray wolf cluster (Figure S5). We found low levels of discordant
clustering: two of the 114 coyotes clustered with gray wolves, one coyote clustered with eastern wolves,
three of the 86 gray wolves grouped with coyotes, eight gray wolves grouped with eastern wolves,
and two of the 30 eastern wolves clustered with the gray wolves. We found that 11 individuals with
discordant cluster memberships in the neighbor-joining tree also had admixed assignments at the
most likely ADMIXTURE partition (K = 3, Q < 0.9, n coyote = 3; eastern wolves = 2; gray wolves = 6)
(Figure S5; Table S1). The eastern wolves were nested within the gray wolf group, with only two
individuals clustering outside of this group. Individual ID #2097 and #2100 clustered at the base of the
gray wolf group in a small cluster with a coyote #6023 and an unknown canid #8633, both from the
Frontenac Axis along the eastern border of Ontario adjacent to northern New York state (Figure S5).
The caution for interpretation is that the neighbor-joining tree does not include an inherent Bayesian
approach to fulfill Hardy-Weinberg expectations within populations. Overall, we found support for
eastern wolves constituting their own discrete genotypic cluster.
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Figure 2. Genetic analysis of the 3067 neutral single nucleotide polymorphism (SNPs) genotyped in
281 canids (30 eastern wolves, 86 gray wolves, 114 coyotes, and 51 canids of unknown taxonomic
affiliation) using (A) principal components analysis for clustering and (B) maximum-likelihood cluster
membership with cross-validation (cv) values and site numbers from Figure 1 provided along the X-axis.
(C) Visualization of per-site average cluster membership to each genetic group at K = 3 (site details, see
Table S1). (D) A summary of the migration events that explicitly involve eastern wolves, as inferred by
TreeMix from 3067 neutral SNPs genotyped in 281 canids. Arrows indicate the direction of inferred
migration events. Color of symbols are consistent with genetic cluster membership from K = 6 in
part (B), designating coyotes from the Great Lakes (yellow), Northeastern U.S. (green), and Ontario
(red); eastern wolves (blue), gray wolves predominantly from the Great Lakes (purple) and Ontario
(gray), and the unknown canids from central Ontario (red outline).

We also used a discriminant analysis of principal components to assess population assignment.
We retained 300 PCs that explained most of the cumulative variance that identified three genetic
clusters based on the lowest Bayesian information criterion, and we selected to retain two linear
discriminant functions for the analysis (Figure S6). We found further support of three genetic clusters
while controlling for intra-group variation, with high assignments of individuals to their original
assumed population (Figure S6, Table S1). However, seven individuals were not assigned to their
respective known taxonomic group: two coyotes and five gray wolves (Table S1). Coyote individual
#6017 was exclusively assigned to the eastern wolf genetic group and coyote individual #2311 was
exclusively assigned to the gray wolf cluster in both ADMIXTURE and dapc analysis. Of the five
discordantly grouping gray wolves, two were assigned at very high probabilities to the coyote group
(individuals #7294 and #2338) while three were assigned to the eastern wolf group (individuals #7413,
#7415, and #7344) (Table S1).

To determine if the presence of admixed individuals in the dataset influenced our assessment
of allelic richness and private allele identification, we identified a subset of 186 individuals with
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high assignments at K = 3 to their respective clusters (Q > 0.9 n: coyote = 99, eastern wolf = 25, gray
wolf = 62) (Table S1). We found patterns similar as before with respect to the number and richness
of private alleles among the three species (n, private alleles: eastern wolf = 62, gray wolf = 574,
coyote = 1718; prop. richness: eastern wolf = 1.43, gray wolf = 1.45, coyote = 1.59) (Table S3B).

3.2. Canids of Unknown Taxonomic Affiliation Carry Predominantly Coyote Genetic Variation

We genotyped 51 canids of unknown taxonomic affiliation that were archived by a furbearer
organization in central Ontario. Due to a large range of morphologic variation of sympatric eastern
coyotes, eastern wolves and Great Lakes type gray wolves (e.g., [37,38,71]), the taxonomic membership
of these specimens was not assumed for this study. Of the 51 canids of unknown taxonomic affiliation,
49 of them were sampled in central Ontario proximal to APP, with only two individuals originating
along the western shores of Lake Huron (site 10) (Figure 1). Here, we explored their genetic similarities
to coyotes, gray wolves, and eastern wolves. We found that coyotes were the least differentiated
from the unknown canids relative to the other canid groups (FST: unknown canids to coyote = 0.001,
unknown canids to eastern wolf = 0.005, unknown canids to gray wolf = 0.008), which is a result that
was also supported by the neutral SNP set (FST: unknown canids to coyote = 0.000, unknown canids to
eastern wolf = 0.003, unknown canids to gray wolf = 0.005).

