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ABSTRACT 

 

Neural and Behavioral Prioritization of Attention Across Feature Dimension Maps 

 

by  

 

Daniel Dean Thayer 

 

Attention is a cognitive mechanism used to select important information. Here, importance is 

defined as one of three factors: image salience, or something that stands out based on local 

feature contrast; goal relevance, or items that are related to accomplishing a task; and 

selection history, or implicitly learned stimulus properties. Features of an item, like color and 

motion, are prioritized for attentional selection, but the exact mechanisms that allow for 

feature-specific attentional selection are unclear. Across three studies, evidence is presented 

on how information is attended based on feature-specific image salience, goal relevance, and 

selection history. Chapters 2 and 3 describe two fMRI studies investigating how feature-

selective regions of visual cortex are recruited to track the location of color and motion 

stimuli throughout the visual field. Stimuli were either made salient because they were a 

different feature value from the rest of the display (Chapter 2), or relevant because 

participants were instructed to attend a certain feature dimension (Chapter 3). Inverted 
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encoding models were computed to reconstruct spatial maps using neural activation patterns 

from retinotopic color (hV4/VO1/VO2) and motion (TO1/TO2) regions. Neural responses to 

the stimuli were strongest when the preferred feature of each region was important through 

manipulations of salience or relevance. These findings implicate color and motion areas as 

‘feature dimension maps’—regions that are critical for indexing important color and motion 

information for attention. Chapter 4 describes a study concretely demonstrating that feature 

values learned over the course of an experiment can modulate what is prioritized. 

Specifically, the color of a regularly presented distracting stimulus was learned, and 

eventually ignored to improve target detection. Suppression was potent enough to interfere 

with ongoing goals, as participants took longer to select the target when it was shown in the 

learned distractor color. This rules out alternative accounts suggesting that only spatial 

information can be suppressed through selection history. Together, this body of work 

highlights how stimulus features are leveraged to successfully navigate our environment. 
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Chapter I: Prioritizing Important Visual Information 

Priority map theory 

The environment is filled with an overwhelming amount of sensory information that is 

impossible to completely process at a given moment. Yet, we are seemingly able to manage 

this input with ease and successfully interact with our surroundings. How is it that irrelevant 

information is ignored, while important objects are processed? Attention. Attention is how 

we choose stimuli that are important for behavior and is generally thought to operate by 

processing a limited amount of available sensory information. This can occur through a vast 

array of mechanisms (Duncan, 1984; Posner, 1980; Treue & Trujillo, 1999a) that can all be 

categorized as some form of selection or filtering operation (Bundesen, 1990; Carrasco, 

2011; Duncan & Humphreys, 1989; Eckstein, 2011). One architectural framework that has 

helped scaffold the numerous mechanisms of attention is priority map theory (Awh et al., 

2012; Itti & Koch, 2001; Luck et al., 2020; Serences & Yantis, 2006; Treisman & Gelade, 

1980; Wolfe, 1994, 2021).  

At the broadest level, priority map theory describes a series of spatial maps that index 

locations in the environment as ‘important’. Spatial information is extracted from retinal 

input to generate these maps, and locations that are important have a high level of activation. 

Locations with the highest activation are selected by attention for further processing in what 

is called the priority map. The priority map is a feature agnostic representation of the visual 

field, meaning that it indexes information regardless of the specific properties that make it 

important. While it is ambiguous within the priority map what makes something important, 

there are several maps that compute importance for specific feature dimensions. Like the 
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priority map, these feature dimension maps are spatially organized and index important 

locations. The only difference is that they compute importance for a single feature 

dimension. Various feature dimensions are leveraged to determine what locations should be 

prioritized (Wolfe & Horowitz, 2004, 2017). This includes color (D’Zmura, 1991), motion 

(Mendoza et al., 2011), orientation (Treisman, 1985), size (Hollingworth & Luck, 2009), and 

shape (Theeuwes, 1992). 

Even though individual feature dimension maps are necessary to select feature-specific 

information, ultimately, activation profiles across feature dimension maps are integrated to 

form the priority map. It is the activation profiles within the priority map that determine what 

is selected by attention. Selection can occur in a variety of different ways, such as through: 

winner-take-all (Koch & Ullman, 1985), where the location with the highest level of 

importance is always selected; diffusion (Wolfe, 2021), where one or more locations are 

processed at a time and evidence accumulates to attend a specific location; or probabilistic 

computations (Eckstein, 2017), where greater importance increases the chance a location is 

selected, while not guaranteeing that it will be selected over another location. 

Several modulatory inputs contribute to sculpt importance across these maps. Broadly, 

importance at a location is determined by image salience, observer goals, and selection 

history. Each input can increase the importance of a location, and some can decrease the 

importance of a location under certain circumstances. I will first define each factor and will 

then provide empirical examples of how each modulates importance. 

Modulations of priority 
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As described above, priority and feature dimension maps are representations of the visual 

field derived from retinal input. As such, information that stands out based on physical, 

image-computable salience, will be prioritized within these maps. Salience is defined as 

locations with high local feature contrast (Nothdurft, 1993a, 1993b, 2000), which can occur 

for any core feature dimension that is processed by the visual system (e.g., color, motion, and 

orientation). For example, a red strawberry in a bed of green leaves would stand out and 

capture attention because of the color contrast. A task commonly used to investigate how 

salience is prioritized is the additional singleton paradigm (Theeuwes, 1992). In this task, 

participants are shown display comprised of several colored shapes along an invisible ring in 

the periphery. Typically, they search for a single target item that is a different shape from all 

other display items (e.g., diamond among circles), which results in a salient shape target. On 

some trials, all items in the display are the same color, but occasionally one non-target item is 

a different color from everything else (e.g., red item among green items). This item is now 

salient through color and is considered a ‘singleton distractor’. On trials where a color 

singleton distractor is present, response times are slower than when there was no singleton in 

the display (Theeuwes, 1991, 1992; Theeuwes et al., 2000, 2003), suggesting that it captured 

attention as participants were searching for the target.  

Neural studies confirm the role of salience in directing attention. Usually, a salient stimulus 

evokes a stronger response relative to isoluminant non-salient stimuli as indexed by 

electrophysiological recordings in monkeys (Bisley & Goldberg, 2006; Chen et al., 2020; 

Gottlieb et al., 1998; Klink et al., 2023; Lin et al., 2024), EEG (Gaspelin & Luck, 2018; Li, 

2002; Liesefeld et al., 2017; Sawaki & Luck, 2010), and fMRI (Bogler et al., 2011, 2013; 
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Mulckhuyse et al., 2011; Poltoratski et al., 2017; Serences et al., 2005). Many of these 

studies employ the additional singleton paradigm, but similar results are observed when 

using different stimulus displays (e.g, Li, 2002). Thus, stimuli that are salient in the visual 

field are considered important within the priority map framework. 

Observer goals, or relevance, refers to the intentions of an individual to find items for 

accomplishing a task. This could be the goal of finding a car in the parking lot or a red shirt 

in the closet. Relevance can modulate what is attended by increasing the activation of 

specific spatial locations or features within the priority and feature dimension maps (Cave & 

Wolfe, 1990). Behaviorally, this has often been observed using visual search tasks (Bahle et 

al., 2019; Becker et al., 2010; Folk et al., 1992; Leber & Egeth, 2006). In one example, Bahle 

et al. (2019) instructed participants to search for a specific color and shape. They were told 

that any item containing either the cued color or shape was the target. On some trials, only a 

single task-relevant feature was present (e.g., a red circle when looking for either blue or 

circle), but on other trials both relevant features were present in the same item (e.g., blue 

circle). When the target matched both features, response times were faster than when only a 

single relevant feature was present. This is due to priority signals integrating across both the 

shape and color dimension maps, increasing activation at the corresponding location within 

the feature-agnostic priority map more than what would occur if only the color or shape map 

was prioritized. Furthermore, goals modulate priority independent of salience, as attentional 

benefits are still observed when there is no salient information in the display, such as with a 

heterogenous search display (Bacon & Egeth, 1994). 
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Goals also enhance neural responses to a stimulus. Using electrophysiological measures, 

greater spike rates are observed from receptive fields (RFs) when a target is present than 

when a non-target item is present (Bisley & Goldberg, 2003; Bruce & Goldberg, 1985). 

Similar results have been observed in fMRI (Poltoratski et al., 2017; Sprague, Itthipuripat, et 

al., 2018; Sprague & Serences, 2013) and EEG (Gaspar & McDonald, 2014; Stilwell et al., 

2022). Furthermore, knowing what is task irrelevant can result in neural and behavioral 

suppression of non-target stimuli (Arita et al., 2012; Carlisle, 2023; Cosman et al., 2018;  

Zhang et al., 2022), demonstrating the flexibility of goal-based prioritization. Thus, goals 

greatly influence what is important in the visual field. 

Selection history is a third factor influencing visual importance, which is how previous 

encounters with a stimulus influence what is currently prioritized (Awh et al., 2012; Luck et 

al., 2020). For instance, if a kitten leaps across the kitchen, that may capture attention 

because of the sudden salient motion. However, if the kitten leaps across the kitchen every 

day, one may learn to ignore the salient motion because it is a common occurrence that was 

encountered in the past. Selection history can both increase (Chun & Jiang, 1998, 2003) and 

decrease (Stilwell et al., 2019; Wang & Theeuwes, 2018) stimulus priority. One example is 

when a target has a high probability of being in a quadrant of the screen, then responses are 

faster when the target is in the high-probability quadrant relative to a low-probability 

quadrant (Chun & Jiang, 1998; Jiang et al., 2013). In another study, Stilwell and colleagues 

(2019) had participants perform the additional singleton task, where a color singleton was 

occasionally present. On most trials, the singleton distractor was a specific color, but could 

still be other colors (e.g., 65% red, 35% other). When the high-probability color singleton 
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was present, participants found the target much faster than when a low-probability color 

distractor was shown. They argue that the learned distractor color was suppressed, making it 

easier to find the target. 

While selection history can occur after learning a statistical regularity over several 

encounters, it can also emerge through immediate experience (Wiggs & Martin, 1998; 

Wöstmann et al., 2022). One example of this is priming (Maljkovic & Nakayama, 1994). 

Priming is when target properties on the current trial match what was observed in the 

previous trial, which often improves the response to the current trial target. An example 

would be if a target on trial N-1 is red, and the current trial target is also red. When this 

occurs, individuals are faster and more accurate at reporting the current trial target. A similar 

effect can occur when distracting information is repeated, where responses to a target are 

faster when a distractor stimulus is shown in the same color on subsequent trials (Thayer et 

al., 2022). Note, that modulations of priority through selection history are distinct from 

observer goals because they are implicitly acquired, while goals are explicit (Gao & 

Theeuwes, 2022). 

Burgeoning neural findings corroborate behavioral selection history results. Adam & 

Serences (2020) had participants perform the additional singleton paradigm in the scanner, 

where four stimuli were shown on each trial. On some blocks of trials, the singleton was 

always the same color, while other blocks the singleton color was randomized. In V1, neural 

responses to the color distractor were much weaker when the color was the same, indicating 

that subjects learned to suppress the irrelevant distractor. Evidence for neural modulation 

through selection history has similarly been observed in EEG (Gaspelin & Luck, 2018) and 
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electrophysiological recordings (Klink et al., 2023), further supporting the role of selection 

history in computing importance. 

In sum, the priority map framework as described has clearly defined components such as the 

priority and feature dimension maps, that index importance at specific visual field locations. 

Importance in these maps is determined through image salience, observer goals, and selection 

history. This is supported by a large body of behavioral and neural empirical work, 

explaining how these factors direct attention to select important visual information. 

Neural correlates of priority maps 

Factors that compute attentional priority have a direct impact on both behavioral and neural 

responses. Because of this, much work has been dedicated to identifying neural regions that 

may represent a priority map. For a region to be considered a priority map, it needs to be 

spatial selectivity, preferentially responsive to important stimuli, and track important stimuli 

across various feature dimensions. One study that identified a region satisfying all these 

criteria was conducted by Klink and colleagues (2023). The researchers recorded activity 

from RFs in monkey V4 while they performed the additional singleton task. Responses to a 

shape-defined target and a color-defined salient distractor were stronger than to a non-salient 

distractor, demonstrating that monkey V4 tracked image-salient distractors and goal-relevant 

targets. Since increased responses were observed from neural RFs, there must be some 

degree of spatial selectivity, and because stimuli were important through shape or color, V4 

must track importance across feature dimensions. An additional detail of this study was that 

the color of the salient distractor was always the same. This encouraged learned suppression 

of distractors through selection history (Stilwell et al., 2019). Consistent with this, the 
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initially strong response to the salient distractor quickly decreased below baseline 

approximately 150 ms after stimulus presentation. Monkeys likely learned to reactively 

suppress the salient distractors after it initially captured attention (Geng, 2014). This study is 

compelling evidence supporting monkey V4 as a candidate neural priority map. 

Many other regions have been identified as neural priority maps, including: lateral geniculate 

nucleus (Kastner et al., 2006), intraparietal cortex (Bisley & Goldberg, 2003, 2006; Chen et 

al., 2020), frontal eye fields (Moore & Armstrong, 2003), V1 (Li, 2002; Poltoratski et al., 

2017; Zhaoping & May, 2007, 2007), extrastriate visual cortex (Adam & Serences, 2020; 

Bogler et al., 2011, 2013; Burrows & Moore, 2009; Klink et al., 2023; Mazer & Gallant, 

2003; Sprague & Serences, 2013), substantia nigra (Basso & Wurtz, 2002), superior 

colliculus (Basso & Wurtz, 1998; Fecteau & Munoz, 2006; White et al., 2017), and pulvinar 

(Shipp, 2003). All these regions track the location of important stimuli at specific locations 

for at least one feature dimension and are modulated by salience and relevance. Although, it 

is worth highlighting that very few studies have shown how these regions are modulated by 

selection history (but see: Adam & Serences, 2020). Due to there being so many candidate 

neural priority maps, it can be difficult to identify which region ultimately directs attention, 

especially when the cognitive framework describes a single map. However, when 

implemented by the brain, there is no requirement that a single region should represent the 

priority map, as redundant coding may help ensure that the appropriate information is 

selected by attention (Zelinsky & Bisley, 2015). A similar architecture has been proposed for 

working memory, where multiple redundant representations can help ensure a robust memory 

signal in case any single representation is compromised (Christophel et al., 2017; 
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Sreenivasan & D’Esposito, 2019), adding plausibility to this account. Overall, there is 

overwhelming evidence that priority maps are reflected in neural architecture. 

Candidate neural feature dimension maps 

While there is much empirical support for various candidate neural priority maps, there has 

been little work identifying the correlates of feature dimension maps. This is particularly 

surprising since they are needed to determine what is prioritized by attention. Like a priority 

map, there are several essential criteria for a region to be considered a neural feature 

dimension map. They must be spatially selective and respond to important information, but 

unlike the priority map, the prioritized information needs to be feature specific. Nearly all 

studies that support a given region as a neural priority map have either utilized single feature 

dimension stimuli, measured responses from a limited portion of the visual field, or studied 

feature-agnostic salience. This diminishes the ability to interpret any region as a feature 

dimension map. 

Even though previous work has not identified specific regions as neural feature dimension 

maps, some have speculated that visual cortex could contain such maps (Katsuki & 

Constantinidis, 2014). This is a reasonable assumption because much of visual cortex 

contains several spatially organized retinotopic maps (Wandell et al., 2007; Wandell & 

Winawer, 2015) and many of these retinotopic regions are modulated by goal-relevance 

(McMains et al., 2007; Runeson et al., 2013), image-salience (Sprague, Itthipuripat, et al., 

2018; Wang et al., 2022; Zhang et al., 2012), and selection history (Adam & Serences, 2020). 

Furthermore, some retinotopic regions happen to be feature-selective (Huk et al., 2002; Wade 

et al., 2002). For instance, Huk & Heeger (2002) showed participants either static or moving 
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dot fields. Univariate BOLD responses in MT and MST, which align with retinotopically 

defined TO1 and TO2 (Amano et al., 2009), were stronger when moving dot fields were 

presented. This demonstrates that TO1/TO2 are motion selective. A similar study was 

conducted identifying color-selective regions. Using grayscale and colorful stimuli, Wade 

and colleagues (2002) found that hV4, VO1, and VO2 preferentially responded to color. 

Thus, for color- and motion-selective regions of visual cortex, there is some evidence to 

suggest they represent feature dimension maps. 

Each of these findings are independent components implicating hV4/VO1/VO2 and 

TO1/TO2 as feature dimension maps. However, for a region to be considered a feature 

dimension map, all properties need to converge—even though there are motion- and color-

selective regions of visual cortex that are modulated by priority signals, it is unknown if these 

areas track the exact location of important feature-specific stimuli throughout the visual field. 

These regions need to prioritize the location of important feature-specific stimuli over non-

prioritized locations for them to be considered neural feature dimension maps. Chapters 2 

and 3 provide the necessary evidence to identify color-selective regions as a neural color 

dimension map, and motion-selective regions as a neural motion dimension map. Chapter 2 

describes a study where stimuli were important based on feature-specific image salience and 

the location of the stimulus varied on each trial. Feature selective regions were able to track 

the location of the important stimulus throughout the visual field and had a stronger response 

to stimuli based on region preferences. Similarly, Chapter 3 describes a study where the 

location of a colorful moving dot stimulus varied on each trial. The key manipulation was 

that the relevant feature dimension of that stimulus (color or motion) varied across trials. 
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Feature-selective areas had a stronger response to the stimulus whenever the goal-relevant 

feature matched region preferences. Thus, these two studies identify color- and motion-

selective regions as neural feature dimension maps. 

Even though selection history is a factor that contributes to attentional priority, there are few 

studies investigating how previous encounters with a stimulus modulate neural responses. 

Research leveraging neural adaptation with fMRI provide some degree of support that visual 

cortex is influenced by stimulus history (Grill-Spector & Malach, 2001). In these studies, a 

specific stimulus is repeated several times (e.g., green and red lines; Engel & Furmanski, 

2001) and occasionally a novel stimulus is presented (e.g., dark and light gray oriented lines). 

If neural responses to the novel stimulus are greater than during the stimulus repetition 

period, neural populations adapted to the repeated stimulus. This indicates that a region has 

some degree of selectivity for the repeated visual features and that responses are influenced 

by stimulus history (Benda, 2021). There are many proposed functions for neural adaptation 

(Webster, 2015). It could be a mechanism for optimizing information (Wark et al., 2007) or 

building predictions about the environment (Chopin & Mamassian, 2012). However, neural 

adaptation needs to be directly linked to attentional priority for it to be useful in identifying 

candidate feature dimension maps. Behavioral evidence implies that adaptation can alter 

perceived salience (McDermott et al., 2010), which would be a modulation of attentional 

priority, but this link needs to be demonstrated neurally. 

An additional complication is that some models claim selection history can only suppress 

priority via spatial mechanisms (Theeuwes, 2010; Theeuwes et al., 2003). If true, then there 

would be no need for selection history to act within feature dimension maps at all since 
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suppression would be better instantiated within the priority map, making it unclear what level 

of the priority map framework should reflect selection history prioritization. This makes it 

difficult to know if selection history should be a defining characteristic of neural feature 

dimension maps. Chapter 4 presents a study investigating whether specific features can be 

suppressed independent of location. Based on those results, specific features can be 

suppressed, indicating that feature dimension maps must be prioritized by selection history. 

Together, this body of work characterizes key neural and behavioral evidence for feature 

dimension maps. 
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Chapter II: Neural Prioritization of Feature-Salient Stimuli  

Introduction 

Often, we search for items that are relevant to ongoing goals, such as the coffee maker in the 

morning. However, objects within a given scene are constantly vying for our attention. A 

salient but task-irrelevant object, like a bright yellow banana on the counter or a cat leaping 

across the kitchen, may distract our attention and slow the search for coffee. One prominent 

model that highlights the competition between task-irrelevant salience and task-relevant 

goals in guiding attention is priority map theory (Awh et al., 2012; Fecteau & Munoz, 2006; 

Itti & Koch, 2001; Serences & Yantis, 2006; Treisman & Gelade, 1980; Wolfe, 1994). Per 

this theory, the activity profile across a priority map reflects a combination of task-relevant 

locations and salient, but irrelevant, locations, and is used to direct attention to the highest 

priority locations (Carrasco, 2011; Eckstein, 2011; Yu et al., 2023).  

To compute the bottom-up salience associated with a given location, priority map theory 

posits that information about individual feature dimensions (e.g., color, motion, etc) is 

independently extracted from retinal input into a series of ‘feature dimension maps’. For a 

given feature dimension map, salient regions of space are defined based on within-dimension 

local feature contrast, such as the aberrant color of the yellow banana or motion direction of 

the leaping cat (Itti & Koch, 2000, 2001). A conspicuous location defined by a given feature 

dimension is given high activation in the corresponding feature dimension map (Fig. 1). 

Activity profiles across various feature dimension maps are then integrated into a unified 

feature-agnostic priority map, which indexes the most important locations within the visual 

field, regardless of the source of their importance.  
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Figure 1. Feature dimension maps index salient locations based on their preferred feature dimension. 
Priority map theory invokes ‘feature dimension maps’ to compute salient location(s) based on local feature 
contrast within each feature dimension (e.g., color, motion). Accordingly, when a location in a stimulus display 
is made salient based on local differences in motion direction, activation profiles over a ‘motion map’ should 
track the salient location, while a ‘color map’ would not. Similarly, map activation corresponding to a salient 
motion stimulus should be stronger in a ‘motion map’ than when a location is made salient based on local 
differences in color. Complementary results would be predicted for a ‘color map’, with stronger activation at 
the location of a salient color stimulus as compared to a salient motion stimulus. While these feature dimension 
maps productively account for behavioral results in visual search tasks, it remains unknown whether salient 
locations are independently indexed in different feature-selective regions in visual cortex.  

 

Studies in humans and nonhuman primates have identified stronger neural responses 

associated with salient stimulus locations than those associated with non-salient locations 

throughout the brain (Bogler et al., 2011, 2013; Bisley & Goldberg, 2006; Bichot & Schall, 

1999; White et al., 2017), consistent with a neural instantiation of a priority map (Bisley & 
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Goldberg, 2010; Fecteau & Munoz, 2006; Katsuki & Constantinidis, 2014; Serences & 

Yantis, 2006). However, despite this converging neural evidence offering strong support for 

the implementation of feature-agnostic priority maps, support for feature dimension maps is 

primarily based on behavioral studies measuring visual search response times (Bacon & 

Egeth, 1994; Folk et al., 1992; Folk & Anderson, 2010; Huang & Pashler, 2007; Müller et 

al., 1995; Theeuwes, 1992; Treisman, 1998; Wolfe & Horowitz, 2004). Indeed, neural 

studies have all either focused on stimulus displays involving a single salient feature 

dimension (Beck & Kastner, 2005; Cook & Maunsell, 2002; Moran & Desimone, 1985; X. 

Zhang et al., 2012), measured from a single feature-selective visual region (Bichot et al., 

2005; Burrows & Moore, 2009; Martı́nez-Trujillo & Treue, 2002; Mazer & Gallant, 2003; 

Ogawa & Komatsu, 2004, 2006; Klink et al., 2023; Reynolds & Desimone, 2003), or studied 

feature-agnostic salience (Bisley & Goldberg, 2006; Bogler et al., 2011, 2013; Gottlieb et al., 

1998; Sprague, Itthipuripat, et al., 2018). Thus, despite the key theoretical role specific 

stimulus feature dimensions are believed to play in computing representations of stimulus 

salience, it remains unknown whether the brain implements this compartmentalized 

computational architecture.  

Here, we sought to resolve this question by testing the hypothesis that feature-selective 

retinotopic regions of visual cortex preferentially index salient locations based on their 

preferred feature dimension. Within retinotopic ROIs, we characterized feature selectivity 

and spatial salience computations for task-irrelevant visual stimuli defined by different 

feature dimensions using a spatial inverted encoding model. Participants attended a central 

fixation point while viewing stimuli typically containing one salient location. Across trials, 
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we varied the salience-defining stimulus feature (color, motion, or a single salient stimulus in 

isolation). If color-selective retinotopic regions hV4/VO1/VO2 (Brewer et al., 2005; Conway 

et al., 2007; Mullen, 2019) and motion-selective retinotopic regions TO1/TO2 (Albright, 

1993; Amano et al., 2009; Huk et al., 2002) act as neural feature dimension maps, salient 

stimuli will result in patterns of multivariate BOLD responses containing strong activation at 

the salient location that are strongest when defined by a region’s preferred feature dimension 

(Fig. 1). Consistent with these predictions, we found that reconstructed spatial maps in color-

selective regions indexed color-based salience, and motion-selective regions indexed motion-

based salience, with each region preferentially representing salient locations based on their 

feature dimension.  

Materials & Methods 

Participants.  

