
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Classifying Data to Reduce Long-Term Data Movement in Shingled
Write Disks

Permalink
https://escholarship.org/uc/item/7mt3s7b2

Journal
ACM Transactions on Storage, 12(1)

ISSN
1553-3077

Authors
Jones, Stephanie N
Amer, Ahmed
Miller, Ethan L
et al.

Publication Date
2016-02-26

DOI
10.1145/2851505

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7mt3s7b2
https://escholarship.org/uc/item/7mt3s7b2#author
https://escholarship.org
http://www.cdlib.org/

2

Classifying Data to Reduce Long-Term Data Movement
in Shingled Write Disks

STEPHANIE N. JONES, University of California, Santa Cruz
AHMED AMER, Santa Clara University
ETHAN L. MILLER, DARRELL D. E. LONG, REKHA PITCHUMANI,
and CHRISTINA R. STRONG, University of California, Santa Cruz

Shingled magnetic recording (SMR) is a means of increasing the density of hard drives that brings a new set
of challenges. Due to the nature of SMR disks, updating in place is not an option. Holes left by invalidated
data can only be filled if the entire band is reclaimed, and a poor band compaction algorithm could result
in spending a lot of time moving blocks over the lifetime of the device. We propose using write frequency to
separate blocks to reduce data movement and develop a band compaction algorithm that implements this
heuristic. We demonstrate how our algorithm results in improved data management, resulting in an up to
45% reduction in required data movements when compared to naive approaches to band management.

CCS Concepts: � Information systems → Magnetic disks; � Hardware → Memory and dense stor-
age; � Computing methodologies → Modeling and simulation

Additional Key Words and Phrases: Storage, shingled write disks, shingled magnetic recording drives, data
placement

ACM Reference Format:
Stephanie N. Jones, Ahmed Amer, Ethan L. Miller, Darrell D. E. Long, Rekha Pitchumani, and Christina
R. Strong. 2016. Classifying data to reduce long-term data movement in shingled write disks. ACM Trans.
Storage 12, 1, Article 2 (February 2016), 17 pages.
DOI: http://dx.doi.org/10.1145/2851505

1. INTRODUCTION

Shingled magnetic recording (SMR) disks are devices that increase the storage den-
sity of traditional disk media by writing overlapping wide tracks of data, resulting
in a shingle-like arrangement of the tracks. This presents us with a problem when
overwriting previously written data, as it cannot be done without overwriting adjacent
tracks. Overlapping tracks are therefore arranged into bands, and space reclamation
is done at a band level.

SMR disks therefore must employ band compaction to reclaim bands containing
overwritten data, a concept similar to log-structured file system (LFS) cleaning. A

This work is supported in part by the National Science Foundation under award IIP-1266400 and industrial
members of the Center for Research in Storage Systems. A. Amer and D. D. E. Long were supported in
part by the National Science Foundation under awards CCF-1219163 and CCF-1217648, by the Department
of Energy under award DE-FC02-10ER26017/DE-SC0005417, by the industrial members of the Storage
Systems Research Center, and by a gift from Wells Fargo.
Authors’ addresses: S. N. Jones, A. Amer, E. L. Miller, D. D. E. Long, R. Pitchumani, and C. R. Strong, 1156
High Street, Santa Cruz, CA 95064.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1553-3077/2016/02-ART2 $15.00
DOI: http://dx.doi.org/10.1145/2851505

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

http://dx.doi.org/10.1145/2851505
http://dx.doi.org/10.1145/2851505

2:2 S. N. Jones et al.

number of bands are read in their entirety, and the valid blocks are compacted to a
fewer number of bands, creating bands of free space. However, this can easily become
expensive when the band compaction strategy is frequently moving data. We pro-
pose an algorithm for band compaction specifically designed to reduce long-term data
movement.

The more time a shingled disk spends in band compaction, the more it is wasting re-
sources. In the worst case, the system may need to block for I/O until band compaction
completes, making band compaction the bottleneck in the system and drastically re-
ducing system responsiveness during that time. It is therefore necessary to develop
band compaction strategies that mitigate the cost to the system. We claim that by
separating blocks that are frequently updated from blocks that are less frequently
(or never) updated, we can move fewer blocks in the long term. By applying this to
band compaction, we have developed an algorithm that seeks to reduce long-term data
movement, potentially increasing the benefits of eliminating unnecessary activity and
data movement in addition to reducing the overheads of employing SMR media.

To reduce data movement, we are looking at using write heat as a metric to guide band
compaction. For the purposes of this article, write heat is measured in the frequency
of writes to an LBA. By separating incoming write data based on write heat, we can
reduce the likelihood of a band containing a mixture of hot and cold data. Bands that
contain a mix of hot and cold data are more expensive to compact than bands that
contain only hot or only cold data. In addition, having a large number of mixed bands
can result in band compaction occurring at a higher frequency.

For our purposes, we define data blocks to be “hot” if they have been overwritten at
least once and “cold” otherwise. Bands that contain only cold data will be selected for
compaction more frequently and have more data that must be copied. Normally, this
would cause concern, but if the blocks are cold, they are expected to be long lived and
less likely to leave holes in a band. Bands that contain only hot data will be compacted
less often and will have less data that needs to be copied per hot band. However, these
blocks are volatile and are likely to be invalidated in the future leaving holes in the
bands. Classifying data as hot or cold and placing it accordingly helps to reduce both
the number of bands read before performing compaction as well as the overall amount
of data copied during band compaction.

