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ABSTRACT: We demonstrate the use of the plane wave basis for all-electron
electronic structure calculations. The approach relies on the definition of an
analytic, norm-conserving, regularized Coulomb potential, and a scalable
implementation of the plane wave method capable of handling large energy
cutoffs (up to 80 kRy in the examples shown). The method is applied to the
computation of electronic properties of isolated atoms as well as the diamond
and silicon crystals, MgO, solid argon, and a configuration of 64 water
molecules extracted from a first-principles molecular dynamics simulation. The
computed energies, band gaps, ionic forces, and stress tensors provide reference
results for the validation of pseudopotentials and/or localized basis sets. A
calculation of the all-electron band structure of diamond and silicon using the
SCAN meta-GGA density functional allows for a validation of calculations
based on pseudopotentials derived using the PBE exchange-correlation
functional. In the case of (H2O)64, the computed ionic forces provide a reference from which the errors incurred in pseudopotential
calculations and in localized Gaussian basis sets calculations can be estimated.

1. INTRODUCTION
The importance of density functional theory1 as an electronic
structure method has motivated the development of many
numerical electronic structure computation methods during the
past decades. With the growing need to validate approximations
used in DFT electronic structure theory, in particular the choice
of exchange-correlation functional, more attention has been paid
to the accuracy of the numerical methods used in the solution of
the Kohn−Sham (KS) equations2 of DFT. The validation of a
physical approximation (such as, e.g., the choice of a specific
exchange-correlation functional) requires the ability to increase
numerical accuracy to the point where numerical errors are
much smaller than the differences due to physical approx-
imations.
A comprehensive review of electronic structure methods has

been given by Martin.3 Among the many existing electronic
structuremethods, all-electronmethods, i.e., including both core
and valence electrons, must address the inherent multiscale
character of the electronic structure problem that stems from the
range of length and energy scales involved in the description of
core and valence electrons. For an element of atomic number Z,
the ratio of length scales involved is directly proportional to Z,
while the energies involved span a range scaling as Z2. This
multiscale aspect has motivated multiple approaches that aim to
include both core and valence electrons. Such methods include
augmented plane wave (APW) methods,4 multiresolution
methods,5,6 numerical atomic orbital (NAO) basis methods,7

Gaussian basis set methods,8 and finite element (FE) methods.9

Most of these approaches rely on the use of atom-centered basis
functions, either directly in NAO and Gaussian basis methods,

through the definition of “muffin-tin” (MT) regions in APW
methods, through local adaptive refinement in multiresolution
and FE methods, or through enrichment of the basis set by an
appropriate choice of localized basis functions in FE methods.10

For atom-centered basis sets such as Gaussian basis sets, the
process of approaching a complete basis involves the addition of
diffuse basis functions as well as higher order spherical
harmonics. For example, Lee et al.11 have recently shown that
large, uncontracted Gaussian-type orbital (GTO) basis sets can
achieve a high accuracy in periodic solids. MT-based methods
require the addition of localized orbitals in the basis of
augmented plane waves (LAPW-lo).12 Grid-based methods
require a systematic increase of the basis set size, achieved, e.g.,
by reducing the grid spacing or using higher order finite
elements.
Among the above methods, the FLAPW method is currently

considered the “gold standard” of all-electron electronic
structure methods. Recently, Gulans et al.13 have demonstrated
convergence of the DFT LDA energy of the order of 1
microHartree (μHa) in the G2−1 set of molecules14 using the
EXCITING LAPW+lo program.15 Multiresolution methods
have also demonstrated a similar level of accuracy.13 However,
approaching the complete basis limit using the FLAPWmethod
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still requires expert knowledge, e.g., of the atomic electronic
structure in order to define the local orbital basis at appropriate
energies, choosing parameters such as the MT radius and
angular momentum cutoffs, and controlling the linearization
error.16 Furthermore, the implementation of the method for
recent (meta-GGA) exchange-correlation functionals remains
challenging.17

In a different context, when used with pseudopotentials, the
plane wave method presents a number of attractive features,
such as the ability to compute ionic forces without basis set
superposition effects, and an unbiased description of unoccu-
pied orbitals. It avoids the issue of overcompleteness of the basis
set that affects all localized orbital methods when reaching the
complete basis set limit. The translational invariance of the plane
wave basis simplifies the computation of the stress tensor of a
solid, which in turn allows for straightforward iterative
optimization of unit cell parameters.18 Numerical implementa-
tions also benefit from the availability of efficient Fast Fourier
Transform algorithms and efficient reciprocal space precondi-
tioners.
The use of a plane wave basis, however, requires using smooth