8 subjects recruited from the University of California, Santa Barbara (UCSB) community 

participated in the primary fMRI study (6 female, 18-27 years old). Pilot data (n = 3) 

confirmed that this sample size allowed for adequate power to detect our effects of interest 

(dz = 3.10). We opted to collect a large number of measurements from each subject to 

minimize within-subject variance, which often benefits statistical power more than increased 

sample sizes (Baker et al., 2021). All subjects reported normal or corrected-to-normal vision 

and did not report neurological conditions. Procedures were approved by the UCSB 

Institutional Review Board (IRB# 2-20-0012). All subjects gave written informed consent 

before participating and were compensated for their time ($20/h for scanning sessions, $10/h 

for behavioral familiarization/training).  
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Stimuli and Procedure.  

Participants performed a 30-minute training session before scanning so that they were 

familiarized with the instructions. We used this session to establish the initial behavioral 

performance thresholds used in the first run of the scanning session. In the main task session, 

we scanned participants for a single two-hour period consisting of at least 4 mapping task 

runs, which we used to independently estimate encoding models for each voxel, and 8 

experimental feature-salience task runs. All participants also underwent additional 

anatomical and retinotopic mapping scanning sessions (1-2x 1.5-2 hr sessions) to identify 

regions of interest (ROI; see Region of interest definition). Additionally, most participants (n 

= 6) underwent an independent functional localizer session which we used to verify 

retinotopically defined ROIs were feature selective. 

Stimuli were presented using the Psychophysics toolbox (Brainard, 1997; Pelli, 1997) for 

MATLAB (The MathWorks, Natick, MA). Visual stimuli were rear-projected onto a screen 

placed ~110 cm from the participant’s eyes at the head of the scanner bore using a contrast-

linearized LCD projector (1,920×1,080, 60 Hz) during the scanning session. In the behavioral 

familiarization session, we presented stimuli on a contrast-linearized LCD monitor 

(2,560×1,440, 60 Hz) 62 cm from participants, who were seated in a dimmed room and 

positioned using a chin rest. For all sessions and tasks (main tasks, localizers, and mapping 

task), we presented stimuli on a neutral gray circular aperture (9.5° radius), surrounded by 

black (only aperture shown in Fig. 1).  
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Feature-salience task.  

For the main task (Fig. 2) and functional localizers (see below), participants attended a 

flashing cross within the fixation circle and ignored any other stimuli presented throughout 

the scanning session. This task localized goal-directed attention to fixation and was 

equivalent across all stimulus conditions, allowing us to isolate signals associated with 

bottom-up salience processing of our peripheral stimuli. Participants monitored the fixation 

cross throughout the whole run for any increase in length in either the vertical or horizontal 

bar of the cross and responded to changes with a button press (the left button for a horizontal 

target, the right button for a vertical target). The vertical and horizontal lines of the fixation 

cross were 0.25° of visual angle long and flickered at 3 Hz (10 frames on, 10 frames off at 60 

Hz). Whenever the cross was visible, there was a 22.5% chance either line had a small 

change in length. When a change was detected, participants reported which line increased in 

length (horizontal or vertical). To ensure participants maintained vigilant attention at fixation 

throughout the entire experiment, they performed an initial behavioral training session where 

they practiced the fixation task several times. Between runs of the practice session, we 

adjusted the degree of size change for the vertical/horizontal lines until they consistently 

achieved ~80% accuracy.  We further adjusted the difficulty of the fixation task between runs 

of the scanning session by altering the degree of size change for vertical/horizontal lines 

based on behavioral accuracy (range: 0.05° to 0.125°). Participants performed the fixation 

task continuously throughout both stimulus presentation periods and ITIs to ensure salient 

events were temporally decoupled from fixation task performance and/or target detection. 

Feedback for each response to the fixation task was given via the aperture around fixation 
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changing color for 0.5 s, with green indicating a correct button press response, red indicating 

an incorrect button press response, and yellow indicating no response (missed a target). 

Feedback was given 1 s after a target was presented.  A fixation target was never present for 

the first or last 2 s of a trial, or for 2 s after the presentation of a previous target.  

 

Figure 2. Feature-salience task. A: On each fMRI scanning run, participants continuously performed an 
attention-demanding task at fixation where they reported changes in length of either the horizontal or vertical 
bar of the fixation cross. While attention was directed to the demanding fixation task, we measured how 
feature-selective retinotopic ROIs encode task-irrelevant salient stimulus locations by presenting various 
types of visual stimuli. On most stimulus presentation trials, the visual stimulus consisted of dots spanning 
the entire screen. The dot stimuli could either be presented as static colored dots, or grayscale (black/white) 
moving dots. Subjects received feedback after each target presentation via color changes in the ring around 
fixation (green = correct button press; red = incorrect button press; yellow = no button press). B: The 
features of all dots were updated at 3 Hz such that, on average, the overall feature value (color/motion) 
presented across each trial was neutral. For example, on ‘color’ trials, the color and location of each static dot 
was updated every 333 ms with a new randomly selected hue and randomly drawn location. On most dot 
array trials (66.6%; ‘salience-present’), a circular portion of the stimulus display was made salient by 
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presenting dots in the opposite feature value as presented in the background. For example, during a 333 ms 
period, if the background dots were moving at 45°, the salient foreground dots would be moving 225°. These 
salient stimulus regions were never relevant for participant behavior, and the challenging fixation task 
ensured attention was withdrawn from peripheral stimuli. After stimulus presentation, there was a 6-9 s blank 
ITI during which time the fixation task continued. Example trial for each condition shown. C: As control 
conditions, we also included trials with the salient location defined by a flickering checkerboard (6 Hz full-
field flicker) on a blank background, and trials with colored static or moving black and white dots with no 
salient location. D: On salience-present trials, the salient stimulus was 1.5° in radius, and was presented at a 
location randomly chosen from an invisible ring centered 5° from fixation. 

 

The critical, ignored, stimuli were either a color- or motion-defined salient location presented 

as a circular disc within random dot arrays spanning the entire stimulus aperture except for a 

region around fixation (0.75°). On color trials, static dots within a disc were presented in the 

‘opposite’ color (HSV colorspace) as compared to the background dots; on motion trials, 

moving black and white dots within a disc were presented in the opposite motion direction as 

compared to the background dots. For example, if the dot array contained dots moving at 0° 

(to the right), the motion-defined salient location would contain dots moving at 180° (to the 

left). Similarly, if the dot array contained static colored dots with a red hue (H = 0°), then the 

color-defined salient location would contain dots with a green hue (H = 180°). Individual 

dots occupied 0.05° of visual angle, and dot density was 15 dots/deg2. In the motion array, 

dots moved at a speed of 9.5° /s in a randomly selected planar direction and each dot was 

randomly colored black or white (100% contrast). Dots were randomly replotted every 50 ms 

or when they exceeded the stimulus bounds. For the color array, all dots remained static and 

were assigned a random hue value. Dot locations were updated every 333 ms. Both arrays 

updated every 333 ms during the 5 s presentation period, such that a new color or motion 

value was applied to every dot in the updated array three times per second. Trials started with 

the onset of the peripheral dot array while participants were attending fixation. The salient 

location appeared throughout the entire stimulus interval, centered 5° from fixation at a 
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random location along an invisible ring from 0°-359° and had a radius of 1.5°. While the 

location of the salient stimulus remained constant on a given trial, it randomly varied 

between trials along the invisible ring.  

We included 3 additional control conditions intermixed with salience-present trials. First, to 

ensure spatially localized activation is due to the presence of the salient location, we 

presented colored static dots and moving black and white dots with no salient location 

defined (‘salience-absent’ trials). Second, as a positive control to ensure our image 

reconstruction procedure was effective in each retinotopic ROI, we presented a flickering 

checkerboard disc (spatial frequency 0.679 cycles/°) on a gray background at the same size, 

eccentricity, and duration as the salient discs (‘checkerboard’ trials; similar to previous 

reports; Sprague & Serences, 2013). The checkerboard stimulus flickered at a rate of 6 Hz 

and was considered to be feature-agnostic with respect to the key manipulations in the study 

(i.e., color/motion). All trials were separated by a randomly selected ITI ranging from 6-9 s 

with an average ITI of 7.5 s. Each run had 24 trials, and during each run, there were 6 trials 

of each salience-present condition (based on color, based on motion, checkerboard) and 3 

trials each of the salience-absent color/motion conditions. Trial order was shuffled within 

run. Each run started with a 3 s blank period and ended with a 10.5 s blank period, for a total 

run duration of 313.5 s (for one participant, we acquired 416 TRs for one run instead of 418, 

resulting in 312 s of data for this run). Eye position was monitored throughout the experiment 

using an Eyelink 1000 eyetracker (SR Research).  

Additionally, we performed a control eyetracking experiment (n = 10, 9 female, age 18-27 

years old) outside of the scanner to ensure that our stimuli were sufficiently salient to capture 
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attention as indexed by saccades directed to salient stimulus locations. Subjects viewed the 

same displays as the MRI version of the experiment with the following exceptions: each 

stimulus was presented for 1 s, ITIs were reduced to 3 s, each subject viewed a total of 180 

stimuli (36 occurrences of each stimulus condition), and subjects were encouraged to freely 

view the display with no instructions to perform a fixation task (the fixation task stimulus 

appeared on-screen, but participants were never instructed to report aspects of the stimulus). 

The eyetracker sampled right eye gaze position at 500 Hz. Participants performed a 9-point 

calibration procedure before each run with a viewing distance of 58 cm while seated in a chin 

and forehead rest.   

Spatial mapping task. 

We also acquired  several runs of a spatial mapping task used to independently estimate a 

spatial encoding model for each voxel, following previous studies (Sprague et al., 2016; 

Sprague, Itthipuripat, et al., 2018; Sprague & Serences, 2013). On each trial of the mapping 

task, we presented a flickering checkerboard at different positions selected from a hexagonal 

grid spanning the screen. Participants viewed these stimuli and responded whenever a rare 

contrast change occurred (10 out 47 trials, 21.3%), evenly split between contrast increments 

and decrements. The checkerboard stimulus was the same size as the salient locations in the 

feature salience task (1.5° radius) and was presented at 70% contrast and 6-Hz full-field 

flicker. All stimuli appeared within a gray circular aperture with a 9.5° radius, as in the 

feature-salience task. For each trial, the location of the stimulus was selected from a 

triangular grid of 37 possible locations with an added random uniform circular jitter (0.5° 

radius). The base position of the triangular grid was rotated by 30° on every other scanner 
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run to increase spatial sampling density. As a result, every mapping trial was unique, which 

enabled robust spatial encoding model estimation.  

Each trial started with a 3000 ms stimulus presentation period. If a target was present, then 

the stimulus would be dimmed/brightened for 500 ms with the stipulation that the contrast 

change would not occur in either the first or last 500 ms of the stimulus presentation period. 

Finally, there was an ITI ranging from 2 to 6 s (uniformly sampled using the linspace 

command in MATLAB [linspace(2, 6, 47)]). All target-present trials were discarded when 

estimating the spatial encoding model. Each run consisted of 47 trials (10 of which included 

targets). We also included a 3 s blank period at the beginning of the run and a 10.5-s blank 

period at the end of the run. Each run totaled 432 s. 

Retinotopic mapping task.  

We used a previously reported task (Mackey et al., 2017) to identify retinotopic regions of 

interest (ROIs) via the voxel receptive field (vRF) method (Dumoulin & Wandell, 2008). 

Each run of the retinotopy task required participants attend several random dot 

kinematograms (RDK) within bars that would sweep across the visual field in 2.25 s (or, for 

one participant, 2.6 s) steps. Three equally sized bars were presented on each step and the 

participants had to determine which of the two peripheral bars the motion in the central bar 

matched with a button press. Participants received feedback via a red or green color change 

at fixation. We used a three-down/one-up staircase to maintain ~80% accuracy throughout 

each run so that participants would continue to attend the RDK bars. RDK bars swept 17.5° 

of the visual field. Bar width and sweep direction was pseudo-randomly selected from 
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several different widths (ranging from 2.0° to 7.5°) and four directions (left-to-right, right-to-

left, bottom-to-top, and top-to-bottom).  

Functional localizer tasks.  

To independently identify color- and motion-selective voxels, we scanned participants while 

they performed 3 runs each of a color and motion localizer task (Bartels & Zeki, 2000; Huk 

et al., 2002) using a blocked design. During both tasks, the participant performed the same 

fixation task from the feature-salience attention task, where they monitored a central cross for 

changes in the size of the horizontal and vertical lines. In the color localizer task, participants 

viewed colored or greyscale rectangles of various sizes within the same aperture dimensions 

described in the spatial mapping task (see spatial mapping task). Stimuli were presented 

spanning the entire aperture. Rectangle colors were individually sampled from the entire 

RGB colorspace (uniform independent random distribution of R, G, and B). Similarly, each 

greyscale rectangle had a randomly sampled contrast (identical R, G, and B value, randomly 

sampled for each rectangle). During the motion localizer, participants viewed either static or 

moving black and white dots. For the moving dots, motion could be CW, CCW, or planar (20 

evenly spaced steps from 18 to 360°). Dots were redrawn every 100 ms or when they 

exceeded the stimulus boundary. When the array contained planar motion, dots moved at 

1.2°/s; if CW/CCW motion, 0.6°/s. Within each block, each stimulus (static/motion or 

color/greyscale) was shown for 400 ms followed by a 100 ms blank period before the next 

stimulus presentation. Each block lasted 18 s (36 updates of stimulus feature values), with 

feature values randomly selected each presentation. During each scanning run, we presented 

6 total blocks, alternating between grayscale rectangles (static dots) and colored rectangles 
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(moving dots) for the color (motion) localizer runs.  At the end of each run, participants 

viewed a blank screen while performing the fixation task for 18 s. Runs started with a 3 s 

blank period and ended with a 10.5 s blank period. There was no fixation task during the start 

and end blank periods. Each run lasted 229.5 s. 

We acquired localizer data for 6 of 8 participants (the other 2 participants were unable to 

return to complete the localizer session).  

fMRI acquisition.  

fMRI data acquisition and preprocessing pipelines in the current study closely followed a 

previous report (Hallenbeck et al., 2021) but with slight modifications. We acquired all 

functional and anatomical images at the UCSB Brain Imaging Center using a 3T Siemens 

Prisma scanner. fMRI scans for experimental, model estimation, retinotopic mapping, and 

functional localizers were acquired using the CMRR MultiBand Accelerated EPI pulse 

sequences. We acquired all images with the Siemens 64 channel head/neck coil with all 

elements enabled. We acquired both T1- and T2-weighted anatomical scans using the 

Siemens product MPRAGE and Turbo Spin-Echo sequences (both 3D) with 0.8 mm 

isotropic voxels, 256 x 240 mm slice FOV, and TE/TR of 2.24/2400 ms (T1w) and 564/3200 

ms (T2w). We collected 192 and 224 slices for the T1w and T2w, respectively. We acquired 

three T1 images, which were aligned and averaged to improve signal-to-noise ratio.  

For all functional scans, we used a Multiband (MB) 2D GE-EPI scanning sequence with MB 

factor of 4, acquiring 44 2.5 mm interleaved slices with no gap, isotropic voxel size 2.5 mm 

and TE/TR: 30/750ms, and P-to-A phase encoded direction to measure BOLD contrast 

images. For retinotopic mapping of one participant (sub004), we used a MB 2D GE-EPI 
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scanning sequence acquired 56 2 mm interleaved slices with isotropic voxel size 2 mm and 

TE/TR: 42/1300 ms. We measured field inhomogeneities by acquiring spin echo images with 

normal and reversed phase encoding (3 volumes each), using a 2D SE-EPI with readout 

matching that of the GE-EPI and the same number of slices, no slice acceleration, TE/TR: 

45.6/3537ms (TE/TR: 71.8/6690ms for sub004’s retinotopic mapping session).  

MRI preprocessing.  

Our approach for preprocessing was to coregister all functional images to each participant’s 

native anatomical space. First, we used all intensity-normalized high-resolution anatomical 

scans (3 T1 images and 1 T2 image for each participant) as input to the ‘hi-res’ mode of 

Freesurfer’s recon-all script (version 6.0) to identify pial and white matter surfaces. 

Processed anatomical data for each participant was used as the alignment target for all 

functional datasets which were kept within each participant’s native space. We used AFNI’s 

afni_proc.py to preprocess functional images, including motion correction (6-parameter 

affine transform), unwarping (using the forward/reverse phase-encode spin echo images), and 

coregistration (using the unwarped spin-echo images to compute alignment parameters to the 

anatomical target images). We projected data to the cortical surface, then back into volume 

space, which incurs a modest amount of smoothing perpendicular to the cortical surface. To 

optimize distortion correction, we divided functional sessions into 3-5 sub-sessions which 

consisted of 1-4 fMRI runs and a pair of forward/reverse phase encode direction spin echo 

images each, which were used to compute that sub-session’s distortion correction field. For 

the feature salience and mapping task, we did not perform any spatial smoothing beyond the 

smoothing introduced by resampling during coregistration and motion correction. For 
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retinotopic mapping and functional localizer scans, we smoothed data by 5 mm FWHM on 

the surface before projecting back into native volume space.  

Region of interest definition.  

We identified 15 ROIs using independent retinotopic mapping data. We fit a vRF model for 

each voxel in the cortical surface (in volume space) using averaged and spatially smoothed 

(on the cortical surface; 5 mm FWHM) time series data across all retinotopy runs (8-12 per 

participant). We used a compressive spatial summation isotropic Gaussian model (Kay, 

Winawer, Mezer, et al., 2013; Mackey et al., 2017) as implemented in a customized, GPU-

optimized version of mrVista (see Mackey et al., 2017) for detailed description of the 

model). High-resolution stimulus masks were created (270 x 270 pixels) to ensure similar 

predicted responses within each bar size across all visual field positions. Model fitting began 

with an initial high-density grid search, followed by subsequent nonlinear optimization. We 

visualized retinotopic maps by projecting vRF best-fit polar angle and eccentricity 

parameters with variance explained ≥10% onto each participant’s inflated cortical surfaces 

via AFNI and SUMA (Fig. 4). We drew retinotopic ROIs (V1, V2, V3, V3AB, hV4, LO1, 

LO2, VO1, VO2, TO1, TO2, IPS0-3) on each hemisphere’s cortical surface based on 

previously established polar angle reversal and foveal representation criteria (Amano et al., 

2009; Mackey et al., 2017; Swisher et al., 2007; Wandell et al., 2007; Winawer & Witthoft, 

2015). Finally, ROIs were projected back into volume space to select voxels for analysis. 

Retinotopically defined ROIs were used for all analyses in the current study.  

For primary analyses (Figs. 4 & 6), we aggregated across color-selective maps (hV4, VO1, 

VO2) and motion-selective maps (TO1, TO2) as reported in previous literature (Albright, 
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1993; Amano et al., 2009; Brewer et al., 2005; Conway et al., 2007; Huk et al., 2002; Mullen, 

2019) by concatenating all voxels for which the best-fit vRF model explained at least 10% of 

the signal variance prior to univariate or multivariate analyses. For completeness, we also 

conducted all analyses for each individual ROI using the same voxel selection threshold (see 

Figs. 5 & 7). We verified that our ROIs based on retinotopic mapping exhibited typical color- 

and motion-selective responses during our localizer tasks. The motion localizer revealed 

significant motion-related activation (permuted one-sample T-test comparing activation in 

response to moving dots to activation in response to static dots) in retinotopic ROIs: 

TO1/TO2 (p < 0.001), hV4/VO1/VO2 (p = 0.011). The color localizer identified significant 

color-related activation (permuted one-sample T-test comparing activation in response to 

colored rectangles to activation in response to grayscale rectangles) in color-selective 

retinotopic ROIS hV4/VO1/VO2 (permuted one-sample T-test, p < 0.001), but not motion-

selective retinotopic ROIs TO1/TO2 (p = 0.154).  
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Figure 3. Salient locations in task stimuli are fixated during free-viewing (salience control experiment). 
A: Participants viewed the same stimuli that were presented in the MRI version of the experiment with slight 
modifications (see Materials & Methods). We plotted the first fixation from each trial of the salient stimulus 
conditions (salient motion, salient color, and checkerboard). We rotated fixation coordinates on each trial 
based on the known salient stimulus location (all trials aligned such that the stimulus is at the 0° position). 
We generated heatmaps by smoothing the aligned 2D fixation histogram (summed across trials) with a 2-D 
gaussian after removing eye movements near fixation (using Matlab function imgaussfilt: kernel sigma = 
0.33°). Fixations within 2° radius of the screen center were excluded from the heatmaps. B: We quantified 
fixation heatmaps by computing the proportion of first fixations directed to the aligned stimulus location and 
compared this value to the proportion of fixations to the opposite location. Across conditions, the salient 
stimulus was fixated more than the opposite location. Errors bars reflect SEM across participants. * indicates 
significant difference based on permuted paired-samples T-test, p < 0.001. 
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Inverted encoding model.  

We used a spatial inverted encoding model (IEM) to reconstruct images based on stimulus-

related activation patterns measured across entire ROIs (Sprague & Serences, 2013; Fig. 4A). 

To do this, we first estimated an encoding model, which describes the sensitivity profile over 

the relevant feature dimension for each voxel in a region. This requires using data set aside 

for this purpose, referred to as the “training set”. Here, we used data from the spatial 

mapping task as the independent training set. The encoding model across all voxels within a 

given region is then inverted to estimate a mapping used to transform novel activation 

patterns from a “test set” (runs from the feature salience task) and reconstruct the spatial 

representation of the stimulus at each timepoint.  

We built an encoding model for spatial position based on a linear combination of 37 spatial 

filters (Sprague et al., 2014; Sprague, Itthipuripat, et al., 2018; Sprague & Serences, 2013). 

Each voxel’s response was modeled as a weighted sum of each identically shaped spatial 

filter arrayed in a triangular gird (Fig. 4A). The centers of each filter were spaced by 2.83° 

and were Cosine functions raised to the 7th power: 

𝑓𝑓(𝑟𝑟) = �0.5 + 0.5cos
𝜋𝜋𝑟𝑟
𝑠𝑠
�
7
 

for r < s; 0 otherwise 

(1) 

where r is the distance from the filter center and s is a size constant. The size constant 

reflects the distance from the center of each spatial filter at which the filter returns to 0. This 

triangular grid of filters forms the basis set, or information channels for our analysis. For 

each stimulus used in our mapping task, we converted from a contrast mask to a set of filter 



31 

 

activation levels by taking the dot product of the vectorized stimulus mask (n trials × p 

pixels) and the sensitivity profile of each filter (p pixels × k channels). We then normalized 

the estimated filter activation levels such that the maximum activation was 1 and used this 

output as C1 in the following equation, which acts as the forward model of our measured 

fMRI signals:  

𝐵𝐵1 = 𝐶𝐶1𝑊𝑊 (2) 

B1 (n trials × m voxels) in this equation is the measured fMRI activity of each voxel during 

the visuospatial mapping task and W is a weight matrix (k channels × m voxels) which 

quantifies the contribution of each information channel to each voxel. 𝑾𝑾� can be estimated 

using ordinary least-squares linear regression to find the weights that minimize the 

differences between predicted values of B and the observed B1:  

𝑊𝑊� = (𝐶𝐶1𝑇𝑇𝐶𝐶1)−1𝐶𝐶1𝑇𝑇𝐵𝐵1 (3) 

This is computed for each voxel within a region independently, making this step univariate. 

The resulting 𝑊𝑊�  represents all estimated voxel sensitivity profiles. We then used 𝑊𝑊�  and the 

measured fMRI activity of each voxel (i.e., BOLD response) during each trial (using each TR 

from each trial, in turn) of the feature salience task using the following equation:  

�̂�𝐶2 = 𝐵𝐵2𝑊𝑊� 𝑇𝑇(𝑊𝑊�𝑊𝑊� 𝑇𝑇)−1 (4) 

Here, �̂�𝐶2 represents the estimated activation of each information channel (n trials × k 

channels) which gave rise to that observed activation pattern across all voxels within a given 

ROI (B2; n trials × m voxels). To aid with visualization, quantification, and coregistration of 

trials across stimulus positions, we computed spatial reconstructions using the output of 

Equation 4. To do this, we weighted each filter’s spatial profile by the corresponding 
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channel’s reconstructed activation level and then summed all weighted filters together (Fig. 

4A). 

Since stimuli in the feature-selective attention task were randomly positioned on every trial, 

we rotated the center position of spatial filters such that the resulting 2D reconstructions of 

the stimuli were aligned across trials and participants (Fig. 4B). We then sorted trials based 

on condition (salience-present: color, salience-present: motion, checkerboard, salience-

absent: color, salience-absent: motion. Finally, we averaged the 2D reconstructions across 

trials within the same condition for individual participants, then across all participants for our 

grand-average spatial reconstructions (Fig. 4B-C). Individual values within the 2D 

reconstructed spatial maps correspond to visual field coordinates. To visualize feature-

selectivity within reconstructed spatial maps, we computed the difference in map activation 

between the salience-present: color and motion conditions (Fig. 6A). We used these 

difference maps to assess whether feature-selective ROIs had the same feature preferences 

throughout the visual field, or if they were localized to the position of the salient stimulus 

when present. 

