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Impact of Antimalarial Treatment and Chemoprevention on the Drug
Sensitivity of Malaria Parasites Isolated from Ugandan Children

Patrick Tumwebaze,a Melissa D. Conrad,b Andrew Walakira,a Norbert LeClair,b Oswald Byaruhanga,a Christine Nakazibwe,a

Benjamin Kozak,b Jessica Bloome,b Jaffer Okiring,a Abel Kakuru,a Victor Bigira,a James Kapisi,a Jennifer Legac,b Jiri Gut,b

Roland A. Cooper,c Moses R. Kamya,d Diane V. Havlir,b Grant Dorsey,b Bryan Greenhouse,b Samuel L. Nsobya,a Philip J. Rosenthalb

Infectious Diseases Research Collaboration, Kampala, Ugandaa; Department of Medicine, University of California, San Francisco, California, USAb; Department of Natural
Sciences and Mathematics, Dominican University of California, San Rafael, California, USAc; School of Medicine, Makerere University College of Health Sciences, Kampala,
Ugandad

Changing treatment practices may be selecting for changes in the drug sensitivity of malaria parasites. We characterized ex vivo
drug sensitivity and parasite polymorphisms associated with sensitivity in 459 Plasmodium falciparum samples obtained from
subjects enrolled in two clinical trials in Tororo, Uganda, from 2010 to 2013. Sensitivities to chloroquine and monodesethylamo-
diaquine varied widely; sensitivities to quinine, dihydroartemisinin, lumefantrine, and piperaquine were generally good. Associ-
ations between ex vivo drug sensitivity and parasite polymorphisms included decreased chloroquine and monodesethylamodi-
aquine sensitivity and increased lumefantrine and piperaquine sensitivity with pfcrt 76T, as well as increased lumefantrine
sensitivity with pfmdr1 86Y, Y184, and 1246Y. Over time, ex vivo sensitivity decreased for lumefantrine and piperaquine and
increased for chloroquine, the prevalences of pfcrt K76 and pfmdr1 N86 and D1246 increased, and the prevalences of pfdhfr and
pfdhps polymorphisms associated with antifolate resistance were unchanged. In recurrent infections, recent prior treatment
with artemether-lumefantrine was associated with decreased ex vivo lumefantrine sensitivity and increased prevalence of pfcrt
K76 and pfmdr1 N86, 184F, and D1246. In children assigned chemoprevention with monthly dihydroartemisinin-piperaquine
with documented circulating piperaquine, breakthrough infections had increased the prevalence of pfmdr1 86Y and 1246Y com-
pared to untreated controls. The noted impacts of therapy and chemoprevention on parasite polymorphisms remained signifi-
cant in multivariate analysis correcting for calendar time. Overall, changes in parasite sensitivity were consistent with altered
selective pressures due to changing treatment practices in Uganda. These changes may threaten the antimalarial treatment and
preventive efficacies of artemether-lumefantrine and dihydroartemisinin-piperaquine, respectively.

Malaria, in particular disease caused by Plasmodium falcipa-
rum, remains an overwhelming problem in most of sub-

Saharan Africa (1, 2). Malaria control was greatly limited by resis-
tance to chloroquine (CQ) and sulfadoxine-pyrimethamine (SP),
leading to adoption of artemisinin-based combination therapy
(ACT) as the standard treatment for uncomplicated falciparum
malaria in the last decade (3). ACT consists of a rapid-acting ar-
temisinin derivative plus a longer-acting partner drug that clears
parasites not eliminated by the artemisinin component and limits
selection of artemisinin resistance (4, 5). In nearly all countries in
sub-Saharan Africa, either artemether-lumefantrine (AL) or arte-
sunate-amodiaquine (AS-AQ) is recommended to treat uncom-
plicated malaria (6). Other ACTs are dihydroartemisinin (DHA)-
piperaquine (DP), a first-line therapy in some countries in Asia, with
particular promise for malaria prevention due to the extended half-
life of piperaquine (7), and artesunate-mefloquine (AS-MQ), which
is used in some countries in Asia and South America. In Uganda, AL
was named the national malaria treatment regimen in 2004; its im-
plementation began in 2006 but was fairly slow. The proportion of
children �5 years of age with a fever treated with an ACT (AL is the
only widely available ACT) within 24 h rose from an estimated 1% in
2006 to 14% in 2009 to 30% in 2011 (8). Although treatment of all
fevers as malaria is no longer national policy, these statistics indicate
increasing access to AL for treating malaria. Thus, both the appropri-
ate treatment of malaria with AL and increased selective pressure for
resistance to AL appear to have increased markedly in Uganda in
recent years.

