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Abstract

The Cascade-Correlation connectionist architecture was
used to model human cognitive development on
balance scale problems. The simulations were
characterized by gradual expansion of the training
patterns, training bias in favor of equal distance
problems, and test problems balanced for torque
distance. Both orderly rule stages and torque difference
effects were obtained. Analyses of the development of
network structure revealed progressive sensitivity to
distance information. It was noted that information
salience effects, such as that for torque difference, are
particularly difficult to capture in symbolic level
models.

Introduction

An emerging benchmark for detailed computational
modeling in cognitive development is the balance scale.
The clarity and replicability of balance scale phenomena
with humans, coupled with the classical developmental
appeal of its stage-like character, have led to both
connectionist (McClelland 1988) and rule based (Newell
1990) models.

Psychological assessments present the child with a rigid
balance beam in which differing numbers of weights are
placed on pegs at various distances to the left or right of a
fulcrum, The child's task is to determine which side of the
scale will go down when supporting blocks are removed.
A 5 position, 5 weight version of the balance scale is
presented in Figure 1. Ordinarily, all of the weights on
one side are placed on a single peg. Balance problems have
equal numbers of weights placed at equal distances. In
weight problems, the side with more weights goes down
since the distances are equal. In distance problems, the side
with greater distance goes down since the sides have equal
weights. The conflict problems have greater weight on
one side and greater distance on the other side. The side
that goes down is the one with greater weight for conflict-
weight problems, and the one with greater distance for
conflici-distance problems. The scale balances in conflict-
balance problems.

Siegler (1976, 1981) has indicated that children's
performance on the balance scale progresses through 4
distinct rule based stages: (1) use weight alone to
determine if the scale will balance, (2) emphasize weight,
but consider distance (correctly) in the event that the
weights to the left and right of the fulcrum are equal, (3)
consider both weight and distance but get confused when
one side has greater weight and the other has greater
distance, (4) multiply distance by weight for each side and
compare the products. Siegler has noted that each rule
makes specific predictions about the kinds of problems
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that will be solved as illustrated by the predicted
percentages correct in Figure 1.

McClelland (1988) reported a pioneering simulation of
balance scale stages using a connectionist network with a
back-propagation learning rule. This model required a
number of limiting assumptions: a strong bias in the
training patterns favoring equal distance problems, a local
binary representation of weight and distance information,
and a forced segregation of weight vs. distance information
in connections to the hidden units. Even with these
assumptions satisfied, McClelland reported that there was
a great deal of shifting back and forth between rules 3 and
4, with stage 4 never being clearly established.

Interestingly, the leading rule learning program, Soar,
has also been applied to balance scale phenomena (Newell
1990). Soar acquired rules 1-3 but, like the back-
propagation model, did not manage rule 4. It is unclear
how dependent the Soar model was on getting balance
scale problems in a certain order. It may well be that
differcnt problem orders yield different orders of rules.

Neither the back-propagation model nor the Soar model
attempted to capture the other major balance scale
phenomenon, the torque difference effect (Ferretti &
Butterfield 1986). The torque on each side of the fulcrum
is the product of weight x distance. Torque difference is
the absolute difference between the torques on the two
sides. The larger the torque difference, the easier the
problem is for children to solve. This could be regarded as
an effect of information salience. It is not explainable by
Siegler's rules since any such rule should apply regardless
of the torque difference. Nor is the torque difference effect
explainable by the additive or multiplicative rules of
information integration theory (Wilkening & Anderson
1982).

In this paper, we report our attempt to cover rule stages
and the torque difference effect in the balance scale using a
relatively new connectionist architecture called Cascade-
Correlation (Fahlman & Lebiere 1990). Cascade-
Correlation builds its own network topology by recruiting
new hidden units as it learns to solve problems. Thus, it
affords a more principled approach to network construction
than is typical in connectionist research. It starts with a
minimal topology containing only the input and output
units defined by the programmer. In what is called the
output phase, connections to the output units are trained
until error can no longer be reduced. Then, in the input
phase, a pool of candidate hidden units receives trainable
input from the input units and any existing hidden units.
Outputs from the candidate hidden units are not yet
connected to the output units in this phase. The purpose
of the input phase is to identify the candidate unit whose
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Figure 1. Balance scale problems and predicted success.

activations correlate best with the output errors. This best
candidate unit is then installed in the network, receiving
input from all input units and any hidden units already in
place and sending output to all of the output units. Once
installed, the input side weights to the new hidden unit are
frozen, and its output side weights are allowed to change
with learning (output phase). Because Cascade-Correlation
uses second order error minimization in computing weight
changes and learns only one level at a time, it is typically
10-50 times faster at leamning than back-propagation.

Although Cascade-Correlation has not yet been applied
to cognitive developmental phenomena, it appears to
afford a novel and natural interpretation of both qualitative
and quantitative developmental changes. Qualilative
changes occur through the recruitment of new hidden
units; quantitative changes through the adjustment of
network weights.