Critically, because we reconstructed all trials from all conditions of the feature-selective 

attention task using an identical spatial encoding model estimated with an independent spatial 

mapping task, we can compare reconstructions across conditions on the same footing 

(Sprague, Adam, et al., 2018; Sprague et al., 2019; Sprague, Itthipuripat, et al., 2018). 

Moreover, because we were not interested in decoding precision, but instead in the activation 

profile across the entire reconstructed map, we did not employ any feature decoding 

approaches and instead opted to directly characterize the resulting model-based 
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reconstructions (e.g., correlation table; Scotti et al., 2021). Finally, the resulting model-based 

reconstructions are necessarily based on the modeling choices used here and should not be 

used to infer any features of single-neuron tuning properties (which we do not claim in this 

report; Sprague, Adam, et al., 2018; Sprague et al., 2019). Should readers be interested in 

testing the impact these modeling choices have on results, all analysis code and data are 

freely available (see below). 

 

Figure 4. Reconstructed spatial maps track salient stimulus location. A: We estimated a spatial inverted 
encoding model (IEM) for each ROI using an independent spatial mapping task (see Methods for details). 
Using this spatial encoding model, which maps activation patterns to activation of spatial channels that can 
be summed to produce reconstructed spatial maps, we were able to generate image reconstructions of the 
visual field on each trial and directly compare map activation across conditions. For each condition, we 
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averaged trial-wise reconstructions computed using activation patterns from 5-8 s after stimulus onset after 
we rotated and aligned them to the known position of the salient stimulus, if present. B: To validate the 
utility of our method, we computed reconstructions of checkerboard trials from each ROI. Qualitatively, 
there was a strong response to the checkerboard stimulus across both aggregate ROIs. To quantify 
reconstructions, we computed the mean map activation at the aligned stimulus location and at the location on 
the opposite side of fixation within each ROI. In each ROI’s reconstruction, activation at the stimulus 
location was greater than at the opposite location. Two-way permuted repeated-measures ANOVA (ROI; 
location) identified a significant main effect of location (p < 0.001). C: Qualitatively, the salient location was 
highlighted in the aggregate motion ROI TO1/TO2 when the salient location was defined by motion, but not 
by color, with the converse result observed in the aggregate color ROI hV4/VO1/VO2. On salience-absent 
trials, no location is reliably highlighted in average reconstructions. D: Using data from each stimulus 
condition, we identified whether enhanced reconstruction responses were localized to the salient stimulus by 
comparing mean salient location activation (‘Sal’) to the mean activation of the position opposite of the 
salient location (‘Opp’), as well as the mean activation of the ‘aligned’ position of the salience-absent 
condition (‘No-sal’). On trials with motion-defined stimuli, activation in the motion-selective ROI was 
greatest at the location of the salient motion stimulus.  When stimuli were defined by static colorful dots, 
activation in the color-selective ROI was greatest at the location of the salient color stimulus. In all panels, 
error bars are SEM across participants (n = 8). * indicates significant difference based on permuted paired T-
test, corrected for multiple comparisons with FDR. three-way permuted repeated-measures ANOVA (ROI; 
location; stimulus feature) identified a significant main effect of location (p < 0.001), two-way interaction 
between feature and ROI (p = 0.007), and a three-way interaction (p = 0.001). For all statistical comparisons, 
see Table 1. 
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Figures 4/5 Motion Color Checkerboard  
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Table 1. Statistical tests on multivariate reconstructed spatial maps (related to Figures 4/5). P-values for 
comparisons at specific locations in reconstructed spatial maps for each ROI. Comparisons include one-sample 
T-tests for each motion, color, and checkerboard stimulus at the location of the salient stimulus, the opposite 
location (loc), and the salience-absent condition, and two-sample T-tests between all condition combinations 
(salience loc vs opposite loc, salience loc vs salience absent, opposite loc vs salience absent). Bold numbers 
indicate significant differences after FDR correction for all comparisons (q = 0.05). 0 indicates comparisons 
where p < 0.001. Italicized numbers indicate significance before FDR corrections using α = 0.05. 

 

Quantifying stimulus representations.  

To quantify the strength of stimulus representations within each reconstruction, we computed 

the mean map activation of pixels located within a 1.5° radius disk centered at the known 

position of each stimulus (matching the stimulus radius of 1.5°; see Sprague, Itthipuripat, et 

al., 2018). This provides a single value corresponding to the activation of the salient stimulus 
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location for a given condition, within each retinotopic ROI. To assess the spatial selectivity 

of reconstructed spatial maps, we compared the mean map activation at the location of salient 

stimuli to map activation at the location opposite fixation using a 1.5° radius disk (Fig. 4B, 

4D). Previous studies using a similar IEM approach have used other methods to quantify 

stimulus reconstructions, such as ‘fidelity’ (e.g., Sprague et al., 2016). Conclusions using 

fidelity in the current study were qualitatively and quantitatively consistent with mean map 

activation results, so we opted to quantify our findings with map activation as it is more 

intuitive.   

To compare values across conditions, we computed a difference in extracted map activation 

across conditions (e.g., subtracted color map activation from motion map activation, Fig. 6). 

As an exploratory analysis, we computed these differences at every pixel in reconstructed 

maps. For quantification, we focused on activation averaged over the discs aligned to the 

salient stimulus location within each map or the opposite location (Fig. 6C).  
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Figure 5. Reconstructed spatial maps track salient stimulus location across all retinotopic ROIs. A: 
Reconstructions of checkerboard stimuli from each individual retinotopic ROI. Qualitatively, there was a 
strong response to the checkerboard stimulus across all ROIs. B: We quantified reconstructions by 
computing the mean map activation at the aligned checkerboard stimulus location and at the location on the 
opposite side of fixation within each ROI. Permuted 2-way repeated measures ANOVA (ROI and location) 
showed a significant main effect of ROI (p < 0.001), location (p < 0.001) and interaction (p < 0.001). Map 
activation was stronger at the location of the checkerboard as compared to the opposite location in all ROIs. 
* indicates significant difference based on permuted paired T-test, corrected for multiple comparisons with 
FDR. C: Reconstructions were computed for the salience-present and -absent conditions for both features 
(color/motion; as in Fig. 4). Qualitatively, the salient location was highlighted in feature-selective ROIs when 
the salient location was defined by motion, but not by color, with the converse result observed in color-
selective ROIs. On salience-absent trials, no location is reliably highlighted in average reconstructions. D: 
Using data from each stimulus condition, we identified whether enhanced reconstruction responses were 
localized to the salient location by comparing mean salient location activation to the mean activation of the 
position opposite of the salient location, as well as the mean activation of the ‘aligned’ position of the 
salience-absent condition. On trials with motion-defined stimuli, activation in motion-selective ROIs was 
greatest at the location of the salient motion patch. When stimuli were defined by static colorful dots, 
activation in the color-selective ROIs was greatest at the location of the salient color stimulus. * indicates 
significant difference between salient and opposite locations, and + indicates significant difference between 
the salient location and salience-absent reconstructions. Both sets of tests are based on permuted paired T-
test and corrected for multiple comparisons with FDR. 3-way permuted repeated-measures ANOVA (ROI; 
location; stimulus feature) identified a significant main effect of location (p < 0.001), 2-way interaction 
between feature and ROI (p < 0.001), and a 3-way interaction (p < 0.001). Individual feature-selective ROIs 
are highlighted (color-selective regions = red; motion-selective regions = blue). For all statistical 
comparisons, see Table 1. 

 

Visualizing and quantifying stimulus salience using gaze position.  

To ensure that our stimuli were able to capture attention in the absence of an instructed 

fixation task, we analyzed the eye position data from the salience control experiment. We 

first generated gaze heatmaps for each of the salience conditions using gaze fixation data 

extracted using a velocity threshold of 22°/s and an acceleration threshold of 3800°/s2s. We 

plotted the x and y positions of each fixation, rotated fixations based on the known location 

of the salient stimulus on each trial, and then smoothed the maps with a 2-D gaussian kernel 

using the Matlab function imgaussfilt (Fig. 3A; kernel sigma = 0.33°). Fixations that were 

within 2° of the central fixation point were excluded from the heatmaps. A behavioral index 

of stimulus salience was quantified by computing the proportion of first fixations on each 

trial that landed at the salient stimulus location (1.5° radius disk at 5.0° eccentricity) to 

https://www.biorxiv.org/content/10.1101/2023.03.29.534828v1.full#F3
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fixations to the opposite location (1.5° radius disk at -5.0° eccentricity, where 0° was center; 

Fig. 3B). 

Statistical analysis.  

We used parametric statistical tests for all comparisons (repeated-measures ANOVAs and T-

tests). To account for possible non-normalities in our data, we generated null distributions for 

each test using a permutation procedure (see below) to derive p-values. 

First, we used a one-way repeated-measures ANOVA (factor: stimulus condition; 5 levels: 

motion salience, color salience, checkerboard, non-salient motion, and non-salient color) to 

determine whether behavioral performance on the fixation task depended on the type of 

ignored peripheral stimulus presented on each trial. All behavioral analyses only used 

fixation target trials that occurred during the stimulus presentation period, as this was the trial 

period of interest in neuroimaging analyses. For the salience control experiment (Fig. 3), we 

compared the proportion of first fixations with a two-way repeated measures ANOVA with 

factors of stimulus condition (3 levels: motion salience, color salience, checkerboard) and 

location (2 levels: salient location, opposite location). To confirm that the salient location 

captured attention, we then performed follow-up paired samples T-Tests between proportion 

of fixations to the aligned salient and opposite locations (Fig. 3B). Note that the sum of first 

fixations across salient and opposite locations does not sum to 1 because participants could 

fixate other locations on the screen. 

For all primary fMRI analyses, we focused on sets of retinotopically defined regions selected 

a priori based on previous reports establishing feature selectivity for color or motion (see 

above). Additionally, for completeness, we repeated these tests across each individual 
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retinotopic ROI (Figs. 5 & 7). To determine the spatial selectivity of reconstructed spatial 

maps based on fMRI activation patterns, we computed a three-way repeated measures 

ANOVA to determine the spatial selectivity of neural modulations with location activation 

(salient location, opposite location, and aligned position in salience-absent conditions), ROI, 

and feature (motion/color) as factors (Figs. 4D & 5D). To directly test whether feature-

selective ROIs represent salient locations more strongly when salience is defined by their 

preferred feature value, we computed a paired-samples T-Test on the difference between map 

activation on color-salience and motion-salience trials between color-selective and motion-

selective ROIs (Fig. 6). We compared the same difference across all individual ROIs using a 

one-way repeated-measures ANOVA with ROI as factor (Fig. 7C). Finally, we assessed the 

spatial selectivity of feature-selective responses by computing a two-way ANOVA with ROI 

and location (salient location, location opposite to salient stimulus, and aligned position in 

salience absent condition) as factors (Fig. 6B; Fig. 7B).  

For our shuffling procedure, we used a random number generator that was seeded with a 

single value for all analyses. The seed number was randomly selected using an online 

random number generator (https://numbergenerator.org/random-8-digit-number-generator). 

Within each participant, averaged data within each condition were shuffled across conditions 

for each participant individually, and once shuffled, the statistical test of interest was 

recomputed over 1000 iterations. P values were derived by computing the percentage of 

shuffled test statistics that were greater than or equal to the measured test statistic. We 

controlled for multiple comparisons using the false discovery rate (Benjamini & Yekutieli, 

https://numbergenerator.org/random-8-digit-number-generator
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2001) across all comparisons within an analysis when necessary. Error bars are standard 

error, unless noted otherwise. 

 

Figure 6. Neural dimension maps selectively index salience based on their preferred feature. A: We 
directly compared reconstructed spatial maps for each ROI between trials where the salient location was 
defined by motion to those where the salient location was defined by color by computing their pixelwise 
difference (motion – color). For comparison, we also computed these maps for salience-absent trials.  
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Positive values indicate a region more strongly represents a location based on motion stimuli over color 
stimuli, and negative values indicate the opposite. B: To compare feature selectivity across spatial locations 
and salience-presence conditions, we extracted values of each ROI’s difference map computed between the 
preferred and non-preferred feature dimension for that ROI (see cartoons). Difference map activation was 
more positive (preferred > non-preferred) at the salient location than the opposite location on salience-
present trials, and more positive than a random location on salience-absent trials (two-way permuted 
repeated-measures ANOVA with factors of location and ROI; significant main effect of location p = 0.002). 
Additionally, difference map values were only reliably greater than zero at the aligned position on salience-
present trials (one-sample T-tests against zero, FDR corrected, p ≤ 0.005), indicating that these ROIs 
preferentially encode salient locations based on their preferred feature dimension. * indicates significant 
difference from zero. C: Difference map activation (A) computed at the salient location reliably differed 
between ROIs, such that motion-selective TO1/TO2 indexed salience more strongly when it was defined by 
motion than by color, and vice versa for color-selective hV4/VO1/VO2. Asterisk indicates significant 
difference based on permuted paired-samples T-test, p < 0.001.  Error bars reflect SEM across participants. 

 

Data & Code Availability.  

All data supporting the conclusions of this report and all associated analysis scripts available 

on Open Science Framework (https://osf.io/wkb67/). To protect participant privacy, and in 

accordance with IRB-approved procedures, freely available data is limited to extracted 

timeseries for each voxel of each ROI for all scans of the study. Whole-brain ‘raw’ data will 

be made available from the authors upon reasonable request. 

Results  

Behavior.  

Participants continuously monitored a central fixation cross for brief changes in line segment 

length while viewing stimuli in the periphery (Fig. 2). Stimuli could either be full-screen 

arrays of colored static or grayscale moving dots, or flickering checkerboards. When stimuli 

were dot arrays, they typically contained a salient region (colored dots: a disc appeared in a 

different color, 180° away in HSV colorspace; moving dots: a disc contained dots moving in 

the opposing motion direction). This design requires attention to be maintained at fixation, 

and allows for bottom-up salience to be isolated and evaluated in response to the ignored, 
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task-irrelevant peripheral stimulus as a function of the salience-defining feature. Across runs 

we adjusted fixation task difficulty to keep behavioral performance above chance and below 

ceiling and to maximize participant engagement (average response accuracy across 

conditions: 81.07% % ± 2.13%, mean ± SEM across participants; average miss rate across 

conditions: 26.49% ± 9.12%). Importantly, we observed no difference in response accuracy 

(p = 0.7; one-way permuted repeated-measures ANOVA) or miss rate (p = 0.29; one-way 

permuted repeated-measures ANOVA) as a function of peripheral stimulus type. Thus, any 

differences observed in multivariate activation patterns between conditions cannot be driven 

by differences in behavioral performance.   

To verify that our stimuli were behaviorally salient in the absence of a demanding fixation 

task, we acquired eyetracking data outside the scanner from naïve participants who were 

encouraged to freely view the display while viewing the same dot arrays that appeared in the 

MRI version of the task. The first fixation after the appearance of the stimulus array was 

most commonly directed to the salient location (Fig. 3). A two-way permuted repeated-

measures ANOVA with salience condition (salient motion, salient color, and checkerboard) 

and activation location (salient location and opposite location) as factors showed only a 

significant main effect of location (p < 0.001). Follow-up comparisons show that the first 

fixation of each trial was more likely to be directed to the salient location than the opposite 

location for the salient motion (p = 0.006), color (p = 0.002), and checkerboard (p < 0.001) 

conditions. These results verify that our stimuli were sufficiently salient to capture attention 

even though no behavioral differences were observed in the demanding fixation task 

conducted during the MRI sessions. 
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Figure 7. Individual feature-selective ROIs index salience based on their preferred feature. A: We 
directly compared reconstructed spatial maps for each ROI between trials where the salient location was 
defined by motion to those where the salient location was defined by color by computing the pixelwise 
difference (motion – color). For comparison, we also computed these maps for salience-absent trials.  
Positive values indicate a region more strongly represents a salient location based on motion over color, and 
negative values indicate the opposite. Data presented as in Fig. 6A.  B: To compare feature selectivity across 
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spatial locations and salience-presence conditions, we extracted values of each ROI’s difference map at the 
salient location, opposite location, and the salience-absent condition. Absolute difference map activation was 
greater at the salient location than the opposite location on salience-present trials than at a random location 
on salience-absent trials, and this effect depended on ROI (2-way permuted repeated-measures ANOVA with 
factors of location and ROI; significant main effect of ROI p < 0.001 and interaction p < 0.001). C: 
Difference map activation (A) computed at the salient location was only reliably different from 0 in feature-
selective ROIs, such that motion-selective regions indexed salience more strongly when it was defined by 
motion than by color, and vice versa for color-selective regions. Asterisk indicates significant difference 
based on permuted one-sample T-test, p < 0.05. * indicates significance difference from zero.  Error bars 
reflect SEM across participants. Individual feature-selective ROIs are highlighted (color-selective regions = 
red; motion-selective regions = blue). See Table 2 for all statistical tests. 
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V1 0.176 0.041 0.252 0.938 0.788 0.894 
V2 0.415 0.318 0.282 0.948 0.472 0.556 
V3 0.061 0.246 0.079 0.244 0.866 0.046 

V3ab 0.496 0.081 0.219 0.480 0.590 0.83 
hV4 0.009 0.029 0.055 0.178 0.820 0.322 
VO1 0.014 0.034 0.010 0.508 0.736 0.548 
VO2 0.057 0.954 0.385 0.096 0.554 0.176 
LO1 0.253 0.713 0.824 0.062 0.208 0.944 
LO2 0.077 0.902 0.444 0.004 0.016 0.316 
TO1 0.005 0.233 0.576 0.106 0.006 0.350 
TO2 0.017 0.476 0.927 0.002 0.002 0.260 

TO1/TO2 0.005 0.180 0.529 0.016 < 0.001 0.174 
hV4/VO1 

/VO2 0.001 0.049 0.038 0.074 0.556 0.388 
IPS0/1 0.020 0.194 0.434 0.318 0.188 0.81 
IPS2/3 < 0.001 0.667 < 0.001 0.030 0.354 0.106 

Table 2. Feature-selective map activation statistical tests (related to Figures 6/7). P-values for 
comparisons at specific locations within feature-difference spatial maps for each ROI. Comparisons include 
one-sample T-tests at the location of the salient stimulus, the opposite location, and the salience-absent maps, 
and paired-sample T-tests for all location combinations (salience vs opposite, salience vs absent, opposite vs 
absent). Bold numbers indicate significant differences after FDR correction for all comparisons (q = 0.05). 
Italicized numbers indicate significance before FDR corrections using α = 0.05. 
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Multivariate spatial representations.  

Next, we used a spatial inverted encoding model (IEM) to reconstruct spatial maps based on 

measured activation patterns from each ROI on each trial. We used data from an independent 

‘mapping’ task (see methods; Sprague et al., 2018) to estimate a spatial encoding model for 

each voxel parameterized as a set of weights on smooth, overlapping spatial channels. Then, 

we inverted the set of encoding models across all voxels in each cluster of regions to 

reconstruct spatial maps based on activation profiles from the feature-salience task (Fig. 4A). 

This procedure generates a reconstructed image for each timepoint, which we then averaged 

within condition and across timepoints corresponding to 5 to 8 s after stimulus onset. The 

resulting images are well-established to show strong activation at locations corresponding to 

visual stimulation (e.g., where a checkerboard was presented; Sprague et al., 2019; Sprague, 

Itthipuripat, et al., 2018; Sprague & Serences, 2013). Indeed, when the ‘checkerboard’ trials 

were used for stimulus reconstruction, we observed strong representations of the salient 

stimulus location in all ROIs (Fig. 4B).  

Having validated our method, we asked: does activation within these reconstructions 

additionally track locations made salient based on local differences in feature values? In our 

study, the entire visual field is equivalently stimulated (e.g., equal amount of motion energy 

or density of colored dots), so any nonuniform activation must be due to salience-related 

activation patterns within each ROI. Indeed, model-based reconstructions were able to track 

the salient location throughout the visual field on both motion- and color-salient trials (Fig. 

4C). When the salient location was defined by dots moving in a different motion direction, 
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the reconstructed spatial map from TO1/TO2 showed a stronger representation of the salient 

location than when the salient location was defined by static dots presented in a different 

color, and the converse result is apparent when examining spatial maps reconstructed from 

hV4/VO1/VO2 (Fig. 4C). Critically, in these trials, the feature values at each location are 

updated at 3 Hz, minimizing the possibility that reconstructions of salient locations emerge 

from a serendipitous selection of a specific local feature value.  

To quantify the condition-specific stimulus representation within model-based 

reconstructions for each ROI, we computed the mean activation at the known position of the 

salient stimulus (see Sprague et al, 2018; Fig. 4B). For ROIs which compute spatial maps of 

salient location(s), we predict that reconstructions will show an enhanced representation of 

the salient stimulus position when compared to non-salient locations. Our design allows for 

two important comparisons to establish whether these salience computations occur. First, we 

can directly compare the activation in reconstructed spatial maps at the salient location to 

activation in the location on the opposite side of the fixation point (which contains non-

salient ‘background’ dots with an equal amount of color/motion energy as the salient 

location). This comparison allows us to demonstrate that spatial maps highlight salient 

locations within each salient stimulus condition. Second, we can compare the mean 

activation of the salient location on salience-present trials to a randomly selected location of 

the reconstructed spatial map on salience-absent trials. This allows us to see if the map 

activation at the salient location was greater than map activation at an equivalent spatial 

location when viewing a uniform dot array with no salient position(s).  
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Map activation values were strongest at the salient location when a salient stimulus was 

presented, and weaker at non-salient locations (both when a salient stimulus was presented 

elsewhere, and when no salient stimulus was present at all; Fig. 4D). We compared map 

activation values across conditions, map locations, and ROIs using a three-way repeated-

measures permuted ANOVA with stimulus feature (motion/color), activation location 

(salience-absent; salience-present: salient location; salience-present: opposite location), and 

ROI (TO1/TO2; hV4/VO1/VO2) as factors. This analysis indicated that there was a main 

effect of activation location (p < 0.001), a two-way interaction between stimulus feature and 

ROI (p = 0.007), and a three-way interaction between all three factors (p = 0.001). All other 

comparisons were non-significant (p > 0.05).  

Within hV4/VO1/VO2, we observed a significant difference between map activation at the 

salient location and opposite location on color salience-present trials (p < 0.001, permuted 

paired samples T-test; Fig. 4D) as well as a significant difference between the color-defined 

salient location and map activation on salience-absent colored dot trials (p = 0.008, permuted 

paired samples T-test). Map activation at the salient location was significantly greater than 

zero (p < 0.001; permuted one-sample T-test).  

We found complementary results in TO1/TO2 when using data from the motion stimulus 

conditions (Fig. 4D). We observed a significant difference in map activation between the 

salient location defined by motion and the opposite location on salience-present trials (p < 

0.001, permuted paired samples T-test) in addition to a significant difference between the 

map activation at the salient location and map activation from similar locations on trials 

when no salient location was defined (p < 0.001, permuted paired samples T-test). Map 
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activation at salient locations defined by motion was also greater than zero (p < 0.001; 

permuted one-sample T-test). Altogether, these results suggest that activation patterns in 

these regions reflect the image-computable salience of the corresponding location in the 

visual field. 

Comparing salience computations across feature dimensions.  

Thus far, we have shown that color- and motion-selective regions each compute a 

representation of the location of a salient stimulus defined by feature contrast. If these 

regions act as neural dimension maps which each individually compute representations of 

salient locations defined by their preferred feature value, we expect to observe a more 

efficient extraction of salient locations when the salience-defining feature matches the 

region’s preferred feature value. We tested this by computing a pixelwise difference between 

reconstructed spatial maps from each ROI when salience was defined based on color and 

when salience was defined based on motion (Fig. 6A), along with the same difference 

between the salience-absent control conditions. Values near zero (white) indicate that the 

map activation is equal between stimulus features, while positive (red)/negative (blue) values 

near the salient location indicate that the map preferentially extracts salient locations when 

the salience defining feature is motion or color, respectively. If each ROI selectively 

identifies salient locations based on its preferred feature value, then these difference maps 

will show greater absolute differences at the salient location than other locations. However, if 

instead feature selectivity and salience computations each independently and additively 

impact spatial maps, then these difference maps should show no spatial structure 

(particularly, no difference between salient and non-salient locations).   
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Qualitatively comparing these difference maps (Fig. 6A), it is apparent that both ROIs show 

a stronger difference at the salient location than the opposite location, consistent with a local 

and specialized computation of salient locations based on each region’s preferred feature 

values. The localized differences at the salient location are in opposite directions (TO1/TO2: 

positive/red; hV4/VO1/VO2: negative/blue), as expected if motion (color)-selective ROIs 

more efficiently extract salient locations defined by motion (color) feature contrast than color 

(motion) feature contrast.  