Intermittent preventive therapy (IPT) with SP to decrease ma-

laria incidence and the risk of placental malaria is recommended
for pregnant women in Uganda at least once per trimester (9). IPT
is not recommended in children because of the limited efficacy of
SP due to drug resistance, although in the Sahel subregion of West
Africa, where malaria is highly seasonal and the prevalence of SP
resistance is lower than that in other areas, seasonal malaria che-
moprevention with the combination of SP and amodiaquine is
now recommended (10). DP was recently studied for use as che-
moprevention in Uganda. Children were randomized to monthly
DP administered from 6 to 24 months of age. Compared to un-
treated controls, the DP chemoprevention arm experienced a 58%
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decrease in the incidence of malaria (11). Treatment was not di-
rectly observed, and piperaquine serum levels were consistent
with poor treatment compliance in many children (11). Thus, the
true preventive efficacy of monthly DP was likely higher. This
conclusion is supported by a second trial in which schoolchildren
were randomized to directly observed monthly DP or no therapy
for 1 year, and the preventive efficacy of DP was a remarkable 96%
(12).

Of obvious concern with increasing utilization of newer ma-
laria therapies for treatment or chemoprevention is potential se-
lection of drug-resistant parasites. Resistance to the aminoquino-
lines chloroquine and amodiaquine is mediated principally by
well-defined polymorphisms in two putative drug transporters
encoded by pfcrt and pfmdr1 (3, 13), and these polymorphisms are
selected in new infections that emerge soon after therapy with
AS-AQ (14, 15). Piperaquine is a related bisaminoquinoline, but
although resistance was widely reported in the preartemisinin era
from China (16), the mechanisms of resistance are uncertain. Use
of DP for treatment (17) or chemoprevention (18) did not select
for the polymorphisms associated with chloroquine resistance in
Burkina Faso, but, in Uganda, recent treatment with DP selected
for pfmdr1 mutations associated with decreased sensitivity to ami-
noquinolines (19). Interestingly, a number of other antimalarials
exert the opposite selective pressure. In particular, new infections
emerging within 2 months of treatment with AL show selection of
wild-type sequences at the pfcrt K76T and pfmdr1 N86Y and
D1246Y alleles (19–22); mutant sequences are selected at these
same alleles by aminoquinolines. Of great recent concern has been
resistance to artemisinins, manifest as delayed parasite clearance
after therapy, in Southeast Asia (23, 24). This phenomenon was
recently linked to a laboratory phenotype, with enhanced survival
of ring-stage parasites after pulse exposure to artemisinins (25)
and with polymorphisms in the newly identified K13 gene (26).
However, delayed parasite clearance (27), K13 polymorphisms
associated with resistance (28), and enhanced ring survival (R.
Cooper, unpublished data) have not been seen in Uganda, and,
consistent with these results, a recent survey suggested that arte-
misinin resistance is to date confined to Southeast Asia (29).

With recent changes in malaria treatment practices in Uganda,
it is of interest to assess whether parasite resistance mediators have
been selected. In two studies from Tororo, the prevalence of the
wild-type pfcrt and pfmdr1 alleles noted above increased signifi-
cantly, both in parasites not under selective pressure (30) and in
those from children treated for each episode of malaria with AL
(19). However, limited data have been available on the actual drug
sensitivity of parasites in Uganda, with only one prior report from
Kampala showing good efficacy of lumefantrine, piperaquine, and
dihydroartemisinin (31). The goal of this study was to consider
changes in drug sensitivity over time and the selective pressures of
ACTs for treatment and chemoprevention, utilizing both parasi-
tological and molecular assessments.

MATERIALS AND METHODS
Clinical trials. All studied parasites were from subjects enrolled in two
clinical trials conducted in Tororo, Uganda, a region with very high
malaria transmission intensity, with an entomological inoculation
rate recently estimated at 125 infectious bites per year (32). In the
PROMOTE-1 trial (registered at ClinicalTrials.gov under registration no.
NCT00978068), 170 HIV-infected children were randomized to antiret-
roviral therapy with a protease inhibitor-based or nonnucleoside reverse

transcriptase inhibitor-based regimen and followed for the incidence of
malaria over 6 to 24 months (33); all of these children were provided with
daily trimethoprim-sulfamethoxazole (TS). In the PROMOTE-3 trial
(ClinicalTrials.gov no. NCT00948896), 393 HIV-uninfected children
were randomized to no intervention or malaria chemoprevention at 6 to
24 months of age with monthly SP, daily TS, or monthly DP (11). In both
trials, subjects received free medical care, including transport to our study
clinic, throughout the course of the trials. Use of antimalarial drugs out-
side the study protocols was uncommon. When patients presented with
symptoms suggestive of malaria, either upon routine monthly assessment
or at unscheduled visits, Giemsa-stained thick blood smears were per-
formed. Malaria was defined as any parasitemia in the setting of fever or
history of fever in the last 24 h. In both trials, uncomplicated malaria was
treated with AL and complicated malaria with quinine. The clinical trials
and analyses of cultured parasites were approved by the Uganda National
Council of Science and Technology, the Makerere University Research
and Ethics Committee, and the University of California, San Francisco
Committee on Human Research.

