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4Department of Clinical Medicine, Gastroenterology, Sapienza University of Rome, Italy.

Summary

In patients with decompensated cirrhosis, sarcopenia and frailty are prevalent. Although several 

definitions exist for these terms, in the field of hepatology, sarcopenia has commonly been defined 

as loss of muscle mass, and frailty has been broadly defined as the phenotypic manifestation of 

the loss of muscle function. Prompt recognition and accurate assessment of these conditions are 

critical as they are both strongly associated with morbidity, mortality, poor quality of life and 

worse post-liver transplant outcomes in patients with cirrhosis. In this review, we describe the 

complex pathophysiology that underlies the clinical phenotypes of sarcopenia and frailty, their 

association with decompensation, and provide an overview of tools to assess these conditions 

in patients with cirrhosis. When available, we highlight data focusing on patients with acutely 

decompensated cirrhosis, such as inpatients, as this is an area of unmet clinical need. Finally, we 

discuss management strategies to reverse and/or prevent the development of sarcopenia and frailty, 

which include adequate nutritional intake of calories and protein, as well as regular exercise of 

at least moderate intensity, with a mix of aerobic and resistance training. Key knowledge gaps 

in our understanding of sarcopenia and frailty in decompensated cirrhosis remain, including best 

methods to measure muscle mass and function in the inpatient setting, racial/ethnic variation in 
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the development and presentation of sarcopenia and frailty, and optimal clinical metrics to assess 

response to therapeutic interventions that translate into a reduction in adverse outcomes associated 

with these conditions.

Keywords

Body composition; Muscle mass; Muscle function; Survival; End-stage liver disease; Liver 
transplant; Computed tomography

Introduction

The last decade has seen a surge in research establishing sarcopenia and frailty as prevalent 

complications that predict morbidity and mortality in cirrhosis. As these complications are 

potentially modifiable with early identification and therapy, it is essential that clinicians 

understand what sarcopenia and frailty are, how they are measured, their role in prognosis 

and decompensation, their proposed pathophysiological basis, and recommended treatment 

strategies. In this review, we discuss the evidence supporting each of these areas and provide 

recommendations for future research in the field. To date, the literature on sarcopenia 

and frailty in cirrhosis has not clearly delineated patients with decompensated cirrhosis 

from those with compensated disease. Herein, we highlight the available information for 

decompensated cirrhosis when data are available. We also provide a conceptual framework 

for the overlap between sarcopenia and frailty as inter-related phenotypes.

Prevalence and overlap of sarcopenia and frailty

The prevalence of sarcopenia and frailty in cirrhosis ranges from 40–70%1,2 and 18–43%,3,4 

respectively (Table 1), depending on the population evaluated, the methods of assessment, 

and the operational definitions used. In broad terms, frailty in cirrhosis has focused on 

physical frailty and has been operationalised as impaired muscle function, while sarcopenia 

has been operationalised as impaired muscle mass. This common connection to muscle 

naturally results in an overlap between these conditions, and in the factors that contribute 

to their development (Fig. 1). While the loss of muscle function can lead to loss of muscle 

mass and vice versa (Table 1), these conditions can occur in isolation. In several studies, 

cirrhosis-related complications have been more prevalent in patients with sarcopenia or 

frailty (Table 1).

Operational definitions and methods of assessment

Sarcopenia

Distinct from the geriatric literature that considers muscle function and muscle mass to 

define sarcopenia, in cirrhosis, most studies have operationalised sarcopenia as loss of 

muscle mass. Various indirect and direct techniques such as anthropometry, bioelectrical 

impedance analysis (BIA), dual-energy X-ray absorptiometry (DXA), ultrasound, MRI and 

CT have been applied to quantify muscle mass in decompensated cirrhosis (Fig. 2).
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Within the clinical setting, mid-arm muscle circumference is readily accessible, but its 

use in decompensated cirrhosis is limited by high interobserver variability and a stronger 

prognostic relevance in compensated patients.5,6 The Royal Free Hospital Subjective Global 

Assessment tool incorporates mid-arm muscle circumference alongside body mass index and 

dietary intake, and although time consuming, it is promising as an independent predictor 

of mortality7 and post-transplant outcomes8 in decompensated patients. Tools such as 

BIA and whole body DXA have traditionally had limited use in decompensated cirrhosis 

as they are affected by fluid status. For DXA, the use of appendicular skeletal muscle 

(particularly arm muscle) may help to circumvent this issue.9,10 Ultrasound is another 

promising, non-invasive, bedside tool for which there is data in compensated cirrhosis11 and 

critical care,12,13 with evidence that suggests that muscle measurements are not influenced 

by hydration status.14 However, studies in decompensated patients are required.