We quantified the degree to which each ROI selectively computes salience based on its 

preferred feature value by extracting activation values from these difference maps at the 

salient location, the opposite location, and the ‘aligned’ location in the salience-absent 

condition and computing map activation difference scores based on the regions’ feature 

preferences (TO1/TO2: motion – color; hV4/VO1/VO2: color – motion; Fig. 6B). A two-way 

repeated measures ANOVA with location (salient location, opposite location, salience-

absent) and ROI as factors revealed a significant main effect of location (p = 0.002). Follow-

up comparisons in TO1/TO2 demonstrate that map activation was greater at the salient 

location than the opposite location (p = 0.016, permuted paired samples T-test) and the 

salience-absent location (p < 0.001, permuted paired samples T-test) and was the only 

location with an activation difference greater than zero (p = 0.005, permuted one-sample T-

test). In hV4/VO1/VO2, the same tests did not reveal significant differences between the 

salient location and the opposite location (p = 0.074, permuted paired samples T-test) or the 

salient-absent position (p = 0.556, permuted paired samples T-test). However, only the 

salient location had map activation differences greater than zero after FDR corrections (p = 
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0.001, permuted paired samples T-test). Together, these results suggest that each ROI 

selectively indexes a salient location when salience is defined based on its preferred feature 

value. 

Finally, to directly compare salience computations between regions, we computed a salience 

modulation index (SMI). This was defined as the difference between map activation at the 

salient location between the motion and color conditions, where positive values indicate a 

stronger response to the motion-defined salient location, negative values indicate a stronger 

response to the color-defined salient location, and zero indicates no difference between 

conditions. SMI reliably differed between motion- and color-selective ROIs (Fig. 6C; p < 

0.001; permuted paired- samples T-test). This indicates that feature-selective ROIs 

preferentially compute salience based on their preferred feature dimension, and further 

supports the proposal that these retinotopically- defined regions act as neural dimension maps 

within priority map theory. 

Discussion 

In the present study, our goal was to determine whether visual cortex computes spatial maps 

representing salient locations based on specific feature dimensions within feature-selective 

retinotopic regions (Fig. 1)—a key prediction of priority map theory.  We probed this 

question by reconstructing spatial maps based on fMRI activation patterns measured while 

participants viewed, but ignored, stimuli containing salient locations based on different 

feature dimensions (Fig. 2). Our results show that salient location representations in color-

selective regions hV4/VO1/VO2 and motion-selective regions TO1/TO2 are modulated by 

bottom-up feature salience even when top-down attention is kept at fixation (Fig. 4). 



52 

 

Representations were selectively enhanced when the salience-defining feature matched the 

preferred feature of a given region and these enhancements occurred at the salient location 

(Fig. 6). These results provide strong evidence that these retinotopic cortical regions act as 

‘neural feature dimension maps’, confirming an important aspect of priority map theory. 

In previous studies in humans and nonhuman primates, neural correlates of salience and/or 

priority maps have been identified in several regions, including: LGN (Kastner et al., 2006; 

Poltoratski et al., 2017), V1 (Li, 2002; Poltoratski et al., 2017; L. Wang et al., 2022; X. 

Zhang et al., 2012), extrastriate visual cortex (including V4/hV4; Adam & Serences, 2021; 

Bogler et al., 2011, 2013; Burrows & Moore, 2009; Mazer & Gallant, 2003; Poltoratski et al., 

2017; Sprague, Itthipuripat, et al., 2018; Sprague & Serences, 2013), LIP/IPS (Adam & 

Serences, 2021; Bisley & Goldberg, 2003, 2006; Chen et al., 2020; Gottlieb et al., 1998; 

Jerde et al., 2012a; Sprague, Itthipuripat, et al., 2018), FEF (Bichot & Schall, 1999; Schall et 

al., 1995; Schall & Hanes, 1993), substantia nigra (Basso & Wurtz, 2002), pulvinar (Shipp, 

2003), and SC (Basso & Wurtz, 1998; Fecteau & Munoz, 2006; B. J. White et al., 2017). 

Across these studies, activity in neurons/voxels tuned for salient and/or relevant locations is 

greater than activity in neurons/voxels tuned towards nonsalient and/or nonrelevant locations. 

However, many of these previous studies are limited by focusing on a single salience-

defining feature and/or by relying on sparse single-unit recordings from one or a handful of 

cells within one or a small number of brain regions in non-human primates. Such studies 

necessarily face difficulty comparing across different brain regions and assessing activation 

profiles across the entire region (and thus, the entire visual field). Here, we overcame these 

limitations by implementing a multivariate IEM which allowed us to reconstruct activation 
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profiles across a map of the entire visual field from each timepoint’s measured activation 

pattern in each ROI (Fig. 3A). Additionally, by manipulating the salience-defining stimulus 

feature dimension across trials (Fig. 2) while simultaneously measuring fMRI activation 

patterns across multiple feature-selective ROIs (Figs. 4C-D & 5C-D), we established that the 

region best representing a salient location depends on the salience-defining feature (Figs. 6-

7). 

As mentioned above, there is extensive, and often conflicting, evidence for priority maps 

implemented in different structures throughout the brain. With the seemingly redundant 

computations of priority across regions, how is information across maps ultimately leveraged 

to guide attention? We expect measurements of feature dimension maps like those identified 

in the current study can be used to disentangle these various accounts by establishing which 

regions act to integrate information about salient locations based on combinations of features. 

One testable prediction of the priority map framework is that activation profiles in a feature-

agnostic priority map should reflect some computation over the activation profiles measured 

across individual feature dimension maps, such as: linear combination (Wolfe, 1984), 

winner-take-all processes (Itti & Koch, 2001), and probabilistic integration (Eckstein, 2017). 

While such a test is not possible in our current study, future work incorporating stimuli with 

multiple salient locations with different degrees of stimulus-defined salience may better 

disentangle the roles of various putative priority maps in guiding visual attention based on 

stimulus properties.  

Aspects of priority map theory are invoked by foundational models of behavioral 

performance on visual search tasks (Duncan & Humphreys, 1989; Folk et al., 1992; Müller et 
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al., 1995; Theeuwes, 2010). For example, when a subject is tasked with searching for one 

shape among a homogeneous array of other shapes (e.g., a circle among squares), search 

performance is slower if one of the distracting stimuli is presented in a different color 

(Theeuwes, 1992), and slowing is greater for larger target/distractor color discrepancies 

(Duncan & Humphreys, 1989; Theeuwes, 1992; Wolfe & Horowitz, 2017). Influential 

cognitive models posit that the distractor results in greater activation in a priority map, which 

slows search for the shape-defined target stimulus. Indeed, reconstructed spatial 

representations of target and distractor stimuli measured from extrastriate visual and parietal 

cortex during an adapted version of this task show enhanced neural representations for color-

defined distracting stimuli (Adam & Serences, 2021). While cognitive priority map models 

have offered parsimonious explanations of changes in discrimination performance, RTs, and 

gaze trajectories, they often disagree on when and how salient items capture attention (Luck 

et al., 2021).  

One central issue limiting the ability to adjudicate among competing models is that there is 

no well-established method for quantitatively measuring how neural activity indexes the 

relative salience of different aspects of stimulus displays (Chang et al., 2021; Gaspelin & 

Luck, 2021; Pearson et al., 2021). Our findings may offer a practical solution to this 

challenge. Here, we demonstrate that neural representations of feature-based salience can 

simultaneously be tracked across multiple feature-selective regions, and previous work has 

identified similar salience representations using stimuli varying in luminance contrast across 

multiple retinotopic regions (Sprague et al., 2018). Together, this work establishes a 

framework for empirically estimating neural representations of visual salience across cortical 
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processing stages, including feature dimension maps. Using these methods, future work can 

investigate how competing stimuli made salient by different feature dimensions are 

represented within retinotopic maps and how the relative strength of those representations – 

and how they interact with one another within and between maps – may explain aspects of 

how salient stimuli capture attention measured using behavioral methods.  

An example of a cognitive model that can be informed by these neural observations is the 

‘attentional window’ account of attentional capture (Theeuwes, 2010, 2023a, 2023b). This 

model hypothesizes that difficult tasks requiring attention directed to a narrow region of the 

screen result in less attentional capture by salient distracting stimuli appearing outside the 

attended ‘window’, because the distracting stimuli are not processed to a sufficient degree to 

guide attention (as compared to when attention is directed to a larger area of the screen, 

which allows for the distracting stimuli to capture attention). Our study offers an important 

new constraint on this model: even when attention was narrowly directed to a challenging 

task at fixation, and when no behavioral impacts of the salient peripheral stimuli could be 

observed inside the scanner, we were able to identify representations of salient locations in 

feature dimension maps (Figs. 4 & 6). Thus, if variations in the size of an attentional window 

account for differences in attentional capture between task designs, we predict this window is 

likely to operate at a later stage, after feature-specific salience is computed in neural feature 

dimension maps. 

Our results show that feature-selective retinotopic ROIs compute a stronger representation of 

the salient location defined based on their preferred feature dimension as compared to a non-

preferred feature dimension. However, each ROI still represents the salient location, even 
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when made salient by the non-preferred feature value (Fig. 4). We speculate that this is due 

to feedback from higher-order regions (e.g., parietal or frontal cortex) that aggregate salience 

maps across individual feature dimensions to guide attention to important locations in the 

scene. Because the observers’ task inside the scanner required careful fixation and the 

stimulus was always irrelevant, such automatic extraction of salient locations was never used 

by the participant to guide covert or overt attention (though overt attention was guided to 

these locations when participants were allowed to free-view, Fig. 3). However, it may be the 

case that the automatic identification of salient scene locations results in feedback signals 

across retinotopic cortex, similar to widespread retinotopic effects of cued spatial attention 

observed previously (e.g., Gandhi et al., 1999; Itthipuripat et al., 2019; Sprague, Itthipuripat, 

et al., 2018; Sprague & Serences, 2013; Tootell et al., 1998). Indeed, reconstructions based 

on parietal cortex activation patterns show representations of the salient location, as do those 

from all other retinotopic regions studied (Fig. 5C-D). Importantly, only feature-selective 

regions TO1/TO2 and hV4/VO1/VO2 show a systematic change in the representation of the 

salient location as a function of the salience-defining feature, supporting their role as neural 

feature dimension maps despite their weaker representation of a salient location based on a 

non-preferred feature (Fig. 7). 

While this study provides evidence that specialized computations support the identification 

of salient locations based on different feature values, there remain some important limitations 

to this work. First, to maximize our ability to detect representations of salient locations in this 

study, we used stimuli of fixed size but random location defined by 100% feature contrast 

(color: opposite hues in HSV colorspace; motion: opposite motion directions). Future 
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research which parametrically manipulates the size, number, and feature contrast of salient 

stimulus locations in similar stimulus displays (e.g., Bogler et al, 2013; Zhang et al, 2012; 

Burrows & Moore, 2009) could enable both comparison of reconstructed spatial maps across 

various levels of stimulus salience and in-depth forward modeling of salience-related 

computations and their associated nonlinearities based on local feature contrast input to each 

voxel’s receptive field (e.g., Hughes et al., 2019; Kay, Winawer, Rokem, et al., 2013; 

Yildirim et al., 2018). Second, future studies are required to test whether activation profiles 

in these neural feature dimension maps are equivalently sensitive to screen regions made 

salient by increases and decreases in feature intensity (e.g., motion speed, color saturation), 

which is a manipulation that has previously been effectively used to dissociate location-

specific activation driven by stimulus intensity and local salience computations (Betz et al, 

2013).   

In summary, we found that feature-selective retinotopic ROIs compute maps of stimulus 

salience primarily based on feature contrast within their preferred feature dimension, 

confirming a key untested prediction of priority map theory. These results identify feature-

selective retinotopic regions as the neural correlates of feature dimension maps within the 

priority map framework and support a new approach for probing the neural computations 

supporting visual cognition. 

  



58 

 

Chapter III: Neural Prioritization of Feature-Relevant Stimuli 

Introduction 

The environment is full of objects competing for our attention. While gardening, your goal 

may be to find green weeds in a strawberry plant, so attention will be directed to green 

objects. However, task-irrelevant objects that are salient may capture your attention, such as 

a hummingbird darting in the sky or a red strawberry. Furthermore, upon seeing the 

strawberry, you may be more likely to look for other strawberries. The numerous factors 

which contribute to how attention is allocated in the visual field—task-relevant goals, task-

irrelevant salience, and stimulus history—are described by priority map theory (Awh et al., 

2012; Itti & Koch, 2001; Luck et al., 2020; Serences & Yantis, 2006; Treisman & Gelade, 

1980; Wolfe, 1994), where these priority signals are integrated to index the most important 

locations in a scene. Locations with the highest level of priority are then selected by attention 

(Carrasco, 2011; Eckstein, 2011). 

The priority map itself indexes important information throughout the scene, but to generate 

this feature-agnostic map, it is necessary to evaluate importance related to specific feature 

dimensions (e.g., color or motion Wolfe & Horowitz, 2004, 2017). To this end, priority map 

theory states that there are several ‘feature dimension maps’ that prioritize information based 

on goals, salience, and stimulus history within particular feature dimensions (e.g., color or 

motion map). For example, when a salient moving hummingbird is present, the motion 

dimension map would have a high level of activation corresponding to the location of the 

bird (Klink et al., 2023; Liesefeld et al., 2017; Thayer & Sprague, 2023; Theeuwes, 1992). 

Similarly, goal-relevant locations are prioritized within the appropriate feature dimension 
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map—the color dimension map would prioritize locations containing green objects when 

searching for green weeds (Bahle et al., 2019; Corbetta & Shulman, 2002; Folk et al., 1992; 

Leber & Egeth, 2006; Poltoratski et al., 2017). Activation profiles across all feature 

dimension maps are integrated to create the feature-agnostic priority map, which ultimately 

directs attention. 

Certain priority map models emphasize the role of goal relevance in modulating priority 

(Wolfe, 1994, 2021), because they are particularly viable for flexible deployment of attention 

(Jiang, 2018). Consistent with cognitive priority map models, goals modulate neural 

responses based on currently relevant spatial and feature information (Kastner et al., 1999; 

Maunsell & Treue, 2006; Schall & Hanes, 1993) and can guide attention to target items when 

they match active sensory representations (Desimone & Duncan, 1995; van Loon et al., 2018; 

Witkowski & Geng, 2023). When distracting information is known in advance, goals can be 

used to ignore specific stimuli (Arita et al., 2012; Carlisle, 2023; Cosman et al., 2018; Folk et 

al., 1992; Zhang et al., 2022). This shows that goals are pivotal for prioritizing attention. 

Several studies leveraged goal-based attentional prioritization to identify the neural correlates 

of the feature-agnostic priority map (Bisley & Goldberg, 2010; Moore & Armstrong, 2003; 

Serences & Yantis, 2006). Superior colliculus (SC), posterior parietal cortex (PPC), and 

frontal eye fields (FEF) all show neural responses biased towards goal-relevant locations 

during covert and overt attention tasks (Bisley & Goldberg, 2006; Bruce & Goldberg, 1985; 

Moore & Armstrong, 2003), and these modulations occur across many different feature 

dimensions such as color (Burrows & Moore, 2009), shape (Klink et al., 2023), and 

luminance (Sprague, Itthipuripat, et al., 2018). Since these areas track the location of 
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important stimuli throughout the visual field across various feature dimensions, they could all 

be considered priority map correlates.  

While there are many candidate neural priority maps, there is minimal evidence for neural 

feature dimension maps. Throughout visual cortex, certain areas have been identified as 

feature selective. Various studies have shown that hV4, VO1, and VO2 are preferentially 

responsive to color information through single-unit recording (Conway et al., 2007) and 

fMRI (Bartels & Zeki, 2000; Brewer et al., 2005). Similarly, regions TO1 and TO2 have an 

enhanced response when motion stimuli are present in the visual field (Amano et al., 2009; 

Huk et al., 2002). These regions are specialized in processing specific feature properties; 

however, to isolate them as feature dimension maps, activation within these regions need to 

be preferentially modulated by stimulus salience and task goals at the specific location(s) of 

presented stimuli. Work from our lab provides critical evidence identifying these feature-

selective regions as dimension maps, as they track the location of feature-selective salient 

stimuli throughout the visual field (Thayer & Sprague, 2023). Responses from these regions 

were strongest when salience was defined by each region’s preferred feature. However, in 

this study, the intent was to isolate the influence of salience. As such, it is unclear how top-

down goals modulate activation profiles within these candidate neural dimension maps.  

Some reports have found feature-selective attention modulates activity in color and motion 

regions with fMRI (McMains et al., 2007; Runeson et al., 2013). McMains and colleagues 

(2007) presented a colorful moving dot stimulus in the upper right visual field. At the start of 

each trial, they instructed participants to attend one feature dimension (e.g., color or motion) 

of the stimulus and respond whenever a target feature was shown (e.g., report when red 
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appears). Using univariate BOLD responses, they found that color- and motion-selective 

areas had a greater response when attending to the preferred feature dimension of each 

region. 

While this provides evidence that feature-selective areas are modulated by goals, they fall 

short in demonstrating the spatial profiles of feature-selective responses, which is a necessary 

aspect of a feature dimension map (Fig. 8). Specifically, the location of feature-specific 

relevant information needs to be prioritized over other visual field locations and the 

univariate methods implemented in these studies do not have the spatial sensitivity of 

multivariate approaches (Kriegeskorte & Bandettini, 2007). This makes it ambiguous as to 

whether modulations occurred across the entire visual field or were localized to the location 

of the presented stimuli. Often, whenever a specific feature dimension is goal-relevant, 

neural modulations occur globally throughout the visual field (Hayden & Gallant, 2005; 

Saenz et al., 2002; Serences & Boynton, 2007; Treue & Trujillo, 1999b), which makes it 

possible that the actual stimulus location had activation similar to other locations. Thus, 

identifying the spatial extent of neural modulations in response to relevancy signals is key for 

considering feature-selective extrastriate regions as dimension maps. 

We used a multivariate approach to scrutinize whether feature-selective cortical areas are 

representative of feature dimension maps. Specifically, we wanted to know whether top-

down attention modulated activity at the location of the stimulus during a feature-selective 

attention task in color-selective regions hV4/VO1/VO2 and motion-selective regions 

TO1/TO2, and if responses were stronger when cued to attend the preferred feature of each 

region. If so, this would be evidence that feature-selective regions in visual cortex act as 
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feature dimension maps within priority map theory. To circumvent the limited spatial 

resolution inherent with voxelwise univariate averaging (Kriegeskorte & Bandettini, 2007; 

Serences & Saproo, 2012), we utilized a multivariate inverted encoding model (IEM) which 

can reconstruct spatial maps from neural response patterns (Sprague et al., 2014; Sprague, 

Itthipuripat, et al., 2018; Sprague et al., 2019; Sprague & Serences, 2013; Thayer & Sprague, 

2023). To preview our results, we found that the stimulus location in both regions had the 

greatest activation, and it was modulated by task demands, such that it was strongest when 

attending to each region’s preferred feature. These findings were only observable for both 

regions after implementing IEM, demonstrating the usefulness of this approach in 

investigating neural feature dimension maps.  

 

Figure 8: Feature dimension maps prioritize locations based on goal-relevant feature dimension. 
Priority map theory states that there are various “feature dimension maps” that index the most important 
locations in the visual field. One factor that determines whether a location is important are the current goals 
of an individual. If motion is needed for an ongoing task (e.g., finding a darting hummingbird), then 
activation within the corresponding “motion map” increases the importance associated with the 
hummingbird’s location. Local enhancement could occur, such that only the stimulus location is prioritized. 
The presence of any salient motion in the visual field, defined by local feature contrast, would lead to 
increased priority within the motion map across all condition types. Activation within the motion map would 
not be strongly modulated when color is goal relevant, but if motion is still present, there still may be modest 
prioritization at that location due to image salience (Thayer & Sprague, 2023). A motion dimension map is 
depicted here, but modulations would similarly apply for other feature dimensions, such as color.  
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Materials & Methods 

Participants.  

We recruited 10 subjects from the University of California, Santa Barbara (UCSB) 

community to participate in this study (9 female, 18-29 years old). We identified an 

appropriate sample size for our main effect of interest by conducting a power analysis using 

pilot data (n = 3). In the pilot study, we had a strong effect (dz = 1.24) which required a 

sample of 6 subjects to obtain 80% power with an alpha criterion of α = .05 as indicated by a 

power analysis conducted in G*Power (Faul et al., 2007). We collected a large number of 

measurements from each subject to minimize within-subject variance, which can benefit 

statistical power more than increased sample sizes (Baker et al., 2021). Subjects reported 

normal or corrected-to-normal vision and did not report neurological conditions. All 

procedures were approved by the UCSB Institutional Review Board (IRB# 5-24-0030), and 

the study was registered on ClinicalTrials.gov (NCT06281457). Subjects gave written 

informed consent before participating and were compensated for their time ($20/h for 

scanning sessions, $10-20/h for behavioral familiarization/training). 

Stimuli and procedure. 

Participants performed a 30-minute training session before scanning so that they were 

familiarized with the instructions. We used this session to establish the initial behavioral 

performance thresholds used in the first run of the scanning session. In the main task session, 

participants were scanned for a single two-hour period consisting of at least 4 runs of a 

spatial mapping task, which were used to independently estimate encoding models for each 

voxel, and 8 runs of the experimental feature-selective attention task. All participants also 
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underwent additional anatomical and retinotopic mapping scanning sessions (1-2x 1.5-2 hr 

sessions) to identify regions of interest (ROI; see Region of interest definition). 

Stimuli were presented using the Psychophysics toolbox (Brainard, 1997; Pelli, 1997) for 

MATLAB (The MathWorks, Natick, MA). Visual stimuli were rear-projected into a screen 

placed ~110 cm from the participant’s eyes at the head of the scanner bore using a contrast-

linearized LCD projector (1,920×1,080, 60 Hz) during the scanning session. For two of the 

participants, a CRS BOLD screen LCD monitor was used to present stimuli (1,920x1,080, 60 

Hz) that was placed ~140 cm from the participant’s eyes. All results are qualitatively 

identical for the subjects who used either the BOLD monitor or the projector. In the 

behavioral familiarization session, we presented stimuli on a contrast-linearized LCD 

monitor (2,560×1,440, 60 Hz) 62 cm from participants, who were seated in a dimmed room 

and positioned using a chin rest. For all sessions and tasks (main tasks and mapping task), we 

presented stimuli on a neutral gray circular aperture (9.15° radius), surrounded by black (only 

aperture shown in Fig. 9A).  

Feature-selective attention task.  

For the main task (Fig. 9A), participants were shown a colorful moving dot stimulus in the 

periphery along with a flickering central fixation cross (0.1° size) on each trial. The colorful 

moving dot stimulus was a 1.5°-radius circular disc comprised of several individual dots 

centered 5° from fixation at a random location along an invisible ring from 0°-359°. 

Individual dots were colored either cyan (RGB: [0; 200; 200]) or orange (RGB: [255; 165; 

0]), and moved clockwise, counterclockwise, or in a random direction. Individual dots 

occupied 0.04° of visual angle, with a dot density was 40 dots/deg2, and moved at a speed of 
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4.5°/s. Dots were randomly replotted every 50 ms or when they exceeded the stimulus 

bounds. Both cyan and orange dots were always present. Dots were always moving, but only 

some dots on each trial would move clockwise or counterclockwise, while the rest of the dots 

moved in a random direction (uniform distribution of planar motion directions). 

At the start of each trial, participants were shown a letter cue at fixation (0.4° height) that 

would indicate what aspect of the display to attend. The letter cue was presented for 1000 ms 

in white (RGB: [180; 180; 180]) and Arial font. The cue could be an ‘F’ (attend fixation), ‘C’ 

(attend color), or ‘M’ (attend motion). After a 500 ms blank period, with only the aperture 

present, the colorful moving dot stimulus and fixation cross was shown for 3000 ms. When 

cued to attend the color of the stimulus (‘C’), participants reported which individual feature 

value (cyan or orange) was most prevalent in the stimulus. When cued to attend the motion 

of the stimulus (‘M’), they reported the coherent motion direction of the stimulus (clockwise 

or counterclockwise). Since motion and color was present on each trial, visual input was 

constant, and we were able to isolate changes in the neural stimulus representations across 

brain regions due to instructed task goals. We adjusted the difficulty of the attend 

color/motion tasks between runs by changing the coherence of the dots to try and equate task 

performance between conditions (e.g., 80% dot coherence indicates that 80% of the dots 

were presented in cyan or were moving clockwise). The first run of the task in the scanner 

used coherence values acquired from the behavioral training session. 

As a neutral baseline condition, we had participants attend the central fixation cross on some 

trials. The vertical and horizontal lines of the fixation cross were 0.1° of visual angle long 

and flickered at 3 Hz (10 frames on, 10 frames off at 60 Hz). On each trial, one line of the 
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fixation cross would slightly change in size. When cued to attend fixation (‘F’), participants 

reported which line increased in length (horizontal or vertical). Since the dot stimulus was 

ignored on these trials due to fixation task difficulty (Thayer & Sprague, 2023), the neural 

response associated with the stimulus on these trials was purely driven by visual input. We 

adjusted the difficulty of the fixation task between runs by altering the degree of size change 

for vertical/horizontal lines based on behavioral accuracy (range: 0.05° to 0.2°).  

