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Reheating constraints to inflationary models

Liang Dai, Marc Kamionkowski, and Junpu Wang
Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218

(Dated: July 15, 2014)

Evidence from the BICEP2 experiment for a significant gravitational-wave background has fo-
cussed attention on inflaton potentials V (φ) ∝ φα with α = 2 (“chaotic” or “m2φ2” inflation) or
with smaller values of α, as may arise in axion-monodromy models. Here we show that reheating
considerations may provide additional constraints to these models. The reheating phase preceding
the radiation era is modeled by an effective equation-of-state parameter wre. The canonical reheat-
ing scenario is then described by wre = 0. The simplest α = 2 models are consistent with wre = 0
for values of ns well within the current 1σ range. Models with α = 1 or α = 2/3 require a more
exotic reheating phase, with −1/3 < wre < 0, unless ns falls above the current 1σ range. Likewise,
models with α = 4 require a physically implausible wre > 1/3, unless ns is close to the lower limit
of the 2σ range. For m2φ2 inflation and canonical reheating as a benchmark, we derive a relation
log

10

(

Tre/10
6 GeV

)

≃ 2000 (ns − 0.96) between the reheat temperature Tre and the scalar spectral

index ns. Thus, if ns is close to its central value, then Tre . 106 GeV, just above the electroweak
scale. If the reheat temperature is higher, as many theorists may prefer, then the scalar spectral
index should be closer to ns ≃ 0.965 (at the pivot scale k = 0.05Mpc−1), near the upper limit of the
1σ error range. Improved precision in the measurement of ns should allow m2φ2, axion-monodromy,
and φ4 models to be distinguished, even without precise measurement of r, and to test the m2φ2

expectation of ns ≃ 0.965.

PACS numbers:

Introduction. The imprint of inflationary gravitational
waves in the cosmic microwave background polarization
[1] reported by the BICEP2 collaboration [2] implies, if
confirmed, that the inflaton field φ traversed a distance
large compared with the Planck mass during inflation
[3, 4]. One particularly simple and elegant model for
large-field inflation is “m2φ2” inflation [5, 6] (derived
originally as a simple example of chaotic inflation [7]), in
which the inflaton potential is simply a quadratic func-
tion of φ. Ref. [8] recently argued that this is perhaps
the simplest and most elegant model. They then derived
a consistency relation between the scalar spectral index
(now constrained to be ns − 1 = −0.0397 ± 0.0073 [9])
and tensor-to-scalar ratio (roughly r ∼ 0.2 according to
Ref. [2]) that can be tested with higher-precision mea-
surements of ns and in particular of r. Another promis-
ing candidate large-field model, axion monodromy which
suggests a potential V ∝ φ [10] or V ∝ φ2/3 [11], has also
been receiving considerable attention. We parametrize
all these models by a power-law potential V ∝ φα.

Here we point out that consideration of the process by
which the Universe reheats may provide additional con-
straints to these models [12–16]. After inflation ends,
there must be a period of reheating (see Ref. [17] for a
review) when the the energy stored in the inflaton field is
converted to a plasma of relativistic particles after which
the standard radiation-dominated evolution of the early
Universe takes over. Although the physics of reheating
is highly uncertain and unconstrained, there is a simple
canonical scenario [18] whereby the cold gas of inflaton
particles that arise from coherent oscillation of the in-
flaton field about the minimum of a quadratic potential

decay to relativistic particles. This scenario implies a re-
heating era that lasts for a time ∼ Γ−1, where Γ is the
inflaton-decay rate, and in which the effective equation-
of-state parameter (in which the energy density scales
with scale factor a as ρ ∝ a−3(1+wre)) is wre = 0. The
radiation-dominated era is then initiated at a tempera-
ture Tre ∼ (ΓMpl)

1/2. Still, there are more complicated
possibilities. For example, resonant [19, 20] or tachy-
onic [21] instabilities can lead to a short preheating phase
of rapid and violent dissipations by exciting inhomoge-
neous modes. After preheating, inhomogeneous modes of
the inflaton or its decay products could become turbu-
lent [22] and eventually evolve to a state of equilibrium.
Numerical studies of this thermalization phase suggest a
range of variation 0 . wre . 0.25 [23]. The bottom line,
though, is that wre > −1/3 is needed to end inflation,
but wre > 1/3 is difficult to conceive since it requires a
potential dominated by high-dimension operators (higher
than φ6) near its minimum, unnatural from a quantum-
field-theoretical point of view.