The Network and the Training

We report two experiments, one on rule diagnosis and the
other on the torque difference effect. Both experiments
used a 5 peg, 5 weight version of the balance scale, as did
McClelland (1988). Our initial network had 4 input units,
the obligatory bias unit (which is always on), and 2
output units. Of the 4 input units, one encoded left-side
distance, a second encoded left-side weight, a third encoded
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right-side distance, and the fourth encoded right-side
weight. The input coding of distance and weight
information was done using integers from 1 to S. There
were 2 sigmoid output units which represented actual
balance scale results in a distributed fashion. Left-side
down was conveyed by excitation of the first output and
inhibition of the second output; right-side down was
conveyed by the reverse pattem; and balance was conveyed
by neutral values on both outputs. Any recruited hidden
units also used a sigmoid activation function.

The initial training patterns were 100 randomly selected
without replacement from the 625 possible 5 peg, 5
weight problems, subject to a 0.9 bias in favor of equal
distance problems (balance and weight problems, as
illustrated in Figure 1). This bias ensured that the
probability of drawing an equal distance problem during
construction of the training patterns was 0.9. On each
epoch in the output phase, another training pattern was
randomly selected with replacement, also subject to the
0.9 equal distance bias, and added to the training patterns.
We call this Expansion training of the 1+ type. The
training set gradually expanded, with 1 new pattern added
each output phase epoch. Expansion training conforms to
our assumptions that the child's environment changes
gradually and that these changes are marked by exposure to
more aspects of the environment. The constant bias for
equal distance problems reflects the assumption that



children have lots of experience lifting differing numbers
of objects but relatively little expericnce placing objects at
different distances from a fulcrum.

Pilot experiments had established that rule stages 1 and
2 could not be obtained without a strong bias for cqual
distance problems; the network went directly to stages 3
and 4. Other pilot experiments indicated that leaming was
extremely difficult when 100 training patterns were
randomly selected each epoch.

We used default parameter values for Cascade-
Correlation (Fahlman & Lebiere 1990), with two
exceptions. We lowered the input and output Epsilons
(learning rates) by 1/2 in order to reduce the bounce in
errors from epoch to epoch. We have noticed such error
bounce often in using integer-coded input. Also, we used a
score-threshold of 0.25. Normally, Cascade-Correlation
continues training until all the activations of output units
are within score-threshold of their targets in the training
patterns. The default score-threshold of 0.4 is appropriate
for sigmoid units on a threshold and margin criterion. But
because our output units were also coding neutral
(balance) patterns, we lowered score-threshold to 0.25 in
order to achieve non-overlapping scoring ranges. An
output activation had to be equal to or greater than
absolute 0.25 in order to count as anything but balance.

Each experiment involved 16 runs. Each run was
terminated at 300 epochs because pilot testing had
established that most runs were well within stage 4 by
that time. With Expansion training, complete mastery of
the training patterns is quite difficult to achieve until most
of the training patterns have been seen.

Experiment 1: Rule Diagnosis

Each of the 16 runs used distinct, randomly selected
training and test patterns. The 24 test patterns in this
experiment were balanced for both problem type and
torque difference, such that there were 4 patterns from each
of the 6 problem types in Figure 1, 1 pattern representing
each of 4 levels of torque difference: 1, 2-5, 6-9, and 10-
20. On each epoch during the output phase, the network
was tested with the 24 test patterns. A test problem whose
output activations were both within score-threshold of
their correct targets was coded as correct; any other test
problems were coded as incorrect.

The patterns of correct and incorrect problems were used
to diagnose rule use. A diagnosis of rule 4 required 20 or
more test problems correct; rule 2 required 13 or more
correct on balance, weight, distance, and conflict-weight
problems and less than 3 correct on conflict-distance and
conflict-balance problems; rule 3 required 10 or more
correct balance, weight, and distance problems and less
than 10 correct on conflict problems; rule 1 required 10 or
more correct balance, weight, and conflict-weight
problems and less than 3 correct distance, conflict-
distance, and conflict-balance problems. Scoring priority
for these rules, in decreasing order, was 4, 2, 3, and 1.
Rule 2 was given a higher priority than rule 3, because
rule 2 produces fewer errors on conflict-weight problems,
as shown in Figure 1.

Figure 2 shows a plot of the rule diagnosed at each
output epoch for a representative computer subject. It
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shows a typically orderly progression through Siegler's
rules. The H on the bottom of the plot signifies where a
hidden unit was added to the network. Tabulation of rule
diagnosis results revealed that 11 of the 16 subjects
showed the predicted 1 2 3 4 ordering. Two other subjects
showed rules 1 2 3; 1 showed rules 1 2 4; 1 showed rules
1 2 4 with regression to 3 and 2; and 1 showed rules 1 2.
It is quite likely that all subjects would have reached rule
4 with continued training. The overlap between the
diagnoses of adjacent rules near transition points reflected
the tentative nature of each transition.