Parasite culture. At the time of diagnosis of a new episode of malaria
and before the initiation of therapy, blood was collected in heparinized
tubes and transported promptly to our laboratory, located adjacent to the
study clinic. Giemsa-stained thin blood smears were examined, and if P.
falciparum infection with �1% parasitemia and a lack of other plasmodial
species was confirmed, culture was initiated as previously described (31).
Briefly, blood was centrifuged, plasma and buffy coat were removed, and
the erythrocyte pellet was washed three times with RPMI 1640 medium. A
200-�l aliquot of the washed pellet was added to 10 ml of RPMI 1640
medium supplemented with 25 mM HEPES, 0.2% NaHCO3, 0.1 mM
hypoxanthine, 100 �g/ml gentamicin, and 0.5% AlbuMAX II serum sub-
stitute to produce a packed cell volume of 2%. Higher parasite densities
were diluted with 2% uninfected erythrocytes to obtain a density of 0.05%
to limit inoculum effects on drug susceptibility assay results.

Measurement of ex vivo drug sensitivity. Sensitivities were mea-
sured against fresh isolates and control strains (acquired from the
Malaria Research and Reference Reagent Resource Center) for chloro-
quine (Sigma-Aldrich), monodesethylamodiaquine (MDAQ) (BD
Gentest), quinine (Sigma-Aldrich), DHA (Dafra Pharma), lumefantrine
(Porton International), and piperaquine (Porton International), as de-
scribed previously (31). Multiple wells of 96-well culture plates were pre-
dosed with six duplicate 2-fold serial dilutions of each drug of interest
(31.3 to 2,004 nM chloroquine, 12.5 to 801 nM MDAQ, 30.8 to 1,971 nM
quinine, 0.13 to 8.4 nM DHA, 0.2 to 12.5 nM lumefantrine, 3.1 to 200 nM
piperaquine). Plates were dried in an incubator and stored at 4°C in sealed
plastic bags. Wells without drug served as controls. Aliquots (200 �l) of
cultured parasites were added to each well and maintained at 5% CO2, 3%
O2, and 37°C for 72 h. After the incubation, a blood smear was prepared to
confirm healthy growth of controls and determine the level of para-
sitemia. Samples were then frozen (�20°C) and thawed three times to
allow for complete hemolysis before analysis. Drug sensitivity was as-
sessed using an enzyme-linked immunosorbent assay (ELISA) to quantify
parasite histidine-rich protein-2 in treated and control cultures (34).
Samples were diluted 1:10 in water, and 100 �l of each was added to an
ELISA plate precoated with mouse anti-horseradish peroxidase (HRP)-2
IgM capture antibody (Immunology Consultant Laboratory) and incu-
bated at room temperature for 1 h. Each well was then washed three times
with 0.05% Tween 20 in phosphate-buffered saline, incubated with 100 �l
of secondary antibody (horseradish peroxidase-conjugated anti-mouse
IgG) for 1 h at room temperature, washed again three times, and incu-
bated with 100 �l of 3,3=,5,5=-tetramethylbenzidine chromogen for 10
min before adding 50 �l of 1 M sulfuric acid to stop the reaction. Absor-
bance at 450 nm was then read with a Multiskan ELISA plate reader.
ELISA results for experimental and control cultures were used to con-
struct dose-response curves for each drug, and the 50% inhibitory con-
centrations (IC50s) were calculated using HN-NonLin software (34), with
data fitted by nonlinear regression to a variable-slope sigmoidal dose-
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response formula, and with attention to test validity based on adequate
readings above background (35). In addition, visual examination of each
curve was performed on two separate occasions by two investigators (P.T.
and P.J.R.), with elimination of data for which curve fits were not straight-
forward.

Analysis of parasite polymorphisms associated with drug resis-
tance. At the time of each new malaria diagnosis, blood was also spotted
onto filter paper (Whatman 3MM) for molecular studies. DNA was ex-
tracted with Chelex (36). We evaluated polymorphisms in the pfcrt,
pfmdr1, pfmrp1, pfdhfr, and pfdhps genes. Initial assessments were per-
formed by amplification of flanking sequences by PCR, digestion with
sequence-specific restriction endonucleases, and evaluation of digested
fragments by agarose gel electrophoresis, as previously described (31, 37,
38). The formal assessments described here were performed with a newer
technique, utilizing a ligase detection reaction-fluorescent microsphere
assay. Assays were performed as previously described (39), with the mod-
ifications of nested-PCR for all reactions, and with a new primer to detect
pfdhfr 164 polymorphisms (see Tables S1 and S2 in the supplemental
material).

Measurement of piperaquine drug levels. Piperaquine levels were
measured at the time of malaria diagnosis in subjects assigned to monthly
DP, as previously reported (11). Subjects were separated into three cate-
gories: DPlow (plasma piperaquine, �10 ng/ml [limit of detection]),
DPmed (plasma piperaquine, �10 ng/ml and �20 ng/ml), and DPhigh

(plasma piperaquine, �20 ng/ml) to approximate compliance with che-
moprevention.