potentials. Traditionally, this was achieved by using pseudopo-
tentials that remove core electrons and are thus unable to
address the all-electron problem directly. This in turn shifts the
focus of a high-accuracy calculation on the availability of
accurate pseudopotentials. A wide variety of pseudopotentials
have been proposed over the past decades, including norm-
conserving,19 ultrasoft,20 and projector augmented wave
(PAW)21 potentials, each addressing the challenge of describing
valence electrons accurately in various environments. The use of
a pseudopotential always involves an assumption of trans-
ferability from an isolated atom to an arbitrary environment.
While considerable progress has been made in recent years to
develop accurate pseudopotentials,22 their accuracy can only be
assessed by comparison with all-electron results when available.
This comparison is made difficult by the fact that pseudopo-
tentials must be derived for a specific choice of exchange-
correlation functional, and should only be used with that same
functional. Furthermore, pseudopotential parameters are
typically optimized to reproduce accurately ground state
properties computed with all-electron methods (e.g., energy vs
volume curves for solids). The description of unoccupied
electronic orbitals is typically not included in the figure of merit
defining a pseudopotential. This in turn requires the all-electron
method of reference to be able to provide accurate empty
orbitals and eigenvalues, which can be challenging. A careful
validation of pseudopotentials is critical for the computation of
band gaps, in particular when the computedDFT band gap is the
starting point of a more elaborate calculation using many-body
perturbation theory.
In this paper, we describe an all-electron, plane wave

electronic structure method that reconciles the accuracy of an
all-electron method with the simplicity of the plane wave basis.
The method relies on the definition of an analytic, norm-
conserving (ANC) potential representing electron−ion inter-
actions, and a scalable implementation of the plane wavemethod
capable of operating with very large energy cutoffs (up to 80 kRy
in the examples presented). We show how the electronic
structure of atoms and solids can be obtained, and how results
can serve as reference data for the validation of pseudopotentials
or for the validation of all-electron methods. The method also
allows for the computation of the stress tensor, which can be
difficult to obtain with typical all-electron methods. Conven-

tional preconditioning approaches used in plane wave
implementations can be used without modification at large
energy cutoffs, so that the iterative solution of the Kohn−Sham
equations does not require the use of specialized algorithms such
as, e.g., Chebyshev filtering.We demonstrate the use of the plane
wave method in all-electron calculations performed with the
SCAN meta-GGA exchange-correlation functional, whose self-
consistent implementation in conventional all-electron methods
is challenging.17 Last, we show how the AEPW calculation of
ionic forces in a 64-molecule water system provides reference
data that are used to validate pseudopotentials and Gaussian
basis sets. We note that other authors have considered the use of
regularized Coulomb potentials, such as, e.g., for the smooth
representation of electron−electron interactions,23 or in the
context of multiresolution electronic structure calculations.5

The definitions of the regularized potentials used by these
authors rely on minimizing errors in the expectation value of the
potential energy and differ from the approach we use here.

2. METHODS AND ALGORITHMS
Using the plane wave basis for all-electron calculations depends
critically on a careful choice of a smooth potential to replace the
electron−ion Coulomb interaction. We define a regularized
Coulomb potential that has the following essential properties:
(i) it is analytic, i.e., it has no discontinuous derivatives of any
order, (ii) it is norm-conserving in the sense defined byHamann,
Schlüter, and Chiang,19 and (iii) it depends on a single
parameter that can be used to approach the Coulomb potential
arbitrarily closely. Analyticity of the potential is necessary to
ensure a rapid convergence of a Fourier representation.
Discontinuities in the derivatives of a potential cause a slow
(algebraic) decay of its Fourier coefficients, which in turn
requires the use of a large plane wave energy cutoff in order to
reach convergence. The norm conservation condition is critical
and ensures that the noninteracting hydrogenoid eigenvalues are
accurate and that orbitals are correctly reproduced away from
the nucleus. In the case of pseudopotentials, this property was
shown to lead to an improved transferability of potentials to
arbitrary environments.19 Last, a simple parametrization allows
for a systematic exploration of the convergence of the method in
the limit where the Coulomb potential is recovered.
2.1. Analytic Norm-Conserving Regularized Potential.

In this section, we first define a regularized potential for the
hydrogen atom, and then derive the potentials of all other
elements using a simple scaling relation. Starting with the
hydrogen atom, we seek to define a smooth analytic potential
V(r) such that

1. The lowest energy solution ϕ(r) of the Schrödinger
equation

+ =
r r

r r V r r E r1
2

d
d

( ) ( ) ( ) ( )
2

2 (1)

has eigenvalue =E 1
2

2. ϕ(r) is differentiable at r = 0

3. =rlim ( ) e
r

r1

Rather than defining directly a regularized potential, we
choose to first define the orbital ϕ(r) and then define the
potential by inversion of the Schrödinger equation. We use the
following definition of the 1s orbital ϕ(r)
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where the function h(r) must be defined. Inverting the
Schrödinger equation using the known eigenvalue E1s = −1/2,
we obtain
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Using the definition of the function ϕ(r) in eq 2, it is easily
shown that it satisfies the Schrödinger equation for the potential
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In order to obtain the correct asymptotic behavior of the wave
function ϕ(r) as r → ∞, we require

=h r rlim ( )
r (5)

In order for ϕ(r) to be differentiable at r = 0, we impose
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2
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These conditions are satisfied by the function
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where a is a parameter determining the range of the
regularization and b is an adjustable parameter. The derivatives
appearing in the definition of the potential V(a, b, r) are
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The potential is finite and differentiable at r = 0

= +V a b r a b a O rlim ( , , )
1
2

3
6

( )
r 0

2 2

(10)