There are currently three types of SMR disks: drive managed, host managed, and
host aware) [Aghayev and Desnoyers 2015]. Drive-managed SMR disks present a block-
based interface that is currently used in nonshingled hard drives. It employs a shingle
translation layer to map the blocks to their particular band. A host-managed drive
requires data sent to the drive to be written sequentially to its bands. Finally, a host-
aware drive has bands to which it prefers to receive sequential writes, but it also
maintains an internal shingle translation layer for any incoming nonsequential writes.
The work presented in this article is best suited for drive-managed SMR disks, but it
can also work for host-aware and host-managed SMR disks. To simulate SMR disks, we
implemented an LFS-based translation layer with a block-based API. LFS segments
and SMR bands are similar in concept, and band compaction in an SMR disk parallels
segment cleaning in an LFS. However, due to the unique properties of SMR disks,
directly porting an LFS is not feasible.

Within this system, we replayed traces from the MSR Cambridge dataset [Narayanan
et al. 2008]. We applied our algorithm and compared it against a greedy algorithm that
focuses on compacting the emptiest bands. Our algorithm gives priority to the emptiest
bands but also weights how much of the band consists of cold data when selecting bands
for band compaction. We have found that the optimal value for the weight on cold varies
depending on the workload. We have also identified several weight values that, while
not optimal, provide a reduction in data movement.

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

Classifying Data to Reduce Long-Term Data Movement in Shingled Write Disks 2:3

2. RELATED WORK

A log-structuring of data, possibly through an LFS or block remapping layer, seems
suitable for SMR disks. However, for an LFS to work for SMR disks, data movement
needs to be minimized, as writing to a band is not the same as writing to the log in the
original LFS. Specifically, you cannot plug the holes in any of the bands, and you cannot
update in place. The goal of the original LFS was focused on creating large continuous
spaces in which to write the log. This directly conflicts with our goal of maximizing the
utilization of a band while minimizing data movement (thereby reducing the overall
performance overhead of employing SMR disks).

Since SMR technology was developed after the original LFS, there are characteristics
of SMR disks that the original LFS cannot fully utilize. Shingled disks may have a
random access zone (RAZ) that can be used to hold metadata and other frequently
modified data. Metadata updates in an LFS are stored, like everything else, in the log.
This can result in frequent holes in LFS segments, forcing cleaning to happen more
often. Unless the segment is empty, segment cleaning results in data movement; an
increase in cleaning is contradictory to our goal.

2.1. Log-Structured File Systems and Their Successors

The LFS is a file system optimized for writing [Rosenblum and Ousterhout 1992]. It
assumes that main memory will satisfy more read requests as the size of main memory
increases. This means that most requests that make it to disk will be write requests.
The LFS appends all modifications to on-disk data to the end of the log. By appending
to the end of the log, the LFS is able to maximize disk bandwidth for writing. The log
is divided into segments, and a garbage collection policy is implemented to periodically
clean the segments. The LFS implements a cost-benefit policy for segment cleaning,
shown in the following formula:

cost
benefit

= free space generated × age of data
cost

.

The free space generated is measured by how much of the segment still contains
live data. The age of the data is the age of the most recently modified block in the
segment, meaning that heat is calculated on a per-segment basis. The cost of cleaning
the segment is measured as the cost to read the segment plus the cost of writing the live
data elsewhere. A problem with the cost-benefit policy is that if there is one recently
modified block but the rest of the data in the segment is very old, the age calculation
can be misleading.

Although an LFS segment and an SMR disk band are similar, our definition of heat is
different. The original LFS makes two major assumptions: first, that heat is related to
the recency of write, and second, that blocks within a segment are written and modified
together. We chose to begin by looking at heat as the frequency of a write to an LBA.
This allows us to give data a value for heat that can later be changed with age rather
than a static “hot” or “cold” assignment. In addition, rather than considering heat on
a segment basis, we calculate heat on a per-LBA basis. In this way, we can designate
heat for specific logical locations and assign blocks to hot or cold bands as they are
being written.

BSD-LFS took the original design of LFS and modified it to work with UNIX
FFS [Seltzer et al. 1993]. The authors evaluated BSD-LFS using three workloads,
the most notable of which was the TPCB benchmark. When testing BSD-LFS using
the TPCB benchmark with 85% disk utilization, the cleaner was constantly running
and copying large amounts of data into new segments. Blackwell et al. [1995] developed
a simple heuristic to reduce the overhead found in BSD-LFS. They showed that 97%
of all cleaning in LFS during their tests could be done in the background. The authors

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

2:4 S. N. Jones et al.

used a simple heuristic of whether the disk had been idle for 2 seconds to signal that
the segment cleaner should begin running. Such a technique is complimentary to our
algorithm and could be applied to SMR disks to compact fragmented bands in the
background rather than waiting for the disk to run out of free bands and compacting
on demand.

Matthews et al. [1997] demonstrated how to overcome the segment cleaning problem
at higher disk utilizations. They present an adaptive cleaning mechanism that chooses
either full segment cleaning, as in LFS, or their technique of hole-plugging. Hole-
plugging reads in segments to be cleaned and fills holes found in other segments
with parts of the just-read segment. Traditional LFS segment cleaning provides the
best performance until the disk utilization reaches 80% to 85%, at which point hole-
plugging provides superior performance. It is important to note that on a standard
disk, the reason hole-plugging becomes better is because at 80% to 85% utilization,
traditional LFS segment cleaning drops significantly in performance, as shown in
BSD-LFS. Since hole-plugging is not generally usable in SMR disks, with the possible
exception of within the RAZ, this work is supplementary at best.

PROFS is a data reorganization scheme that is aimed at improving I/O performance
for LFS on drives with zone-bit recording (ZBR) technology [Wang and Hu 2001]. It
places “active” segments on the outer zones and inactive segments on the inner zones
to optimize for faster writes. A segment’s active ratio is calculated using the average of
the active ratio of each file in the segment. As in LFS, active is calculated by looking
at recency of access, but PROFS also considers the size of the file and the last active
ratio. The reorganization happens during LFS garbage collection. We will improve on
the ideas behind PROFS by identifying hot and cold according to frequency at a block
level and place it accordingly as well as reorganize during band compaction.