Cross-sectional imaging assessment by CT or MRI15,16 is the most well-validated, accurate 

and objective sarcopenia assessment tool.2,17 Its routine use in the clinical setting is limited 

by radiation exposure, the potential for renal injury, high cost, and the need for specialised 

interpretation. Within the research setting, cross-sectional imaging studies have dominated 

the literature. Although much has been learned, heterogeneity exists around the choice of 

skeletal muscle measures and uncertainty exists about how these measures should be applied 

across different ethnic/racial groups. These problems are not unique to cirrhosis. A review 

of over 70 GI-oncology CT-sarcopenia studies identified 19 distinct cut-offs, and a higher 

incidence of sarcopenia in Asian populations if Western cut-offs were used.18 In cirrhosis, 

the most commonly evaluated muscle measures have included the total skeletal muscle index 

(SMI) at L3, the cross-sectional area and the index and thickness of psoas or paraspinal 

muscles. While studies from Asia19,20 and Europe21,22 have identified transverse psoas 

muscle thickness21 and paraspinal muscles index22 as independent predictors of mortality, 

in a recent North American collaboration, the psoas muscle index was a poor predictor of 

waitlist mortality when compared to the SMI.23 The same collaboration identified L3 SMI 

mortality thresholds in 396 North American patients (ascites in 61%): SMI <50 cm2/m2 

in males and <39 cm2/m2 in females.24 Interestingly, although these cut-offs have been 

validated in subsequent work, a recent single centre study of 355 patients determined that 

they were not predictive of waitlist mortality.25 This brings up the important point that 

contextual factors (in this case, high transplant rates and low model for end-stage liver 

disease scores) can influence the predictive value of SMI. More information is also required 

about the validity of these cut-offs across ethnic/racial groups. A recent systematic review 

and meta-analysis demonstrated higher sarcopenia-related mortality in Asian participants 

(hazard ratio [HR] 2.45; 95% CI 1.44–4.16; p = 0.001) compared to Western participants 

(HR 1.45; 95% CI 1.002–2.09; p <0.05).26 Although the North American collaboration 

cut-offs for sarcopenia27 are the most validated and widely used criteria, further research is 

encouraged. It is unlikely that there will be a universal prognostic cut-off or single optimal 

site of measurement for all populations. In this situation, cut-offs based on continental 

norms, or the evaluation of SMI measures as a continuous variable may offer an advantage 

over a single global cut-off.
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Frailty

As originally defined in the field of geriatrics, frailty is a distinct biologic syndrome 

of decreasing physiologic reserve and increasing vulnerability to health stressors.28 

“Global” frailty results from multi-dimensional derangements across one or a combination 

of physiologic systems including musculoskeletal, cardiovascular, neurologic, endocrine, 

and/or immune systems. In patients with decompensated cirrhosis, hepatic-specific 

factors (e.g. protein synthetic dysfunction, ammonia-associated muscle toxicity, and 

encephalopathy-related physical inactivity) are often the dominant drivers of the frail 

phenotype that manifest as loss of muscle function (physical frailty). Therefore, the tools 

that have gained broader acceptance in hepatology clinics and research settings focus largely 

on assessing loss of muscle function.

A number of tools have been evaluated. Tests of global frailty have included the frailty 

index, clinical frailty scale, and the hospital frailty risk score.3,29,30 Metrics of physical 
frailty/performance have been assessed using the liver frailty index, Fried frailty phenotype, 

short physical performance battery (SPPB), activities of daily living (ADL), Karnofsky 

performance status (KPS), 6-minute walk test (6MWT), and short gait speed as a single 

measure, or grip strength as a single measure.31-37 Each of these tests, with the exception 

of ADL and KPS, are performance-based metrics33,34,37 and necessitate active patient 

participation in testing. This can limit their use in severely decompensated or acutely ill 

populations, in whom muscle mass testing may be of greater clinical utility. Whether the 

construct of frailty, which was originally conceptualised in the field of geriatrics as a chronic 
biologic state of decreased physiologic reserve, is truly applicable in the setting of acute 

illness such as acutely decompensated cirrhosis or acute-on-chronic liver failure (ACLF) 

remains to be seen.

Future directions:

• Establish the trajectory, predictors and overlap of muscle mass and muscle 

function decline.

• Identify the best tools to diagnose sarcopenia/frailty in patients who are 

ambulatory, hospitalised with acute illness, hospitalised with critical illness.