2.1.1. NormConservation.While the potential defined above
reproduces the 1s eigenvalue exactly by construction, it is
important to ensure that higher eigenvalues and corresponding
wave functions are reproduced with appropriate accuracy. For
that purpose, we impose a norm conservation constraint on the
potential, as defined by Hamann, Schlüter, and Chiang.19 These
authors showed that a norm-conserving potential has enhanced
transferability properties, i.e., it is capable of reproducing wave
functions accurately at energies that differ from the eigenvalue
used in the derivation of the potential. For the specific form of
the wave function chosen in eq 2, the norm conservation
condition is enforced by adjusting the value of the parameter b
so that

=a b r r r4 ( , , ) d 1
0

2 2
(11)

We note that simply normalizing the wave function by rescaling
ϕ(a, b, r) would not satisfy the norm conservation condition
since it would modify the wave function at large r. Instead,
normalizing by adjusting the parameter b does not affect the
wave function at large r. The above expressions thus define a

family of analytic, norm-conserving (ANC), regularized
potentials that are entirely determined by the choice of the
parameter a, and approach the Coulomb potential in the limit a
→ ∞. The parameter b is tied to the choice of a and is defined by
the norm conservation condition. A table of the values of b
satisfying the norm conservation condition is given in the
Supporting Information. In practice, it is found that for the
hydrogen atom, values of a ≥ 4 yield solutions of the
noninteracting Schrödinger equation with 2s, 3s, etc. eigenval-
ues within a few microHartrees (μHa) of the exact eigenvalues.
Increasing the value of a reduces the error further below 1 μHa.
The regularized potential deviates from the Coulomb potential
in a region of radius O(1/a) near r = 0, and the Coulomb
potential is recovered in the limit r → ∞. The regularized
potential of the hydrogen atom generated using the values a = 4,
6, 8 is shown in Figure 1, and the corresponding 1s wave
functions are shown in Figure 2.

2.1.2. Convergence of Noninteracting Eigenvalues. In
order to illustrate the importance of the norm conservation
condition, we analyze the convergence of the eigenvalues of the
n > 1, l = 0 solutions for the noninteracting hydrogen atom.
While the n = 1 eigenvalue is exact by construction (E1s =−1/2),

Figure 1.Norm-conserving regularized potential of the hydrogen atom
for the values a = 4 (red), a = 6 (green), and a = 8 (blue). The Coulomb
potential is shown as a dotted line.

Figure 2.Hydrogen 1s wave function for the values a = 4, 6, 8 compared
to the exact wave function =r r( ) exp( )/ .
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higher eigenvalues for n = 2, 3, ... are affected by an error that
decreases as the parameter a is increased to approach the exact
Coulomb potential. We have computed the eigenvalues E(n, l =
0) for various values of a using a radial Schrödinger equation
solver based on a finite difference representation of the
Laplacian operator, resulting in a tridiagonal Hamiltonian
matrix that is diagonalized using the LAPACK library. We find
that the error in E(n, l = 0), defined as

= = = +E n l E n l
n

( , 0) ( , 0)
1

2 2 (12)

decreases as the value of a is increased. The decay of the error
follows approximately the power law 1/a5.5. We note that, as
expected, the error in the eigenvalues becomes smaller for large
n, since the amplitude of the corresponding hydrogenoid
orbitals gets smaller near the nucleus, where the ANC potential
deviates from the Coulomb potential. The rapid decrease of the
error for increasing a is a consequence of the norm conservation
condition, and plays a critical role in achieving convergence
using reachable plane wave cutoffs. In order to illustrate the
importance of the norm conservation condition, we show on
Figure 3 the decay of ΔE(n, l = 0) for n = 2, 3, 4 computed with

the ANC potential V(a, b, r) compared to the error obtained
using V(a, b = 0, r) (i.e., a potential that reproduces the 1s
eigenvalue exactly but does not satisfy the norm conservation
condition). The decay of the error for V(a, b = 0, r) is slower
than for the ANC potential, and only decreases approximately as
1/a3. We also compare the ANC potential with a simple
regularized potential

=V r
r

r
( , )

erf
erf (13)

that does not reproduce the 1s eigenvalue exactly and does not
satisfy a norm conservation condition. The computed
eigenvalues show an even slower decrease of the error, which
decays approximately as 1/a2. Figure 4 shows the decay of the
error in the E(n, l = 0) eigenvalues for n = 2, 3, 4 computed with
the ANC potential and the potential −erf(μr)/r for μ = 10a.

Similar convergence results are found for the ANC potential
for l = 1 and l = 2 (see Figure 1 in the Supporting Information).
We note that the error in E(n = 2, l = 0) obtained with the ANC
potential is smaller than 1 μHa for a = 4, and errors for n > 2 are
even smaller.