The closest LFS implementation to our work is the reordering write buffer of LFS,
or WOLF [Wang and Hu 2002]. WOLF sorts the incoming write data blocks into active
and inactive data buffers, again using recency of access as the metric for active. The
sorting of data before it is written to disk is intended to reduce the overhead of the
segment cleaner. WOLF follows Matthews’ proposed cleaning heuristic of combining
the LFS cost-benefit policy with hole-plugging. In addition to using frequency of access
as our metric, we continue to evaluate data during band compaction and place data in
hot and cold bands appropriately.

HyLog proposes a new type of hybrid log design to address LFS’s poor cleaning
performance at high disk utilizations [Wang et al. 2004]. HyLog writes hot pages using
standard LFS techniques but writes cold pages in an “update-in-place” style that they
call overwrite. Heat is measured on a per-disk-page basis, using frequency of write over
an interval of time. Each disk page has a counter that is incremented every time it
receives a write during the measurement interval. After this interval, the division of
hot and cold pages occurs.

Segment cleaning in HyLog is adapted from Matthews’ cleaning technique with a
notable change: in Matthews’ work, the cleaning choices are either cost-benefit or hole-
plugging, and the ratios are calculated over every segment equally, but HyLog separates
the ratios based on the heat of the segment. Specifically, HyLog compares the best ratio
for hole-plugging over hot data, cost-benefit over hot data, hole-plugging for cold data,
and cost-benefit for cold data. Although this is effective for LFS, hole-plugging is not
viable for SMR disks, nor is updating in place.

There is often write contention found between the segment cleaner and the incoming
data to be written. Gecko [Shin et al. 2013] solves this problem by chaining a small
number of hard drives together into a single log. The tail of the log then is at a separate
hard drive than the head of the log. By separating the head and tail of the log in this
way, there is no longer write contention, as new data can be written to one drive while
another is cleaning segments.

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

Classifying Data to Reduce Long-Term Data Movement in Shingled Write Disks 2:5

2.2. Flash

There is a rich body of work in the area of Flash storage that focuses on the separation of
hot and cold data [Desnoyers 2014; Hsieh et al. 2006]. However, some of the restrictions
that apply to Flash and solid state drives can be ignored for SMR disks and vice
versa [Desnoyers 2013]. For instance, SMR disks do not care about wear leveling, nor
is it necessary to zero a band before writing to it. In addition, bands can and will
increasingly become much larger than a Flash page or erase block. When reading or
writing data, there are seek penalties that must be considered for hard drives that
do not exist for Flash. Therefore, any application of techniques borrowed from Flash
would be in the spirit of their original work and would not be likely to work as a direct
port.

2.3. Shingled Disk

Amer et al. originally introduced the potential for SMR disks and the changes that
would be required for their adoption [Amer et al. 2010]. Pitchumani et al. emulated a
shingled write disk on a traditional hard drive. While informative, it is not necessary
to fully emulate a shingled write disk to measure the reduction in data movement
[Pitchumani et al. 2012]. Skylight [Aghayev and Desnoyers 2015] was novel and drilled
a hole into a SMR drive to understand how Seagate SMR drives work. This work will
be instrumental in making decisions when testing our approach in the future.

Much of the research on SMR disks has focused on mitigating the “random update
problem” [Hall et al. 2012; He and Du 2014; Cassuto et al. 2010; Lin et al. 2012]. This
is because due to the nature of SMR disks, random updates cannot happen. This work
is complementary to ours, as we do not treat random updates any differently. Since
band compaction is an inevitability, our work focuses on the proper selection of bands
for compaction.

There has been some work on developing file systems for SMR drives [Le Moal et al.
2012; Jin et al. 2014], which is also complementary to our work. If we have semantic
information from the file system, we can make better decisions on which bands have
data that are likely to stay cool and which are likely to heat up. HiSMRfs [Jin et al.
2014] is capable of handling raw SMR drives, which would make providing information
to the algorithms to select the proper bands for compaction more transparent.

3. ALGORITHMS

To use shingled disks effectively, we look at algorithms for reducing data movement
during band compaction. Our approach is to look at the nature of the data blocks,
classifying them appropriately. Techniques like this have been used in the past to
produce self-optimizing data storage systems [Bhadkamkar et al. 2009] and to reduce
energy consumption of massive storage systems and devices [Essary and Amer 2008].
To that end, we have developed a mechanism for classifying the hotness and coldness of
data blocks that can be employed as part of the band compaction process. We compare
our cold-weight algorithm against the more traditional baseline ranking that does not
attempt to classify the blocks.

3.1. Empty

Empty is our greedy naive algorithm, which will always try to find an empty band. If
there are no completely empty bands, empty will pick the bands with the least amount
of live data to compact together. When compacting, empty will only find the number of
bands it needs. For example, in two-band compaction, empty will stop after finding the
two bands with the least amount of live data; in four-band compaction, empty will stop
after four.

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

2:6 S. N. Jones et al.

Fig. 1. Example of why we need the weights in cold-weight. In (a), we show the formula for cold-weight
without the weight. Without the weight, it picks the segment that is 75% full of cold blocks. In (b), we show
that cold-weight in the same example with a weight of 50% will pick the band that is mostly empty with one
cold and one hot block.

3.2. Cold-Weight

The cold-weight algorithm combines a band’s freeness, or the amount of free space,
with the heat (or the lack thereof) of the blocks contained within the band. The formula
our algorithm uses to select bands is shown in Equation (1). F is the fraction of the
band that is free; it is calculated as the number of dead blocks in a band divided by the
number of blocks in the band. C is the fraction of the band that contains cold data; it
is calculated as the number of cold blocks in a band divided by the number of blocks
in a band. H is the fraction of the band that contains hot data; it is calculated as the
number of hot blocks divided by the number of blocks in a band. These three variables
will add up to 1: F + C + H = 1. wcold is the weight on cold, and whot is the weight on
hot. All variables, fractions, and weights are expressed in decimal form.

