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ABSTRACT OF THE THESIS

Alzheimer’s Disease Prediction from Handwriting

using Machine Learning Algorithms

by

Xinyue Chen

Master of Science in Statistics

University of California, Los Angeles, 2024

Professor Yingnian Wu, Chair

Alzheimer’s disease is a type of neurodegenerative disease that is common among the elderly.

Although there is no cure, early diagnosis allows for treatments that can manage and delay

the symptoms. We will employ machine learning algorithms, such as logistic regression,

random forest, and extreme gradient boosting, to predict Alzheimer’s disease in two exper-

iments. In the first experiment, each model is applied to all 450 features. In the second

experiment, each model is applied to 25 different feature sets, with one set corresponding to

each task. Predictions are based on the DARWIN (Diagnosis AlzheimeR WIth haNdwrit-

ing) dataset, and model performance is measured using accuracy, ROC curves, and AUC.

The results indicate that the random forest model applied to all 450 features is the best

performing model in predicting Alzheimer’s disease, achieving a model accuracy of 91.43%

and an AUC of 0.9441.
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CHAPTER 1

Introduction

Alzheimer’s disease is a type of neurodegenerative disease that causes disability in cognitive

and memory functions and is common among elderly people. Unfortunately, there is no cure

to Alzheimer’s disease and its symptoms tend to become more persistent as the disease pro-

gresses. However, medication can help manage and delay Alzheimer’s symptoms. Therefore,

early diagnosis of Alzheimer’s disease is crucial for slowing the progression of the disease.

Nevertheless, early detection of the disease can be tedious and costly due to extensive data

collection and advanced tools required [1].

Machine learning algorithms have been a dominant method in disease prediction and aid-

ing clinical assessments. Most related studies have utilized machine learning algorithms such

as classification on MRI images and support vector machine models to predict Alzheimer’s

disease. Rana et al. developed a model called MudNet, which is trained and validated using

both clinical data and structural MRIs to predict the conversion of mild cognitive impairment

to Alzheimer’s disease [2]. The model achieves an accuracy of 69.8% in conversion predic-

tion and an accuracy of 66.9% in risk classification predictions [2]. Huang et al. achieved a

model accuracy of 80.0% with support vector machine classifier on the Alzheimer’s Disease

Neuroimaging Initiative dataset, which integrates both clinical and MRI data [3].

Given that cognitive functions are associated with coordinating and executing actions,

and since handwriting necessitates coordination between the brain and the body, analyzing

handwriting behaviors could serve as a cost-effective approach in monitoring the progression

of the disease [4]. To evaluate which set of features can effectively distinguish between
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Alzheimer’s patients and healthy individuals, we will implement logistic regression, random

forest, and extreme gradient boosting. We chose these models because they are widely used

and represent a variety of classification algorithms. We will assess their performance using

model accuracy, ROC curve analysis, and AUC interpretation.
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CHAPTER 2

Data

2.1 Data Overview

The data used for this project was obtained from the UCI Machine Learning Repository.

The name of this dataset is the DARWIN dataset, which stands for Diagnosis AlzheimeR

WIth haNdwriting [5]. The first 6 rows of the raw data is shown in Table 2.1.

Table 2.1: First 6 rows of the raw data

The dataset contains 174 observations, where each observation represents a participant.

Out of the 174 participants, 89 are Alzheimer’s patients and 85 are healthy people. To avoid

any bias, the participants were recruited to ensure that the two groups matched in terms of

age, level of education, work, and gender [4]. Each participant is asked to perform 25 tasks,

with each task belonging to one of the following categories: graphic, copy, or memory (Table

2.2).
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Table 2.2: List of 25 tasks

For each task, 18 features were extracted:

• total time: Total time spent to perform the entire task

• air time: Time spent to perform in-air movements

4



• paper time: Time spent to perform on-paper movements

• mean speed on paper: Average speed of on-paper movements

• mean speed in air: Average speed of in-air movements

• mean acc on paper: Average acceleration of on-paper movements, where acceleration

is the variation of speed with respect to time

• mean acc in air: Average acceleration of in-air movements

• mean jerk on paper: Average jerk of on-paper movements, where jerk is the variation

of acceleration with respect to time

• mean jerk in air: Average jerk of in-air movements

• pressure mean: Average of the pressure levels exerted by the pen tip

• pressure var: Variance of the pressure levels exerted by the pen tip

• gmrt on paper: Generalization of the Mean Relative Tremor (MRT) computed for on-

paper movements, where MRT measures the amount of tremor in drawing spirals and

meanders

• gmrt in air: Generalization of the Mean Relative Tremor computed for in-air move-

ments

• mean gmrt: Average of GMRT on-paper and GMRT in-ai

• num of pendown: Counts the total number of pendowns recorded during the execution

of the entire task

• max x extension: Maximum extension recorded along the X axis, which is calculated

from the difference between its farthest/nearest points to the origin on the X axis
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• max y extension: Maximum extension recorded along the Y axis, which is calculated

from the difference between its farthest/nearest points to the origin on the Y axis

• disp index: Measurement of how the hand-written trace is “dispersed” across the entire

piece of paper.

All features are numerical variables. In addition to these features, there is also an “ID”

column, which contains a list of consecutive numbers from 1 to 174, and a “class” column,

where “P” indicates Alzheimer’s patients and “H” indicates healthy people. Thus, the total

number of columns for this dataset is 251.

2.2 Data Cleaning

The first step in data cleaning is to drop the “ID” column because it is irrelevant in evaluating

model performance and classifying Alzheimer’s disease. Next, we search for and remove rows

containing missing values and duplicate rows. It appears that the dataset does not contain

any missing values or duplicate rows. Lastly, the outcome variable “class” is converted to

a binary variable, where 0 corresponds to healthy people and 1 corresponds to Alzheimer’s

patients.

2.3 Exploratory Data Analysis

In this section, we will analyze the relationship between all the features and Alzheimer’s

disease using numerical measures and graphical representations, such as barplot, histograms,

and correlation map. Since the goal of the project is about classification of Alzheimer’s

disease, it is crucial that we first check if the dataset is balanced. From the barplot in Figure

2.1, we can see that the dataset is fairly balanced, comprising 85 healthy people and 89

Alzheimer’s patients. Given the small difference between the two groups, it appears that

resampling of the training data is not necessary.
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Figure 2.1: Distribution of groups

We can compare the difficulty of different tasks by analyzing and averaging the variable

total time for each task. From Table 2.3, we observe a noticeable difference in the average of

total time for each task, suggesting that there are substantial differences in task difficulty.

Task 19 has the longest average total time of 558,164.1, while task 18 has the shortest average

total time of 5,822.408. This can be useful in our analysis because tasks with different levels

of difficulty target different parts of the brain, making them more effective in discriminating

between Alzheimer’s patients and healthy individuals.
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Table 2.3: Mean of total time

Next, we will use histograms to visualize the distribution of the features and check for

potential outliers. Since there is a large set of features, we will focus on the histograms of

total time (Figure 2.3) and disp index (Figure 2.4) for all 25 tasks. From the histograms,

the distributions of total time for all 25 tasks appear to be heavily right-skewed and it

appears that there exists large outliers for the majority of the tasks. These large outliers are

likely Alzheimer’s patients who take longer time to complete the required tasks compared

to healthy individuals. Since they represent natural variations within the population, these

large outliers should be retained and not removed. Unlike the distribution of total time,

the majority of the distributions of the disp index appear to be roughly symmetric, with a

few exhibiting right-skewness. Those exhibiting right-skewness appear to have large outliers,

which again are likely Alzheimer’s patients who tend to add unnecessary spacing in their

handwriting.

Lastly, we will use a heat map to visualize the correlation matrix and identify the re-

lationship between variables. We will again use total time as an example. The color scale

ranges from dark blue (indicating a strong negative correlation) to dark red (indicating a

strong positive correlation), with lighter shades indicating weaker correlations. Figure 2.2

indicates that there are no strong negative correlations among the 18 features with a few

strong positive correlations present. Majority of the features have a correlation coefficient
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between -0.5 and 0.5.