Statistical analysis. The analyses used Stata version 12 (StataCorp).
The outcome variables of interest were IC50s for six antimalarial drugs and
genotype (wild-type versus mixed or mutant at each allele of interest). The
exposure variables of interest were calendar time (date of treatment), time
since prior malaria treatment, or chemoprevention arm. Calendar time
was evaluated as a categorical variable, with each year as an independent
category. Time since last treatment was evaluated as a categorical variable,
comparing four intervals since the previous therapy. The significance of

changes over time or differences between categories was evaluated using
univariate and multivariate analyses executed using generalized estimat-
ing equations with exchangeable correlations and robust standard errors
to account for repeated measures in the same child. For associations be-
tween genotypes and drug sensitivity, the geometric means of the IC50s
were compared between wild-type, mixed, or mutant malaria episodes,
and significant differences between categories were identified using t tests.
Differences were considered significant at a P value of �0.05.

RESULTS
Clinical trials providing samples for study. Samples were ob-
tained from two clinical trials conducted in Tororo, Uganda, and
were collected from 2010 to 2013 (Table 1). PROMOTE-1 com-
pared impacts on malaria of two different antiretroviral regimens
in 170 children age 2 months to 5 years; treatment with a regimen
that included the protease inhibitor lopinavir/ritonavir was asso-
ciated with a 41% decreased incidence of malaria compared to
that in children treated with a nonnucleoside reverse transcriptase
inhibitor-based regimen (33). PROMOTE-3 compared the inci-
dence of malaria in 393 children assigned to one of 3 chemopre-
vention regimens or no chemoprevention from age 6 to 24
months; the incidence of malaria was decreased by 58% with
monthly DP, 28% with daily TS, and an insignificant 7% with
monthly SP (11). In both trials, episodes of uncomplicated ma-
laria were treated with AL.

Ex vivo drug sensitivity of P. falciparum isolates. Samples
collected at the time of malaria diagnosis were placed into culture,
and ex vivo sensitivities to 6 antimalarial drugs were determined
(Table 2; see also Table S3 in the supplemental material). Sensi-
tivities of control laboratory strains were as expected based on
earlier studies (see Table S4 in the supplemental material) and did
not show any consistent changes over time (see Fig. S1 in the

TABLE 1 Trials providing parasite samples for analysis

Trial Dates
Age (median
[range]) (mo)

Treatment for
uncomplicated
malaria Chpra

No. of samples for which
data were available for:

HIV status ReferenceIC50s SNPs
IC50 and
SNPs

PROMOTE-1 May 2010–November 2012 43 (10–100) AL TS 64 38 37 Infected 33
PROMOTE-3 June 2010–June 2013 18 (4–36) AL None 232 249 162 Not infected 11

TS 62 134 54
SP 64 151 60
DP 37 116 34

Total 459 688 347
a Chpr, chemoprevention; TS, trimethoprim-sulfamethoxazole; SP, sulfadoxine-pyrimethamine; DP, dihydroartemisinin-piperaquine. None, samples from subjects in
chemoprevention arms collected before or after the intervention.

TABLE 2 Ex vivo drug sensitivity data of isolated parasitesa

Drug used
No. of
samples

Geometric mean
IC50 (nM) 95% CI (nM)b

Range
(nM)

Cutoff for
resistance (nM) No. (%) resistant

Chloroquine 408 247.9 223.1–275.4 31.0–1,398 100 317 (77.7)
Quinine 419 126.7 115.5–138.9 30.7–1,339 600 37 (8.8)
MDAQ 421 76.9 70.2–84.1 12.5–564.6 100 157 (37.3)
DHA 442 1.4 1.3–1.5 0.3–16.9 10 8 (1.8)
Lumefantrine 378 3.0 2.6–3.3 0.4–24.4 50 0 (0)
Piperaquine 381 19.1 17.1–21.4 3.1–188.9 100 35 (9.2)
a This table includes results for all samples studied. Results are stratified into different trials and study arms in Table S3 in the supplemental material.
b 95% CI, 95% confidence interval.
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supplemental material). Formal in vitro cutoffs for resistance have
not been established for antimalarials, and sensitivities vary de-
pending on the assay utilized. To facilitate analysis, we modified
the resistance cutoffs established by others (40, 41), setting the
cutoffs for the aminoquinolines at 100 nM and at 600 nm for
quinine (40), and choosing conservative cutoffs of 10 nM for DHA
and 50 nM for lumefantrine. Sensitivities to chloroquine and
MDAQ (the active metabolite of amodiaquine) varied widely.
Based on the chosen cutoffs, 78% of isolates were resistant to
chloroquine, and 37% were resistant to MDAQ. Parasites were
generally sensitive to quinine, DHA, lumefantrine, and piper-
aquine. However, 9.2% of tested isolates had a piperaquine IC50 of
�100 nM.