F + (wcold × C) + (whot × H), (1)

where H, the hot fraction, can be measured in terms of free and cold.

H = 1 − F − C (2)

Thus, our algorithm can be simplified to look only at the free space and the cold data.
Equation (3) contains the final form of the formula used by our algorithm to select
bands for compaction and shows how everything can be represented as a weighted
value on cold. In the derivation of Equation (3), the addition of the term whot is dropped
because it is a constant value and does not change on a per-experiment basis.

F + (wcold × C) + (whot × (1 − F − C))
F + (wcold × C) + whot − (whot × F) − (whot × C)

F × (1 − whot) + C × (wcold − whot)

F + C ×
(

wcold − whot

1 − whot

) (3)

The weight on cold can increase or decrease the importance of compacting bands
that contain mostly cold data versus mostly hot data. For the workloads examined, we
have found that a smaller weight on cold data produces the best results. Using the
formula in Equation (3), we calculate a value for each band and select the bands with
the highest values to use for compaction.

Figure 1 shows why weighting is important. In Figure 1(a), we see that without
weighting, we will pick the band with that is mostly full of cold blocks. This is because
without weighting, we have assigned equal importance to cold blocks and free blocks.
This is the point of putting the weight on cold blocks. In Figure 1(b), we use a weight
of 50% on the percentage of the band that is cold. We pick the band that is mostly free
with one cold and hot block. This is preferable because it is better to take the chance
on the single hot block than to continuously move blocks from mostly full bands to new
locations.

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

Classifying Data to Reduce Long-Term Data Movement in Shingled Write Disks 2:7

Table I. Important Statistics for the Project and Source
Control 1 Servers

Project Source 1
Number of write requests 2,496,935 2,170,271
Total data written 26GB 31GB
Trace footprint 9.5GB 4.4GB
Percentage of hot LBAs 20.45 19.45
Percentage of cold LBAs 79.55 81.55
Percentage of trace that is hot 64.68 88.81
Percentage of trace that is cold 35.32 11.19

4. EXPERIMENTAL SETUP

In this section, we cover all of the components involved in running our experiments.
We introduce the input datasets that were used to test the band compaction algorithms
and discuss the methods used to stress the algorithms. We also discuss a technique
to better classify incoming blocks. Finally, we outline our code flow and describe all
possible paths an incoming write block can take, along with the events that can be
triggered. All of the experiments were kept in memory, and “writing to disk” was
simulated.

4.1. Datasets

We use two traces from the MSR Cambridge dataset that was introduced in FAST
2008 [Narayanan et al. 2008]. Specifically, we use the largest data volumes from the
project (proj) and source code (src1) servers. The traces were gathered over a 1-week
period, are block traces, and are stored on servers running NTFS. Table I shows some
informative statistics about the traces we used. Both traces were chosen for their large
number of write requests. We specifically chose the largest of the data volumes for the
project and source servers from the MSR Cambridge traces because the data volumes
will be more similar to a user workload than the traces of the system volumes.

4.2. Prepopulation

Since the benefits of this technique should accumulate over time, we are interested
in behavior over ever-longer periods of time and ever-larger datasets. To that end, in
addition to studying the basic MSR traces, we extended the workloads by prepopulating
our system with a random ordering of the same trace we would be playing. We cut the
trace into chunks of 10 timesteps, where a timestep is considered to be 1 second. This
means that 10 timesteps is at least 10 seconds but could be longer if there is a period
of inactivity in the trace. These chunks were randomly reordered and written out to
a file. We chose to write it to a file because we can recreate the same on-disk state
for each run for fair comparison. We tested both algorithms without prepopulation;
prepopulating with a random selection of 25%, 50%, and 75% of the write requests in
the trace; and prepopulating with a random ordering of all of the writes in each trace
file.

4.3. Write Buffer

To model a more realistic workload, we implemented a write buffer, which also afforded
the opportunity to better classify incoming blocks as hot or cold. The size of the write
buffer varies proportionally to the size of the band; it is always double the band size.
When the write buffer is filled, it will pick an empty band to write out some of the
data. If there is more hot data than cold data in the buffer, it will write out the hottest
of the data blocks. If there is more cold data than hot, the write buffer will write
out cold data blocks. When there are no empty bands to write to, the write buffer will

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

2:8 S. N. Jones et al.

invoke band compaction. When band compaction completes, the write buffer will fill the
current active band designated by the simulation with the data of the more prevalent
temperature until it fills the currently active band.

4.4. Code Flow

When a write request comes in, the request is divided into blocks. For each block
written, a check is issued to see if it is already “on disk.” If it is, the heat of the block
is incremented, and the current location on disk is marked as invalid. The block is
then added to the write buffer. If it does not exist on disk, the block is marked as cold
and immediately added to the write buffer. Currently, heat information is kept with
the mapping of an LBA to the physical location in our simulation. In a real system,
the heat information could be conveyed using a single bit in the shingle translation
layer.

When the write buffer is full, it selects a band to fill from any available empty bands.
If there are no empty bands, the write buffer will invoke band compaction. Band
compaction returns the location of a band to write to, and the write buffer fills the band
with either the hottest or coldest data in the buffer, as was described in Section 4.3.
When the trace ends, band compaction is called as many times as necessary to flush the
write buffer to disk. Currently, band compaction is only invoked in these two situations,
and in both situations it is invoked by the write buffer.