Figure 2.2: Heat map of total time
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Figure 2.3: Histograms of the distribution of total time
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Figure 2.4: Histograms of the distribution of disp index
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CHAPTER 3

Methods

The first step is to split the data into training and testing sets. This ensures that the

data used to train the model is not used to make predictions of Alzheimer’s disease. In

this project, we choose the size of the training set to be 80% of the data size, which is

139, and the size of the testing set to be 20% of the data size, which is 35. Since there

are a total of 450 features and only 174 rows, there exists potential issues in model fitting

and analysis, such as overfitting and lack of generalization. To mitigate these problems, we

will run two experiments. In the first experiment, we will evaluate the performance of each

model by considering all 450 features. In the second experiment, we will fit each model on 25

different feature sets, with one set corresponding to each task. The classification models used

are logistic regression, random forest, and extreme gradient boost. We chose these models

because they are widely used and that they represent a variety of classification algorithms.

The techniques that we will use to assess model performance are model accuracy, ROC

(receiver operating characteristic) curve, and AUC (area under the ROC curve).

3.1 Logistic Regression

Since the outcome variable “class” is a binary categorical variable that takes values of 0

and 1, a common and simple method to use is logistic regression. Logistic regression is a

supervised machine learning binary classification algorithm [6]. The outcome follows the
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logistic sigmoid function:

P (x) =
1

1 + e−x′β
,

where P(x) is the probability function that returns a value between 0 and 1, e is Euler’s

number, x is the set of features, and β is a vector of unknown parameters. The advantages

of logistic regression include its ease to use, taking less time to train, and tendency to yield

low variance, while the disadvantage is that it does not work well with highly correlated

attributes [7].

In the first experiment, we fit the data with logistic regression using all 450 features and

calculate model accuracy using the formula

Accuracy =
# of Correct Predictions

Total # of Predictions

The resulting model accuracy is 57.14%. This accuracy suggests that logistic regression

may not be an effective model for all 450 features, as its performance is only slightly better

than random guessing, which is 50%. Therefore, we evaluate whether model accuracy can

be further improved by fitting logistic regression on each of the 25 tasks separately in the

second experiment. The resulting 25 accuracies are shown in Table 3.1. The lowest accuracy

is observed in task 1, which is the same accuracy as if we fit all 450 features together. The

highest accuracies, 80.00%, are observed in tasks 2, 7, 9, 12, 13, and 16. Notably, tasks 7,

9, 12, 13, and 16 are all copy tasks, suggesting that logistic regression may be more effective

at using copy tasks to predict Alzheimer’s disease. By averaging the 25 model accuracies,

we obtain a mean accuracy of 71.20%. This suggests that, on average, logistic regression

performs better when applied separately to individual tasks compared to using all features

together.
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Table 3.1: Accuracy (in percentage) achieved by logistic regression on each task

ROC curves depict the trade-off between sensitivity (true positive rate) and specificity

(false positive rate), and are used extensively in clinical assessments and in classification of

diseased individuals from the healthy individuals [8]. Optimal performance is indicated by a

curve closer to the top-left corner, while inferior performance is indicated by a curve closer

to the diagonal line. We will use AUC values in comparison with ROC curves to assess

model performance and the model’s ability to discriminate Alzheimer’s patients from the

healthy individuals. The AUC value ranges between 0.5 and 1, with higher values indicating

a better ability to discriminate between patients and healthy individuals [9]. The model

fitted on task 2 yielded the highest AUC value of 0.8421, while the model fitted on task 22

yielded the lowest AUC value of 0.602. By considering model accuracy, ROC curves, and

AUC values, the logistic regression model fitted on task 2 is the top performing model.
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Figure 3.1: ROC curves for logistic regression on 25 tasks
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Table 3.2: AUC for logistic regression on 25 tasks

3.2 Random Forest

Random forest is a supervised machine learning algorithm that is efficient in classification

problems by combining multiple decision trees to produce more accurate predictions [10].

Since these decision trees were trained on different subsets of the data, random forest is

more resistant to the problem of overfitting. Other advantages of random forest include

high flexibility and high accuracy, while the disadvantages are that it is time consuming and

requires a lot of computation [7].

In the first experiment, we first fit the data with a random forest using all 450 features.