Associations between ex vivo drug sensitivity and parasite
transporter polymorphisms. Samples were tested for polymor-
phisms in pfcrt, pfmdr1, prmrp1, pfdhfr, and pfdhps known or sus-
pected to be associated with altered responses to antimalarial
drugs. Analyses searching for associations between parasite genet-
ics and ex vivo drug sensitivity are complicated by the high multi-
plicity of infection that is typical in isolates from Tororo. Thus,
measured ex vivo sensitivities represent averages of cocirculating

clones, and genotyping often identifies mixed infections. None-
theless, the analysis offers a valuable summary (Fig. 1). The most
convincing associations showed a dose-response relationship,
with mixed genotypes having intermediate drug sensitivity be-
tween wild-type and mutant genotypes. Sensitivities to chloro-
quine and MDAQ correlated with the pfcrt K76T polymorphism,
with wild type more sensitive than mutant parasites (chloroquine
geometric mean IC50s, 119 versus 295 nM, respectively, P �
0.0002; MDAQ mean IC50s, 52.8 versus 81.6 nM, respectively, P �
0.031). Parasites with the wild-type pfcrt K76 genotype were less
sensitive to chloroquine than in many other reports, perhaps due
to the effects of mixed isolates; other studies of field isolates have
also identified relatively high IC50s in field isolates with the wild-
type K76 genotype (42). Sensitivities to lumefantrine and piper-
aquine showed the opposite trend, with wild-type parasites being
less sensitive to the drugs (lumefantrine geometric mean IC50, 5.1
versus 2.6 nM, respectively, P � 0.0088; piperaquine IC50, 34.0
versus 17.1 nM, respectively, P � 0.022). Considering polymor-
phisms in pfmdr1, the most noteworthy associations were de-
creased sensitivity to MDAQ and increased sensitivity to lumefan-
trine with the 86Y and 1246Y mutant genotypes, with the opposite

FIG 1 Association between P. falciparum genetic polymorphisms and ex vivo drug sensitivity. Geometric mean IC50s are shown for parasites with wild-type
(WT), mixed (Mix), or mutant (Mut) genotypes at the indicated alleles. The number of samples in each category is indicated by N. Values for each allele were
compared between wild-type and mixed or mutant genotypes using t tests, and comparisons with P values of �0.05 (*), �0.01 (**), and �0.001 (***) are labeled.
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association occurring with the 184F mutant genotype. These re-
sults were all consistent with prior studies showing selection by AL
of the N86, 184F, and D1246 genotypes (19–22). For most other
comparisons, pfmdr1 alleles were not associated with drug sensi-
tivity. Considering other polymorphisms identified primarily
outside Africa, only wild-type pfmdr1 S1034 and N1042 alleles
were detected. A third putative drug transporter, pfmrp1, is highly
polymorphic, and the I876 wild-type allele was selected by prior
AL therapy in Tanzania (43). However, we found no association
between the pfmrp1 polymorphisms I876V and K1466R and sen-
sitivity to any of the tested antimalarial drugs (data not shown).

Changes in drug sensitivity over time. Ex vivo sensitivities to
most drugs changed significantly over the 4-year course of the
study (Fig. 2; see also Table S5 in the supplemental material).
Sensitivities to chloroquine and DHA increased, although for
chloroquine, most parasites were resistant (IC50, �100 nM)
throughout the course of the study (80% in 2010, 85% in 2011,
73% in 2012, and 65% in 2013); for DHA, changes were modest,
with nearly all IC50s being �10 nM throughout the study. Sensi-
tivities to lumefantrine and piperaquine decreased from 2010 to
2012, as AL was established as the national malaria treatment reg-
imen.

Considering resistance-mediating parasite polymorphisms,
we recently showed that P. falciparum underwent marked
changes in the prevalence of some key single-nucleotide polymor-
phisms (SNPs) in Tororo over the last decade (30), and changes

were markedly affected by the choice of antimalarial treatment
regimen (28). An evaluation of samples from children in the two
PROMOTE trials identified similar trends (Fig. 3; see also Table S6
in the supplemental material). Most notably, the prevalence of the
pfmdr1 N86 wild-type genotype, which is selected by AL use
(19–22), increased over 2 years of observation, and the prevalence
of the pfcrt K76T mutation, which is associated with resistance to
chloroquine (37) and was fixed at a high prevalence in older stud-
ies from Uganda (44, 45), decreased markedly in 2012. In all cases
with the chloroquine-resistant 76T mutation, the pfcrt 72-76 hap-
lotype, which identifies the geographic origins of parasites, was
CVIET, consistent with an Asian origin (46). These results are
consistent with the expected selective pressures of decreasing use
of chloroquine and increasing use of AL in Uganda. Considering
polymorphisms associated with altered responses to antifolates,
the prevalence of key mutations was stable across the course of the
study (see Fig. S2 in the supplemental material). Specifically, the
pfdhfr 51I, 59R, and 108N, and pfdhps 437G and 540E mutations
were all common, but other mutations associated with higher lev-
els of drug resistance (pfdhfr 164L, and pfdhps 581G and 613T/S),
which have been uncommon in earlier surveys (39, 45, 47), were
also rare in these samples. Factors that likely contribute to the
continued high prevalence of resistance-mediating antifolate mu-
tations include use of antifolates to treat malaria (although this is
no longer national policy), as intermittent preventive therapy
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against malaria, to treat bacterial infections, and as prophylaxis
against opportunistic infections in those with HIV infection.