In this Letter, we show that current measurements of
ns seem to favor m2φ2 inflation over axion-monodromy
inflation. If ns is within its current 1σ error range, then
axion-monodromy models require an extended phase of
reheating involving exotic physics with wre < 0. Axion
monodromy is consistent with canonical reheating only if
ns is above the current 1σ range. Moreover, if m2φ2 in-
flation occurred and was followed by canonical reheating,
then ns = 0.96 (its central value) implies a reheat tem-
perature just above the electroweak scale. If the reheat
temperature was considerably higher, as may be required
to accommodate models that explain the baryon asym-
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metry, then m2φ2 inflation (with a high reheat tempera-
ture) predicts a value ns ≃ 0.965, at the high end of the
currently allowed 1σ range, and a prediction that may
be testable with future CMB data and galaxy surveys.
As we will see below, these conclusions are robust to the
current order-unity uncertainty in r.

ln(1/aH)

ln a
ln ak ln aend ln are ln aeq ln a0

Nk Nre NRD

Tre

k

wre

inflation

reheating

radiation
domination

T0Vk

ρend

FIG. 1: The evolution of the comoving Hubble scale 1/aH .
The reheating phase connects the inflationary phase and
the radiation era. Compared to instantaneous reheating
(thick dotted curve), a reheating equation-of-state parame-
ter wre < 1/3 implies more post-inflationary e-folds of expan-
sion. Fewer post-inflationary e-folds requires wre > 1/3 (thin
dotted curve).

We start by sketching the cosmic expansion history in
Fig. 1. At early times, the inflaton field φ drives the
quasi–de-Sitter phase for Nk e-folds of expansion. The
comoving horizon scale decreases as ∼ a−1. The reheat-
ing phase begins once the accelerated expansion comes
to an end and the comoving horizon starts to increase.
After another Nre e-folds of expansion, the energy in the
inflaton field has been completely dissipated into a hot
plasma with a reheating temperature Tre. Beyond that
point, the Universe expands under radiation domination
for another NRD e-folds, before it finally makes a transi-
tion to matter domination.
It is clear from Fig. 1 that the number of e-folds be-

tween the time that the current comoving horizon scale
exited the horizon during inflation and the end of infla-
tion must be related to the number of e-folds between the
end of inflation and today if the dependence of (aH)−1

on a during reheating is known. The expansion history
also allows us to trace the dilution of the energy den-
sity in the Universe. To match the energy density during
inflation, as fixed by r, to the energy density today, a
second relation must be satisfied. These two matching
conditions, for scale and for energy density, respectively,
underly the arguments that follow.
Quantitative analysis. We consider power-law potentials

V (φ) =
1

2
m4−αφα, (1)

for the inflaton, with power-law index α and mass pa-
rameter m. From the attractor evolution of the inflaton

field 3Hφ̇+ V,φ ≃ 0, one can determine the number

N =

∫ φend

φ

Hdφ

φ̇
≃ φ2 − φ2

end

2αM2
pl

≃ φ2

2αM2
pl

, (2)

of e-folds from the time that the field value is φ until the
end of inflation. Note that the field value at the end of
inflation φend is small compared to that during slow-roll.
The conventional slow-roll parameters are then given by

ǫ = α/(4N), and η = (α− 1)/(2N). (3)

For power-law potentials, the scalar spectral tilt ns − 1
and the tensor-to-scalar ratio r are inversely proportional
to the number of e-folds,

ns − 1 = −(2 + α)/(2N), r = 4α/N. (4)

Simultaneous measurements of ns − 1 and r with high
precision in principle pin down both N and α. However,
given the current uncertainty in r, we treat α as a model
input and use ns − 1 to infer both N and r. As we shall
see, the precise value of r does not affect our results.
In cosmology we observe perturbation modes on scales

that are comparable to that of the horizon. For example,
the pivot scale at which Planck determines ns lies at k =
0.05 Mpc−1. The comoving Hubble scale akHk = k when
this mode exited the horizon can be related to that of the
present time,

k

a0H0
=

ak
aend

aend
are

are
aeq

aeqHeq

a0H0

Hk

Heq
. (5)

Here quantities with subscript k are evaluated at the
time of horizon exit. Similar subscripts refer to other
epochs, including the end of inflation (end), reheat-
ing (re), radiaton-matter equality (eq) and the present
time (0). Using eNk = aend/ak, eNre = are/aend, and
eNRD = aeq/are, we obtain a constraint on the total
amount of expansion [24],

ln
k

a0H0
= −Nk −Nre −NRD + ln

aeqHeq

a0H0
+ ln

Hk

Heq
. (6)