When band compaction is invoked, the first step is to calculate values for each of
the bands in the system using one of the algorithms described in Section 3.2. The
bands with the highest values are selected based on however many bands are being
compacted. As mentioned previously, the entire band has to be read, so all live data is
read from the selected bands and sorted by their current write heat. At this point, a
cooling step occurs: all of the heat counters are reset, making all of the data previously
read cold. This is the only point at which data cooling currently happens. All of the
bands that were read from are now marked as empty and are free to use. The live blocks
that were read are written back to a free band. If we fill up the band before running
out of live blocks, another recently freed band is selected and writing continues. When
all live blocks have been written back to disk, the band that is currently being written
to is the one that will receive future writes. In the case where the last block we wrote
to is the last location in a band, another band is selected from the set of recently freed
bands.

5. RESULTS

We tested weights on cold in our cold-weight algorithm in 10% increments. These
weights yielded both positive and negative results. We have chosen to present the
graphs for the optimal weights for both the empty algorithm and the cold-weight
algorithm for the sake of brevity. However, we have also provided tables for all of the
weights across all experiments. Tables II, III, IV, V, and VI show the blocks moved
and the difference between cold-weight and empty in percentage form for each of the
runs using a band size of 40MB for 0%, 25%, 50%, 75%, and 100% prepopulation,
respectively. The results for a band size of 80MB are similar and have been omitted
due to space constraints. For a band size of 40MB, the project data set experiments use
279 total bands, and the source dataset experiments use 128 bands.

In any band, there can be hot, cold, and free blocks. In addition to moving fewer
blocks during band compaction, we also want to minimize the number of bands that
have a mix of all three types of blocks, as this will give us a better separation of hot
and cold blocks. The graphs show the number of blocks in each band that are hot (in
red), cold (in blue), and free (in green); the bands are then sorted by heat.

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

Classifying Data to Reduce Long-Term Data Movement in Shingled Write Disks 2:9

Fig. 2. Comparison of the empty and cold-weight algorithms for project without prepopulation using 40MB
bands. Green represents free blocks, blue represents cold blocks, and red represents hot blocks.

Fig. 3. Comparison of the empty and cold-weight algorithms for Source 1 without prepopulation using 40MB
bands. Green represents free blocks, blue represents cold blocks, and red represents hot blocks.

5.1. No Prepopulation

Figures 2 and 3 show the distribution of hot and cold blocks over all bands in the
experiments that were run without prepopulation. Due to the write buffer discussed
in Section 4.3, we achieve a very good separation of hot and cold data.

5.1.1. Project. Figure 2 shows the project dataset experiments. In both the empty and
cold-weight experiments, the write buffer kept the number of bands with a mix of hot,
cold, and free blocks under 20. As seen in Table II, using cold-weight with a 30% weight
produced the best reduction in data movement, a 12% improvement over empty.

5.1.2. Source 1. Figure 3 shows the source dataset experiments. In these experiments,
the number of bands with a mix of blocks was kept under 10 by the write buffer. It
is interesting to note that for this workload, the optimal weight for the cold-weight
algorithm was 50%, producing close to 3% improvement.

5.2. 25% Prepopulation

We use a random selection of 25% of the write requests from the original traces to
prepopulate the system, as described in Section 4.2. Because we are using the same
trace data to prepopulate the system as we are to run the experiments and cooling
only happens during band compaction, having more hot blocks at the end of the trace
means that fewer data blocks were moved.

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

2:10 S. N. Jones et al.

Table II. Full Results Table for 0% Prepopulation

Project 40MB Source 1 40MB
Experiment Blocks Moved Percentage Improvement Blocks Moved Percentage Improvement
Empty 2,378,357 — 318,607 —
Cold-weight 10% 2,193,595 +7.77 319,525 –0.29
Cold-weight 20% 2,206,924 +7.21 313,921 +1.47
Cold-weight 30% 2,082,264 +12.45 342,592 –7.53
Cold-weight 40% 2,142,427 +9.92 336,356 –5.57
Cold-weight 50% 2,345,437 +1.38 310,262 +2.62
Cold-weight 60% 3,252,682 –36.76 310,987 +2.39
Cold-weight 70% 3,740,842 –57.29 408,510 –28.22
Cold-weight 80% 6,182,745 –159.96 6,154,620 –1,831.73
Cold-weight 90% 23,213,149 –876.02 8,924,629 –2,701.14

Note: Optimal values for each dataset are in bold.

Fig. 4. Comparison of the empty and cold-weight algorithms for project with 25% prepopulation using 40MB
bands. Green represents free blocks, blue represents cold blocks, and red represents hot blocks.

Table III. Full Results Table for 25% Prepopulation

Project 40MB Source 1 40MB
Experiment Blocks Moved Percentage Improvement Blocks Moved Percentage Improvement
Empty 8,866,029 — 703,060 —
Cold-weight 10% 9,032,118 –1.87 658,354 +6.36
Cold-weight 20% 9,130,049 –2.98 672,584 +4.33
Cold-weight 30% 8,510,548 +4.01 682,636 +2.91
Cold-weight 40% 9,630,121 –8.62 612,659 +12.86
Cold-weight 50% 11,238,928 –26.76 703,112 –0.01
Cold-weight 60% 27,519,815 –210.40 816,907 –16.19
Cold-weight 70% 91,063,541 –927.11 906,926 –29.00
Cold-weight 80% 238,093,656 –2,585.46 8,900,399 –1,165.95
Cold-weight 90% 345,304,754 –3,794.69 9,181,743 –1,205.97

Note: Optimal values for each dataset are in bold.