Impact of prior therapy with AL on drug sensitivity. Treat-
ment with AL has been shown to select for polymorphisms asso-
ciated with decreased lumefantrine sensitivity (19–22), but the
impact of prior treatment on ex vivo drug sensitivity has not pre-
viously been assessed. We compared the sensitivities of parasites
collected from children without recent prior therapy with those of
parasites from children treated previously with AL for �30 days,
31 to 50 days, or 51 to 70 days prior to an episode of malaria.
Compared to samples from patients without recent therapy, those
from subjects previously treated with AL had decreased lumefan-
trine sensitivity, with the impact of prior therapy being greatest in
those with parasites emerging soonest after a previous therapy
(Fig. 4; see also Table S7 in the supplemental material). However,

in multivariate analysis, the identified differences in lumefantrine
sensitivity were not significant, suggesting that the changes were
mostly explained by changing lumefantrine sensitivity over time
(see Table S7). Associations were very similar when we considered
samples from the PROMOTE-3 trial only (not shown), suggesting
that selection was not notably impacted by the use of antiretroviral
protease inhibitors, which extend lumefantrine exposure (33), in
some PROMOTE-1 subjects. Considering other drugs, prior ther-
apy with AL was also associated with increased sensitivity to chlo-
roquine and decreased sensitivity to quinine and piperaquine;
these differences were generally also not significant in multivariate
analysis (see Table S7).

Considering resistance-mediating parasite polymorphisms,
consistent with prior studies (19–21) and the results for ex vivo
drug sensitivity (Fig. 4), prior use of AL impacted parasite poly-
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morphisms. The prevalences of wild-type alleles at pfcrt K76T,
pfmdr1 N86Y, and pfmdr1 D1246Y were all greater in samples
collected from children with recurrent infections within 30 days of
a prior treatment with AL than in samples from children without
recent prior therapy (Fig. 5; see also Table S8 in the supplemental
material). For pfmdr1 Y184F, the trend was in the opposite direc-
tion, with selection of the mutant allele, as reported previously
(19). With multivariate analysis, these identified differences in
polymorphism prevalences remained significant (see Table S8).
As expected, prior treatment with AL did not impact the preva-
lence of resistance-mediating SNPs in pfdhfr or pfdhps (see Fig. S3
in the supplemental material).

Impact of chemoprevention on drug sensitivity. For samples
collected from children in the PROMOTE-3 chemoprevention
trial, it was of interest to determine if drug sensitivity varied
among chemoprevention arms. Of note, this analysis is compli-
cated by the understanding that without directly observed ther-
apy, many breakthrough episodes of malaria occurred in children
not receiving their assigned regimen and who were therefore not
actually under drug pressure. Overall, no association was seen
between chemoprevention regimen and sensitivity to any tested
drug (see Table S3 in the supplemental material). In particular, the
piperaquine and DHA sensitivities of parasites from children as-
signed to monthly DP and those demonstrated to be compliant
with monthly DP did not differ from those of parasites from chil-
dren in the control arm of the trial. Considering resistance-medi-
ating polymorphisms, only minor differences in the prevalence of

SNPs of interest were seen between subjects assigned to different
chemoprevention regimens (Fig. 6). Notably, assignment to the
monthly DP arm was not associated with pfcrt or pfmdr1 polymor-
phisms previously associated with sensitivity to aminoquinolines,
and assignment to either antifolate regimen was not associated
with polymorphism prevalences. However, when samples from
the DP treatment arm were sorted based on DP exposure by mea-
suring circulating piperaquine levels at the time of malaria, para-
sites from subjects compliant with monthly DP demonstrated se-
lection for the pfmdr1 86Y and 1246Y mutations. These results
showed a dose-response relationship, with subjects with the high-
est piperaquine levels at the time of malaria (and thus presumably
most compliant with monthly DP) demonstrating the highest
prevalence of mutant genotypes. With multivariate analysis cor-
recting for calendar time and time since prior therapy with AL,
selection for pfmdr1 86Y and 1246Y remained significant.