Each run had 24 trials. There were 8 trials of each condition (attend fixation, attend stimulus 

color, attend stimulus motion). All trials were separated by a randomly selected ITI ranging 

from 6-9 s with an average ITI of 7.5 s. Trial order was shuffled within run. Each run started 

with a 3 s blank period and ended with a 10.5 s blank period, for a total run duration of 301.5 

s. Eye position was monitored throughout the experiment using an Eyelink 1000 eyetracker 

(SR Research). The right eye gaze position was monitored with the eyetracker at a 500 Hz 

sampling rate. Participants performed a 5-point calibration at the start of the experiment.  
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Figure 9: Feature-selective attention task. A. During the main experimental session, participants 
performed one of three possible attention tasks. On each trial, a dot array comprised of colorful moving dots 
was shown. Dots were randomly either cyan or orange. Dots were always moving, but only some would 
move clockwise or counterclockwise, while the rest moved in random direction. In addition, a flickering 
fixation cross was always present, and the vertical or horizontal arm of the cross would increase in size once 
during the stimulus presentation period. At the start of each trial, participants were cued to perform one of 
three attention tasks related to the upcoming stimulus display. They could be cued to attend either the color 
or motion of the dot array. If this was the case, they had to report which individual feature value was most 
prevalent in the cued feature dimension (e.g., cued to attend color, are there more cyan or orange dots 
present). As a baseline, participants were occasionally cued to attend the fixation cross and report which arm 
of the cross increased in size. B. Accuracy for each attention condition. Performance was slightly worse for 
the attend color than the attend motion or fixation conditions. C. Behavioral response times for each attention 
condition. While performance was faster on the attend fixation trials than either the attend color or motion 
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conditions, there was no difference between the attend color and attend motion conditions. Error bars indicate 
SEM across participants. * Significant difference based on permuted paired-samples t test (p < 0.05).   

 

Spatial mapping task 

We also acquired  several runs of a spatial mapping task used to independently estimate a 

spatial encoding model for each voxel, following previous studies (Sprague et al., 2016; 

Sprague, Itthipuripat, et al., 2018; Sprague & Serences, 2013; Thayer & Sprague, 2023). On 

each trial of the mapping task, we presented a flickering checkerboard at different positions 

selected from a hexagonal grid spanning the screen. Participants viewed these stimuli and 

responded whenever a rare contrast change occurred (6 out 43 trials, 13.9%), evenly split 

between contrast increments and decrements. The checkerboard stimulus was the same size 

as the stimulus in the feature-selective attention task (1.5° radius) and was presented at 70% 

contrast and 6-Hz full-field flicker. All stimuli appeared within a gray circular aperture with 

a 9.15° radius, as in the feature-selective attention task. For each trial, the location of the 

stimulus was selected from a triangular grid of 37 possible locations with an added random 

uniform circular jitter (0.5° radius). The base position of the triangular grid was rotated by 

30° on every other scanner run to increase spatial sampling density. As a result, every 

mapping trial was unique, which enabled robust spatial encoding model estimation.  

Each trial started with a 3000 ms stimulus presentation period. If a target was present, then 

the stimulus would be dimmed/brightened for 500 ms with the stipulation that the contrast 

change would not occur in either the first or last 500 ms of the stimulus presentation period. 

Finally, it is were randomly selected to be either 6 or 8.25 s. All target-present trials were 

discarded when estimating the spatial encoding model. Each run consisted of 43 trials (6 of 
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which included targets). We also included a 3 s blank period at the beginning of the run and a 

10.5-s blank period at the end of the run. Each run totaled 432 s. 

Retinotopic mapping task. We used a previously reported task (Mackey et al., 2017; D. D. 

Thayer & Sprague, 2023) to identify retinotopic regions of interest (ROIs) via the voxel 

receptive field (vRF) method (Dumoulin & Wandell, 2008). Each run of the retinotopy task 

required participants attend several random dot kinematograms (RDK) within bars that 

would sweep across the visual field in 2.25 s (or, for one participant, 2.6 s) steps. Three 

equally sized bars were presented on each step and the participants had to determine which of 

the two peripheral bars the motion in the central bar matched with a button press. Participants 

received feedback via a red or green color change at fixation. We used a three-down/one-up 

staircase to maintain ~80% accuracy throughout each run so that participants would continue 

to attend the RDK bars. RDK bars swept 17.5° of the visual field. Bar width and sweep 

direction was pseudo-randomly from several different widths (ranging from 2.0° to 7.5°) and 

four directions (left-to-right, right-to-left, bottom-to-top, and top-to-bottom).  

fMRI acquisition and MRI preprocessing. 

All scanning was conducted at the UCSB Brain Imaging Center with a 3T Siemens Prisma 

scanner. fMRI data acquisition and preprocessing pipelines in the current study exactly 

follow our previous report (D. D. Thayer & Sprague, 2023). Briefly, we collected 3 T1-

weighted and 1 T2-weighted which were used to coregister all functional images to each 

participant’s native anatomic space. We used freesurfer’s recon-all script (version 6.0) to 

process all anatomical scans and AFNI’s afni_proc.py command to preprocess all functional 

scans. 
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Region of interest definition.  

We identified 15 ROIs using independent retinotopic mapping data. We fit a vRF model for 

each voxel in the cortical surface (in volume space) using averaged and spatially smoothed 

(on the cortical surface; 5 mm FWHM) time series data across all retinotopy runs (8-12 per 

participant). We used a compressive spatial summation isotropic Gaussian model (Kay, 

Winawer, Mezer, et al., 2013; Mackey et al., 2017) as implemented in a customized, GPU-

optimized version of mrVista (see Mackey et al., 2017) for detailed description of the 

model). High-resolution stimulus masks were created (270 x 270 pixels) to ensure similar 

predicted responses within each bar size across all visual field positions. Model fitting began 

with an initial high-density grid search, followed by subsequent nonlinear optimization. 

Retinotopic ROIs (V1, V2, V3, V3AB, hV4, LO1, LO2, VO1, VO2, TO1, TO2, IPS0-3) 

were then delineated by projecting vRF best-fit polar angle and eccentricity parameters with 

variance explained ≥10% onto each participant’s inflated cortical surfaces via AFNI and 

SUMA (Fig. 2). We drew ROIs on each hemisphere’s cortical surface based on previously-

established polar angle reversal and foveal representation criteria (Amano et al., 2009; 

Mackey et al., 2017; Swisher et al., 2007; Wandell et al., 2007; Winawer & Witthoft, 2015). 

Finally, ROIs were projected back into volume space to select voxels for analysis.  

Inverted encoding model.  

We used a spatial inverted encoding model (IEM) to reconstruct images of stimulus-related 

activation patterns measured across entire ROIs (Sprague & Serences, 2013; Fig. 10). To do 

this, we first estimated an encoding model, which describes the sensitivity profile over the 

relevant feature dimension for each voxel in a region. This requires using data set aside for 
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this purpose, referred to as the “training set”. Here, we used data from the spatial mapping 

task as the independent training set. The encoding model across all voxels within a given 

region is then inverted to estimate a mapping used to transform novel activation patterns 

from a “test set” (runs from the feature-selective attention task) and reconstruct the spatial 

representation of the stimulus at each timepoint.  

We built an encoding model for spatial position based on a linear combination of 37 spatial 

filters (Sprague et al., 2014; Sprague, Itthipuripat, et al., 2018; Sprague & Serences, 2013; D. 

D. Thayer & Sprague, 2023). Each voxel’s response was modeled as a weighted sum of each 

identically shaped spatial filter arrayed in a triangular gird (Fig. 10). The centers of each 

filter were spaced by 2.83° and were Cosine functions raised to the 7th power: 

𝑓𝑓(𝑟𝑟) = �0.5 + 0.5cos
𝜋𝜋𝑟𝑟
𝑠𝑠
�
7
 

for r < s; 0 otherwise 

 

(1) 

where r is the distance from the filter center and s is a size constant. The size constant 

reflects the distance from the center of each spatial filter at which the filter returns to 0. This 

triangular grid of filters forms the basis set, or information channels for our analysis. For 

each stimulus used in our mapping task, we converted from a contrast mask to a set of filter 

activation levels by taking the dot product of the vectorized stimulus mask (n trials × p 

pixels) and the sensitivity profile of each filter (p pixels × k channels). We then normalized 

the estimated filter activation levels such that the maximum activation was 1 and used this 

output as C1 in the following equation, which acts as the forward model of our measured 

fMRI signals:  
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𝐵𝐵1 = 𝐶𝐶1𝑊𝑊 (2) 

B1 (n trials × m voxels) in this equation is the measured fMRI activity of each voxel during 

the visuospatial mapping task and W is a weight matrix (k channels × m voxels) which 

quantifies the contribution of each information channel to each voxel. 𝑾𝑾� can be estimated 

using ordinary least-squares linear regression to find the weights that minimize the 

differences between predicted values of B and the observed B1:  

𝑊𝑊� = (𝐶𝐶1𝑇𝑇𝐶𝐶1)−1𝐶𝐶1𝑇𝑇𝐵𝐵1 (3) 

This is computed for each voxel within a region independently, making this step univariate. 

The resulting 𝑊𝑊�  represents all estimated voxel sensitivity profiles. We then used 𝑊𝑊�  and the 

measured fMRI activity of each voxel (i.e., BOLD response) during each trial (using each TR 

from each trial, in turn) of the feature salience task using the following equation:  

�̂�𝐶2 = 𝐵𝐵2𝑊𝑊� 𝑇𝑇(𝑊𝑊�𝑊𝑊� 𝑇𝑇)−1 (4) 

Here, �̂�𝐶2 represents the estimated activation of each information channel (n trials × k 

channels) which gave rise to that observed activation pattern across all voxels within a given 

ROI (B2; n trials × m voxels). To aid with visualization, quantification, and coregistration of 

trials across stimulus positions, we computed spatial reconstructions using the output of 

Equation 4. To do this, we weighted each filter’s spatial profile by the corresponding 

channel’s reconstructed activation level and then sum all weighted filters together (Fig. 3). 

Since stimuli in the feature-selective attention task were randomly positioned on every trial, 

we rotated the center position of spatial filters such that the resulting 2D reconstructions of 

the stimuli were aligned across trials and participants (Fig. 10). We then sorted trials based 

on condition (attend fixation, attend color, attend motion). Finally, we averaged the 2D 
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reconstructions across trials within the same condition for individual participants, then across 

all participants for our grand-average spatial reconstructions (Fig. 12A; Fig. 13B). Individual 

values within the 2D reconstructed spatial maps correspond to visual field coordinates.  

Critically, because we reconstructed all trials from all conditions of the feature-selective 

attention task using an identical spatial encoding model estimated with an independent spatial 

mapping task, we can compare reconstructions across conditions on the same footing 

(Sprague, Adam, et al., 2018; Sprague et al., 2019; Sprague, Itthipuripat, et al., 2018).  
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Figure 10: Inverted encoding model used to reconstruct maps of the visual field. Data from an 
independent spatial mapping task was used to estimate a spatial IEM for each ROI (for details, see Materials 
and Methods). Through this approach, activation patterns across all voxels in a region can be mapped onto 
the activation of spatial channels that are then summed to produce reconstructed spatial maps of the visual 
field. We reconstructed maps for each timepoint on each trial and directly compared the map activation 
across conditions. Since maps are in visual field coordinates, we were able to rotate and align reconstructed 
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spatial maps to the known position of the moving dot array. For each trial, we averaged maps from 4-7 s after 
stimulus onset and then averaged across trials for each condition.  

 

Quantifying neural responses.  

For all univariate analyses, we averaged the response across all voxels that had voxel 

receptive field (vRF) centers (as identified through the retinotopic mapping task) overlapping 

with the dot stimulus location on a given trial. Voxels overlapped with the stimulus if the 

vRF center was within the stimulus location, which was a 1.5° radius disk centered at the 

known position of each stimulus. We compared the response of stimulus-aligned voxels with 

voxels that had vRF centers overlapping with the exact opposite location of the stimulus 

within a 1.5° radius disk. 

For the multivariate analyses, we quantified the strength of stimulus representations within 

each reconstructed spatial map. To do this, we computed the mean map activation of pixels 

located within a 1.5° radius disk centered at the known position of each stimulus (matching 

the stimulus radius of 1.5°; see Sprague, Itthipuripat, et al., 2018). This provides a single 

value corresponding to the activation of the stimulus location for a given condition, within 

each retinotopic ROI. To assess the spatial selectivity of reconstructed spatial maps, we 

compared the mean map activation at the location of stimulus to map activation at the 

location opposite fixation using a 1.5° radius disk (Fig. 12).  

Lastly, we evaluated how task repetition modulated neural responses (Fig. 13). We did this 

by computing the neural response corresponding to the stimulus location as a function of 

whether participants were cued to attend to the same or different feature dimension as the 

previous trial (repeat and switch trials, respectively). For this analysis, we only considered 
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trials where the stimulus location was attended (trials preceded by attend-fixation trials were 

not included). 

For both univariate and multivariate data, we computed an attention modulation index (AMI) 

at the stimulus location (Fig. 11E, 12D). This was done to assess feature preferences of each 

ROI while minimizing the influence of spatial attention. AMI was computed as the difference 

in activation at the stimulus location between the attend motion and attend color conditions, 

where positive values indicate a stronger response to the stimulus when attending motion.  

Statistical analysis.  

Parametric statistical tests were conducted for all comparisons (repeated-measures ANOVAs 

and t tests). To account for possible non-normalities in our data, we generated null 

distributions for each test using a permutation procedure (see below) to derive p-values. 

First, we used a one-way repeated-measures ANOVA (factor: stimulus condition; 3 levels: 

attend fixation, attend color, attend motion) to determine whether behavioral performance 

(accuracy and RT) on the fixation task depended on what was attended on each trial (Fig. 

2B/C). We then conducted follow-up paired-samples t tests between attention conditions to 

see which conditions differed.  

When analyzing fMRI data, we focused on retinotopic regions that have previously been 

shown to be color- or motion-selective (Brewer et al., 2005; Huk et al., 2002; Thayer & 

Sprague, 2023). For both univariate and multivariate neural responses, we first computed a 

three-way ANOVA with location (2 levels: stimulus and opposite location), attention 

condition (3 levels: attend fixation, color, and motion), and ROI (2 levels: color-selective 
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hV4/VO1/VO2 and motion-selective TO1/TO2) as factors (Fig. 11/12). We then computed 

separate two-way ANOVAs for each relevant location (stimulus and opposite location), with 

attention condition (3 levels: attend fixation, color, motion) and ROI (2 levels: color-selective 

hV4/VO1/VO2 and motion-selective TO1/TO2) as factors. Next, we computed the difference 

between stimulus and opposite locations and conducted a two-way ANOVA to determine the 

spatial selectivity of neural modulations with attention condition (3 levels: attend fixation, 

color, motion) and ROI (2 levels: color-selective hV4/VO1/VO2 and motion-selective 

TO1/TO2) as factors. To directly test whether feature-selective ROIs represent stimulus 

locations more strongly when goals direct attention to their preferred feature dimension, we 

computed a paired-samples t test on the difference between map activation on attend color 

and attend motion trials between color-selective and motion-selective ROIs. 

Lastly, we used the behavioral and multivariate neural data to assess how responses changed 

as a function of goal repetition (Fig. 13). To do this, we binned trials based on whether the 

color/motion attention task instructed on a given trial (N) was the same (repeat) or different 

(switch) from the previous trial (N-1). Similar to other reports (Maljkovic & Nakayama, 

1994; Thayer et al., 2022), we excluded trials with inaccurate behavioral responses. We also 

excluded trials where the previous trial (N-1) was an attend fixation trial as repetition effects 

are diminished when attention is directed away from a stimulus (Larsson & Smith, 2012). We 

then conducted a two-way ANOVA on the behavioral data with trial repetition (2 levels: 

switch, repeat) and attention condition (2 levels: attend color, attend motion) as factors. We 

also conducted separate two-way ANOVA using multivariate neural responses for each 

feature-selective ROI (color-selective hV4/VO1/VO2 and motion-selective TO1/TO2) with 
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trial repetition (2 levels: switch, repeat) and attention condition (2 levels: attend color, attend 

motion) as factors.  

For our shuffling procedure, we used a random number generator that was seeded with a 

single value for all analyses. The seed number was randomly selected using an online 

random number generator (https://numbergenerator.org/random-8-digit-number-generator). 

Within each participant, averaged data within each condition were shuffled across conditions 

for each participant individually, and once shuffled, the statistical test of interest was 

recomputed over 1000 iterations. P values were derived by computing the percentage of 

shuffled test statistics that were greater than or equal to the measured test statistic. We 

controlled for multiple comparisons using the false discovery rate (Benjamini & Yekutieli, 

2001) across all comparisons within an analysis when necessary. Error bars are standard 

error, unless noted otherwise. 

Results  

Behavior. 

Participants performed a feature-selective attention task while we used fMRI to measure 

BOLD activation patterns across several independently defined retinotopic regions. 

Participants were cued to covertly attend to either the color or motion of a colored-moving 

dot stimulus on every trial, to determine which individual feature value was most prevalent. 

Accuracy differed across attention conditions (Fig. 9B) as indicated by a permuted one-way 

repeated measures ANOVA (p = 0.002), where accuracy was worse on attend color than 

attend motion trials (p < 0.001). Response times (RT; Fig. 9C) also differed across conditions 

https://numbergenerator.org/random-8-digit-number-generator
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(p < 0.001; permuted one-way repeated measures ANOVA). However, follow-up 

comparisons indicated that this was driven by faster responses to the attend fixation condition 

relative to the attend color (p < 0.001) and attend motion (p < 0.001) conditions. Critically, 

there a was no significant difference between the attend color and motion conditions (p = 

0.270). This indicates that there was a similar amount of difficulty in processing the stimulus 

between these two conditions. Since this is the case, it is unlikely that differences in neural 

responses are due to behavioral differences. 

Univariate neural responses. 

For our univariate neural results, we first conducted an analysis to replicate findings from a 

previous report investigating how goals modulate responses in feature-selective visual cortex 

(McMains et al., 2007). To do this, we computed the mean response of all voxels that had 

vRF centers within the known stimulus location as well as the opposite location on each trial. 

The resulting hemodynamic response functions (HRFs) are plotted in Fig. 11A/B. We 

averaged responses 4-7 seconds after the letter cue was presented (Fig. 11C-E). A 3-way 

permuted ANOVA with location (stimulus and opposite), attention condition (attend fixation, 

color, and motion), and ROI (hV4/VO1/VO2 and TO1/TO2) revealed a three-way interaction 

(p < 0.001). To better identify what was driving these effects, we conducted two-way 

permuted ANOVAs for each feature-selective ROI with location (stimulus and opposite) and 

attention condition (attend fixation, color, and motion). The point of this analysis was to 

determine whether motion- and color-selective regions were modulated by task demands 

(Fig. 111C). Consistent with this, in color-selective regions there was a main effect of 

attention condition (p < 0.001) and location (p < 0.001) as well as an interaction (p = 0.048). 
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Follow-up permuted paired sample t tests indicate that there was a stronger neural response 

from voxels with vRF centers at the stimulus location when attending to stimulus color than 

when attending to fixation (p = 0.001). There was also a stronger response when attending to 

stimulus motion than fixation (p = 0.001). This finding replicates previous work, indicating 

that color regions are modulated by goals.  

Motion-selective regions similarly showed a main effect of attention condition (p < 0.043) 

and location (p < 0.001) as well as an interaction (p = 0.003). Unlike color regions, motion-

selective areas showed no modulation of task demands at the stimulus location as there was 

similar activation between the attend fixation and each of the attend stimulus feature 

conditions (color: p = 0.426; motion: p = 0.156). The interaction effect was likely driven by 

the relatively strong response at the opposite location when attending to fixation. Since vRFs 

are much larger in motion-selective areas than in color-selective regions (Wandell & 

Winawer, 2015), attending to fixation could have increased neural response at the opposite 

location because many vRFs overlap with both positions. However, when attending to the 

stimulus, there would not be as much overlap with the opposite location because it is farther 

away. 

Next, we assessed the spatial selectivity of task demand modulations by computing the 

difference in BOLD response between voxels with vRF centers at the stimulus and opposite 

locations, where positive values indicate a stronger response corresponding to the stimulus 

(Fig. 11D). It is crucial that a candidate neural feature dimension map is spatially selective, 

as this is necessary to index importance throughout the visual field. Previous reports are 

limited in that they were unable to differentiate between local or global modulations of 
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attention (McMains et al., 2007). A two-way permuted ANOVA with attention condition 

(attend fixation, color, and motion) and ROI (hV4/VO1/VO2 and TO1/TO2) indicated a 

main effect of condition (p < 0.001), main effect of ROI (p = 0.001), and an interaction 

between attention condition and ROI (p < 0.001). Follow-up comparisons reveal that color-

selective regions had a stronger response to the stimulus since both the attend color and 

motion conditions had a greater response than the attend fixation condition (color: p < 0.001; 

motion: p < 0.001). Furthermore, the response was greater when attending to color versus 

motion (p = 0.011), indicating that there was a stronger response at the stimulus location 

when attending to the preferred feature of the color-selective regions.  

Through this analysis, motion-selective regions now had a stronger response to the stimulus 

location when attending to either the color or motion of the stimulus relative to attending to 

fixation (color: p = 0.007; motion: p = 0.004). This is likely due to the subtraction 

minimizing the possible attention effect from large vRFs in TO1/TO2 during attend fixation 

trials (Wandell & Winawer, 2015). Even though responses in both attend stimulus conditions 

were now greater than attend fixation, there was still no difference between the attend color 

and motion conditions (p = 0.457), indicating that task demands modulated responses at the 

stimulus locations similarly between the attend color and motion conditions.  

Critically, to determine if these regions were feature-selective, we computed an AMI for each 

feature-selective ROI (Fig. 11E). This was the difference between mean responses at the 

stimulus location between the attend motion and attend color conditions. While color-

selective regions were negative (p < 0.001), indicating that they had a stronger response to 

the stimulus when attending to color, motion-selective regions were no different from zero (p 
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= 0.108). Thus, based on the univariate response, only color-selective regions could be 

considered a neural dimension map.  

 

Figure 11: Voxel RF-sorted BOLD responses support neural color dimension map but not motion 
dimension map. A. HRFs from each retinotopic feature-selective ROI. Univariate BOLD responses were 
computed using voxels that had vRF centers within the stimulus (solid line) or opposite (dashed line) 
location. Shaded gray indicates the data that were averaged for plots C-E. B. The difference in mean BOLD 
response between the stimulus and opposite location for each feature-selective retinotopic ROI. Dashed lines 
indicate within-subject SEM. Qualitatively, color-selective regions had a very strong neural response at the 
stimulus location. C. BOLD responses averaged 4-7 s after instruction cue onset for feature-selective ROIs. 
Color-selective regions were modulated by task demands at the stimulus location, as BOLD responses were 
greater when attending to the stimulus than when attending to fixation (color vs fixation: p < 0.001; motion 
vs fixation: p < 0.001). However, motion-selective regions were not modulated by task demands, as BOLD 
responses were the same at the stimulus location across attention conditions (color vs fixation: p = 0.426; 
motion vs fixation: p = 0.156. D. Difference in BOLD responses for each feature-selective ROI between the 
stimulus and opposite locations. Color-selective regions again show a modulation of task demands, where 
activation was greater when attending to the stimulus than when attending to fixation (color vs fixation: p < 
0.001; motion vs fixation: p < 0.001). Similarly, motion-selective regions were modulated by task demands 
(color vs fixation: p = 0.007; motion vs fixation: p = 0.004). E. Difference in BOLD response at the stimulus 
location for each ROI between attend motion and attend color conditions. Positive values indicate a stronger 
response when attending to stimulus motion. Color-selective regions had a negative value (p < 0.001), but 
motion-selective regions did not differ from 0 (p = 0.108). * Significant difference based on permuted paired 
samples t test (p < 0.05). Error bars indicate SEM within participants.  
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Multivariate spatial representations. 

Based on the univariate findings only color regions reflect the required properties of a feature 

dimension map. To more finely evaluate whether TO1/TO2 and hV4/VO1/VO2 can be 

considered neural feature dimension maps, we computed an IEM for each region (see 

Materials and Methods; Sprague et al., 2018). To do this, we used an independent “mapping” 

task to estimate a spatial encoding model for each voxel. The model was parameterized as a 

series of weights across several smooth, overlapping spatial channels. The weights from the 

spatial encoding model across all voxels that comprised a feature-selective ROI were then 

inverted, which allowed us to reconstruct spatial maps based on activation profiles from the 

feature-selective attention task (Fig. 10). Reconstructions are generated for each time point. 

We averaged reconstructions across time points corresponding to 4-7 s after cue onset.  