The neighbor-joining tree from pairwise genetic distances revealed that 46 of the 51 unknown
canids grouped with coyotes, while two grouped within the eastern wolf cluster and three with gray
wolves (Figure S5). We further assigned exclusive membership of these 51 unknown canids to genetic
clusters using a discriminant analysis of principal components. We found 48 assigned to the coyote
cluster, two assigned to the eastern wolf cluster, and a single canid assigned to gray wolf (Table S1,
Figure S7).

Through an ADMIXTURE analysis, we found high assignments to the coyote cluster at K = 3
(average Q: coyote = 0.90 ± 0.22, eastern wolf = 0.09 ± 0.18, gray wolf = 0.01 ± 0.08) (Figure 2D,
Table S1). Assignment to the eastern wolf cluster, however, was significantly higher than that to the gray
wolf cluster (1-tailed t-test of unequal variance p = 0.0036), likely due to two individuals with substantial
eastern wolf assignments: individual #8647 from geographic site 2 was nearly exclusively assigned
to the eastern wolf cluster (Q = 0.999), while a second individual from site 9 shared assignments to
both the eastern wolf and coyote cluster (#8629 Q = 0.604 and 0.396, respectively) (Figure 1, Table S1).
Further, individual #8604 from site 10 had partial assignments to both eastern and gray wolf clusters
(Q = 0.432 and 0.569, respectively). Assignments to the coyote genetic cluster remained high across
all levels of partitioning, with partial assignments to coyotes from sites 1–9 and 13, likely indicative
of allele sharing with coyotes from northeastern United States (Figure 2B). Using the 186 reference
individuals identified due to high cluster membership, we used a Bayesian posterior probability
assignment test (at K = 3) to obtain a statistical taxonomic assignment of these 51 canids. Assignments
were high to the coyote cluster across all individuals, supporting the inference that these canids
carry genetic variation exclusively found among coyotes (average posterior probability Prob(Q) ± sd:
coyote = 0.91 ± 0.03, eastern wolf = 0.06 ± 0.02, gray wolf = 0.03 ± 0.02) (Table S4).

3.3. Eastern Wolf Genetic Variation Is Geographically Surrounded by Coyote Populations

We evaluated migration events with a graph-based model in TreeMix v1.13, which infers
population splitting and mixing from genome-wide allele frequency data [66]. With the neutral
SNP set, we surveyed gene sharing events across 281 canids (n coyote = 114, eastern wolf = 30, gray
wolf = 86, unknown canids = 51) and found that the amount of variance explained increased with
increasing migration events, with eight migration events maximizing the likelihood value (Figure S8;
Table S5). We find that eastern wolves are grouped closest to gray wolves in eight of 11 graphs (m = 0,
1, 2, 3, 6, 7, 8, 10 in Figure S8), also supported by the neighbor-joining tree (Figure S5), suggestive of
the genetic support that eastern wolves more closely align with gray wolves. The three discordant
graphs show a placement of eastern wolves as basal to all groups (m = 4), aligned with coyotes of
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northern Ontario (m = 5), or basal to all coyotes (m = 9). However, we also noted a general trend that
as more migration events are incorporated, a larger fraction of them were at higher weights. Thus,
models with fewer migration events likely represented a better-fit due to the lower weights of the
migration branches. When considering only migration events that involved eastern wolves, we found
a dynamic pattern that was repeated across analyses: a flow of eastern wolf genomes to coyotes of
central Ontario, with allele movement into gray wolves of northeastern Ontario (Figure 2D) The more
striking result was the inferred movement of eastern wolf alleles from APP eastward towards coyotes
of the Frontenac Axis in central Ontario near the New York state line (Figure 2D). These basic trends
remained with increased migration events, only adding movements between various gray wolf and
coyote populations.