• Identify normal values of muscle mass and function across demographics (e.g. 
age, sex, and race/ethnicity) and disease severity (e.g. decompensated cirrhosis, 

ACLF), including cross-sectional imaging and other promising bedside tools 

(e.g. ultrasound).

Pathophysiological basis of sarcopenia and frailty

Sarcopenia

Despite the high clinical significance, there have been few preclinical and human 

mechanistic studies on skeletal muscle responses in cirrhosis.38,39 Contributing 

pathophysiological factors include hepatocellular necrosis with cytokine release, host 

biomolecules including danger-associated and pathogen-associated molecular patterns 

(DAMPs, PAMPs), the vascular consequences of cirrhosis with portosystemic shunting 
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resulting in hyperammonaemia and endotoxemia, and the underlying aetiology of 

liver disease (ethanol, cholestasis, insulin resistance).38 These perturbations in cirrhosis 

contribute to anabolic resistance, a state in which physiological anabolic stimuli including 

nutrients and physical activity do not elicit the expected increase in protein synthesis and 

decrease in proteolysis (Fig. 3). Even though most mechanistic studies have been reported 

in compensated patients, similar pathophysiological abnormalities, though more severe, have 

been reported in decompensated cirrhosis and ACLF.40,41

Skeletal muscle protein homeostasis—Made up of both structural and contractile 

proteins, skeletal muscle is the largest storage site for protein in humans. Muscle mass is 

maintained by a balance between protein synthesis and proteolysis (protein homeostasis 

or proteostasis). The major proteolytic pathways in the muscle include the ATP-dependent 

ubiquitin proteasome pathway (UPP), the lysosomal autophagy pathway and the calcium-

dependent calpain pathway.42 Metabolic tracer studies, as well as molecular signalling and 

organelle function, demonstrate reduced muscle protein synthesis and increased autophaghic 

proteolysis in cirrhosis.43 Muscle protein synthesis is primarily regulated by 2 factors: i) 

myostatin, a transforming growth factor β superfamily member and ii) locally synthesised 

insulin like growth factor 1 (mechanogrowth factor).38,44 Downstream signalling pathway 

components including the mammalian target or rapamycin complex 1 (mTORC1) and its 

target molecules, energy sensor, AMP kinase, and eukaryotic initiation factor components 

are responsible for protein synthesis and regulation of autophaghic proteolysis.

Mediators of the liver-muscle axis—There are a number of potential mediators 

of the liver-muscle axis that contribute to sarcopenia in cirrhosis. These include 

hyperammonaemia, endotoxemia, and endocrine abnormalities including decreased 

testosterone levels and insulin resistance. Of these, the literature supporting the role of 

hyperammonaemia is strongest.45 Ammonia is a cytotoxic metabolite generated during 

amino acid catabolism, gut microbial metabolism, and purine breakdown.46 Physiologically, 

ammonia disposal occurs in the hepatocytes via ureagenesis. This process is impaired 

in cirrhosis due to hepatocyte dysfunction and portosystemic shunting.47 Even though 

encephalopathy is the most well- known consequence of hyperammonaemia, there is 

increasing evidence that the skeletal muscle uptake of ammonia is increased in cirrhosis 

with signalling and metabolic consequences.45,48,49 The mechanistic role of testosterone 

and growth hormone-related increases in protein synthesis and muscle mass have been 

recognised in cirrhosis.50 There is also increasing evidence that ethanol, an aetiological 

factor for liver disease, directly and indirectly (by aggravating muscle hyperammonaemia) 

contributes to more severe sarcopenia than observed in other forms of liver disease.51,52 Of 

interest, particularly in the setting of decompensated cirrhosis and ACLF, is the potential 

contribution of endotoxemia-mediated muscle proteolysis and decreased protein synthesis, 

especially during sepsis and infection.38 Other mediators including mitochondria-derived 

factors, PAMPs and DAMPs may also contribute to dysregulated proteostasis, but their 

mechanistic relevance and contributions have not been reported in cirrhosis.

Molecular perturbations—Recent bioinformatics analyses of unbiased transcriptomic 

and proteomic data show impaired mRNA translation, ribosome and mitochondrial 
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dysfunction, and free radical disposal during hyperammonaemia.53 Similar observations 

have been reported in response to ethanol across multiple regulatory pathways.54 

Initial reports in preclinical and human muscle tissue showed that hyperammonaemia 

causes transcriptional upregulation of myostatin, a transforming growth factor β 
superfamily member that downregulates mTORC1 signalling and increases AMPKα2 

phosphorylation, both of which result in decreased protein synthesis and increased 

autophagic proteolysis.48,55 Subsequent studies in rodents and myotube models of 

hyperammonaemia show a unique hyperammonaemic stress response characterised by 

impaired mTORC1 signalling and increased phosphorylation of eukaryotic initiation factor 