The resulting model accuracy is 91.43%, indicating that random forest is an effective method

in predicting Alzheimer’s disease. For analysis purposes, we will proceed to the second

experiment in performing random forest on each of the 25 tasks separately. The resulting

accuracies are shown in Table 3.3. The lowest accuracy, 62.86%, is observed in task 22, while

the highest accuracy, 88.57% is observed in task 17. By averaging the model accuracies of

the 25 tasks, we obtain a mean accuracy of 74.06%. Despite the high accuracy observed in

task 17, the model accuracy is still lower than the model accuracy obtained by considering all

450 features. This suggests that random forest performs better when applied to all features
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together compared to when it is applied to individual tasks separately.

Table 3.3: Accuracy (in percentage) achieved by random forest on each task

We proceed to the analysis of ROC curves and AUC interpretations. From Figure 3.2,

we observe that the ROC curve for task 17 is extremely close to the top-left corner, which

aligns with its extremely high AUC value of 0.9803 in Table 3.4. This suggests that random

forest fitted on task 17 is the top performing model, given that random forest is fitted on

each task separately.
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Figure 3.2: ROC curves for random forest on 25 tasks
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Table 3.4: AUC for random forest on 25 tasks

3.3 Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is a decision tree-based machine learning algorithm.

It is more efficient than other algorithms because the output of the model is decided by

previous trees rather than the majority [11]. Other advantages of XGBoost include ability

to prevent overfitting for clean data and ability to handle data with missing values, while

the disadvantage is that XGBoost is more difficult to understand [7].

In the first experiment, we first fit the data with XGBoost using all 450 features. The

resulting model accuracy is 85.71%, which suggests that XGBoost is an efficient method

in predicting Alzheimer’s disease. We can check if there is more room for improvement by

fitting XGBoost on each of the 25 tasks separately in the second experiment. The resulting

model accuracies for the 15 tasks are shown in Table 3.5. The lowest accuracy, 48.57%, is

observed in task 2, while the highest accuracy, 94.29% is observed in task 17. To determine

whether XGBoost fitted on task 17 is the top performing model, we need to employ ROC

curves and AUC analysis. By averaging the accuracies of the 25 tasks, we obtain a mean

accuracy of 71.43%, which is lower than the model accuracy obtained by considering all 450

features.
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Table 3.5: Accuracy (in percentage) achieved by XGBoost on each task

We then proceed to the analysis of ROC curves and AUC interpretations. From Figure

3.3, we see that the ROC curve for task 17 is extremely close to the top-left corner, which

aligns with its extremely high AUC value of 0.9803 in Table 3.6. By considering model

accuracy, ROC curves, and AUC, the top performing model is XGBoost fitted on task 17,

given that XGBoost is fitted on each task separately.
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Figure 3.3: ROC curves for XGBoost on 25 tasks
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Table 3.6: AUC for XGBoost on 25 tasks
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CHAPTER 4

Results

By analyzing all 450 features together in the first experiment, the model accuracy of logistic

regression, random forest, and XGBoost are 57.14%, 91.43%, and 85.71%, respectively. We

observe that the model accuracies from the three models vary significantly, with the model

accuracy obtained from logistic regression being only slightly better than random guessing. A

comparison of the ROC curves of the three methods is shown in Figure 4.1. We observe that

the ROC curve for logistic regression is very close to the central diagonal line, suggesting

its performance is only slightly better than chance. ROC curves for both random forest

and XGBoost are close to the top-left corner, indicating good model performance.The AUC

values for logistic regression, random forest, and XGBoost are 0.5312, 0.9441, and 0.9276,

respectively. The results from model accuracy, ROC curves, and AUC all indicate that

random forest is the top performing model for considering all 450 features.
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Figure 4.1: ROC curve of methods applied to all 450 features

Since different classification models achieved varying performance, we designed a second

experiment where we applied three models on each task separately and combined the results.

In the second experiment, the mean accuracy over the 25 tasks for logistic regression, random

forest, and XGBoost are 71.20%, 74.06%, and 71.43%, respectively. On average, random

forest is the best performing model. Unlike in the first experiment, where the differences

between model accuracies were significant, the differences between model accuracies fitted on

each of the 25 tasks separately were small. The mean accuracies over the 25 tasks suggest that

all three methods are good performing models, but there is potential room for improvement.