2.1.3. Scaling Relation. The ANC potential for arbitrary
elements (Z > 1) can be derived simply from the Z = 1 potential
using the following scaling relation:

=V Z r Z V Zr( , ) ( )2 (14)

where V(r) is the hydrogen atom ANC potential defined above.
Under the transformation r → Zr, the Schrödinger equation for
the hydrogen atom becomes

+ =Z
r r

r Zr V Z r Zr E Zr
2

1 d
d

( ) ( , ) ( ) ( )
2 2

2 (15)

It is easily verified that the function

= =Z r Z Zr Z
( , ) (1, ) es s

h Zr
1

3/2
1

3/2
( )

(16)

is a solution of the scaled Schrödinger equation with eigenvalue

=E
Z
2

2

(17)

The 1s function is a solution of the Schrödinger equation for the
potential

=V Z r Z V Zr( , ) (1, )2 (18)

We therefore define the ANC potential for Z > 1 as

=V Z a b r Z V a b Zr( , , , ) (1, , , )2 (19)

The noninteracting electronic structure for Z > 1 follows the
expected behavior from the above scaling relation. The error in
hydrogenoid eigenvalues scales as Z2. For a = 4, this changes the
error in the E2s eigenvalue from 0.64 μHa for H (Z = 1) to 63
μHa for Ne (Z = 10), and 205 μHa for Ar (Z = 18). These errors
can be reduced by increasing the value of the a parameter.

Figure 3.Decay of the error ΔE(n, l = 0) as a function of the parameter
a, computed with an ANC potential (blue lines) and with a potential
V(a, b = 0, r) that does not satisfy the norm conservation condition. The
top blue line corresponds to n = 2 and the bottom blue line to n = 4. The
order of the red lines is similar. The blue and red dotted lines show the
decay of a function ∝1/a5.5 and ∝1/a3 respectively.

Figure 4.Decay of the error ΔE(n, l = 0) as a function of the parameter
a, computed with an ANC potential (blue lines) and with a regularized
potential−erf (μr)/rwith μ = 10a. The top blue line corresponds to n =
2 and the bottom blue line to n = 4. The order of the red lines is similar.
The blue and red dotted lines show the decay of a function ∝1/a5.5 and
∝1/a2, respectively.
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3. IMPLEMENTATION
The use of a plane wave basis for all-electron calculations relies
critically on an implementation of the plane wave method that is
capable of scaling to very large plane wave energy cutoffs (e.g., of
the order of 100 kRy). We use the Qbox code24,25 which was
designed for large scale parallelism. Qbox can use large plane
wave basis sets by distributing plane wave basis functions over
thousands of processors. The use of a conventional reciprocal
space preconditioner is effective, and the number of iterations
needed to complete a calculation is similar to that of
conventional pseudopotential calculations. Furthermore, Qbox
includes the capability to change the plane wave cutoff on the fly
during a calculation, which makes it possible to reach
convergence gradually, in a way similar to the Full Approx-
imation Scheme (FAS) used in multigrid methods.26 It also
allows for changes of ionic potential during a calculation, which
allows for systematic increase of the parameter a during a single
calculation.

4. DFT CALCULATIONS
Having verified the transferability of ANC potentials to energies
that differ from the 1s eigenvalue in the noninteracting case, we
now proceed to demonstrate the accuracy of the AEPW
approach inDFT calculations of atoms, solids, and liquids. In the
application to DFT calculations, it is important to note that the
regularized potential is defined independently of any choice of
density functional, since it is taylored to reproduce the
noninteracting problem. This allows for a comparison of density
functionals in calculations using the same ANCpotential and the
same basis set. Examples of such comparisons are given below in
calculations of the band structure of selected solids using the
PBE27 and SCAN28 exchange-correlation functionals.
4.1. Atoms.We first test the AEPW approach on the simple

problem of the DFT electronic structure of the hydrogen atom.
Accurate results were obtained by Kotochigova et al.29,30 who
used an atomic program based on a logarithmic radial mesh and
achieved an accuracy better than 1 μHa for the Kohn−Sham
energy. Their calculations used the Vosko-Wilk-Nusair (VWN)
exchange-correlation functional31 and yielded a (spin-re-
stricted) Kohn−Sham energy EKS = −0.445671 Ha. In order
to allow for a comparison with this reference result, we
computed the Kohn−Sham energy of a single hydrogen atom
placed in an FCC unit cell having a lattice parameter of 40 (a.u.).
The use of this large unit cell makes the interaction between
periodic replicas negligible on the scale of the errors considered.
A systematic study of the convergence with respect to the
parameter a and the plane wave energy cutoff is given in Table 1
where we show deviations ΔE from the AEPW value E =
−0.44567052 Ha obtained using a = 20 (a.u.) and Ecut = 10 kRy,
which we consider to be converged within 0.01 μHa. We note
that this converged value agrees with the result of Kotochigova
et al. within less than 1 μHa. This close agreement provides a
remarkable verification of the two numerical methods involved
in computing this number: on one hand, a solution of the
Kohn−Sham equations on a radial logarithmic mesh, and on the
other hand a plane wave calculation using a norm-conserving
regularized potential. Table 1 shows that using a = 4 and Ecut = 1
kRy yields an error smaller than 10 μHa. Using a = 7 and a plane
wave cutoff of 2 kRy yields an error of 1.04 μHa. The error can
be further reduced by increasing a, with a corresponding
increase of Ecut. The minimum Ecut needed to converge the
energy within 0.01 μHa grows proportionally to a2 and follows

approximately the relation Ecut ≃ 0.025a2 where Ecut is expressed
in kRy units. The values of Ecut given in Table 1 are sufficient to
ensure a converged value of the energy within 0.01 μHa for the
corresponding values of a. A more complete table showing
additional values of a and Ecut, and a contour plot of the
logarithm of the error are available in the Supporting
Information.
In order to illustrate the behavior of the error for other atoms,

we consider Be (Z = 4). Convergence of the KS VWN energy to
within 1 μHa requires an increase of the value of a, and the value
of Ecut must be increased correspondingly to reach convergence
with respect to basis set size for a given a. We report in Table 2
the error in the energy with respect to the reference result
−14.447209 (a.u.) given in ref 29, for various choices of a and
Ecut.