2α with decreased protein synthesis.46,56 A hyperammonaemic stress response that shares 

some components of amino acid deficiency and others from an unfolded protein response 

causes sarcopenia via both phosphorylation of eukaryotic initiation factor 2α (eIF2α) 

and decreased mTORC1 signalling.56 Skeletal muscle ammonia transport is enhanced by 

ethanol, aggravating adverse muscle responses to hyperammonemia.51 In skeletal muscle 

from patients and preclinical models, the UPP is either not activated or inactivated, while 

autophagic flux – representing the major proteolytic pathway – is increased.57,58 Recent 

data suggest that the effects of hyperammonaemia on muscle may be context and species 

dependent.59 Further studies are required to assess these effects with a view to developing 

targeted therapies.

Organelle dysfunction—Ribosomal biogenesis is decreased during hyperammonaemia, 

aggravating signalling responses.53 The decreased ribosomal content and biogenesis in 

hyperammonaemia is mediated by impaired β-catenin-cMYC signalling. The effect of 

other mediators and aetiological factors on ribosomal biogenesis is yet to be studied. 

Both hyperammonaemia and ethanol impair mitochondrial oxidative function via inhibition 

of components of the electron transport chain, leakage of electrons, generation of free 

radicals and oxidative tissue injury. Even though muscle mitochondrial mass is not altered 

during hyperammonaemia and ethanol exposure, functional abnormalities result in decreased 

responses to various substrates and reduced ATP synthesis.54,60 Endotoxemia also results in 

ribosomal and mitochondrial dysfunction similar to the effects of hyperammonaemia, but the 

relevance in cirrhosis is not yet known.61,62

Metabolic abnormalities—Non-ureagenic skeletal muscle ammonia disposal involves 

cataplerosis (loss of tricarboxylic acid cycle intermediates) of α-ketoglutarate (αKG) with 

increased glutamate and glutamine synthesis.56,60 Substrate preferences are altered in 

cirrhosis and hyperammonaemia promotes partitioning of the essential amino acid, L-leucine 

into the mitochondria for oxidation instead of being retained in the cytosol for translational 

regulation or as a substrate for peptide chain elongation.63 Transcriptional upregulation of 

the leucine exchanger SLC7A5 (LAT1) in the muscle promotes glutamine-leucine exchange, 

explaining the elevated plasma glutamine and reduced L-leucine levels in cirrhosis 

and revealing a potential therapeutic target.56 There is emerging data that intermediary 

metabolites (succinate, αKG) can regulate signalling molecules and pathways64 and help to 

explain the molecular-metabolic interactions during hyperammonaemia.
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Hormonal changes—Sarcopenia is associated with decreased testosterone in males. 

Androgen receptor binding sites have been identified on the myostatin promoter. The 

increased myostatin levels in cirrhosis can be explained by the decreased inhibition 

by testosterone.65 The limited therapeutic responses to testosterone may be explained 

by an increase in peripheral aromatase activity with portosystemic shunting and 

hyperammonaemia.50 Whether myostatin responds to testosterone supplementation in 

cirrhosis is not yet known. Abnormal growth hormone secretory patterns also occur 

in cirrhosis and growth hormone binding sites have been identified on the myostatin 

promoter.65,66 Additionally, growth hormone can stimulate the muscle anabolic molecule, 

insulin like growth factor 1, that activates the mTORC1 signalling pathway. Increased 

circulating angiotensin in cirrhosis,67 especially in patients with non-alcoholic fatty liver 

disease, has the potential to bind to the angiotensin receptor on skeletal muscle and cause 

increased proteolysis.

Endotoxemia/inflammation—Systemic endotoxemia, due to alterations in the gut 

microbiome and a disrupted gastrointestinal mucosal barrier, activates Toll-like receptors 

expressed on muscle, leading to a reduction in protein synthesis and increased proteolysis, 

both of which result in sarcopenia.38 Additionally, increased circulating interleukin (IL)-6 

also contributes to dysregulated protein homeostasis and sarcopenia.68 Tumour necrosis 

factor-α promotes activation of the transcription factor NF-κB which leads to transcriptional 

activation of MuRF1, atrogin1, and protein degradation,69 as well as potentially contributing 

to muscle atrophy in cirrhosis.70 Of interest, it has been hypothesised that the systemic 

inflammatory response that occurs during ACLF is an energetically expensive process, 

requiring reallocation of nutrients to fuel immune activation, potentially contributing to 

muscle mass loss.71

Systemic hypermetabolism, accelerated starvation—Systemic hypermetabolism 

and reduced caloric intake also aggravate dysregulated proteostasis and sarcopenia.72 