5.2.1. Project. Figure 4 shows the distribution of hot and cold blocks for all bands in
the project experiments. As can been seen by comparing the empty and cold-weight
graphs, there is more hot data left by the cold-weight algorithm than by the empty
algorithm. This is illustrated in Table III, where a 30% weight on cold shows a 4%
improvement in reducing data movement. Additionally, for this workload, cold-weight

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

Classifying Data to Reduce Long-Term Data Movement in Shingled Write Disks 2:11

Fig. 5. Comparison of the empty and cold-weight algorithms for Source 1 with 25% prepopulation using
40MB bands. Green represents free blocks, blue represents cold blocks, and red represents hot blocks.

Table IV. Full Results Table for 50% Prepopulation

Project 40MB Source 1 40MB
Experiment Blocks Moved Percentage Improvement Blocks Moved Percentage Improvement
Empty 22,411,027 — 1,608,014 —
Cold-weight 10% 20,985,569 +6.36 1,645,114 –2.31
Cold-weight 20% 20,486,456 +8.59 1,728,419 –7.49
Cold-weight 30% 22,209,083 +0.9 1,646,636 –2.40
Cold-weight 40% 26,117,640 –16.54 1,548,803 +3.68
Cold-weight 50% 52,224,438 –133.03 1,639,150 –1.94
Cold-weight 60% 207,269,171 –824.85 1,565,683 +2.63
Cold-weight 70% 305,348,799 –1,262.49 15,514,185 –32.05
Cold-weight 80% 323,949,950 –1,345.49 6,638,597 –312.84
Cold-weight 90% 374,580,433 –1,571.41 10,604,746 –559.49

Note: Optimal values for each dataset are in bold.

does a better job of separating hot and cold data, leaving only 11 bands that have a mix
of hot, cold, and free compared to empty’s 17 bands.

5.2.2. Source 1. Figure 5 shows the results of the source experiments. Comparing the
graphs in Figure 5 shows that there are more hot bands in the cold-weight graph. This
means the cooling that occurs during band compaction is happening less often and is
reflected in the results shown in Table IV, where a 40% weight on cold-weight yields
an almost 13% improvement.

5.3. 50% Prepopulation

We use a random selection of 50% of the write requests to prepopulate the system,
as described in Section 4.2. The exact ordering in the 25% prepopulation input is not
contained in the 50% prepopulation input. Since we are using the same trace data to
prepopulate the system as we are to run the experiments and cooling only happens
during band compaction, more hot blocks at the end of the trace means that less data
was moved.

5.3.1. Project. Figure 6 shows the distribution of hot and cold blocks for all bands in
the project experiments. As can been seen in the graphs, there is more hot data left by
the cold-weight algorithm than by the empty algorithm. This is illustrated in Table IV,
where a 20% weight on cold shows a 8.59% improvement in reducing data movement.
Although there are more bands with a mix of hot, cold, and free blocks (19 bands in

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

2:12 S. N. Jones et al.

Fig. 6. Comparison of the empty and cold-weight algorithms for project with 50% prepopulation using 40MB
bands. Green represents free blocks, blue represents cold blocks, and red represents hot blocks.

Fig. 7. Comparison of the empty and cold-weight algorithms for Source 1 with 50% prepopulation using
40MB bands. Green represents free blocks, blue represents cold blocks, and red represents hot blocks.

cold-weight vs. 18 in empty), it is most likely due to the behavior of the write buffer.
Toward the end of the trace, the write buffer wrote hot data to a recently compacted
band, resulting in mixed data. We will address this behavior in future work.

5.3.2. Source 1. Figure 7 shows the results of the source experiments. Interestingly,
both cold-weight and empty have 11 bands remaining with a mix of hot, cold, and free
blocks. In the cold-weight experiment, there is about one band worth of extra hot blocks
compared to empty. This means that most of the segments with cold data were mostly
full, so we were selecting mostly empty segments with hot data and cooling them.
Table IV shows that with a 40% weight, cold-weight shows an almost 4% improvement.

5.4. 75% Prepopulation

We use a random selection of 75% of the write requests from the original traces to
prepopulate the system, as described in Section 4.2. The exact ordering in the 25%
prepopulation and 50% prepopulation inputs are not contained in the 75% prepopula-
tion input. Because we are using the same trace data to prepopulate the system as we
are to run the experiments and cooling only happens during band compaction, having
more hot blocks at the end of the trace means that fewer data blocks were moved.

5.4.1. Project. Figure 8 shows the distribution of hot and cold blocks for all bands in
the project experiments. As can been seen by comparing the empty and cold-weight
graphs, there is more hot data left by the cold-weight algorithm than by the empty

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

Classifying Data to Reduce Long-Term Data Movement in Shingled Write Disks 2:13

Fig. 8. Comparison of the empty and cold-weight algorithms for project with 75% prepopulation using 40MB
bands. Green represents free blocks, blue represents cold blocks, and red represents hot blocks.

Table V. Full Results Table for 75% Prepopulation

Project 40MB Source 1 40MB
Experiment Blocks Moved Percentage Improvement Blocks Moved Percentage Improvement
Empty 40,028,737 — 11,947,766 —
Cold-weight 10% 43,936,049 –9.76 10,085,658 +15.59
Cold-weight 20% 39,977,633 +0.13 9,869,204 +17.40
Cold-weight 30% 44,257,228 –10.56 9,649,934 +19.23
Cold-weight 40% 56,245,951 –40.51 8,963,526 +24.98
Cold-weight 50% 180,537,867 –351.02 8,494,101 +28.91
Cold-weight 60% 291,878,238 –629.17 8,760,094 +26.68
Cold-weight 70% 349,209,281 –772.4 15,514,185 –29.85
Cold-weight 80% 297,438,218 –643.06 29,341,272 –145.58
Cold-weight 90% 439,488,337 –997.93 43,572,131 –264.69

Note: Optimal values for each dataset are in bold.

Fig. 9. Comparison of the empty and cold-weight algorithms for Source 1 with 75% prepopulation using
40MB bands. Green represents free blocks, blue represents cold blocks, and red represents hot blocks.

algorithm. This is illustrated in Table V, where a 20% weight on cold shows a 0.13%
improvement in reducing data movement.