These results show that accurate energies can be obtained
from AEPW calculations when increasing the parameter a and
the plane wave cutoff, leading to errors of the order of 1 μHa.
This accuracy criterion is however overly stringent, and useful
information about physical quantities such as, e.g., band gaps,
ionic forces, or stress tensor components can be obtained even if
absolute energies are not converged to that degree. We show in
the next section that for solids, such physical quantities can be
computed with high accuracy, and most importantly that
convergence can be tested systematically using the parameters a
and Ecut.
4.2. Solids. AEPW band structure calculations were carried

out for diamond, silicon, MgO, and solid argon. We have
computed the Kohn−Sham eigenvalues and band gaps at the
high symmetry points of the Brillouin zone. The calculation of
the stress tensor benefits from the simplicity of the plane wave

Table 1. Error in the DFT Ground State Energy of the
Hydrogen Atom Computed Using the VWN Functional and
Various Values of the Parameter a and Plane Wave Energy
Cutoff Ecut. The Values of Ecut Given in the Table Ensure a
Converged Energy within 0.01 μHa for the Corresponding
Value of a

a Ecut (kRy) ΔE (μHa)

4 1 9.00
5 1 3.97
6 1 1.97
7 2 1.04
8 2 0.59
9 3 0.36
10 4 0.22
11 4 0.15
12 4 0.10
13 5 0.07
14 5 0.05

Table 2. Error in the DFT Ground State Energy of the
Beryllium Atom Computed Using the VWN Functional and
Various Values of the Parameter a and Plane Wave Energy
Cutoff Ecut

a Ecut (kRy) ΔE (μHa)

4 10 26
6 16 11
8 30 3.4
10 38 1.5
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basis, and requires no additional implementation compared to
the standard method used in pseudopotential calculations. We
use the approach of Focher et al.18 to ensure that a constant
resolution is used when changing the unit cell size. All
calculations are performed using the 10-point k-point set of
Chadi and Cohen32 to sample the FCC Brillouin zone. We have
verified in the case of pseudopotential calculations that using a 8
× 8 × 8 or 10 × 10 × 10 Monkhorst−Pack k-point set changes
the band gaps by less than 0.005 eV.
4.3. Diamond. We have computed the band structure of

diamond using the AEPWmethod with the PBE27 and SCAN28

exchange-correlation functionals. We use the experimental value
of the FCC lattice constant aFCC = 3.567 Å as reported by Haas
et al.33 The main AEPW band gaps are reported in Table 3 for

the PBE functional, and Table 4 for the SCAN functional. The
value of the minimum band gap Eg is obtained using a quadratic
fit to four eigenvalues along the Δ direction of the Brillouin zone
in the range [0.30, 0.45](2π/aFCC). The minimum of the
conduction band is found at k = 0.36(0, 0, 2π/aFCC) in all
calculations reported.
These results show that an accuracy of 0.01 eV is reached for a

= 3 and Ecut = 6 kRy. Using larger values of a and Ecut lead to no
appreciable change in the eigenvalues. FLAPW calculations by
Doumont et al.17 find Eg

PBE = 4.14 eV and Eg
SCAN = 4.54 eV in

complete agreement with our AEPW results. A comparison of
AEPW results with pseudopotential calculations using a SG15
optimized norm-conserving Vanderbilt (ONCV) pseudopoten-
tial34 and Ecut = 120 Ry gives a measure of the error introduced
by the use of a pseudopotential. We find Eg

PBE = 4.17 eV and

Eg
SCAN = 4.48 eV, i.e., errors of 0.03 and 0.06 eV, respectively. In

the case of the PBE calculation, the error is only due to the use of
the pseudopotential approximation, while in the case of SCAN,
an additional error comes from the fact that the SG15
pseudopotential was derived for the PBE functional.
The equilibrium lattice constant can be obtained by

computing the stress tensor for various values of the lattice
constant. The calculation of the stress tensor requires a larger
plane wave cutoff than the one needed to converge band gaps.
Using Ecut values up to 40 kRy, we verified that using Ecut = 15
kRy yields stress tensor components within 0.05 GPa of the fully
converged value. We computed the PBE equilibrium lattice
constant using Ecut = 15 kRy and a = 4. The stress tensor was
computed for two values of the lattice constant, aFCC = 3.5670 Å
and aFCC = 3.5825 Å. We use the confinement potential method
of Focher et al.18 to ensure constant resolution of the plane wave
basis as the cell volume is varied. The equilibrium lattice
constant, corresponding to zero stress, was then obtained using
the secant method, yielding the value 3.572 Å, in very good
agreement with the FLAPW value reported by Haas et al. (3.575
Å). Using the same approach with the SCAN functional yields
the value aFCC = 3.552 Å. Tran et al.35 obtained the value 3.556 Å
using an FLAPW non-self-consistent calculation based on PBE
orbitals and density.
4.4. Silicon.We have computed the band structure of silicon