One notable result observed in Chapter 3 from the AUC tables is that both random forest

and XGBoost models fitted on task 17 yielded the same AUC value of 0.9803. This suggests

that the two methods, on average, have the same ability in distinguishing the two classes
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using task 17. The remarkably high AUC indicates that both random forest and XGBoost

models fitted on task 17 have excellent power in discriminating between Alzheimer’s patients

and healthy individuals.

Moreover, the results from the predictive models suggest which sets of features are effec-

tive in distinguishing Alzheimer’s patients with healthy individuals. The remarkably high

accuracy and AUC of task 17 suggests that task 17 is significant in predicting Alzheimer’s

disease. We can draw a connection to the average total time for task 17 mentioned in Section

2.3, where task 17 has the second longest average total time. Task 19, which has the longest

average total time among the 25 tasks, is the only other task with an AUC over 0.9 besides

task 17. These results suggest that tasks with higher levels of difficulty are likely to be

more effective in distinguishing between Alzheimer’s patients and healthy individuals. An-

other notable result is that the model accuracy obtained from XGBoost on task 2 is 48.57%,

which is lower than the accuracy obtained from random guessing. This result is surprising

since XGBoost is known for its high accuracy. The low accuracy suggests that task 2 may

not be significant in predicting Alzheimer’s disease using XGBoost and therefore could be

eliminated when constructing the final model.

In determining the best classification model for each task, we will prioritize AUC over

model accuracy due to its robustness against prior class probabilities [12]. Consider the

abbreviation for logistic regression, random forest, and XGBooost as LR, RF, and XGB,

respectively. The best classification methods by task are RF, LR, LR, LR, RF, LR, RF,

XGB, RF, RF, RF, RF, LR, RF, LR, RF, XGB, RF, RF, RF, RF, RF, RF, RF, and LR.

We observe that random forest is the best method for 16 out of the 25 tasks, indicating its

strong performance and robustness in classifying Alzheimer’s disease. In both experiments,

random forest has the best predictive power among the three methods. Despite that the mean

accuracies over the 25 tasks for logistic regression and XGBoost have minimal difference,

logistic regression is the best method for 7 tasks while XGBoost is the best for only 2 tasks.

Although XGBoost is the most preferred method in developing predictive models due to
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its remarkable accuracy and many notable advantages [13], the low occurrence of XGBoost

suggests that other methods are more suitable for these 25 specific tasks.
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CHAPTER 5

Conclusion and Future Work

The goal of this project is to implement three machine learning algorithms, logistic regression,

random forest, and extreme gradient boosting, on the handwriting dataset and evaluate

model performance using model accuracy, ROC curves, and AUC interpretations. The results

from chapter 3 and 4 demonstrate that employing random forest on the 18 features extracted

from the 25 tasks, totaling 450 features, yielded better performance than the models fitted

solely on the 18 features from each task. The resulting model accuracy is 91.43% with

AUC of 0.9441. From the results, we can infer that the feature set of task 17 is effective in

distinguishing Alzheimer’s patients with the healthy individuals.

All together, the results support the fact that including different handwriting tasks with

different levels of difficulty allows for the discrimination of Alzheimer’s patients with healthy

individuals. Furthermore, these results prove that the three methods all achieved a mean

accuracy over 70%, indicating the set of features used in this project is capable of capturing

the distinctive handwriting characteristics of Alzheimer’s patients. All the models, except

for logistic regression applied to all 450 features, have demonstrated good performance in

predicting Alzheimer’s disease.

Even though the three methods demonstrated good performance, there is still room for

improvement. For example, we can reduce bias introduced by randomness by performing

multiple runs. We could also perform k-fold cross validation before training the data to yield

a more reliable estimate model performance. In addition, utilizing the tuning parameter

that minimizes the cross-validated error to build the final model helps prevent overfitting
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[14]. Lastly, instead of fitting the models on each task separately, we could apply feature

selection techniques to extract the most relevant features in model construction to increase

model accuracy and efficiency. Since each feature selection technique has its own strengths

and weaknesses, it is common that researchers combine multiple techniques to extract the

most relevant features [15].
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