Cirrhosis is a state of accelerated starvation with increased proteolysis and fatty acid 

oxidation, but the underlying mediator(s) of these metabolic responses have not yet been 

identified.73,74 Human studies have shown that a low respiratory quotient is associated with 

reduced muscle area.73

Frailty

Multiple pathophysiologic factors have been found to contribute to frailty in the 

elderly, including disturbances in muscle proteostasis, the immune system, chronic 

inflammation,75 neurologic alterations,76 microbiota modifications77 and endocrine 

alterations.78 Interestingly, many of these changes are also described in patients with 

decompensated cirrhosis and may help us to understand why frailty occurs at an earlier 

age in cirrhosis (Fig. 3). To our knowledge, there has been no cirrhosis-specific data 

in this area. The predominant model for animal frailty testing has been aged animals. 

In recent years, new animal models of frailty have been proposed,79 including the Il10 
homozygous knockout mouse (Il10tm/tm) demonstrating a frail phenotype associated with 

chronic inflammation and reduced muscle strength,80 that may have relevance to cirrhosis. 
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The development of rodent frailty assessment tools may also advance our understanding of 

the pathophysiology of frailty81,82 in future work.

Future directions

• Explore the contribution/hierarchy/synergy of mediators of the liver-muscle 

axis (e.g. hyperammonaemia, endotoxemia, endocrine abnormalities, additional 

factors) to sarcopenia in decompensated cirrhosis/ACLF.

• Identify the pathophysiological factors associated with physical frailty in 

cirrhosis.

• Explore whether the pathophysiological mechanisms of sarcopenia and frailty act 

independently or synergistically in patients with decompensated cirrhosis/ACLF.

• Use information gained about the pathophysiology of sarcopenia and frailty to 

identify new therapeutic targets.

The relationship between sarcopenia/frailty and prognosis (including 

decompensation and death)

Both sarcopenia and frailty are more prevalent in patients with evidence of hepatic 

decompensation (Table 1) and are independently associated with a full range of adverse 

outcomes in patients with decompensated cirrhosis.

Sarcopenia has consistently been shown to be a key predictor of reduced quality of life,83 

mortality both pre-2,17 and post-LT,84 longer hospital and intensive care unit stays,85 a 

higher incidence of infection following LT,85,86 and higher overall health care costs.87 

Sarcopenia, as measured by CT88 or MRI-based imaging,16,89 has also been identified as a 

predictor of decompensation itself, including development of ACLF90 and decompensation 

after transjugular intrahepatic portosystemic shunt (TIPS) placement.89 In particular, studies 

have shown a strong relationship between sarcopenia and hepatic encephalopathy (HE),91,92 

likely due to reduced capacity for extrahepatic ammonia removal by muscle among those 

with muscle depletion. Supporting this, sarcopenia is almost 2-fold more prevalent in 

patients with overt HE compared to those without HE (53 vs. 32%, p <0.001).92 Moreover, 

sarcopenia predicts post-procedure HE in patients undergoing TIPS,93 and improvements in 

sarcopenia post-TIPS (>10%) are associated with fewer episodes of overt HE after TIPS.94

In outpatients with cirrhosis, physical frailty (as defined as a liver frailty index ≥4.5), 

increases the adjusted risk of waitlist mortality 1.9x compared to non-frail patients (95% 

CI 1.4–2.6)31. Other assessments using the Fried frailty phenotype, SPPB, 6MWT, and gait 

speed have demonstrated similar associations with death.32,35,36,95 Ambulatory assessments 

using the clinical frailty scale, frailty index, Fried frailty phenotype, and short gait 

speed predicted future hospitalisations and length of hospitalised days.3,30,36,95 Only 2 

instruments, ADL and KPS, have been studied in hospitalised patients with cirrhosis: loss 

of ability to complete ADL was associated with an adjusted risk of 90-day mortality after 

discharge (HR 1.83, 95% CI 1.05–3.20), and each 10-point improvement in KPS score was 

associated with a 30% reduction in the odds of death 30 days after discharge (95% CI 20–
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40%).33,37 Furthermore, longitudinal changes in the liver frailty index predicted outcomes in 

patients with decompensated cirrhosis – a 0.1 unit increase in the liver frailty index per 3 

months was associated with a 2-fold higher risk of death/delisting (95% CI 1.4–3.1).96

A few studies evaluated both sarcopenia and frailty in a single study, all in outpatients being 

evaluated for liver transplantation (Table 2).97-99 Although they are inter-related constructs, 

these studies have demonstrated low correlations between the 2 conditions, suggesting that 

metrics of sarcopenia and metrics of frailty may capture different risks in this patient 

population. Further investigations are essential to better understand the relationship between 

sarcopenia and frailty.