using the AEPW approach with the PBE27 and SCAN28 density
functionals, and compared results with existing reference data.
We use plane wave energy cutoffs of 60 kRy and 80 kRy. The
parameter a defining the ANC potential is varied between 3 and
4. AEPW eigenvalues change by less than 0.01 eV when
changing the parameter a from 3 to 4, and when changing Ecut
from 60 kRy to 80 kRy. In order to facilitate comparisons with
other published work, we use the experimental lattice constant
aFCC = 5.430 Å reported by Haas et al.33 and used by other
authors. The values of the conduction band eigenvalues relative
to the valence band maximum are shown in Tables 5 and 6 The

value of the minimum gap was computed by a quadratic fit to
four values in the range [0.30, 0.45](2π/aFCC) along the Δ axis

Table 3. Energies (eV) of the Lowest Conduction Bands of
Diamond at High-Symmetry Points of the BZ Referred to the
Valence Band Maximum, and Minimum Energy Gap Eg,
Obtained Using the PBE Exchange-Correlation Functional
and Various Values of the Parameter a and Plane Wave
Energy Cutoff Ecut

a Ecut (kRy) Γ X L W Eg

2 6 5.600 4.770 8.467 10.626 4.138
3 6 5.600 4.775 8.468 10.627 4.142
4 6 5.600 4.778 8.468 10.627 4.145
2 10 5.600 4.770 8.468 10.626 4.138
3 10 5.600 4.775 8.468 10.627 4.142
4 10 5.600 4.775 8.468 10.627 4.143

Table 4. Energies (eV) of the Lowest Conduction States of
Diamond at High-Symmetry Points of the BZ Referred to the
Valence Band Maximum, and Minimum Energy Gap Eg,
Obtained Using the SCAN Exchange-Correlation Functional
and Various Values of the Parameter a and Plane Wave
Energy Cutoff Ecut

a Ecut (kRy) Γ X L W Eg

2 6 6.146 5.187 9.127 11.331 4.539
3 6 6.147 5.192 9.127 11.332 4.543
4 6 6.147 5.195 9.127 11.333 4.546
2 10 6.146 5.187 9.127 11.331 4.539
3 10 6.147 5.192 9.127 11.332 4.543
4 10 6.147 5.192 9.127 11.332 4.544

Table 5. PBE Eigenvalues of the Lowest Conduction States of
Silicon Referred to the Valence Band Maximum, Compared
to SG15 Pseudopotential and with the LAPW Results of
Reference 36

AEPW (this work) SG15 FLAPW36

Γ 2.56 2.56 2.56
X 0.73 0.69 0.71
L 1.59 1.52 1.54
Eg 0.59 0.56 0.47

Table 6. SCAN Eigenvalues of the Lowest Conduction States
of Silicon Referred to the Valence Band Maximum,
Compared to Pseudopotential Results Obtained with the
SG15 Potentials Derived Using the PBE Functional

AEPW (this work) SG15

Γ 2.86 2.93
X 0.98 0.97
L 1.98 1.86
Eg 0.83 0.83
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of the FCC Brillouin zone. The minimum is found at a value of k
= (0.42, 0, 0)(2π/aFCC) in all calculations reported here.
Table 5 includes FLAPW results obtained by Betzinger et

al.,36 which are in very good agreement with AEPW results at
high-symmetry points of the BZ, the largest difference being
0.02 eV. The values of the minimum gap Eg on the other hand
differ by 0.09 eV. The PBE minimum gap was also computed by
Doumont et al.17 who used the WIEN2K FLAPW code and
reported a value of 0.58 eV, in very good agreement with our
AEPW value (0.59 eV). We also include in Table 5 the PBE
eigenvalues computed using the SG15 pseudopotential34 with
an 80 Ry plane wave cutoff. The comparison between the AEPW
and SG15 values provides an estimate of the error caused by the
use of the pseudopotential. The error for the gaps reported here
is smaller than 0.07 eV.
We have repeated the above calculations using the SCAN

functional. Results are shown in Table 6. In this case, the
comparison between the AEPW and SG15 values provides an
estimate of the error caused by the use of a pseudopotential
derived using the PBE functional. This error is somewhat larger
than the one due to the pseudopotential approximation alone,
and affects the reported eigenvalues by less than 0.12 eV.
Doumont et al. also computed the value of the SCAN

minimum gap, and obtained a value of 0.83 eV, in exact
agreement with our AEPW value.
These results show that the AEPW approach reproduces

reference results very accurately, both for a generalized gradient
(GGA) and for a meta-GGA (SCAN) density functional.
4.5. Solid Argon. FCC argon provides an example of a