The reconstructed spatial maps (Fig. 12A) qualitatively have a stronger response at the 

aligned stimulus location than the rest of the modelled visual field. We quantified whether 

there was a stronger response to the stimulus by averaging map activation profiles within a 

1.5° radius disk (stimulus size) at the aligned stimulus location. We could then compare 

stimulus-related activation to the opposite location, which participants were not attending to 

and there was no stimulus present (Fig. 12B). A 3-way permuted ANOVA with location 

(stimulus and opposite), attention condition (attend fixation, color, and motion), and ROI 

(hV4/VO1/VO2 and TO1/TO2) revealed a three-way interaction (p < 0.001). We conducted 

two-way permuted ANOVAs for each feature-selective ROI with location (stimulus and 

opposite) and attention condition (attend fixation, color, and motion) to better determine what 
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was driving the three-way interaction. Similar to the univariate approach, the aim of this 

analysis was to determine whether motion- and color-selective regions were modulated by 

task demands. Consistent with this, color-selective regions showed a main effect of attention 

condition (p < 0.001) and location (p < 0.001) as well as an interaction (p < 0.001). Follow-

up permuted paired sample t tests indicate that there was a stronger neural response at the 

stimulus location when attending to stimulus color than when attending to fixation (p < 

0.001). There was also a stronger response when attending to stimulus motion than fixation 

(p < 0.001). Motion-selective regions had no effect of attention condition (p = 0.131) but did 

have a main effect of location (p < 0.001) and an interaction between location and attention 

condition (p < 0.001). For the univariate analysis, the results from motion-selective regions 

did not support neural modulations based on task demands. When using IEM, there was a 

greater response to the stimulus in motion-selective regions as compared to when attending 

to fixation (color: p = 0.001; motion: p = 0.001). This indicates that motion-selective regions 

are responsive to task demands and that this may only be identifiable with more sensitive 

multivariate approaches, such as IEM.  

Next, to evaluate the spatial selectivity of these modulations, we computed the difference in 

map activation between the stimulus and opposite locations for each attention condition (Fig. 

12C). A 2-way repeated measures ANOVA with attention condition (attend fixation, color, 

and motion) and ROI (TO1/TO2 and hV4/VO1/VO2) as factors reveal a main effect of ROI 

(p < 0.001) and an interaction between ROI and attention condition (p = 0.006). Follow up 

comparisons indicate that in color-selective regions, the stimulus location was more strongly 

represented than the opposite location when attending to a feature of the stimulus (attend 
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fixation vs attend color: p < 0.001; attend fixation vs attend motion: p < 0.001). Furthermore, 

the stimulus location was more strongly represented when attending to color than when 

attending to motion (p = 0.019), indicating that neural modulation via goals was localized to 

the stimulus. Motion regions also exhibited a stronger response to the stimulus than when 

attending fixation as indicated by a stronger response when attending color than attending to 

fixation (p < 0.001) and when attending to motion versus attending fixation (p < 0.001). 

There was no difference between the attend color and motion conditions (p = 0.745). It is 

possible that TO1/TO2 are partly influenced by global modulations of attention, which would 

lead to increased responses at the stimulus and opposite location primarily when attending to 

motion (Martı́nez-Trujillo & Treue, 2002; Treue & Trujillo, 1999b). If so, the difference 

between locations would have a greater impact on attend motion trials relative to attend color 

trials, making responses more comparable between conditions even though the attend motion 

stimulus location had greater activation.  

The previous analyses provide evidence that motion- and color-selective regions are spatially 

selective, as they preferentially tracked the location of the stimulus throughout the visual 

field; however, a key aspect of neural feature dimension maps is that they respond more 

strongly to stimuli when observer goals direct attention towards their preferred feature 

dimension. To quantify this, we computed an AMI for each ROI, where positive values 

indicate a stronger response to the stimulus when attending to motion (Fig. 12D). Color-

selective regions showed a significant negative value (p = 0.001). Consistent with the 

univariate analysis, this demonstrates that color regions preferentially responded to the 

stimulus when attending to color. Unlike the univariate results, motion-selective regions 
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exhibited a significant positive value (p = 0.009), meaning that they had a preferential 

response to the stimulus when attending to motion. Thus, when using a multivariate 

approach, there is critical evidence that both color- and motion-selective regions represent 

neural feature dimension maps, as they selectively respond to the locations of important 

feature-specific stimuli in the visual field. 

 

Figure 12: Reconstructed spatial maps support both neural color and motion dimension maps. A. 
Reconstructions from motion- and color-selective regions from the attend fixation, color, and motion 
conditions. Qualitatively, there is a strong response at the aligned location, particularly when attending to 
either the motion or color of the stimulus. B. We determined whether each region was modulated by task 
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demands by assessing the strength of the stimulus representation for each stimulus condition as well as the 
opposite location. For both regions, the neural response at the stimulus location was stronger when attending 
to either feature of the stimulus as compared to attend fixation trials, indicating that these regions track 
general task demands. At the opposite location, responses were stronger when attending to fixation. This is 
consistent with task demands modulating neural responses only locally, rather than in conjunction with a 
global modulation. C. Difference in map activation between the stimulus and opposite locations for each 
stimulus condition. Responses were always greater when attending to either the color or motion of the 
stimulus for both regions. D. Difference in map activation between the attend motion and attend color 
conditions. Responses reliably differed from zero for both ROIs, where motion-selective areas had stronger 
response when attending to motion and color regions had a stronger response when attending to color. 
Responses differed between regions as well. * Significant difference based on permuted paired-samples t test 
(p < 0.05). Error bars indicate SEM within participants.  

 

Neural and behavioral modulations of task repetition. 

Observer goals are crucial for indexing priority in the visual field (Wolfe, 1994), and the 

multivariate results we present provide the key evidence describing TO1/TO2 and 

hV4/VO1/VO2 as neural motion and color dimension maps. However, another way which 

priority can be modulated is through repeated encounters with a stimulus or task instruction 

(Awh et al., 2012; Luck et al., 2020). Specifically, if a task has been performed in the past, 

then that can adjust how priority is computed when that task is repeated (Failing et al., 2019; 

Stilwell & Gaspelin, 2021; Thayer et al., 2022), even when the knowledge of task repetition 

is implicit (Gao & Theeuwes, 2022). First, we determined whether task repetition influenced 

behavioral performance during the feature-selective attention task (Fig. 13A). For each 

attention condition, we sorted trials based on whether participants performed a ‘repeat’ trial, 

meaning that the attended stimulus property was the same at least twice in a row (e.g., 

previous trial was attend motion and current trial is attend motion). We then compared those 

to ‘switch’ trials, which were trials where the currently attended stimulus property was 

different from the previous trial (e.g., previous trial was attend color and current trial is 

attend motion). By comparing behavioral response times between switch and repeat trials, we 
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could determine if repeated task demands improved performance (Maljkovic & Nakayama, 

1994). We conducted a permuted 2-way repeated measures ANOVA with attention condition 

(attend color and attend motion) and task repetition (switch and repeat) as factors. There was 

a main effect of task repetition (p = 0.039). Follow-up comparisons show that performance 

was improved on attend motion repeat trials relative to attend motion switch trials (p = 

0.012). There was no benefit observed on attend color repeat trials compared to attend color 

switch trials (p = 0.148).  

Since there was only a behavioral benefit for the attend motion trials, we only expected a 

modulation in neural response to the stimulus in motion-selective regions, as the neural 

motion dimension map should be reflecting this change in prioritization. We evaluated the 

neural response at the stimulus location within reconstructed spatial maps (Fig. 13B) on 

switch and repeat trials for each stimulus attention condition (attend motion or attend color). 

To be complete, we evaluated the neural response for motion- and color-selective regions 

(Fig. 13C). We conducted a permuted 3-way repeated measures ANOVA, with factors of 

attention condition (attend motion and attend color), ROI (TO1/TO2 and hV4/VO1/VO2), 

and task repetition (repeat and switch trials). There was a 2-way interaction between attention 

condition and ROI (p = 0.005).  
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We conducted permuted 2-way ANOVAs for each feature-selective region with attention 

condition (attend motion and attend color) and task repetition (switch and repeat trials) as 

 

Figure 13: Task repetition modulates behavioral and neural responses for motion.  A. Behavioral 
response times for the attend color and attend motion conditions binned by trials where a given trial was the 
same task at least twice in a row (repeat) or different from the previous trial (switch). Responses only 
benefited from task repetition on attend motion repeat trials when compared to motion switch trials. B. 
Reconstructed spatial maps from TO1/TO2 and hV4/VO1/VO2 for attention motion/color repeat and switch 
trials. Even with a reduced number of trials contributing to reconstructions, there was a qualitatively strong 
response at the stimulus position. C. Map activation at the stimulus location for attend motion and attend 
color switch/repeat trials. In only TO1/TO2, there was a reduced response to the stimulus on repeat trials than 
on switch trials. This mirrors the behavioral results, as there was only a difference in RT when attending to 
motion. * Significant difference based on permuted paired-samples t test (p < 0.05). Error bars indicate 
within subject SEM.  
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factors. For color-selective regions, we conducted a permuted 2-way ANOVA. There was a 

main effect of attention condition (p = 0.021), which was due to a stronger neural response 

when attending to the color of the stimulus. For motion-selective regions, the permuted 2-

way repeated measures ANOVA revealed a main effect of attention condition (p = 0.018) 

and task repetition (p = 0.022) indicating that there was an overall stronger response to the 

motion stimulus—consistent with previous analyses—and, surprisingly, a weaker neural 

response on repeat trials than switch trials. Follow-up two-sample t tests indicate that in 

motion-selective regions, the stimulus representation on attend motion trials was weaker on 

repeat than switch trials (p = 0.031) but this difference of stimulus representation strength 

was not observed on attend color trials (p = 0.133). Since the difference in neural response 

was only observed in motion-selective regions and the behavioral benefit of task repetition 

was only present on attend motion trials, this is suggestive that task repetition modulates 

priority within neural motion dimension maps. Additionally, since the stimulus was 

effectively the same on each trial, decreased neural response cannot be explained by 

perceptual neural adaptation (see Discussion). Overall, the multivariate analyses indicate that 

responses in color- and motion-selective regions allow us to conclude these regions represent 

neural feature dimension maps within the priority map framework.  

Discussion 

The goal of the current study was to establish whether visual cortex contains distinct neural 

spatial maps that preferentially track the location of stimuli when specific feature dimensions 

of those stimuli are goal relevant (Fig. 8). We presented a colorful moving dot stimulus on 

each trial, but cued participants to attend to either the color or motion of that stimulus (Fig. 
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9). Our design isolated the influence of observer goals because the goal-relevant feature 

dimension could change on each trial, but the visual input was consistent across the entire 

experiment. Univariate measures support color-selective regions hV4/VO1/VO2 as a 

representative neural color map but fall short of supporting motion-selective areas TO1/TO2 

as a motion dimension map (Fig. 11). However, by using an inverted encoding model (Fig. 

10) to reconstruct spatial maps from both motion- and color-selective regions, we were able 

to show that stimulus representation in both regions were modulated by task demands and 

was strongest when attending to each region’s preferred feature (Fig. 12). Additionally, 

motion-selective regions were modulated by task repetition, which mirrored behavioral 

response times benefits that were only observed on attend motion trials (Fig. 13). These 

findings provide the necessary evidence to identify feature-selective retinotopic regions as 

‘neural feature dimension maps’—a critical component of priority map theory.  

There are several properties that need to be reflected in a neural feature dimension map: 

spatial selectivity, feature selectivity, and computation of important information at specific 

locations. The findings in this study supports color- and motion-selective regions as neural 

feature dimension maps, but it additionally provides a complement to previous findings from 

our lab (Thayer & Sprague, 2023). In this report, we presented dot displays which contained 

either salient color or motion stimuli that were ignored. In the same feature-selective regions, 

reconstructed spatial maps showed a stronger response at the location of a stimulus when the 

salient feature dimension matched the feature selectivity of each region. This was 

considerable evidence supporting color- and motion-selective regions as neural feature 

dimension maps, but nearly all priority map models emphasize how observer goals sculpt 
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priority. Thus, in conjunction with these previous findings, there is now mounting support for 

the role of feature-selective regions in computing attentional priority.  

Previous reports (McMains et al., 2007; Runeson et al., 2013) have similarly investigated 

how color- and motion-selective regions are modulated by task demands. In both studies, 

participants viewed colorful moving dot stimuli and reported that color- and motion-selective 

regions were preferentially modulated when attending to the preferred feature of each region. 

However, neither study indexed the spatial selectivity of feature response modulations, so 

they may have occurred throughout the entire visual field. These findings fall short of 

establishing an area as a neural feature dimension map, as a critical aspect of these maps is 

that the stimulus location should be prioritized above all other locations if there is nothing 

else salient or relevant in the visual field. This is a limitation of univariate averaging 

approaches. Because univariate methods usually average across voxels with variable spatial 

selectivity (Kriegeskorte & Bandettini, 2007; Serences & Saproo, 2012), it is difficult to 

ascertain any map-like structure in these regions. We attempted to circumvent this limitation 

by leveraging a vRF encoding model (Dumoulin & Wandell, 2008) to identify voxels that 

preferentially responded to the stimulus location. Even though this method is still univariate, 

as models are fit to individual voxels, it is a powerful tool for assessing spatially selective 

responses (Wandell & Winawer, 2015). While there was now satisfactory evidence to 

support hV4/VO1/VO2 as a color dimension map, TO1/TO2 showed no feature selective 

response to the stimulus. In fact, voxels corresponding to the stimulus location in TO1/TO2 

were not modulated by task demands at all. However, using inverted encoding models, we 

were able to provide the necessary evidence for both color and motion regions to identify 
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them as neural feature dimension maps. IEM leverages weighted responses across voxel 

activation patterns, which what led to the detectability of task demand modulations in motion 

regions (Serences & Saproo, 2012). 

The primary goal of this study was to provide evidence that neural feature dimension maps 

track the location of goal-relevant feature-selective stimuli throughout the visual field, but 

information can also be prioritized through repeated exposure to a stimulus (Awh et al., 

2012; Luck et al., 2020). History with a stimulus can enhance or suppress specific locations 

or features (Adam & Serences, 2020; Addleman & Störmer, 2023; Maljkovic & Nakayama, 

1994; Stilwell et al., 2019; Thayer et al., 2022), and it was possible to evaluate the influence 

of task repetition in the current study. Due to the trial-by-trial variability of our design, we 

could assess how task repetition adjusted the stimulus representation in neural feature 

dimension maps. Behaviorally, there was a response time benefit on attend motion trials 

when that task repeated (Maljkovic & Nakayama, 1994; Wolfe et al., 2003). Interestingly, 

only the neural response in motion-selective regions changed as a function of repetition, as 

indicated by decreased stimulus strength. Initially, this may appear to contradict the 

behavioral finding, because if activation within the motion dimension map corresponds to 

prioritization, then perhaps the stimulus representation should be stronger on repeat trials. 

However, it may be that task repetition makes it easier to read out information from a region. 

This could occur through greater inhibitory signals in neural populations that code task-

irrelevant information, which would help minimize the variability of neural responses by 

sharpening task-relevant information (Ringo, 1996; Schacter & Buckner, 1998; Wiggs & 

Martin, 1998). It may be that neural populations in TO1/TO2 are suppressed at the stimulus 
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location that code task-irrelevant feature information. For example, some individual neurons 

may have receptive fields that overlap with the stimulus but are not tuned to the specific 

motion directions used in our task. Since these neurons do not contribute to motion 

discrimination, and since spatial information is not needed to complete the task, those 

neurons may be inhibited. This would lead to a weaker spatial representation of the stimulus 

but one that contains the same amount of task-relevant information, and presumably an 

improved representation of the goal-relevant motion direction. Future studies should test this 

interpretation by applying variants of the IEM approach that model feature information, like 

motion or color (Brouwer & Heeger, 2009; Sahan et al., 2020). 

Neural adaptation studies may also support this interpretation. Neural adaption refers to the 

decreased neural response that occurs when stimuli with the same properties are repeatedly 

presented and is only observed in neurons that are tuned for the repeated stimulus feature(s) 

(Blakemore & Campbell, 1969). This is used as evidence in fMRI studies to identify feature-

selective regions (Grill-Spector & Malach, 2001) and can occur through perceptual or 

conceptual repetitions (Schacter & Buckner, 1998). It is unlikely that the decreased neural 

response in the current study is due to perceptual neural adaptation because the stimulus was 

effectively identical throughout the study. Even though most adaptation studies observe 

decreased neural responses when the physical properties of a stimulus are the same across 

presentations, adaption can occur through iterative task demands (Larsson & Smith, 2012). 

Since stimuli in the current study were always identical throughout the experiment, then task 

repetition must be driving the difference between switch and repeat trials in TO1/TO2. This 

bolsters the claim that motion-selective regions represent a motion dimension map, as task 
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repetition is a form of selection history, which is another modulatory factor described by 

priority map theory. Even though repetition effects were not observed in color regions, there 

was no response time benefit due to task repeats. Because no behavioral effect was present, 

there should not be any observed neural effect. In future studies, the task could be optimized 

for repetition effects when attending to color, and perhaps then there would be an observable 

neural effect. 

In sum, we found that feature-selective retinotopic regions in visual cortex track the location 

of stimuli throughout the visual field and had a stronger response to those stimuli when each 

region’s preferred feature was goal-relevant. This is necessary evidence for priority map 

theory, which identifies these regions as neural feature dimension maps. These findings 

solidify TO1/TO2 and hV4/VO1/VO2 as necessary in processing important color and motion 

information in the visual field, which can be exploited to fully understand how we 

successfully navigate our visual environment. 
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Chapter IV: Behavioral Prioritization of Learned Features 

Introduction 

The visual system is constantly bombarded with information, of which only a small portion 

can be attended. When searching the kitchen for ingredients to make pizza, features and 

locations in the kitchen that are aligned with the goal of making pizza get prioritized. For 

example, one may prioritize search for the red tomato sauce in the cabinet. Search for pizza-

related items can be disrupted, such as when there is a salient, unexpected, and abrupt 

appearance of a roommate in the kitchen. The processing of other salient items in the scene, 

such as the bright green parsley growing in the window, are not disruptive, but instead might 

be suppressed due to their regular presence in the kitchen. The ability to prioritize specific 

information based on one’s goals, the automatic capture from abrupt onset salient stimuli, 

and the learned suppression of regularly presented items all interact to produce the 

phenomenon of attentional control (Awh et al., 2012; Luck et al., 2020).  

The interplay among these signals has been characterized within the priority map framework 

(Itti & Koch, 2001; Koch & Ullman, 1985; A. M. Treisman & Gelade, 1980; Wolfe, 1994; 

Zelinsky & Bisley, 2015), where a priority map reflects the importance of specific locations 

within the visual field. To compute a feature-agnostic priority map, individual maps of 

specific feature dimensions (e.g., color or orientation), which contain information 

corresponding to locations that are important based on being physically salient as well as 

based on their relevance for ongoing goals, are summed. Bottom-up and top-down inputs 

have been well established to drive attentional selection through behavioral (Bundesen, 1990; 

Duncan & Humphreys, 1989; Olivers et al., 2006) and neural (Fecteau & Munoz, 2006; 
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Gottlieb et al., 1998; Serences & Yantis, 2006) studies and can modulate priority at the level 

of individual feature maps (McMains et al., 2007; Runeson et al., 2013; Saenz et al., 2002; 

Serences & Boynton, 2007) or an integrated priority map (Bisley & Goldberg, 2003, 2006; 

Bogler et al., 2011, 2013).  

The contribution of a third category, selection history, has been proposed due to results that 

do not adhere to the canonical top-down/bottom-up dichotomy (Awh et al., 2012; Shomstein 

et al., 2022). Selection history is distinct from top-down attention, as the influence of 

previous deployments of attention modulate priority without the explicit awareness of an 

individual and can even interfere with ongoing goals (Hickey et al., 2010). Additionally, 

selection history is distinct from bottom-up salience because selection history clearly cannot 

influence the physical properties of stimuli which render them salient.  

One primary means by which selection history influences the allocation of attention is by 

deprioritizing regularly presented distractors (Gaspelin et al., 2019; Stilwell et al., 2019; 

Wang & Theeuwes, 2018). Such distractor suppression is often studied using the additional 

singleton paradigm (Theeuwes, 1991, 1992). Briefly, this task commonly involves searching 

for a target shape among various distractor shapes, such as a target diamond among circle 

distractors. On some trials, a critical distractor appears that is presented in a distinct color 

from the rest of the display (e.g., red distractor among green items). When present, this 

distractor tends to slow response times (RTs), which is due to attention being directed to the 

location of the distractor based on its salience (Jonides & Yantis, 1988; Theeuwes et al., 

2003). However, when the critical distractor is regularly presented at a specific position 

within the search array, capture effects are diminished (Stilwell et al., 2019), or even 
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completely abolished such that performance is the same as distractor-absent trials (Wang & 

Theeuwes, 2018). This modulation occurs without explicit knowledge of the location 

regularities (Gao & Theeuwes, 2022), indicating a process distinct from top-down influences.  

Suppression is thought to occur via two mechanisms: proactive inhibition and reactive 

rejection (Geng, 2014). Proactive inhibition deprioritizes information prior to the onset of a 

visual display. For instance, fewer saccades are directed towards the location where a 

singleton was usually presented than any other location (Gaspelin et al., 2019; Stilwell & 

Vecera, 2022), consistent with the possibility that the learned location was suppressed prior 

to display onset. Reactive mechanisms involve the rapid disengagement from distracting 

information after covert or overt attention has already been captured (Theeuwes, 2010). They 

are thought to act primarily within a spatial context, as evidence shows suppression restricted 

to a specific location (Theeuwes et al., 2003). Thus, mechanisms of suppression likely act on 

a feature-agnostic priority map, and not necessarily at the level of individual feature 

dimension maps (Luck et al., 2020). This raises the question: to what extent do nonspatial 

stimulus features (e.g., color hue, shape) contribute to distractor suppression? 

The additional singleton paradigm lends itself to investigating the learned suppression of 

features such as color (Failing et al., 2019; Stilwell & Gaspelin, 2021; Vatterott & Vecera, 

2012). For example, Stilwell, Bahle, and Vecera (2019) reported that when the location of a 

singleton is completely randomized, but presented in one high-probability color, RTs were 

faster than when the singleton was a low-probability color. This is consistent with 

participants suppressing specific color values when beneficial for task performance. 

However, an important aspect of the visual search tasks used in previous research is that each 
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item in the display has a distinct spatial position, which inserts ambiguities on whether 

feature control mechanisms were implemented independent of space; it could be the case that 

only after a feature singleton captures attention, then reactive mechanisms suppress the 

location corresponding to the salient singleton (Luck et al., 2020; Moher & Egeth, 2012; 

Theeuwes et al., 2003). One way to disentangle the influences of features and space is to 

demonstrate feature-specific deprioritization independent of location.  

A common procedure to minimize the impact of space is to use overlapping stimuli (Duncan, 

1984; Giesbrecht et al., 2003; Liu et al., 2003; O’Craven et al., 1999; Saenz et al., 2002; 

Yantis & Serences, 2003). This way, spatial location is shared among stimuli, which isolates 

feature-specific mechanisms and minimizes the ability of a spatially driven mechanism to 

selectively suppress one, but not another, stimulus. We adopted this strategy in the current 

study by having participants perform an orientation discrimination task on two spatially 

overlapping colored line arrays. In this task (Fig. 1A), participants identified which of two 

arrays had more lines, then determined the orientation of the higher-density (‘target’) line 

array. Critically, the low-density (‘distractor’) array was typically presented in one color 

(Fig. 1B). If feature control mechanisms can specifically suppress the representation of a 

stimulus without necessarily suppressing all stimuli at a given location, then we expected 

behavioral performance to be faster when the distractor array was presented in the high-

probability color. However, if reactive mechanisms are suppressing the location 

corresponding to the distractor array, then the target array would also be suppressed due to 

their spatial overlap. If this latter account is true, then we would expect to see no difference 
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in behavioral performance whenever the distractor array was shown in the high-probability 

color or any of the low-probability colors. 

Additionally, it is imperative to pinpoint the duration of suppression effects, as it is 

informative about the mechanism of prioritization (Wöstmann et al., 2021). Studies have 

shown that inter-trial priming, or the influence of the previous trial on current trial 

performance (Maljkovic & Nakayama, 1994), and statistical learning, or the extraction of 

long-term display regularities to adjust future performance (Jiang, 2018; Jiang et al., 2013; 

Vatterott & Vecera, 2012), both influence distractor suppression.  

To isolate the duration of feature suppression, we included several blocks in which color 

regularities were removed from the display. In Experiment 1, during these regularity-absent 

blocks, the distractor array had an equal chance of being shown in any of the possible colors 

(Fig. 14C). Whereas, in Experiment 2, both the target and distractor array had an equal 

chance of being presented in the previously high-probability color (Fig. 14C). These 

regularity-absent blocks allowed us to determine the specific mode of suppression by 

evaluating whether effects persisted after learning blocks, consistent with statistical learning, 

or whether they were primarily driven by inter-trial priming within the learning phase itself.  

In both experiments, we found robust suppression of the high-probability distractor color 

when regularities were present. Furthermore, subjects who showed the suppression effect 

when regularities were present continued to suppress the high-probability color when 

regularities were absent. In Experiment 2, we found additional evidence for long-term 

distractor suppression, as RTs were slower when the target array was presented in the 

previously learned high-probability distractor color. Overall, our results demonstrate that 
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learned distractor colors can be suppressed independent of a spatial suppression mechanism, 

and that this suppression is supported by statistical learning of distractor feature values.  