A bidirectional relationship between these conditions is plausible (Fig. 4). For example, 

factors that occur with decompensation and ACLF, such as anorexia, ascites, HE and pro-

inflammatory cytokine release can result in higher energy consumption, reduced nutritional 

intake and physical inactivity, increasing the risk of sarcopenia and frailty developing (and 

worsening). Further research will add granularity to the potential mechanisms of sarcopenia 

and frailty and their association with increased risk of decompensation in patients with 

cirrhosis (Fig. 4).

Future directions:

• Evaluate the course of sarcopenia and frailty during decompensation/

ACLF. Explore if/how sarcopenia/frailty may contribute to the process of 

decompensation/ACLF.

• Identify if there is a difference between chronic frailty (measured in stable, 

ambulatory patients) vs. acute frailty (measured in acutely ill patients) in terms 

of their associations with clinically relevant outcomes.

• Explore the prognostic implications of a more global, multi-dimensional concept 

of frailty (common place in the aging literature) compared to the single 

dimension of physical frailty.

Therapy

Based on the pathophysiological mechanisms that contribute to sarcopenia/frailty, the 

potential therapies for these conditions are presented in Fig. 5. These include the restoration 

of liver function through optimal management of the underlying disease aetiology 

(e.g. abstinence from alcohol, antiviral therapy), optimal management of liver-related 

complications (e.g. infection, ascites, variceal bleeding, hepatic encephalopathy), and liver 

transplantation when required. Nutrition, exercise and hormonal replacement therapy (men) 

are dealt with more extensively in the manuscript as several clinical studies have been 

performed to assess their possible efficacy.

Nutrition therapy

General Importance of nutrition therapy—All patients with decompensated disease 

should receive dietary counselling and educational resources.100 Although existing meta-

analyses of nutritional supplementation in hospital have not been able to demonstrate an 
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impact on mortality,101 this may in part be related to the inclusion of studies with a 

very short intervention duration or patients with very advanced liver disease. A recent 

quality improvement intervention in hospitalised patients with cirrhosis was associated with 

increased nutritional intake and a reduction in 90-day hospital readmissions, supporting 

the impact of such strategies in this population.102 A randomised-controlled trial (RCT) 

reported on a 6-month intervention promoting dietary intake at guideline-based targets 

using educational materials and monthly dietician visits in outpatients with decompensated 

cirrhosis and minimal HE. A significant improvement in minimal HE, muscle mass/strength 

and quality of life was observed in the intervention group.103

Calorie prescription—There is considerable inter-individual variation in measured vs. 
predicted values of resting energy expenditure104 with 45% of traditional predictive 

equations estimating energy requirements to within 90–110% of the measured resting energy 

expenditure.104 Therefore, when available, indirect calorimetry should be used to determine 

resting energy expenditure. Caloric intake recommendations are provided in Fig. 6. Weight 

loss in the setting of decompensated cirrhosis or sarcopenic obesity must be approached with 

caution105 – caloric reduction should occur under the guidance of a dietitian, with protein 

intake maintained105 and concurrent resistance activity prescribed.

Protein prescription—Protein intake should not be restricted in decompensated 

cirrhosis.106 1.2–1.5 g/kg/day is a unanimous recommendation across guidelines in the 

area, with increased intake recommended in the critically ill100,100,107 (Fig. 6). The data 

to support branched chain amino acids (BCAAs) are less clear.39 Selected studies have 

demonstrated a reduction in clinical events and an improvement in quality of life with the 

longer-term use of BCAAs.108,109 In a meta-analysis of 16 RCTs in patients with HE, 

BCAAs were associated with a beneficial impact on HE but no impact on mortality.110 

Although further studies are required, most guidelines recommend BCAAs (0.25 g/kg/

d)100,107 in patients who are protein intolerant or unable to achieve protein targets.

Timing of nutritional intake—Prolonged periods of fasting should be avoided in 

cirrhosis. The landmark study in the area by Plank et al. randomised 103 patients to daytime 

or night-time oral supplemental nutrition of 710 kcal per day. Although most sustained 

in the Child-Pugh A patients, even decompensated patients demonstrated a significant 

improvement in total body protein and fat-free mass with night-time supplementation.111 

A diverse range of late night snack options have been evaluated in the literature, with snacks 

varying from 149 kcal to 710 kcal and varying carbohydrate and protein composition74 (Fig. 

6).