system in which conduction states are delocalized, and thus
require a basis set that properly describes multiple length scales.
This can be achieved, e.g., in FLAPW calculations by adding
localized orbitals to the APW basis with appropriately chosen
energy parameters. In order to allow for a comparison with
FLAPW results obtained by Michalicek et al.,16 we computed
the band structure of FCC Ar using the LDA exchange-
correlation functional. AEPW calculations of the LDA band
structure of FCC Ar were performed using a = 3 and Ecut =
40kRy. Additional calculations with a = 4 and Ecut = 60 kRy
confirmed that Kohn−Sham band gaps are converged within
0.01 eV. In order to allow for a comparison with the FLAPW
results obtained by Michalicek et al.16 we use the same value of
the experimental lattice constant reported in that paper (aFCC =
9.93 (a.u.)). The AEPW results are shown in Table 7 and

compared to the FLAPW+HDLO1x results of ref 16. The
agreement between the two methods is excellent, with most
deviations amounting to 0.01 eV and the largest being 0.04 eV.
Michalicek et al. analyzed the convergence of the FLAPW
method and noted that the addition of localized orbitals (LOs)
to the FLAPWbasis is essential to obtain accurate band energies.
The addition of LO basis functions in ref 16 causes a downward

shift of 1.87 eV in the lowest conduction band at the Γ point,
bringing the result in close agreement with our results.
We note that the FLAPW+HDLOx1 results treat core

functions fully relativistically, valence functions using a scalar-
relativistic approximation in the MT spheres, and use a
nonrelativistic approach in the interstitial regions.37 This does
not allow for a straightforward comparison of the results with the
AEPWdata which is nonrelativistic. However, on the basis of the
results of ref 29 for atoms, we estimate that the effect of a scalar
relativistic treatment on valence energy dif ferences is small on the
scale of errors considered here. These results show that the
AEPW approach can reproduce accurate FLAPW results, even
in cases where local orbitals must be included in the LAPWbasis.
The simplicity of the plane wavemethod guarantees a systematic
convergence of the basis set for the description of both valence
and conduction states.
4.6. MgO. The calculation of the AEPW band structure of

MgO provides an example of validation of the pseudopotential
approximation in a situation involving significant charge
transfer. Pseudopotentials (in this case both for Mg and O)
are typically derived to reproduce the electronic states of a
neutral atom. InMgO, bothMg andO undergo a charge transfer
of approximately two electrons. It is important to quantify the
effect of the pseudopotential approximation, which assumes no
polarizability of the core shells and additivity of the exchange-
correlation potential. We have computed the AEPW band
structure of MgO in the rocksalt structure using the PBE
exchange-correlation functional and a sequence of ANC
potentials, with a up to 3 (a.u.) for Mg and up to 4 (a.u.) for
O, with a plane wave cutoff Ecut = 30 kRy. We have verified that
eigenvalues change by less than 0.01 eV when increasing the
plane wave cutoff to 40 kRy. In order to allow for comparison
with other published results, we use the experimental lattice
constant aFCC = 4.207 Å reported by Haas et al.33 Table 8
compares AEPW results with the FLAPW results reported by
Betzinger et al.36 and Schlipf et al.,38 as well as PAW results
obtained by Paier et al.39

The AEPW results show a very good agreement with the
FLAPW and PAW results, with a maximum deviation of 0.08 eV.
The SG15 results agree with the AEPW results within 0.05 eV.
This provides an estimate of the error due to the use of the
pseudopotential approximation. In spite of a large charge
transfer, the SG15 pseudopotential appears to be transferable to
configurations that differ from the atomic situation, both in
terms of symmetry and charge state. In a more sensitive test, we
have also verified that the transferability of the SG15 potentials
extends to the calculation of the stress tensor. The σxx
component of the residual stress tensor at the experimental
lattice constant was computed with the SG15 potential using Ecut

= 100 Ry, yielding xx
SG15 = 5.58 GPa, while the corresponding

AEPW value is 5.51 GPa.

Table 7. LDAEigenvalues of the Lowest Conduction States of
FCC Ar Referred to the Valence Band Maximum, Compared
to FLAPW+HDLOx1 Results of Reference 16

AEPW (this work) FLAPW+HDLOx116

Γ 8.25 8.21
X 10.86 10.85
L 11.08 11.07
W 11.92 11.92

Table 8. PBE Eigenvalues (eV) of the Lowest Conduction
States of FCCMgO Referred to the Valence Band Maximum,
Compared to LAPW, PAW, and Pseudopotential (SG15)
Results

AEPW (this work) FLAPW36 FLAPW38 PAW39 SG15

Γ 4.83 4.84 4.77 4.75 4.80
X 9.14 9.15 9.14 9.15 9.19
L 7.94 8.01 7.93 7.91 7.95
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4.7. LiquidWater. In this example, we compute ionic forces
in a 64-molecule sample of water using the PBE density
functional. We use a representative snapshot extracted from a
molecular dynamics trajectory taken from the PBE400 data
set.40,41 AEPW calculations were carried out with Ecut = 30 kRy
and a = 8 for hydrogen, and a = 3 for oxygen. We verified that
changing Ecut to 25 kRy affects ionic forces by less than 10−5

(a.u.), and consider the results obtained at 30 kRy to be accurate
within that tolerance. Figure 5 shows a Gaussian kernel density

estimate of the distribution of AEPW ionic forces. Forces on all
192 atoms in the x, y, and z directions are included in the data
set, for a total of 576 values. All components of the forces fall
within the range [−0.06, 0.06] (a.u.).
In a first comparison, we validate the use of the

pseudopotential approximation by comparing AEPW forces
with those obtained with SG15 pseudopotentials, using Ecut = 80
Ry. Similarly, for a comparison with a calculation based on atom-
centered basis functions, we have used the CP2K program42