Experiment 1 

The goal of Experiment 1 was to determine whether feature-specific suppression occurs 

when stimuli are spatially overlapping. If so, this would suggest that feature control 

mechanisms can be independent of spatial control operations. We also sought to test whether 

suppression was transient, consistent with intertrial priming, or whether suppression persisted 

over longer periods of time, consistent with statistical learning.  

Method 

Participants.  

The study protocol was approved by the UCSB institutional review board. Twenty-four 

participants (16 female, mean age = 18.5 years) were recruited from the University of 

California, Santa Barbara (UCSB) subject pool. All participants reported normal or 

corrected-to-normal vision and either received course credit or $10/hr upon completing the 

experimental session. Participants gave written consent prior to participating in the study. 

Previous work investigating color suppression using a visual search task (Stilwell et al., 

2019) reported an effect size of 𝜂𝜂𝑝𝑝2 = 0.68 and a power analysis using this effect size 

indicated that 4 subjects were needed to obtain 80% power. Since our study used a different 

task, we collected data from 24 participants to ensure enough statistical power to detect 

effects in our experiments.  

Apparatus and stimuli. 
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Participants viewed stimuli in a darkened room on a 25-in LED-backlit LCD screen with a 

resolution of 2560 x 1440 pixels. They were seated approximately 60 cm away from the 

screen. Stimuli were presented using Matlab and Psychtoolbox (Brainard, 1997).   

A white (80.1 cd/m2) dot centered at fixation was presented at the start of each block with a 

radius of 0.15° visual angle against a gray (49.4 cd/m2) background (Fig. 1). The fixation 

stimulus was visible throughout the whole block. On each trial, two oriented line arrays were 

presented. All lines in one array were oriented 45° clockwise of vertical, while the lines of 

the other array were oriented 45° counterclockwise. The orientation of the line arrays was 

randomized on each trial. Jitter was independently added to the orientation of both arrays 

randomly selected from 0.3-1.2° orientation. Both arrays were presented within an imaginary 

circle with a radius of 10.5° visual angle. One array always contained 60 ± 20 (randomly 

selected on each trial) more lines than the other array. The array with more lines was the 

‘target’, while the other array was the ‘distractor’. The number of lines in the target array had 

a range of 150-170 lines, while the distractor array could contain 90-110 lines. Individual 

lines had a length of 1.5° visual angle and a width of 0.05° visual angle. The color of either 

array was selected from the following four isoluminant colors in CIE color space: green (40.7 

cd/m2, x = 0.243, y = 0.397), red (40.6 cd/m2, x = 0.421, y = 0.285), blue (40.3 cd/m2, x = 

0.182, y = 0.175), and yellow (40.3 cd/m2, x = 0.450, y = 0.481). The target array was always 

a different color from the distractor array. Feedback text at the end of each block was 

presented in gray Arial font (RGB: 100, 100, 100).  Participants reported whether the target 

array was oriented clockwise or counterclockwise from vertical with a left or right button 

press using a USB response pad. 
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Figure 14. Discrimination task. (A) On each trial, participants were shown two oriented line arrays, each 
presented in one of four different equiluminant colors. One array was tilted clockwise from vertical and the other 
was counterclockwise from vertical. Participants determined which array had the most lines, and then reported the 
orientation of that array with a button press. (B) Color regularities were present during the first 12 blocks of both 
experiments, such that the array with fewer lines was usually presented in the high-probability color (65% of 
trials). The target array was never presented in the high-probability color when regularities were present. (C) 
Regularities were removed in the last 8 blocks of both experiments, meaning that the array with the fewest lines 
had an equal chance of being any of the four possible colors (25%). In Experiment 1, the array with the most lines 
was still never presented in the previously high-probability distractor color. Experiment 2 allowed both the target 
and distractor line arrays to be shown in any of the four colors with equal probability. The arrays were never 
presented in the same color on a given trial. Images here are illustrative cartoons; actual colors were equiluminant 
and line density/orientation are described in detail in Methods.  
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Design and procedure. 

The fixation dot was presented at the start of the experiment and was visible throughout the 

whole block of 60 trials. At the start of each trial, the fixation dot was presented alone for 

1,000 ms. Participants were instructed to attend and fixate the central dot until stimulus array 

onset. Next, the target and distractor line arrays were presented for up to 3,000 ms or until 

response. Participants determined whether there were more lines tilted counterclockwise or 

clockwise of vertical and reported the corresponding orientation with a left/right button press. 

They were encouraged to respond as fast as possible while still being accurate. At the start of 

the experiment, a random color was selected to be the prevalent distractor color for each 

subject (selected from red, green, blue, and yellow). During the first 12 blocks of the 

experiment, on 65% of trials, the distractor array was presented in the selected high-

probability color. For the remaining 35% of trials, the distractor array was equally presented 

in one of the other three low-probability colors (11.67% of trials for each remaining color). 

The target array was never presented in the high-probability distractor color. The color of the 

target array was randomly selected from the remaining three colors with equal probability 

(33% of trials for each color), with the additional stipulation that the target and distractor 

were always different colors on a given trial. By comparing response time (RT) and accuracy 

on these regularity-present blocks, we could determine whether participants report the target 

orientation more quickly and accurately when the distractor appeared in a high-probability 

color. 

After the first 12 blocks, where color regularities were present, participants performed 8 

more blocks of the discrimination task. During these last 8 blocks, the target array color was 
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chosen as before (33% of each non-distractor color). However, now the distractor array had 

an equal chance of being presented in any color (25% of trials for each color). Other than the 

change in color probabilities, the last 8 blocks were identical to the first 12 blocks. 

Participants were not informed about a change in target/distractor color probabilities 

throughout the experiment. By comparing RT and accuracy in these regularity-absent blocks, 

we were able to determine if participants continue to suppress the distractor color even when 

this is no longer useful. Overall mean accuracy on the task was shown to the participants at 

the end of each block of the experiment (regularity-present and -absent blocks). 

Before starting the main session, participants completed a practice session of the task, which 

consisted of 60 trials of the orientation report task without any color regularities. There were 

60 trials per block of the main session, and participants completed a total of 20 blocks over 

~1 hr. Upon completing the experiment, we interviewed participants to determine whether 

they were aware of the color regularities. First, they were asked if they noticed any patterns 

or consistencies with the stimuli during the experiment. Second, they were told that the 

distractor array was usually one color and were instructed to guess the high-probability color. 

Data analysis & statistical procedures. 

Trials with an RT 2.5 SDs above or below the individual participant’s mean RT, along with 

trials that were faster than 100 ms or slower than 2500 ms, were removed from RT analyses. 

An average of 4% (SD = 1.51%) of trials were removed per participant after applying these 

exclusion criteria. We also excluded trials with an inaccurate orientation report from all RT 

analyses (13.8% of remaining trials). The task was intentionally made difficult to avoid 
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ceiling effects, which explains the relatively high percentage of inaccurate trials. None of the 

experiments were preregistered. 

We compared mean RT and accuracy on regularity-present blocks using paired sample t-tests 

to determine whether participants reported the target orientation more quickly and accurately 

when the distractor appeared in a high-probability color. To see if color suppression persisted 

when regularities were removed from the display, we computed a two-way repeated 

measures ANOVA with color condition as the first factor (high-probability color vs low-

probability colors) and regularity presence as the second factor (regularity-present blocks vs 

regularity-absent blocks). This analysis was followed by a t-test comparison between mean 

RTs in the high- and low-probability distractor color conditions during regularity-absent 

blocks. Finally, we computed the linear correlation between suppression observed in 

regularity-present and regularity-absent blocks, where suppression was defined as the 

difference in mean RT between low-probability and high-probability distractor color trials. 

For all pairwise tests, we reported Bayes Factor (BF) results using the bayesFactor package 

for MATLAB (Krekelberg, 2018). Evidence in favor of the null (BF01) is reported for non-

significant tests, and evidence against the null is reported for significant tests (BF10). We 

used dz as a metric of effect size for all t-test comparisons to account for shared variance in 

our repeated measures design (Lakens, 2013).  

7 subjects correctly identified the high-probability distractor color during a post-experiment 

interview, which did not differ from chance (binomial test: p = 0.393). All reported results 

were qualitatively the same when excluding participants who correctly reported the high-

probability color. We analyzed the regularity-present suppression effect (low-probability - 



107 

 

high-probability RT) separately for those who correctly identified the high-probability color 

and found no significant difference compared to those who were unaware of the color 

regularities (Figure 19A).  

Data & code availability.  

All data (behavioral performance on each trial) and code (experiment presentation, data 

analysis) necessary to reproduce results presented in this manuscript are freely available at: 

https://osf.io/h7dg6/. 

Results and discussion  

Regularity-present performance.  

First, we compared RT for target orientation discrimination across all task blocks throughout 

the experiment (Fig. 15A). Qualitatively, RTs were faster when the distractor appeared in the 

high-probability distractor color than when it appeared in another color. Additionally, RTs 

qualitatively sped up through the experiment. Next, we quantitatively established whether 

participants could more efficiently report the target orientation when a high-probability 

distractor color was present in the display during regularity-present blocks (Fig. 15B). We 

compared RTs (averaged across the initial regularity-present blocks 1-12; Fig. 15A) on trials 

with the high-probability distractor and trials with another color distractor. Correct 

orientation reports on trials with high-probability distractor color were significantly faster 

than on trials with low-probability distractor colors (t(23) = 4.04, p < 0.001, dz = 0.83, BF10 = 

63.39). There was not a significant difference in orientation report accuracy between these 

trials (Table 3; t(23) = 1.55, p = 0.134, dz = 0.32, BF01 = 1.63), indicating that the RT 
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advantage is not due to a speed-accuracy tradeoff. These results suggest that the high-

probability distractor color was suppressed when stimulus regularities were present. 

 
 

Figure 15. Experiment 1: high-probability distractor color is suppressed during learning and over an 
extended interval. (A) Mean RT for each block on trials with correct orientation reports. Dashed line indicates 
when distractor color regularities were removed from the display. (B) Mean RT across regularity-present and 
regularity-absent blocks for both high- and low-probability color conditions. Individual subject data points 
shown. Significant differences between color probability conditions indicated with * for p values < 0.05. (C) 
Correlation between suppression effect during regularity-present blocks and regularity-absent blocks. Suppression 
effects were computed as the difference in RT between the low- and high-probability color conditions. Error bars 
are within-subject standard error of the mean.  
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Table 3. Experiment 1 Accuracy (± SEM)  
  Regularities Present Regularities Absent 

High-Probability 
Color 87.02% (1.08) 85.76% (1.10) 

Low-Probability 
Color 83.65% (1.08) 84.06% (1.10) 

 

 

Regularity-absent performance.  

Next, we identified whether distractor suppression persisted when color regularities were 

removed (Fig. 15B). To see if the difference between color conditions changed as a function 

of regularity presence, we performed a two-way repeated measures ANOVA using RT data 

with distractor array color (high-probability color vs low-probability colors) and regularity 

phase (regularity-present vs regularity-absent) as factors. There was no effect of color 

condition, F(1,23) = 4.01, p = 0.057, 𝜂𝜂𝑝𝑝2 = 0.56, but there was a significant effect of phase 

F(1,23) = 18.14, p < 0.001, 𝜂𝜂𝑝𝑝2 = 0.96. The significant main effect of phase reflects the 

overall faster RTs during the later regularity-absent blocks as participants were getting better 

at the task. Importantly, there was a significant interaction, F(1,23) = 32.64, p < 0.001, 𝜂𝜂𝑝𝑝2 = 

0.59. This result suggests that, at a group level, once regularities were removed from the 

display, the previously high-probability color was no longer suppressed. Follow-up 

comparisons between high- and low-probability distractor colors using data from the 

regularity-absent blocks are consistent with this conclusion: there was no significant 

difference between RTs when the distractor appeared in the previously high- vs low-

probability distractor color (t(23) = 0.11, p = 0.917, dz = 0.02, BF01 = 4.64). 
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While the above results suggest that, on average, participants no longer suppress the 

distractor color with learned regularities when the regularities are removed, we next 

considered the possibility that the magnitude of suppression during the regularity-present 

blocks within individual participants was carried over to the regularity-absent blocks. That 

is—do participants who most strongly suppress the learned distractor color when regularities 

are present also suppress the distractor color more than other participants when regularities 

are removed?  

To test this, we calculated the correlation between the amount of suppression (defined as the 

difference in mean RT between low-probability and high-probability distractor color trials) 

during the regularity-present blocks and during the regularity-absent blocks (Fig. 15C). There 

was a strong positive relationship between these variables (r = 0.76, p < 0.001), indicating 

that subjects who suppressed the distractor during regularity-present blocks continued to 

suppress the distractor during regularity-absent blocks, despite no overall mean difference in 

the regularity-absent blocks across our participant sample (Fig. 15B).  

Together, these findings show that a high-probability distractor color can be suppressed when 

regularities are present within a block. Critically, suppression occurred even when the arrays 

spatially overlapped, indicating that a specific color can be suppressed independent of spatial 

location. It is possible that suppression in this experiment was due to inter-trial priming 

(Maljkovic & Nakayama, 1994), as suppression did not, on average, persist across our 

participant sample once regularities were removed. But, an analysis of individual participants 

showed that those with stronger suppression effects when regularities were present continued 

to suppress the distractor color once regularities were removed (Fig. 15C). In addition to 
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evaluating continued distractor suppression, previous studies have observed suppression 

effects when a target stimulus is presented at a learned distractor location (Britton & 

Anderson, 2020; B. Wang & Theeuwes, 2018). Since the target array was never presented in 

the high-probability color, it was not possible to conduct a similar analysis in Experiment 1. 

Experiment 2 was designed to better understand whether non-spatial color suppression 

mechanisms are transient or whether they result in suppression that persists over longer 

periods of time by including trials to directly measure suppression of the target array when 

regularities are removed (Fig. 14).  

Experiment 2  

In Experiment 1, we showed that a regularly presented distractor color can be suppressed 

even when suppression cannot operate via a spatial location. Suppression occurred if 

regularities were present, but not once regularities were removed, consistent with a transient 

suppression effect such as inter-trial priming (Maljkovic & Nakayama, 1994). However, 

spatial and color regularities have been shown to persist beyond the effects of priming in 

previous studies using visual search paradigms (Stilwell et al., 2019; Vatterott & Vecera, 

2012). There was a hint of this effect at the level of individual subjects, where those who 

suppressed the distractor during regularity-present blocks continued to suppress the distractor 

during regularity-absent blocks. It may have been difficult to observe continued suppression 

during regularity-absent blocks due to relatively fast performance. In Experiment 2, we 

aimed to better probe the persistence of these suppression effects by evaluating performance 

in the regularity-absent blocks when the previously high-probability color appears as the 

target array (Britton & Anderson, 2020; B. Wang & Theeuwes, 2018). If the learned color is 
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being suppressed, and the persistence of this effect was masked due to fast performance in 

the regularity-absent blocks, then suppressing the target array may allow for long-term 

suppression to be more readily observed via a slowing in discrimination performance when 

the target appears in the previously high-probability distractor color. 

Method  

Participants.  

We recruited 24 new participants (18 female, mean age = 20 years) from the UCSB subject 

pool. Subjects were compensated with either course credit or $10/hr upon completing the 

task. None of the participants recruited for Experiment 2 participated in Experiment 1.  

Design and procedure.  

Experiment 2 was identical to Experiment 1 during the regularity-present blocks (blocks 1-

12). The one critical change occurred in the regularity-absent blocks (blocks 13-20; Fig. 

14B). Similar to Experiment 1, the previously high-probability color had an equal chance of 

being the distractor array color (25% for each color). However, now the target array was 

presented in any of the four colors with equal probability (25% for each color), with the 

stipulation that the target and distractor colors were nonidentical. If suppression is due to 

long-term learning, then we would expect to see slower RTs when the target array was 

presented in the previously high-probability color. Furthermore, as in Experiment 1, it is 

possible that continued suppression effects persist in the regularity-absent blocks when the 

distractor array is presented in the high-probability color. However, due to the results of 
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Experiment 1 (Fig. 15), we primarily expected this suppression effect to occur on the 

individual-subject level. 

Analysis & statistical procedures.  

We removed trials that were faster than 100 msec and slower than 2,500 msec as well as 

trials 2.5 SDs above or below individual subject means. An average of 4.28% (SD = 1.59%) 

of trials were removed per participant. Trials with inaccurate responses were also removed 

from RT analyses (14.72% of trials). 6 participants correctly reported their high-probability 

color, which did not differ from chance (binomial test: p = 0.578). Results are qualitatively 

the same when we exclude participants who correctly identified the high-probability color. 

Specifically, there was no difference in regularity-present distractor suppression between 

those who were aware and unaware of the high-probability color (Figure 19B).  

The same statistical tests computed for Experiment 1 were conducted in Experiment 2 when 

evaluating the influence of distractor array probabilities on performance. Additionally, to see 

if the high-probability color was suppressed during regularity-absent blocks, we computed a 

two-way repeated measures ANOVA with target array color as the first factor (previously 

high-probability distractor color vs previously low-probability distractor color) and block as 

the second factor (regularity-absent blocks 1 through 6). This was followed by a paired 

samples t-test comparing the mean RT across regularity-absent blocks of high- and low-

probability target color conditions. Finally, we computed the linear correlation between 

distractor suppression in the regularity-present blocks and target suppression in the 

regularity-absent blocks to evaluate individual subject long-term suppression. 
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Results and discussion 

Regularity-present performance.  

First, we verified that we could replicate the suppression effect observed in Experiment 1 

during the regularity-present blocks (Fig. 15). Matching the results from Experiment 1, we 

saw that RTs were qualitatively faster when the high-probability color was shown as 

compared to the low-probability colors and that RTs increased throughout the experiment 

(Fig. 16A). We then compared the mean RTs from the regularity-present blocks between 

trials with a high-probability and low-probability distractor color (Fig. 16B). RT was faster in 

the high-probability color condition than the low-probability color condition (t(23) = 4.17, p 

< 0.001, dz = 0.85, BF10 = 84.87). This replicates the main findings in Experiment 1, where 

the high-probability distractor color was suppressed when regularities were present, resulting 

in faster target discrimination performance. In addition, accuracy was greater for the high-

probability distractor color condition (Table 4; t(23) = 2.77, p = 0.011, dz = 0.57, BF10 = 

4.53). Our accuracy results indicate that there was no speed-accuracy tradeoff and that target 

identification accuracy was improved when the prevalent distractor color was present in the 

array.  
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Figure 16. Experiment 2:  high-probability distractor color is suppressed during learning and over an 
extended interval. (A) Mean RT for each block on trials with correct orientation reports. Dashed line indicates 
when distractor color regularities were removed from the display. (B) Mean RT across regularity-present and 
regularity-absent blocks for both high- and low-probability color conditions. Individual subject data points 
shown. Significant differences between color probability conditions indicated with * for p values < 0.05. (C) 
Correlation between suppression effect during regularity-present blocks and regularity-absent blocks. Suppression 
effects were computed as the difference in RT between the low- and high-probability distractor color conditions. 
Error bars are within-subject standard error of the mean.  
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Table 4. Experiment 2 Accuracy (± SEM)  
  Regularities Present Regularities Absent 

High-Probability 
Color 86.94% (0.86) 85.45% (1.23) 

Low-Probability 
Color 82.19% (0.86) 81.66% (1.23) 

 

Regularity-absent performance.  

During the regularity-absent blocks, the previously high-probability color could be present in 

either the target or distractor array, but was presented with the same probability as all other 

colors. Similar to Experiment 1, we conducted a two-way repeated measures ANOVA with 

distractor color as the first factor (high probability color distractor vs low-probability colors) 

and phase as the second factor (regularity-present vs regularity-absent; Fig. 3B). There was a 

main effect of distractor color condition, F(1,23) = 11.92, p = 0.002, 𝜂𝜂𝑝𝑝2  = 0.69, and phase 

F(1,23) = 21.08, p < 0.001, 𝜂𝜂𝑝𝑝2 = 0.91. These findings demonstrate that participants were 

overall faster to respond when the distractor was shown in the high-probability color and that 

RTs were faster during regularity-absent blocks. Importantly, there was no interaction 

between these variables, F(1,23) = 3.74, p = 0.066, 𝜂𝜂𝑝𝑝2 = 0.14, which leaves open the 

possibility that suppression of the previously high-probability color continued when 

regularities were removed. However, follow-up comparison showed that distractor 

suppression across subjects did not persist into regularity-absent blocks (t(23) = 1.80, p = 

0.086, dz = 0.37, BF01 = 1.17).     

To test if individual subjects continued to suppress the learned distractor color, we computed 

the correlation between the distractor suppression effect during the regularity-present blocks 
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and the distractor suppression effect during the regularity-absent blocks (Fig. 16C). There 

was a positive correlation when comparing the regularity-present distractor suppression and 

regularity-absent distractor suppression (r = 0.60, p = 0.002). Consistent with Experiment 1, 

this result shows that participants who suppressed the high-probability color when 

regularities were present continue to suppress the color when regularities were removed. 

Next, we compared RT across blocks when the target array was presented using either the 

previously learned high- or low-probability distractor color(s) to determine if suppression 

effects persist when regularities were no longer present (Fig. 17A). A two-way repeated 

measures ANOVA showed that there was a main effect of condition, F(1,161) = 5.62, p = 

0.027, 𝜂𝜂𝑝𝑝2 = 0.16, as well as a main effect of block F(7,161) = 2.82, p = 0.008, 𝜂𝜂𝑝𝑝2 = 0.29. 

There was no interaction, F(7, 161) = 1.52, p = 0.165, 𝜂𝜂𝑝𝑝2 = 0.06. A paired sample t-test 

showed a significant difference between target color conditions (t(23) = 2.37, p = 0.027, dz = 

0.48, BF10 = 2.16). Thus, when suppression was measured by presenting the target array in 

the learned high-probability distractor color, we observed persistent suppression after 

regularities were removed.  
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Figure 17. Learned distractor color is suppressed when used as target color after regularities are 
removed. (A) Mean RT for each regularity-absent block on trials where the target array was presented in the 
high- and low-probability color(s). (B) Mean RT across regularity-absent blocks for both the high- and low-
probability color conditions. Individual subject data points shown. Significant differences between color 
probability conditions indicated with * for p values < 0.05. (C) Correlation between suppression effect during 
regularity-present blocks and regularity-absent blocks. Suppression effect for regularity-present blocks was 
computed as the difference in RT between the high- and low-probability distractor color conditions. 
Suppression effect for regularity-absent blocks was computed using high- and low-probability target color 
conditions. Error bars are within-subject standard error of the mean. 
 

We then determined whether suppression effects during the regularity-present blocks in 

individual subjects predicted target suppression in regularity-absent blocks (Fig. 17C). There 

was a negative correlation between distractor suppression on regularity-present blocks 
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(measured as the difference in low- vs high-probability distractor color RTs) and target array 

suppression on regularity-absent blocks (measured as the difference in RT when the target 

was the previously low- vs high-probability distractor color; r = -0.41, p = 0.045), indicating 

that participants who suppressed the distractor when regularities were present (resulting in a 

faster target discrimination response) tended to respond slower to the target array when it was 

presented in the high-probability color. The negative correlation is expected since continued 

suppression of previously high-probability color should lead to worse performance when that 

color was present in the target array, even though the same suppression was helpful during 

the regularity-present blocks. 

Overall, results from Experiment 2 showed that color suppression can occur independent of 

attenuation of specific spatial locations, replicating our main finding from Experiment 1. 

Additionally, suppression persisted even when stimulus regularities were no longer present, 

such that responses were slower when the target array was presented in the suppressed high-

probability distractor color than when the target array was presented in a low-probability 

distractor color. 

Inter-trial priming: analysis of aggregate data across experiments.  

As a final test of whether the non-spatial color suppression we observed was due to statistical 

learning (regularities learned throughout the experiment) or to inter-trial priming (transient 

influence of previous trials), we computed the mean RT of each condition using only 

‘switch’ trials, or trials where the distractor probability was different from the distractor 

probability on the previous trial. We compared switch trials to ‘repeat’ trials, where the 

distractor probability was the same as the distractor probability from the previous trial. This 
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analysis allowed us to assess the individual contribution of priming, which is expected to 

result in a stronger effect on repeat than switch trials, and perseverant learning, which should 

still be present in switch trials. In addition to analyzing data after sorting each trial (n) based 

on the switch/repeat status of the previous trial (n-1), we also looked at trials farther back in 

the experiment where the distractor probability matched/mismatched the current trial 

distractor probability in a serial manner (n-k). We sorted each trial (n) based on the trial label 

1-8 trials previous (k = 1:8), because previous research has shown that priming no longer 

impacts RT after approximately 7 trials (Maljkovic & Nakayama, 1994). Since this removes 

a large proportion of trials, and because blocks 1 through 12 were identical in both 

experiments, we collapsed across data from both experiments to ensure adequate power (total 

n = 48).  

Figure 18A shows a significant three-way interaction between distractor probability (high- 

and low-probability), priming (switch and repeat), and serial position (n-1 through n-8), 

F(7,329) = 3.88, p < 0.001, 𝜂𝜂𝑝𝑝2 = 0.08. This demonstrates that distractor suppression was 

modulated by priming, but that this effect changed as a function of how far back in the trial 

sequence a repeat occurred. To better visualize the influence of priming at each serial 

position, we computed a priming distractor suppression value by first finding the difference 

in RT between the high- and low-probability distractor color conditions independently for 

switch and repeat trials, then computing the difference between these values. Positive values 

of this measure indicate greater distractor suppression on repeat trials (Fig. 18B)1.  