Exercise therapy

Exercise therapy in cirrhosis has been reviewed in detail in several recent reviews.112,113 

Most of the available data is from patients with compensated cirrhosis without separate 

results in decompensated patients, and no data in hospitalised patients. Exercise programmes 

ranging from 8–14 weeks in duration have resulted in improvements in peak exercise 

capacity (VO2), muscle mass, muscle strength, the hepatic venous pressure gradient and 

quality of life and fatigue.112,113 If in keeping with their goals of care, all patients 
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with decompensated cirrhosis should receive preexercise safety screens and an exercise 

prescription as detailed in Fig. 6. Drawing from experience with other compromised 

populations, resistance training is the focus of many programmes in patients with 

decompensated cirrhosis and significant deconditioning, with aerobic training introduced 

later. If falls are a major issue, initial emphasis is often placed on lower extremity strength 

and balance training.

Testosterone therapy

Testosterone levels are almost universally decreased in patients with decompensated liver 

disease.114 In the only 12-month RCT of 101 cirrhosis patients (80% decompensated) with 

low testosterone levels, Sinclair et al. demonstrated significant improvements in muscle 

mass, bone mineral mass and reductions in total fat mass in patients receiving testosterone 

therapy.115 Exclusion criteria included those >70 years of age, with hepatocellular 

carcinoma or other known malignancy, prostate disease, haematocrit >55%, estimated 

glomerular filtration rate <30 ml/min. Although this single RCT is promising, the 

widespread use of testosterone has been limited by concerns about hepatocellular carcinoma 

and venous thrombosis, and therefore it is not routinely prescribed.

Emerging therapies

As highlighted in the pathophysiology section and Fig. 5, several novel molecular and 

metabolic abnormalities have been identified as potential therapeutic targets in the skeletal 

muscle of patients with cirrhosis. In an experimental model of hyperammonaemia, rifaximin 

and L-ornithine L-aspartate lowered plasma and muscle ammonia concentrations and 

improved muscle mass. This was associated with decreased expression of myostatin, 

autophagy markers and reversal of the general control nonderepressible 2 (GCN2)/eIF2α 
phosphorylation as well as mTORC1 signalling.116 Among BCAAs, data on the potential 

role of leucine-enriched BCAA supplementation (simultaneous mTORC1 activator and 

mitochondrial oxidative substrate)56,117 and its metabolite beta-hydroxy-beta-methylbutyrate 

is promising.118 Mitochondrial targeted antioxidants are another potential therapy to reverse 

oxidative dysfunction, decrease ATP content, and restore protein synthesis and muscle 

mass.54 In a recent study, L-carnitine (1,000 mg/day) administration for more than 6 

months suppressed skeletal muscle loss in patients with cirrhosis.119 The suppression was 

dose-dependent, with high-dose (≥1,274 mg/day) administration resulting in a reduction 

in serum ammonia levels at 1 year.120 In preclinical models, follistatin, an antagonist of 

myostatin, has been linked to reduced myostatin expression, increased muscle mass and 

protein synthesis. Further research is required before these therapies can be used in routine 

clinical practice.55

Future directions

• Explore the reversibility of sarcopenia and frailty with adequately powered 

studies of nutrition and physical activity. Assess dose, intervention duration, 

predictors of response (e.g. inflammation, degree of liver dysfunction) and point 

of futility.
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• Determine whether improvements in sarcopenia/frailty independently impact the 

course of liver disease or whether improvement is secondary to improvements in 

liver function.

• Determine more accurate methods for assessing total energy needs.

• Evaluate the impact of emerging (non-nutrition, non-physical activity) therapies.

Conclusions

In summary, sarcopenia and frailty are not only common, but also clinically significant 

conditions that occur in the life of a patient with decompensated cirrhosis. Although 

much has been uncovered, much remains to be clarified about these conditions – how 

best to diagnose them across distinct groups of patients, their pathophysiological basis, how/

whether they mediate decompensation and optimal therapeutic strategies. The accumulating 

evidence will provide even more support to standardise the assessment and management of 

sarcopenia and frailty alongside other classic cirrhosis complications as a routine part of 

cirrhosis care.
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Abbreviations

ACLF acute-on-chronic liver failure

ADL activities of daily living

BCAA branched chain amino acids

BIA bioelectrical impedance analysis

DXA dual-energy X-ray absorptiometry

eIF2α eukaryotic initiation factor 2α

HE hepatic encephalopathy

IL interleukin

KPS Karnofsky performance status

mTORC1 mammalian target or rapamycin complex 1

RCT randomised-controlled trial
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SMI skeletal muscle index

SPPB short physical performance battery

TIPS transjugular intrahepatic portosystemic shunt

UPP ubiquitin proteasome pathway
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Key point

Sarcopenia and physical frailty are common, inter-related complications in 

decompensated cirrhosis.