(version 7.1) and the TZV2P-GTH combination of Gaussian
basis set and pseudopotentials to evaluate ionic forces on the
same atomic configuration. We used a plane wave cutoff of 400
Ry for the evaluation of the charge density in CP2K. We show in
Figure 6 the distribution of the deviation of ionic forces with
respect to the AEPW forces, for both the SG15 pseudopotential
calculation and for the TZV2P-GTH calculation. Both
calculations show a small error in ionic forces�most errors
being smaller than 0.002 (a.u.)�with the TZV2P-GTH forces
showing somewhat larger deviations from the reference AEPW
results.
The above calculations provide an example of use of AEPW

calculations to validate approximations used in other electronic
structure methods. Similar validations can be performed using,
e.g., other density functionals such as SCAN to estimate errors
due to the use of PBE pseudopotentials, or to assess the effect of
the choice of another atom-centered basis set.

5. DISCUSSION
The above results show that the AEPW approach can reach an
accuracy comparable to the most accurate FLAPWmethods in a
number of periodic solids. Convergence of results can be
systematically tested by increasing the parameter a while
simultaneously increasing Ecut to achieve full convergence for

each value of a. The absence of any other parameters in the
calculation�apart from k-point sampling�leads to a high
confidence in the accuracy of the results. In particular, the
completeness of the basis set can be reached systematically for
both occupied and empty orbitals without any prior knowledge
of the electronic structure of the atoms. Another key feature of
the plane wave method is the possibility of enforcing constant
resolution of the basis set while varying unit cell parameters.18 It
is generally observed that convergence of the stress tensor
requires a higher plane wave cutoff and larger values of a than
convergence of band gaps, which benefit from cancellation of
errors in the absolute eigenvalues. Nevertheless, the stress tensor
computed with an appropriately increased Ecut yields accurate
values of equilibrium lattice constants. Importantly, the AEPW
approach allows for the direct calculation of the stress tensor and
does not rely on a fit of the energy to an equation of state for the
calculation of the equilibrium lattice constant. This is
particularly relevant in systems of lower symmetry in which
the unit cell is described bymultiple parameters, which make the
fitting procedure impractical. Our last example (liquid water)
also shows that an AEPW calculation can be used to test the
accuracy of ionic forces. The validity of the pseudopotential
approximation, and/or the use of a localized basis set, can be
tested quantitatively.
The AEPW approach is expected to enable precise

comparisons between different exchange-correlation func-
tionals, without the additional uncertainty associated with the
construction of a pseudopotential appropriate for a given density
functional. It also avoids the need to rely on approximations in
the FLAPW method such as described in ref 17 where the self-
consistent computation of localized orbitals added to the basis
may not be feasible with complex, e.g., meta-GGA, functionals.
AEPW calculations are straightforward but computationally

expensive, particularly in terms of memory usage, due to the
large plane wave basis used. The calculations presented here
were made possible by the scalability of the Qbox code that
distributes simultaneously plane wave basis functions, bands,
and k-points to different processor partitions. While the smaller
calculations (e.g., diamond band structure) fit on a moderate-
size cluster, the larger ones (e.g., (H2O)64 and FCC Ar) used up
to 512 nodes of the Theta Intel-Cray XC40 computer installed
at Argonne National Laboratory.

Figure 5. Distribution of ionic forces in a 64-molecule H2O snapshot,
computed using the AEPW approach with Ecut = 30 kRy. The Gaussian
kernel bandwidth used is 0.003 (a.u.).

Figure 6. Distribution of the error in ionic forces computed using an
SG15 pseudopotential and a TZV2P-GTH basis set, referred to the
AEPW results. The Gaussian kernel bandwidth used is 0.00025 (a.u.).
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6. CONCLUSIONS
We have demonstrated the feasibility of all-electron, plane wave
electronic structure calculations. Calculations of the electronic
structure of atoms and periodic solids show that accurate values
of energies, ionic forces, stress tensor, and band gaps can be
obtained. The method relies on the use of an analytic, norm-
conserving, regularized potential that replaces the Coulomb
potential describing the electron−ion interaction. The calcu-
lations presented make use of a scalable implementation of the
plane wave method that can accommodate large plane wave
energy cutoffs, up to 80 kRy in the examples considered. Fast
convergence of the self-consistent iterations is achieved by
gradually increasing the plane wave energy cutoff during the
calculation, in a process similar to the Full Approximation
Scheme used in multigrid methods. The simplicity of the plane
wave method makes it an appealing approach when implement-
ing complex density functionals, such as meta-GGA functionals.
Quantities such as ionic forces or stress tensors are readily
available in a conventional implementation without additional
work. AEPW calculations also allow for the validation of the
approximation in which a pseudopotential derived using a given
exchange-correlation functional is then used with another
functional. An example of such validation using the SCAN
functional with PBE-derived potentials was presented for
diamond and silicon. The extension of the AEPW method to
include relativistic effects is under development.
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