DISCUSSION

We characterized the drug sensitivity of P. falciparum, utilizing
both parasitological and molecular assessments, in samples from
two recent trials of children in Tororo, Uganda. Assessments of ex
vivo drug sensitivity of ACT components showed that sensitivity
to MDAQ, the active metabolite of amodiaquine, is not optimal,
and that sensitivity to lumefantrine and piperaquine is decreasing.
In addition, therapy with AL, the national treatment regimen in
Uganda, selected for parasites in subsequent infections with de-
creased lumefantrine sensitivity. Evaluations of parasite polymor-
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phisms showed related trends, with increases over time and after
AL treatment in the prevalence of polymorphisms associated with
decreased lumefantrine sensitivity. Thus, even with apparent ab-
sence of artemisinin resistance in Africa, the antimalarial efficacies
of the three leading ACTs, and in particular of AL, may be in
jeopardy.

We recently showed that parasites in Tororo have changed
remarkably in recent years, with increased prevalence of wild-type
pfcrt K76, pfmdr1 N86, and pfmdr1 D1246 polymorphisms asso-
ciated with decreased sensitivity to lumefantrine (19, 30), and in
this report, we describe similar trends in samples from additional
trials. Similar results were described recently in Kenya (42), Tan-
zania (48), and Ghana (49). As seen previously (42, 50), the wild-
type alleles at pfcrt K76 and pfmdr1 N86 were associated with de-
creased lumefantrine sensitivity. We also found an association
between the wild-type pfmdr1 D1246 and mutant pfmdr1 184F
genotypes and decreased lumefantrine sensitivity. Surprisingly,
results for piperaquine were not consistent with those for the
other aminoquinolines, chloroquine and amodiaquine, with
the pfcrt K76 wild-type sequence associated with decreased pip-
eraquine sensitivity. In a longitudinal analysis of ex vivo sensi-
tivity, we identified increasing sensitivity to chloroquine and
decreasing sensitivity to lumefantrine and piperaquine; more

modest changes were seen for other tested drugs. In the only other
study that assessed changes in antimalarial drug sensitivity over
time, increasing sensitivity to chloroquine and amodiaquine and
decreasing sensitivity to lumefantrine were seen in Kenya from
2008 to 2011, although for lumefantrine, the changes were not
significant (42). In Uganda, our data consistently show that with
the change to AL as the national malaria treatment regimen, lu-
mefantrine sensitivity is decreasing.

Earlier, elimination of chloroquine use in Malawi was accom-
panied by the reestablishment of parasites with the wild-type pfcrt
K76 genotype (51, 52) and excellent treatment efficacy of chloro-
quine (53). Thus, changes in parasite drug sensitivity have had
clinical consequences. Recent changes suggest that we should re-
consider the use of aminoquinolines to treat malaria, including
AS-AQ, which showed inferior efficacy to AL in Tanzania (54) and
Uganda (55, 56) some years ago but excellent recent efficacy in
West and Central Africa (57–61); DP, which has shown excellent
efficacy (7, 62–66); and perhaps combinations that include chlo-
roquine (52, 67). Further, we should be cautious regarding the
long-term antimalarial efficacy of AL, as although both the clinical
efficacy of AL (57–61, 64–66) and ex vivo activity of DHA and
lumefantrine (31, 42, 68–70) have remained good in recent stud-
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ies, current results suggest that the antimalarial potency of lume-
fantrine is decreasing.

Our data show that antimalarial treatment regimens rapidly
select for parasites with decreased drug sensitivity. With both
amodiaquine-containing regimens (71) and AL (this study), re-
cent treatment was associated with significantly diminished ex
vivo drug sensitivity in subsequent infections. Similarly, treatment
with AS-AQ or AL led to marked changes in genotypes in a sub-
sequent infection, with opposite selective pressures of amodi-
aquine and lumefantrine (14, 15, 19–22). Interestingly, results for
piperaquine differed from those for the other aminoquinolines:
prior therapy with AL selected for increased chloroquine sensitiv-
ity but decreased piperaquine sensitivity in subsequent infections.
Also of note, a higher recent prevalence of the chloroquine resis-
tance pfcrt 76T mutation in Uganda compared to that in Malawi
(51, 52), Tanzania (48), or Kenya (42) suggests that there is stron-
ger selective pressure from continued chloroquine use in Uganda
than in the other African countries. Nonetheless, with the estab-
lishment of AL as the treatment of choice for malaria, the preva-
lence of chloroquine-resistant parasites has decreased, and selec-
tion of parasites with decreased responsiveness to AL is now
occurring.