Our understanding of the pathophysiological basis of sarcopenia and physical frailty is in 

evolution. Sarcopenia has been linked to factors including cytokine release, endotoxemia, 

hyperammonaemia and low testosterone levels (males).

There are multiple knowledge gaps in our understanding of sarcopenia and physical 

frailty in decompensated cirrhosis that require further evaluation, including the potential 

impact of these conditions on the course of decompensation. What is clear is that they are 

independent predictors of increased morbidity, mortality and reduced quality of life.

Existing management strategies for sarcopenia and physical frailty centre on adequate 

nutritional intake, shortening the fasting period and physical activity in addition to 

optimal management of cirrhosis aetiology and its complications.
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Fig. 1. The conceptual overlap between frailty, sarcopenia, and their contributing factors.
The common connection of impaired muscle health in the definitions of frailty and 

sarcopenia in patients with cirrhosis naturally results in an overlap in the factors that 

contribute to their development. The contributing factors can independently contribute to 

frailty or sarcopenia or both (centripetal arrows from the outer circle); the effect of these 

factors on the development of frailty or sarcopenia or both may further be potentiated by the 

effect of the factors on each other (bidirectional arrows in the outer circle).
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Fig. 2. Tools that have been studied in patients with cirrhosis to quantify multi-dimensional 
(global) frailty, physical frailty, and sarcopenia.
Tools to measure frailty and sarcopenia in patients with cirrhosis. This fig. represents the 

tools to operationalise the constructs of frailty and sarcopenia that have been studied in 

patients with cirrhosis. While each of the instruments was originally developed to capture 

a specific construct (e.g., global frailty, physical frailty, or sarcopenia), in practice, overlap 

exists and the selection of the instrument used for either clinical or research is influenced by 

pragmatic concerns. ADL, activities of daily living; BIA, bioelectrical impedance analysis; 

DXA, dual energy X-ray absorptiometry; KPS, Karnofsky performance status; SPPB, short 

physical performance battery.
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Fig. 3. Proposed mechanisms of frailty and sarcopenia in cirrhosis.
(A) Common drivers of frailty are present in aging and decompensated cirrhosis. Hepatic 

encephalopathy, sarcopenia, altered gut microbiota and bacterial translocation, endotoxemia 

and exacerbation of chronic inflammation are associated with liver decompensation 

and contribute to the general frailty phenotype. (B) Multiple mechanisms contribute to 

sarcopenia in cirrhosis. These include physical inactivity, a lack of adequate energy sources 

due to reduced dietary intake, low glycogen deposits and a rapid transition to fasting 

metabolism. Endotoxemia, chronic inflammation and toxic substances such as alcohol also 

contribute. Low testosterone levels may contribute in male patients. Molecular mechanisms 

are detailed in the Pathogenesis section. BCAA, branched chain amino acid.

Tandon et al. Page 23

J Hepatol. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Potential mechanisms of sarcopenia and physical frailty and their association with a 
higher risk of decompensation in patients with cirrhosis.
Sarcopenia and frailty are present in 40-70% and 18-43% of patients with cirrhosis. The 

main factors associated with these conditions include portal hypertension, a catabolic state, 

synthetic dysfunction, chronic inflammation, progressive immobility and deconditioning. 

Sarcopenia and frailty are associated with an increased risk of liver decompensation 

related complications, including ascites, hepatic encephalopathy and infection. Liver 

decompensation may also increase the risk of worsening both sarcopenia and frailty. Post-

transplantation, both conditions are associated with an increased risk of morbidity and 

mortality.
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Fig 5. Proposed therapeutic strategies for the treatment of frailty and sarcopenia in cirrhosis.
(A) Potential therapeutic strategies to treat frailty in cirrhosis. At the current time (apart 

from sarcopenia based therapies), these therapies have not been evaluated in experimental 

studies or in patients. (B) Potential therapeutic strategies to treat sarcopenia in cirrhosis. 

At the current time, evidence for most of these strategies is based on a small number of 

experimental or human-based studies. Larger prospective interventional studies are required 

to determine whether the findings in molecular studies can be translated to patients. See 

more details in the section on Pathogenesis and the section on Therapy. BCAA, branched 

chain amino acid.
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Fig 6. Summary of therapies for sarcopenia and frailty124,125.
BCAA, branched chain amino acid; HCC, hepatocellular carcinoma; RCT, randomised 

controlled trial.
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