5.4.2. Source 1. Figure 9 shows the comparison of the block distributions between cold-
weight and empty for the source 1 experiments. Table V shows that with a 50% weight,
cold-weight shows an almost 29% improvement. Despite this massive improvement,
cold-weight contains 10 bands with a mixture of hot, cold, and free blocks, whereas

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

2:14 S. N. Jones et al.

Fig. 10. Comparison of the empty and cold-weight algorithms for project with 100% prepopulation using
40MB bands. Green represents free blocks, blue represents cold blocks, and red represents hot blocks.

Table VI. Full Results Table for 100% Prepopulation

Project 40MB Source 1 40MB
Experiment Blocks Moved Percentage Improvement Blocks Moved Percentage Improvement
Empty 72057,345 — 43,113,372 —
Cold-weight 10% 66,031,282 +8.36 37,270,929 +13.55
Cold-weight 20% 68,707,085 +4.65 35,571,691 +17.49
Cold-weight 30% 70,874,379 +1.64 29,727,847 +31.05
Cold-weight 40% 84,283,621 –16.97 28,067,541 +34.90
Cold-weight 50% 374,162,922 –419.26 23,830,466 +44.73
Cold-weight 60% 360,794,866 –400.71 29,280,929 +32.08
Cold-weight 70% 709,571,024 –884.73 43,549,561 –1.01
Cold-weight 80% 729,328,043 –912.15 147,499,502 –242.12
Cold-weight 90% 776,225,608 –977.23 141,843,320 –229.00

Note: Optimal values for each dataset are in bold.

empty only contains 5 bands with a mixture of hot, cold, and free blocks. This issue
will be addressed in future work.

5.5. 100% Prepopulation

As in the experiments with 25%, 50%, and 75% prepopulation, more hot data at the
end of the trace (as shown in the graphs) means that we are touching less data over
the course of the experiment. We are prepopulating the system with 100% of the write
requests from the same trace data, in random order.

5.5.1. Project. The results of the project experiments are very similar to the results
with 50% prepopulation. As can be seen in Figure 10, there is more hot data remaining
with the cold-weight algorithm, reflected in the 8.36% improvement shown in Table VI
when using the optimal weight of 10%. Cold-weight also does a better job of separating
hot and cold data, ending with 19 bands of mixed blocks compared to empty’s 30 bands.

5.5.2. Source 1. The source experiments with 100% prepopulation showed the greatest
improvement in reducing data movement, at 50% weight for our cold-weight algorithm.
Figure 11 shows the difference in the amount of hot data left with cold-weight versus
empty. Cold-weight with a weight of 50% results in an almost 45% improvement in
reducing data movement. Although there are more bands with a mix of hot, cold, and
free blocks (14 bands in cold-weight vs. 10 in empty), it is most likely due to the behavior
of the write buffer. Toward the end of the trace, the write buffer wrote hot data to a

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

Classifying Data to Reduce Long-Term Data Movement in Shingled Write Disks 2:15

Fig. 11. Comparison of the empty and cold-weight algorithms for Source 1 with 100% prepopulation using
40MB bands. Green represents free blocks, blue represents cold blocks, and red represents hot blocks.

recently compacted band, resulting in mixed data. We will address this behavior in
future work.

6. FUTURE WORK

The work presented here is only the beginning of our work to develop techniques to
reduce data movement in storage systems and evaluate their usefulness to SMR disks
and their applications. Additional data points will help inform more future work and
will also further demonstrate the success of our work. In addition, we will implement
LFS’s cost-benefit policy as a band compaction algorithm and compare it to our cold-
weight algorithm.

We hypothesize that the bands containing a mix of hot and cold blocks can be further
reduced by modifying the band compaction algorithm, as well as improving how the
write buffer flushes data. The write buffer can keep track of distinct hot and cold bands,
and maintain this distinction when writing data out. The band compaction algorithm
then can be modified to take advantage of these distinct hot and cold bands during
band compaction. All compacted blocks will be written to the cold band, and a third
band will be introduced to represent blocks that “were once hot,” or were hot in the
write buffer.

We will investigate other metrics beyond write frequency to reduce data movement
in SMR disks. The last element in this stage of our work is to develop a dynamic
band compaction algorithm that automatically tunes the values of the weights. Since
workloads can, and often do, change behavior over their lifetime, it is necessary to be
able to adjust the band compaction algorithm as needed to obtain the best performance.

In this article, we introduced our work and discussed the benefits that it will have
for shingled drives. Skylight [Aghayev and Desnoyers 2015] has demonstrated that
Seagate’s shingled drives do not use LFS-style compaction to reclaim space, but it
is possible that other drive manufacturers will use LFS-style compaction. We will
also expand on how to adapt this work for host-managed and host-aware drives. The
techniques presented in this article are not limited by the storage media. They can
be employed to reduce data movement on any storage media that employs an LFS
approach to storing data.

7. CONCLUSIONS

Since band compaction is a necessity for SMR disks, it is clear that improved algorithms
are needed. In this article, we proposed using write frequency as a metric to sepa-
rate blocks to reduce data movement. We presented a band compaction algorithm we

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

2:16 S. N. Jones et al.

developed that implements this heuristic and showed that our algorithm results in up
to a 45% reduction in required data movements when compared to naive approaches.

Our cold-weight algorithm favors the selection of the emptiest bands but also weights
how much of the band consists of cold data when selecting bands to compact. We
found that the optimal value for the weight on cold varies depending on the workload.
However, there is always a weight that produces an improvement in reducing data
movement. We also have shown that using a write buffer provides excellent separation
of hot and cold data.