We also explored the impact of antimalarial chemoprevention

on parasite drug sensitivity. Regular use of daily TS, monthly SP,
or monthly DP did not select for alterations in drug sensitivity.
However, our study did not include directly observed therapy, and
many episodes of malaria occurred in subjects not adhering to
their assigned chemoprevention regimen. This conclusion is sup-
ported by a lack of detectable circulating piperaquine in 52% of
subjects from the DP chemoprevention arm at the time of malaria
diagnosis (11) and by the much better chemopreventive efficacy of
directly observed DP in a different trial in the same region (12). To
further explore this issue, we characterized parasites isolated from
children deemed compliant or noncompliant with monthly DP
based on circulating piperaquine levels at the time of malaria di-
agnosis. In this subgroup analysis, compliance with monthly DP
was associated with increased prevalence of pfmdr1 86Y and
1246Y mutations, which were previously shown to be selected by
therapy with amodiaquine-containing regimens (14, 15).

Associations between specific parasite pfcrt and pfmdr1 poly-
morphisms and sensitivity to the aminoquinolines chloroquine
and MDAQ, as well as opposite associations with lumefantrine,
have been consistent in many studies, and treatment with amodi-
aquine and lumefantrine-containing regimens has demonstrated
expected selective pressure (14, 15, 19–21). In contrast, results for
piperaquine have been perplexing. As noted above, in a subset of
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children in whom compliance with monthly DP was documented,
parasites were more likely to have the same polymorphisms se-
lected by prior therapy with amodiaquine, and similar selection by
DP was seen in a recent treatment study from Uganda (19). How-
ever, this selection was not seen in treatment (17) and chemopre-
vention (18) trials in Burkina Faso. Further, ex vivo piperaquine
sensitivity was not associated with polymorphisms in pfmdr1, and
for pfcrt position 76, associations were opposite of those seen for
chloroquine and MDAQ, with mutant parasites being more sen-
sitive to piperaquine. The reasons for the differences between pip-
eraquine and other aminoquinolines and between studies in East
and West Africa are unknown, but they suggest the importance of
factors in addition to the studied pfcrt and pfmdr1 polymorphisms
affecting piperaquine sensitivity. Concerns about piperaquine
sensitivity are urgent, as the drug has a long history of resistance
(16), and recent trials have demonstrated decreased ex vivo piper-
aquine sensitivity and decreased treatment efficacy of DP in Cam-
bodia (72, 73).

With changes in drug sensitivity, new strategies for the treat-
ment and chemoprevention of malaria may be warranted. One
option is to rotate drugs for treatment and/or chemoprevention.
As discussed above, regimens containing chloroquine, amodi-
aquine, and possibly piperaquine select for parasites with in-
creased sensitivity to lumefantrine and mefloquine, while AL and
AS-MQ select for parasites with increased sensitivity to amino-
quinolines. Rotating regimens might allow an optimal balance,
with parasites retaining sensitivity to all leading ACTs. Consider-
ing the artemisinin component of ACTs, the resistance phenotype
recently described in Southeast Asia (23, 24) appears to be medi-
ated by an unrelated mechanism (26), but pfcrt and/or pfmdr1
polymorphisms also impact artemisinin sensitivity, with sensitiv-
ities correlated between artemisinin, lumefantrine, and meflo-
quine, and inversely correlated with aminoquinolines (31, 50, 74).
Thus, both components of AL and AS-MQ select toward de-
creased drug sensitivity, but the components of AS-AQ and pos-
sibly DP select in opposite directions, potentially facilitating
maintenance of effectiveness of these ACTs.

Our study has some limitations. First, due to past challenges
with low-level parasitemia samples, we limited our assessments to
cultures from patients with parasitemias of �1%, and ex vivo as-
sessments were not successful for all isolates. Thus, our results
may not be representative of all circulating P. falciparum in
Tororo. Second, due to logistical challenges, some samples were
not assessed for parasite polymorphisms, again challenging the
representativeness of results. Third, we analyzed a limited number
of P. falciparum genetic polymorphisms. The studied polymor-
phisms in pfcrt and pfmdr1 appear to play primary roles in medi-
ating altered sensitivity to a number of relevant drugs, but none-
theless, our assessments likely missed additional mediators of
altered drug sensitivity. Fourth, assessments of both ex vivo drug
sensitivity and the prevalence of genetic polymorphisms are nec-
essarily complex in an area of very high transmission intensity,
such as Tororo, where infections are typically polyclonal. Thus,
measures of ex vivo drug sensitivity are usually averages of multi-
ple circulating strains, and measures of polymorphism prevalence
are complicated by arbitrary cutoffs for characterization of mixed
infections. Despite these limitations, our large sample size affords
a good understanding of drug sensitivity in Tororo, with definitive
changes occurring in the context of increasing use of AL to treat
malaria.

In summary, we surveyed the drug sensitivity of P. falciparum
in Tororo using parasitological and molecular methods and
showed that parasites have changed remarkably in recent years.
Specifically, parasites show ex vivo and molecular evidence of de-
creasing sensitivity to lumefantrine, a component of the first-line
national malaria regimen AL. The changes to date have not led to
high-level resistance to lumefantrine, but our data and other re-
cent studies suggest that the antimalarial efficacy of AL may be at
risk and that consideration of treatment with other ACTs or of
rotating different regimens over time is warranted.
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