3.4. Eastern Wolves Are Spatially and Genetically Isolated

We built spatially explicit maps of genomic population structure in Geneland using 985 neutral
SNPs that had a minor allele frequency of ≥3% across the full set of canids. Analysis of 281 canids
of known taxonomy revealed two spatial and genomic clusters that split coyotes and eastern + gray
wolves using the uncorrelated allele frequency model (maximum a posteriori estimate of K = 2, results
not shown). The correlated allele frequency model revealed four distinct spatial and genomic clusters
of canids, corresponding to two distinct genetic signatures of eastern and Great Lakes coyotes, a group
of distinct eastern wolves, and a group of gray wolves (Figure 3, Table S1) and were concordant with
structuring detected by ADMIXTURE. Of note, 44 of the 51 unknown canids grouped with coyotes,
two with gray wolves, and five with eastern wolves.
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Figure 3. A spatially explicit analysis of the best supported partitions with a correlated-allele model
using genotypes from 985 SNPs across 281 canids (upper left panel: red, eastern coyotes; blue, eastern
wolves; gray, gray wolves; orange, Great Lakes coyotes). A geographically restricted analysis of
122 canids (lower right panel) identified three spatial and genetic groups as the most supported (see
Table S1 for individual population assignment probabilities).
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We then geographically restricted the analysis to remove any signal from subdivisions and
focused the investigation to APP and the surrounding region. When we analyzed 122 canids that
originated from within and surrounding APP, we found that the maximum posterior probability from
the correlated model supported three separate spatial and genomic clusters (uncorrelated model,
K = 1) (Figure 3, Table S1). A single spatial genetic group contained 35 of the 36 coyotes and 41 of the
43 unknown canids analyzed. A second spatial genetic group contained all 30 eastern wolves and 13
gray wolves, as well as a single coyote (#2311). The remaining two unknown canids composed their
own spatial group (ID #8645 and #8647). Although both have previous admixed signals, they were
both assigned as coyote in a Bayesian posterior probability assignment test (Table S4).

Due to the smaller sample set included in this geographically restricted analysis (n = 122),
there were sharp distinctions in spatial genetics noted along the southern geographic boundary of
APP. We also observed a more western expansion of the eastern wolf spatial genetic group as gray
wolf populations are noted to exhibit non-negligible amounts of allele sharing with eastern wolves
(Figure 2C).

4. Discussion

For many endangered species, habitat fragmentation has resulted in small isolated populations
with low genetic diversity and compromised adaptive potential. Although isolated patches of
protected habitat can provide viable refuges for isolated or threatened genetic variation [9,72,73], these
populations can face introgression from surrounding congeners upon secondary contact. To explore
the genetic variation of the highly fragmented eastern wolf population in central Ontario, we collected
genotype data for 304 canids using a reduced representation genotyping approach. This represents the
first genome-wide SNP dataset with substantial sample sizes of representative populations. Our results
show that eastern wolves, which are found in fragmented habitat patches across central Ontario [38,39],
are genetically distinct due to the presence of alleles private to eastern wolves and carry a unique
genetic composition of regional coyote and gray wolf alleles. Dense sampling surrounding the
protected areas revealed a decreasing occurrence of eastern wolf genetic assignments with increasing
distance from provincial parks. With few genetically identifiable eastern wolves found outside of
provincial park boundaries, we detected signatures of interbreeding with coyotes or gray wolves
predominantly outside of provincial parks, a result concordant with past genetic studies [37–39,74].
Adjacent to APP, we found admixture with coyotes in the south, and with gray wolves in the north. We
detected eastern wolf alleles in admixed coyotes along the eastern Frontenac Axis (site 10), in admixed
gray wolf populations northwest of KPP (sites 15–17, 19), and in canids of unknown taxonomy
geographically intermediate of KPP and APP (sites 2 and 9). Collectively, our analyses reveal that
eastern wolves are a geographically isolated yet distinct collection of genotypes, representing a unique
genomic composition with their own ancestry not seen in other North American wolf populations,
and are mostly restricted to small fragmented patches of protected habitat in central Ontario (e.g., APP,
QEWPP, KPP, KHPP). As such, eastern wolves should be considered a priority for conservation.