                                                            
1 Our analysis is unable to completely exclude priming as a contributing factor, as we did not account for repeat 
trials between or after the analyzed trials (e.g., trials 1 through 7 when analyzing n-8). This is because trials with 
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Priming indeed had a diminishing effect on RT the farther back a repeat occurred in the trial 

sequence, with most influence absent after n-5.  Importantly, when comparing the high- and 

low-probability distractor color conditions using only n-1 switch trials (where inter-trial 

priming had the strongest influence; Fig 18B), RTs were still significantly faster when the 

high-probability color was shown (t(47) = 2.25, p = 0.029, dz = 0.32, BF10 = 1.54; Fig. 18C). 

This is additional evidence suggesting that feature suppression is due, at least in part, to long-

term learning of stimulus regularities.  

 

                                                            
no repeats between/after trial n were exceedingly rare, making it difficult to interpret results. However, our 
findings do clearly demonstrate that priming cannot entirely account for learned color suppression.  
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Figure 18. Suppression is not entirely explained by intertrial priming. (A) Mean RT was computed for the 
distractor array high-probability and low-probability conditions on trials where the previous trial used a different, 
or the same, distractor probability than that presented on the analyzed trial (‘switch’ and ‘repeat’ trials 
respectively). We performed this analysis serially, sorting by switch/repeat based on trials 1-8 prior to the current 
trial. (B) Difference between ‘switch’ and ‘repeat’ trial suppression effects. Suppression was computed 
independently for switch/repeat trials as the difference between high- and low-probability distractor color 
conditions. Then, the difference between switch and repeat suppression effects were plotted, where positive 
values indicate greater suppression on repeat trials. * indicates significant difference, p < 0.05, one-sample t-test. 
(C) Mean RT for the distractor array high- and low-probability color conditions for ‘switch’ and ‘repeat’ trials on 
n-1 trials. * indicates significant difference, p < 0.05, paired t-test. Data from both experiments were used to 
ensure enough power to detect an effect. Error bars are within-subject standard error of the mean. 
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Figure 19: Distractor suppression does not require awareness. Suppression effect (target discrimination RT 
for low-probability minus high-probability distractor color; regularity-present trials) compared across groups of 
participants aware or unaware of distractor color regularities. For each Experiment (A: Expt 1; B: Expt 2), we 
split participants into groups based on whether they correctly reported the regular distractor color (“Aware”) or 
not (“Unaware”). Distractor suppression did not differ between these groups, and qualitatively, distractor 
suppression was stronger when participants did not correctly detect regularities. Error bars are between-
participant SEM.  

 

General Discussion 

The current study was designed to understand whether a distracting stimulus defined based 

on its color could be suppressed independent of spatial location. If true, target discrimination 

performance should be improved when a high-probability distractor color is present at the 

same location of a target stimulus as compared to when any low-probability distractor color 

is presented. We tested this by showing participants two overlapping line arrays, where they 

had to report the orientation of the array with the most lines (Fig. 14A). During regularity-

present blocks, the distractor array was usually presented in one color. Over the course of 

both experiments, RTs were faster when this high-probability color was present in the 
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distractor array relative to one of the other low-probability colors, indicating that the 

distractor color was suppressed (Figs 15B, 16B). Distractor suppression persisted when color 

regularities were removed from the display for subjects utilizing them during regularity-

present blocks, indicating that suppression cannot be fully explained by priming (Figs. 15C, 

16C). In Experiment 2, we found stronger evidence in favor of long-term suppression: RTs 

were slower when the target array was presented in the high-probability color (Fig. 17), and 

this suppression persists when we only analyzed switch trials during regularity-present 

blocks (Fig. 18).  

Our findings build on the growing literature demonstrating feature suppression through 

repeated exposure to regularly presented visual search singletons (Failing et al., 2019; 

Gaspelin & Luck, 2018; Stilwell & Gaspelin, 2021; Stilwell et al., 2019; Vatterott & Vecera, 

2012). Importantly, the effects in the present study were identified when spatial suppression 

mechanisms could not be used to lower the prioritization of distracting items. In all of the 

aforementioned studies, visual search tasks were employed, which have been useful in 

identifying when particular display statistics are used to guide search behavior (Stilwell et al., 

2019) as well as how regularities may interact within and between feature dimensions to 

modulate suppression (Failing et al., 2019). However, to further understand how these 

regularities are deployed, it is important to understand each one in isolation. Our stimulus, in 

which only color regularities could contribute to guiding suppression, could be a useful tool 

for future studies to isolate feature-specific suppression mechanisms from their spatial 

counterparts. 
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Potentially contrasting with findings of feature-specific suppression are studies indicating 

that only stimulus locations can be deprioritized (Theeuwes, 2010; Moher & Egeth, 2012). 

For example, Moher and Egeth (2012) had participants perform a target detection task where 

a cue was given at the start of each trial. This cue was informative about the color of 

distractors in an upcoming multi-item display, where each item occupied a unique location. 

Target detection was faster when an informative distractor cue was provided as compared to 

a neutral cue, but this effect was only observed when the distractor location was attended 

prior to the onset of a target. This result led to their search-and-destroy hypothesis, which 

states that a location needs to be selected first and then a distractor presented in a learned 

feature can be suppressed. Further evidence suggesting that suppression is location-

dependent comes from their Experiment 4, as suppression was not improved when there were 

several distractors of the same color, inconsistent with accounts of feature-based attention in 

which a specific feature value can be up/down-regulated across the entire screen 

simultaneously (Maunsell & Treue, 2006; Treue & Trujillo, 1999a).  

There are two noteworthy differences between our study and Moher and Egeth (2012). First, 

as mentioned previously, the spatially overlapping stimulus used in the current study 

discouraged the use of any spatial suppression mechanisms, as it would not have benefited 

target detection. Second, Moher and Egeth (2012) used cues to direct volitional control 

towards suppressing task-irrelevant information. In our study, subjects were unaware of the 

display statistics, yet their performance was modulated by the presence of a high-probability 

color. It appears that top-down control cannot be used to suppress distracting information in a 

parallel feature-based manner, but implicit mechanisms allow for a more global suppression. 
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While this may be the case, a potential downside to implicit learning is that suppression 

persists even when it is no longer useful, as was evident in our Experiment 2 (Fig. 17B/C), 

whereas top-control can be implemented on a trial-by-trial basis (Cunningham & Egeth, 

2016). Overall, our results provide strong evidence that feature-specific suppression obtained 

through statistical learning can occur independent of top-down spatial suppression operations 

such as reactive control (Theeuwes, 2010) or search-and-destroy processes (Moher & Egeth, 

2012).  

While we ruled out reactive spatial mechanisms as a possible alternative to learned feature 

suppression, the current findings are unable to address whether suppression exclusively 

occurred proactively or reactively. It could be the case that the distractor array is less likely 

to be selected when presented in the high-probability color (Gaspelin et al., 2019), or the 

distractor array is still selected but the high-probability color is rapidly suppressed through 

reactive feature suppression. Without explicit knowledge of the color regularities, both line 

arrays need to be attended to determine which is the target. Thus, we speculate that reactive 

mechanisms were deployed when attending our stimuli. However, it is plausible, especially 

during regularity-present blocks, that a proactive mechanism was also used as participants 

implicitly learned the high-probability color. Ultimately, both strategies can be implemented 

(Geng, 2014). For instance, it is often more efficient to proactively ignore distracting stimuli 

but, since these regularities may not persist—as is the case in our regularity-absent blocks—it 

can be beneficial to allow for learned distractors to occasionally capture attention to update 

learned regularities. This is even more effective with a reactive mechanism to quickly 

disengage from stimuli as long as they are still distracting. 
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How do our results fit with priority map theory? Within this framework, maps corresponding 

to individual feature dimensions are integrated into a feature-agnostic priority map (Itti & 

Koch, 2001, 2001; Wolfe, 1994). Locations with the greatest prioritization are selected for 

the allocation of attention. Mechanisms for distractor suppression generally fit nicely within 

this model, as they explain how locations within these maps are deprioritized (Failing et al., 

2019; Luck et al., 2020). Whenever feature-specific suppression is engaged, modulations are 

thought to occur within the corresponding feature map. For example, a regularly presented 

red singleton will have lower activation in the red feature map, which results in lower 

activation in the summed priority map. It is difficult to reconcile our results exactly within 

this structure, as suppressing the distractor location would also deprioritize the target item 

due to their shared location. Rather than specific locations being the target of prioritization, 

others have proposed that modulation can occur at the level of individual objects (Shomstein, 

2012; Shomstein & Yantis, 2002), even when they are occluded (Moore et al., 1998). 

According to this account, after directing spatial attention, goal-relevant objects at that 

location are selected before other less-relevant objects. This mechanism of object-based 

attention is compatible with the spatially overlapping stimuli used in the current study. When 

considered within the context of feature maps, in addition to the high-probability color being 

suppressed, the orientation of the lines associated with the high-probability color would be 

suppressed allowing for the other object in the display to be selected first. Future work can 

manipulate the statistics in this paradigm to tease apart when objects, features, and/or 

locations are suppressed.  
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Rather than a suppressive reweighting of objects within the priority map framework, it could 

be the case that distractor statistics are used to shift or enhance the representation of the three 

possible target colors. Recent evidence shows that when distractors are regularly presented in 

colors that are linearly separable from the target color in feature space, the representation of a 

target color shifts away from the color of distractors (Navalpakkam & Itti, 2007; P. 

Witkowski & Geng, 2019; Yu & Geng, 2019). By shifting the target representation, it makes 

it harder for distractors with a similar color as the target to capture attention (Duncan & 

Humphreys, 1989). In the current study, it is possible that the representation of each target 

color was shifted away from the learned distractor color to improve performance. However, 

there are a couple of aspects of our design that are difficult to reconcile with this account. 

First, the high-probability color was only the most likely distractor color—the other three 

colors were the distractor on some trials. Yu & Geng (2019) showed that when distractor 

colors were sampled from either side of feature space, the target color representation no 

longer shifted. Second, these previous studies have primarily investigated how distractor 

statistics influence target representations, but there has yet to be a study showing how 

implicitly learned distractor information is modulated in similar visual search paradigms, so 

it is unclear whether both targets and distractors are influenced. Regardless, this remains an 

interesting mechanism and further studies should investigate the degree of influence 

distractor statistics have on both targets and distractors. 

In both experiments, there was evidence that learned distractor suppression may be a variable 

characteristic across individuals since suppression effects persisted in regularity-absent 

blocks for participants who showed an effect during regularity-present blocks (Figs. 15C, 
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16C, 17C). This may not come as a surprise, as similar findings are apparent in the working 

memory literature (Luria et al., 2016). As an example, individuals who perform well on 

memory tasks tend to be better at ignoring distracting information (Vogel et al., 2005). While 

speculative, it is possible that the ability to leverage distractor statistics to prioritize target 

information is related to the ability to prevent distracting information from entering visual 

working memory. In fact, the distractors used in the primary experiment of Vogel et al. 

(2005) were always red—a feature regularity that could be used in a manner consistent with 

learned suppression. This is further supported by the strong relationship between visual 

working memory and attention (Awh & Jonides, 2001; Bahle et al., 2018; Olivers et al., 

2006). However, additional studies are needed to directly test whether distractor suppression 

observed in studies of selection history is related to the ability to prevent irrelevant 

information from entering working memory. 

Conclusion 

It is imperative to suppress distracting information for effective selection of relevant stimuli 

in service of goal-oriented behavior. Mounting evidence has shown that locations 

corresponding to a distractor can be suppressed (Gaspelin et al., 2015; Stilwell et al., 2019; 

Wang & Theeuwes, 2018), but it is important to understand whether non-spatial features can 

be inhibited when space-based suppression is not beneficial. Our study showed that when 

overlapping stimuli are presented, a high-probability distracting color is suppressed to 

improve target discrimination performance. This suppression persisted even when 

regularities were removed from the display, indicating that learned statistics contributed to 
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this effect. Overall, we provide strong evidence that features can be suppressed independent 

of spatial location. 
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Chapter V: Prioritizing Feature-Specific Information 

The studies presented here provide evidence required to support the role of feature dimension 

maps, both behaviorally and neurally, within the priority map framework (Bisley & 

Goldberg, 2010; Fecteau & Munoz, 2006; Itti & Koch, 2001; Katsuki & Constantinidis, 

2014; Serences & Yantis, 2006; Treisman & Gelade, 1980; Wolfe, 1994). Chapters 2 and 3 

identified the neural correlates of feature dimension maps, with hV4/VO1/VO2 representing 

a neural color dimension map and TO1/TO2 representing a neural motion dimension map. 

For a region to be considered a feature dimension map, they need to be spatially selective, 

feature selective, and index important feature-specific locations. This is supported by the 

findings that each region: 1) tracked the location of stimuli throughout the visual field, 

demonstrating spatial organization; 2) responded more strongly to stimuli that were presented 

in the preferred feature of a region or when that feature was goal relevant, demonstrating 

feature selectivity; and 3) responded strongly to the location of both salient and relevant 

stimuli, demonstrating that each region represents important stimuli. 

As mentioned in Chapter 1, a third factor can prioritize information in the visual field—

selection history. Selection history is how previous encounters with a stimulus influence 

what is prioritized in the future. Two chapters support the idea that selection history is used 

to compute priority. In Chapter 3, motion-selective regions prioritized stimuli based on 

stimulus history, as the stimulus representation was modulated when participants performed 

the attend motion task at least twice in a row. However, some claim that modulations of 

priority due to selection history can only occur spatially (Theeuwes, 2010; Theeuwes et al., 

2003). Since the results in Chapter 3 were based on a spatial encoding model, it may be that 



132 

 

modulations emerged through a spatial mechanism. In Chapter 4, a behavioral study was 

conducted to assess if certain features, specifically color, could be suppressed independent of 

spatial location. Whenever a learned color distractor appeared in the display, task 

performance was improved, which is evidence that selection history prioritized specific 

features and is not restricted to spatial positions. In this chapter I will discuss how this 

collection of work impacts models of attention as well as briefly discuss future research 

directions that are now possible because of these findings. 

Implications for models of attention  

Identifying hV4/VO1/VO2 and TO1/TO2 as neural feature dimension maps solidifies the 

functional role of these regions for prioritizing important information. In most priority map 

models, feature dimension maps are used to compute feature-specific information before 

summing into the feature-agnostic priority map. Then, attention is directed to locations with 

the highest levels of activation in the priority map. But what happens when only specific 

feature information is necessary? As described by original priority map models (Koch & 

Ullman, 1985), if information from a given feature dimension is not relevant or salient, there 

would simply be low activation within the corresponding dimension map. Once maps are 

combined to form the priority map, there would be minimal influence from the irrelevant 

feature dimension. However, since the brain is a noisy system, then there would still be low 

levels of input from the neural feature dimension map driving a weak response in the neural 

priority map. Noise introduced in this way would not result in behavioral detriments most of 

the time, but there are situations where high performance is required (Theeuwes, 2023a). 
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Thus, it may be beneficial to actively suppress neural feature dimension maps when that 

information is not relevant, especially when it would be detrimental to behavior. 

One way this could occur is through dimensional weighting (Found & Müller, 1996; 

Liesefeld & Müller, 2019; Müller et al., 1995). The dimensional weighting account (DWA) 

is a model grounded in priority maps, stating that observer goals can increase or decrease 

activity across an entire feature dimension. When a certain feature dimension is relevant 

(e.g., color), then all feature values in that dimension (e.g., all colors, such as red and blue) 

are upweighted. This contrasts with early priority map models, as something like Guided 

Search (Wolfe, 1994) would state that only specific goal-relevant feature values are 

upweighted (e.g., red rather than all colors). The neural results presented here are consistent 

with dimensional weighting, as responses were modulated across each feature-selective 

region. This may be a result of an entire feature dimension being enhanced, but since a 

spatial encoding model was used to infer feature-specific modulations, a plausible alternative 

is that neural populations tuned to specific feature values were driving this effect. To answer 

this question, color or motion inverted encoding models could evaluate neural responses to 

specific features (Brouwer & Heeger, 2009; Saproo & Serences, 2014).  

An additional claim of DWA is that task-irrelevant feature dimensions can be suppressed 

(Liesefeld et al., 2019; Sauter et al., 2018). For example, when a distracting feature 

dimension is known in advance (e.g., motion), then all information within the corresponding 

feature dimension map will be suppressed (e.g., motion map suppressed). This operation 

prevents specific feature dimensions from integrating into the priority map, which would be a 

more effective way to prioritize important stimuli as it could fully remove distracting inputs. 
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Support for this comes from work on interregion suppression via inhibitory gating 

(Bonnefond et al., 2017; Jensen & Mazaheri, 2010). Areas that are associated with attentional 

control, such as posterior parietal cortex (Corbetta & Shulman, 2002), can suppress 

information received from various sensory areas in visual cortex through decreased coupled 

oscillatory neural activity within frequencies of 8-12 Hz (Jokisch & Jensen, 2007; Mazaheri 

et al., 2014). Since these areas represent candidate priority and feature dimension maps, then 

dimensional weighting may occur by suppressing connections between these areas. 

While the work presented here focuses on how neural feature dimension maps are recruited 

for attention, it could be the case that these regions are needed for other cognitive functions, 

such as working memory (WM; Jerde et al., 2012; Jerde & Curtis, 2013; Zelinsky & Bisley, 

2015). There is a large degree of overlap between the functional role of attention and WM 

(Awh & Jonides, 2001; Kiyonaga & Egner, 2013; Larocque et al., 2014; Oberauer, 2019;  

Olivers et al., 2011), with one key similarity being that both select important information—

selection occurs externally in the case of attention and internally in the case of WM (Chun, 

2011). Due to these similarities, processing related to one cognitive function is often used to 

infer properties of the other (Hollingworth & Luck, 2009; Olivers, 2008; Soto et al., 2005, 

2008; Thayer et al., 2021; Thayer & Sprague, 2023). Furthermore, the same neural regions 

that are modulated by attention in this manuscript are recruited for WM maintenance 

(Harrison & Tong, 2009; Postle, 2006; Serences et al., 2009; Sreenivasan & D’Esposito, 

2019). It seems plausible that neural feature dimension maps are recruited to maintain 

information in memory when there is no sensory input. There is certainly preliminary 

evidence indicating that this is the case, as feature-specific memories are decodable from 
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visual cortex (Ester et al., 2009; Leavitt et al., 2017; Roussy et al., 2021; Sahan et al., 2020). 

However, to provide a concrete connection to the priority map architecture, it is necessary to 

demonstrate that neural feature dimension maps are specifically recruited to maintain 

information in WM. 

The primary goal of priority map theory is to understand how we select items of interest in 

the environment. Identifying how selection occurs in the brain, and which regions are 

responsible for this operation, will improve our understanding of information processing. 

However, part of what makes this a difficult endeavor is that there are several regions 

considered priority maps. One explanation is that all these regions are redundant to ensure a 

robust neural code for directing attention (Zelinsky & Bisley, 2015). Alternatively, each 

region could serve unique functions depending on task demands or required motor output, 

such as FEF being recruited for eye movements (Moore & Armstrong, 2003) and parietal 

areas recruited for other motor movements (Murata et al., 2000). Since feature maps sum into 

the priority map, then one way to identify whether a region has a unique role as a priority 

map is to evaluate when signals are shared with feature dimension maps under various task 

demands through functional connectivity (Bassett & Gazzaniga, 2011; Gonzalez-Castillo & 

Bandettini, 2018; van den Heuvel & Hulshoff Pol, 2010). It may be that parietal regions have 

stronger connectivity with neural dimension maps when performing a grasping task, while 

connectivity with FEF is stronger when making an eye movement. This approach could also 

help rule out a region as a priority map. Candidate priority maps that have no functional 

relationship with neural feature dimension maps may in fact not be priority maps, but could 

instead be inheriting information from other regions (Mirpour & Bisley, 2012). Thus, neural 
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feature dimension maps provide a way to clearly categorize the role of other regions in 

directing attention. 

Perhaps neural feature dimension maps themselves are used to direct attention more than 

originally theorized. Since specific regions may be recruited to direct attention depending on 

motor output, it could be that neural feature dimension maps are recruited when a task can be 

completed with only feature-specific information. For example, looking for a banana slug in 

the forest can be accomplished by searching for the color yellow. In this circumstance, the 

color dimension map contains the majority of information needed to find the banana slug. If 

responses are based directly on color map activation, then this task can be efficiently 

completed. An additional benefit is that this approach would have relatively minimal 

metabolic cost, as fewer regions need to be involved with the selection process. 

Future tests of feature dimension maps 

While the work presented here provides the necessary evidence to establish hV4/VO1/VO2 

and TO1/TO2 as neural feature dimension maps, there are still other properties of feature 

dimension maps that need to be tested in the neural correlates. For instance, how do these 

areas resolve conflict between multiple important stimuli? Since feature dimension maps are 

supposed to index all prioritized locations in the visual field, when there are competing 

prioritized locations, then they should all be represented within the appropriate feature 

dimension map. Further still, the location with the greatest activation must have the highest 

chance of being selected by attention if these regions are involved in computing priority. 

Future studies should include multiple stimuli to see if they are simultaneously represented 

and if the relative activation in these regions reflects what is selected by attention.  
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A related point is to understand how these regions represent varying levels of stimulus 

salience. Many studies have shown that gradual increases in stimulus luminance lead to 

enhanced neural and behavioral responses (Herrmann et al., 2010; Reynolds & Heeger, 2009; 

Sprague, Itthipuripat, et al., 2018). There is behavioral work evaluating detection thresholds 

using different levels of feature salience (Nothdurft, 1993a, 1993b, 2000), but there remains 

minimal work evaluating how graded feature salience emerges neurally (but see Poltoratski 

et al., 2017). Feature dimension maps should reflect changes in feature contrast. Items that 

are highly salient should be more strongly represented than items with low levels of salience, 

as indicated by low local feature contrast. Conducting a study that manipulates the degree to 

which a feature-salient stimulus varies from the background would be an excellent way to 

finely assess how these regions compute image salience. 

On the other end, these maps provide a unique opportunity to further appraise the 

computations that occur for prioritizing goal-relevant information. For example, when a 

specific feature value is task-relevant, there is evidence that modulations can occur in a 

spatially global manner (Maunsell & Treue, 2006). Feature-based attention (FBA) has been 

observed in monkey (Martı́nez-Trujillo & Treue, 2002; Treue & Trujillo, 1999a) and human 

(O’Craven et al., 1999; Saenz et al., 2002) feature-selective cortices that correspond to the 

neural color- and motion-dimension maps. Studies investigating FBA have observed 

enhanced responses at locations containing either a task-irrelevant, or even no stimulus 

(Serences & Boynton, 2007), when attending to a specific feature value at a different 

location. Alternatively, some studies have shown that feature-specific modulations only 

occur at the stimulus location (McMains et al., 2007). The results from Chapter 3 are more in 
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line with spatially localized feature modulation, as there was a minimal response at stimulus-

absent locations. Regardless, there is a large body of work demonstrating that modulations 

can be spatially global. It may be that both accounts are correct under specific circumstances. 

One way to investigate this is to introduce a second task-irrelevant stimulus when 

participants perform a task similar to what was used in Chapter 3. That way, the strength of 

the task-irrelevant stimulus can be assessed as a function of what feature dimension is 

attended in the relevant stimulus. 

Lastly, there is only initial evidence that these regions are modulated by selection history. It 

was necessary to first show that specific features can be prioritized through repeated 

encounters, as some models claim only the spatial location of a distracting stimulus can be 

suppressed through selection history (Theeuwes, 2010; Theeuwes et al., 2003). Contrary to 

this, Chapter 4 provides concrete evidence that the actual features themselves can be 

deprioritized. This opens future work to identify how neural feature dimension maps index 

this computation of priority. By adjusting the frequency by which stimuli are shown in 

paradigms similar to the ones used for Chapters 2 and 3, the influence of selection history 

can be evaluated. Additionally, implementing this change can be useful for assessing how 

selection history interacts with goal relevance and image salience to provide a more 

comprehensive understanding of the role of feature-selective regions in computing priority. 

Conclusions 

Across three studies, evidence was presented that regions of visual cortex represent neural 

feature dimension maps. Specifically, hV4/VO1/VO2 and TO1/TO2 represent neural color 

and motion dimension maps. This claim is supported by each region tracking the location of 
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stimuli throughout the visual field, responding more strongly to stimuli that matched the 

preferred feature of each region, and indexing the location of feature-specific important 

stimuli. Additionally, results were consistent with selection history acting to suppress 

specific features through learned statistical relationships. These findings support critical 

aspects of priority map theory, being the first to validate core structural elements of the 

model and to definitively demonstrating that learned feature distractors can be suppressed. 

This body of work explains aspects of feature-selective attention and facilitates a rich body of 

future research.  
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