We conclude that write frequency is a valid and useful metric when used in a band
compaction algorithm such as our cold-weight algorithm. This kind of algorithm, com-
bined with a write buffer, reduces the amount of data moved over the lifetime of a
workload.

ACKNOWLEDGMENTS

The authors would like to thank the students of the Storage Systems Research Center for their suggested
edits to this article.

REFERENCES

Abutalib Aghayev and Peter Desnoyers. 2015. Skylight-A window on shingled disk operation. In Proceedings
of the 13th USENIX Conference on File and Storage Technologies. 135–149.

Ahmed Amer, Darrell D. E. Long, Ethan L. Miller, J.-F. Paris, and S. J. Thomas Schwarz. 2010. Design issues
for a shingled write disk system. In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST’10). IEEE, Los Alamitos, CA, 1–12.

Medha Bhadkamkar, Jorge Guerra, Luis Useche, Sam Burnett, Jason Liptak, Raju Rangaswami, and Vagelis
Hristidis. 2009. BORG: Block-reORGanization for self-optimizing storage systems. In Proceedings of the
7th USENIX Conference on File and Storage Technologies (FAST’09).

Tevor Blackwell, Jeffrey Harris, and Margo Seltzer. 1995. Heuristic cleaning algorithms in log-structured
file systems. In Proceedings of the Winter 1995 USENIX Technical Conference.

Yuval Cassuto, Marco A. A. Sanvido, Cyril Guyot, David R. Hall, and Zvonimir Z. Bandic. 2010. Indirection
systems for shingled-recording disk drives. In Proceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST’10). IEEE, Los Alamitos, CA, 1–14.

Peter Desnoyers. 2013. What systems researchers need to know about NAND flash. In Proceedings of the 5th
USENIX Workshop on Hot Topics in File and Storage Technologies (HotStorage’13).

Peter Desnoyers. 2014. Analytic models of SSD write performance. ACM Transactions on Storage 10, 2, 8.
David Essary and Ahmed Amer. 2008. Predictive data grouping: Defining the bounds of energy and latency

reduction through predictive data grouping and replication. ACM Transactions on Storage 4, 1, 2.
David Hall, John H. Marcos, and Jonathan D. Coker. 2012. Data handling algorithms for autonomous

shingled magnetic recording HDDs. IEEE Transactions on Magnetics 48, 5, 1777–1781.
Weiping He and David H. C. Du. 2014. Novel address mappings for shingled write disks. In Proceedings of

the 6th USENIX Conference on Hot Topics in Storage and File Systems. 5.
Jen-Wei Hsieh, Tei-Wei Kuo, and Li-Pin Chang. 2006. Efficient identification of hot data for flash memory

storage systems. ACM Transactions on Storage 2. 1, 22–240.
Chao Jin, Wei-Ya Xi, Zhi-Yong Ching, Feng Huo, and Chun-Teck Lim. 2014. HiSMRfs: A high performance

file system for shingled storage array. In Proceedings of the 2014 30th Symposium on Mass Storage
Systems and Technologies (MSST’14). IEEE, Los Alamitos, CA, 1–6.

Damien Le Moal, Zvonimir Bandic, and Cyril Guyot. 2012. Shingled file system host-side management
of shingled magnetic recording disks. In Proceedings of the 2012 IEEE International Conference on
Consumer Electronics (ICCE’12). IEEE, Los Alamitos, CA, 425–426.

Chung-I. Lin, Dongchul Park, Weiping He, and David Du. 2012. H-SWD: Incorporating hot data identification
into shingled write disks. In Proceedings of the 20th IEEE International Symposium on Modeling,
Analysis, and Simulations of Computer and Telecommunication Systems (MASCOTS’12). 248–255.

Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Randolph Y. Wang, and Thomas E. Anderson.
1997. Improving the performance of log-structured file systems with adaptive methods. In Proceedings
of the 16th ACM Symposium on Operating Systems Principles (SOSP’97). 238–251.

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

Classifying Data to Reduce Long-Term Data Movement in Shingled Write Disks 2:17

Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008. Write off-loading: Practical power
management for enterprise storage. In Proceedings of the 6th USENIX Conference on File and Storage
Technologies. 17.

Rekha Pitchumani, Andy Hospodor, Ahmed Amer, Yangwook Kang, Ethan L. Miller, and Darrell D. E. Long.
2012. Emulating a shingled write disk. In Proceedings of the 20th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’12).

Mendel Rosenblum and John K. Ousterhout. 1992. The design and implementation of a log-structured file
system. ACM Transactions on Computer Systems 10, 1, 26–52.

Margo Seltzer, Keith Bostic, M. Kirk McKusick, and Carl Staelin. 1993. An implementation of a log-
structured file system for UNIX. In Proceedings of the Winter 1993 USENIX Technical Conference.
307–326.

Ji-Yong Shin, Mahesh Balakrishnan, Tudor Marian, and Hakim Weatherspoon. 2013. Gecko: Contention-
oblivious disk arrays for cloud storage. In Proceedings of the 11th USENIX Conference on File and
Storage Technologies. 285–298.

Jun Wang and Yiming Hu. 2001. PROFS-performance oriented data reorganization for log-structured file
system on multi-zone disks. In Proceedings of the 9th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS’01).

Jun Wang and Yiming Hu. 2002. WOLF—a novel reordering write buffer to boost the performance of log-
structured file systems. In Proceedings of the 1st Conference on File and Storage Technologies (FAST’02).
47–60.

Wenguang Wang, Yanping Zhao, and Rick Bunt. 2004. HyLog: A high performance approach to managing
disk layout. In Proceedings of the 3rd USENIX Conference on File and Storage Systems (FAST’04).
145–158.

Received November 2014; accepted November 2015

ACM Transactions on Storage, Vol. 12, No. 1, Article 2, Publication date: February 2016.