While it is true that eastern wolves are mainly found in APP and other protected areas, previous
work documents that resident, breeding eastern wolves are also patchily distributed in unprotected
areas adjacent to APP [38]. The degree of genetic isolation of eastern wolves within Ontario’s protected
areas, and the inference of these areas serving purely as sources for dispersers, calls into question
their long-term sustainability. Although the decline of genetic diversity is not an immediate concern,
isolation predicts that reduced effective size and potential inbreeding could increase the impact of
genetic drift on degrading diversity. Furthermore, their low effective population size [39] makes
them particularly susceptible to unexpected environmental changes. Eastern wolves are listed as
threatened in Canada [42] and a 6340 km2 protective buffer zone comprising 39 geographic townships
was established in 2001 around APP with further genetic surveys resulting in expanded protective
zones [39].
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Currently, human-caused mortality outside of protected areas is the biggest threat to eastern
wolf conservation, with hunting and trapping banned within the buffer zone and in regions adjacent
to Killarney, Queen Elizabeth II, and Kawartha Highlands Provincial Parks. Although they are
listed as “threatened”, legal hunting and trapping continue outside the buffer zone. Much of the
mortality stems from the inability to morphologically distinguish eastern coyotes from eastern wolves;
consequently, eastern coyotes are included in the hunting and trapping ban in these buffer zones.
Furthermore, assessment of historical and contemporary samples collected in APP concluded that
historically intensive hunting facilitated coyote introgression, possibly due to reduction in availability
of conspecific mates [74]. A similar hunting ban was implemented to promote the stability of the
endangered red wolf (C. rufus) in North Carolina [75]. The goals of the ban were twofold: (1) reduce the
mortality rate of an endangered species as the likelihood of red wolves being misidentified as coyotes
was high, and (2) to maintain stable red wolf breeding pairs. Recreational hunting and trapping occur
across Ontario and are suspected to facilitate coyote introgression into the eastern wolf genome [74],
a dynamic also documented in red wolves [76,77]. Given the parallel threats to these wolves, eastern
wolf conservation in Canada may serve as a model for red wolf recovery.

Conversely, admixture can result in beneficial genetic changes for a population if it produces
new variation in fertile admixed offspring upon which adaptive selection can act (e.g., [78,79]).
In this view, the hybridization that has led to the current eastern wolf population highlights an
underappreciated mechanism that can facilitate adaptation through the recombination of genomes
and phenotypes (e.g., [80,81]), which may be the foundation for the persistence of eastern wolves in
a rapidly changing world. We want to encourage an innovative discussion regarding the quandary
often faced in conservation policy: is the conservation priority to prevent introgression or should
there be an acceptable level of admixture for eastern wolves and other endangered canids like red
wolves? In the current climate of a changing world and shifts in species distributions [82], a plan for
managed introgression would focus on preserving any eastern wolf genetic material in any genome
regardless of their potential mosaic ancestry composition. Such an effort may prioritize and maintain
individuals that carry admixed genomes as they are the source of greater genetic variation and
potential adaptive capacity [79]. These efforts would greatly be supported by continued genomic
and ecological monitoring of the source and admixed populations. The survival of even partial
genomes underscores the need to focus conservation efforts on preserving diversity. Recently, such
a phenomenon of persisting variation derived from extinct species was documented. Barlow and
colleagues demonstrated that 0.9–2.4% of the brown bear (Ursus arctos) genome is derived from the
extinct Late Pleistocene cave bear (U. spelaeus) species complex [83]. Their results are significant and
suggest a reevaluation of species extinction, as their genetics remain active in admixed genomes.

The viewpoint described above prioritizes conserving genetic diversity across a gradient of
admixed individuals. Adopting this view, canids of varying wolf and coyote ancestry should be
conserved on the Ontario landscape to maintain unique eastern wolf genetic material and maximize
evolutionary potential. A second viewpoint prioritizes ecological function and seeks to conserve
roles that rare species play in ecosystems [84]. In the Ontario hybrid zone, wolves appear to be
more consistent and predictable predators of large ungulate prey than coyotes or hybrids, which may
serve to maintain stable predator-prey dynamics with moose and deer [85]. From this perspective,
achieving a viable population of individuals with high eastern wolf ancestry, not simply the entire
organism, is a priority in order to conserve their ecological role. The latter would also align with
the legal mandate of the Canada and Ontario governments to attempt recovery of this threatened
species via numerical and geographical expansion outside of APP. We suggest these seemingly
disparate viewpoints are compatible from a management perspective. Scientists and managers agree
that protecting eastern wolves also requires protection of coyotes and admixed canids given the
difficulty of reliable identification. Thus, minimizing human-caused mortality of canids of varying
wolf and coyote ancestry in areas adjacent to APP would seem to represent a unified strategy for
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(1) maximizing evolutionary potential, (2) conserving ecological function, and (3) attempting recovery
of this threatened species on the Ontario landscape.

We find that eastern wolves represent a unique genomic cluster that is geographically isolated to
patchy regions of central Ontario and possibly southern Quebec, with a general increase in admixture
outside of protected areas. Their unique genetics provides a solid foundation to identify them as
a conservation priority, especially given their low effective population size and degree of isolation.
Further genomic assessment of canids in southern Quebec would help clarify the extent of the eastern
wolf range outside of Ontario. Moving forward, conservation of the eastern wolf genome would
benefit from the connection of current protective zones across the Ontario landscape.
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