Of the 16 computer subjects, 9 recruited 1 hidden unit,
6 recruited 2 hidden units, and 1 recruited 3 hidden units.
Of these 24 hidden units, 13 were associated with a very
quick progression from one rule to the next: 5 moved up
to rule 4, 7 to rule 3, and 1 to rule 2.

To better understand developing network structure, we
drew Hinton diagrams in the middle of each rule stage.
Each such diagram shows the size and sign of incoming
weights at a particular epoch. Size of weight is indicated
by the size of the square; sign of the weight is indicated
by the color of the square, with white indicating positive
and black negative. Hinton diagrams for a representative
subject are presented in Figure 3. The first epoch number
in each diagram excludes input phases; the second epoch
number (in parentheses) includes input phases.

During rule 1, which uses only weight information, the
output units were highly sensitive to weight information.
The right-side down output received a positive signal from
the right-side weight input, whereas the left-side down
output received a positive signal from the left-side weight
input. During rule 2, which continues to use weight but
begins to use distance when the weights on each side are
equal, the network's outputs became more sensitive to
distance information. The differential sensitivity to sides
was retained, and the new hidden unit was particularly
sensitive to weight information. During rule 3, which is
characterized by the use of both weight and distance
information but confusion when these are in conflict, the
outputs became about as sensitive to distance as to
weight. And in rule 4, which signifies nearly correct
performance, a new hidden unit emerged that was
particularly sensitive to distance information. The two
hidden units, one representing mainly weight and the other
mainly distance, sent opposite signals to the outputs.

More generally, we found that, of the 21 hidden units
with Hinton relevance, 8 were especially sensitive to side
information, 11 were mainly sensitive to side x distance
or side x weight, and 2 were mainly sensitive to the bias
unit or to older hidden units.

Experiment 2: Torque Difference Effect

This experiment employed exactly the same techniques as
Experiment 1, except that the principal interest was in
recording errors for 4 torque difference levels: 1, 2-5, 6-9,
and 10-20. For each run, 4 sets of test patterns were
randomly selected with 4 problems of each of the 6
problem types in Figure 1. Each set of test patterns
contained only problems representing 1 of the 4 torque
difference levels.
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Errors are plotted over epochs for a representative
subject in Figure 4. As expected, this subject showed
faster and deeper error reduction with increasing torque
difference.

An ANOVA of these error signals midway (epoch 75)
and late (last epoch) in learning was performed for all
subjects, yielding only a main effect for torque difference
level, F(3, 42) = 48.57, p < .001, with a strong negative
linear trend, F(1, 42) = 140.45, p < .001. The mean errors
at these two epochs for the 4 torque difference levels are
presented in Figure 5. The larger the torque difference, the
smaller the error.

Discussion

In these simulations, Cascade-Correlation networks
learned to perform on balance scale problems as if they
were following rules, including clear performance at the
level of stage 4. Further, these rules emerged in the
psychologically correct order, almost without exception.
Some developmental regressions and stage-skipping were
observed, just as in human subjects. Unlike previous
models, these nets also captured the torque difference
effect. The present models are, of course, highly
simplified comparcd to the environment and
computational resources of children.

The Cascade-Correlation networks covered these
psychological phenomena without at least some of the
restrictive assumptions of McClelland's (1988) back-
propagation networks. We didn't need to encode weight
and distance inputs in local binary form, or implant
segregated hidden units for weight vs. distance
information, or indeed implant any hidden units at all. We
did, however, follow McClelland's lead in strongly biasing
the training patterns in favor of equal distance problems.
Such input bias may not be the only way to obtain
human-like stages in connectionist models of the balance
scale, but it's effectiveness in producing stages may
encourage rescarchers to examine biases in the child's
environment.

Like other early connectionist attempts to model
phenomena in cognitive development (Chauvin 1989;
McClelland 1988; Plunkett & Marchman 1989), the
present simulations suggest that the connectionist
approach deserves serious consideration as a means of
studying transition mechanisms for higher level
reasoning. Connectionist networks appear capable of
reproducing classic developmental phenomena such as
rules and stages, as well as more subtle effects such as
information salience that explicit symbolic rule systems
have particular difficulty with.

An explicit symbolic rule-based model trying to capture
the torque difference effect would presumably find itself in
the paradoxical position of having to compute torque
differences well before stage 4. It might require rules of
the form if torque difference is greater than x then apply
rule i, where x is some integer between 1 and 20 that
decreases with age, and i is the current stage. Such a
model would apparently have to compute and use torque
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differences to mimic the torque difference effect well before
it could compute and use torques to solve balance scale
problems. This would possibly fit the psychological data,
but would be extraordinarily awkward.
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