The Hubble parameter during inflation is given by Hk =

πMpl (rAs)
1/2

/
√
2, with the primordial scalar amplitude

ln(1010As) = 3.089+0.024
−0.027 from Planck [9]. For a given

power-law index α, Nk and r are determined from ns−1,
and hence lnHk is known.
In addition to Eq. (6), a second relation between the

various e-folds of expansion can be derived by tracking
the post-inflationary evolution of the energy density and
temperature. The inflaton field at the end of inflation has
a value φend = (α2M2

pl/2ǫ0)
1/2 under the estimate that

inflation terminates at ǫ = ǫ0 ≃ 1, while its value dur-
ing inflation satisfies Nk = φ2

k/(2αM
2
pl). Therefore, the

final stage of inflation phase has potential energy Vend =
Vk(φend/φk)

α, where Vk = 3M2
plH

2
k = (3π2/2)M4

pl rAs.
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The energy density is ρend = (1 + λ)Vend, with the ratio
λ = (3/ǫ0 − 1)−1 of kinetic energy to potential energy.
The duration,

Nre = [3(1 + wre)]
−1 ln (ρend/ρre) , (7)

of reheating determines the dilution of the energy den-
sity. Here for simplicity we assume wre is a constant.
The final energy density determines the reheating tem-
perature through ρre = (π2/30)greT

4
re, with gre being the

effective number of relativistic species upon thermaliza-
tion. The subsequent expansion is mainly driven by hot
radiation, except for very recently non-relativistic mat-
ter and dark energy. Although it remains a possiblity
before BBN at z > 109, for simplicity we assume that no
immense entropy production take place after Tre. Under
this assumption, the reheating entropy is preserved in the
CMB and neutrino background today, which leads to the
relation,

gs,reT
3
re =

(

a0
are

)3 (

2T 3
0 + 6 · 7

8
T 3
ν0

)

, (8)

with the present CMB temperature T0 = 2.725 K, the
neutrino temperature Tν0 = (4/11)1/3T0, and the effec-
tive number of light species for entropy gs,re at reheat-
ing. We therefore relate the reheating temperature to the
present CMB temperature through,

Tre

T0
=

(

43

11gs,re

)1/3
a0
aeq

aeq
are

. (9)

Combining Eq. (7), Eq. (9), and other relations lead to
a second equation relating the various e-folds,

3(1 + wre)

4
Nre =

1

4
ln

30

greπ2
+

1

4
ln

ρend
T 4
0

+
1

3
ln

11gs,re
43

+ ln
aeq
a0

−NRD. (10)

We now combine Eq. (6) and Eq. (10) and

Nre =
4

1− 3wre

[

−Nk − ln
k

a0T0
− 1

4
ln

30

greπ2

−1

3
ln

11gs,re
43

+
1

4
ln

π2rAs

6
− α

8
ln

r

16ǫ0
− ln(1 + λ)

4

]

.

(11)

The required duration NRD of radiation domination and
the reheating temperature Tre can then be obtained. We
clarify that in Eq. (11) we compute the required value
of r = −8α(ns − 1)/(2 + α) for given α. However, the
results are essentially unchanged if we simply set r ≃ 0.2.
It is worth noting that Eq. (11) has only logarithmic

dependence on ǫ0, gre, and gs,re, so it suffices to take
fiducial values ǫ0 = 1 and gre = gs,re = 100. The expres-
sion is not affected by the precise values of r and As, as

the dependence on these quantities is only logarithmic.
Nevertheless, the expression depends linearly on ns − 1
through Nk, and is sensitive to wre.

Numerical results. In Fig. 2, we apply the results above
to compute Nre and Tre as functions of ns − 1. We study
potentials with power-law indexes α = 2/3, 1, 2, 4. More-
over, we focus on effective reheating equation-of-state pa-
rameters wre ≥ −1/3 (as required if inflation has ended).
As discussed above, a matter-like wre = 0 is favored for
canonical reheating, but wre > 1/3 is disfavored from
model building. Still, for illustration, we will show re-
sults even for w > 1/3.

Our results indicate that the quadratic model α = 2
implies a prolonged reheating epoch for the central value
ns ≃ 0.96 and canonical reheating (wre = 0). A num-
ber Nre ≃ 30 of e-folds is required in this case, and
Tre ≃ 106 GeV. A scalar tilt bluer than that, though,
requires smaller Nre and allows for higher reheating
temperature. For m2φ2 inflation and canonical reheat-
ing, we approximate the numerical results by a relation
log10

(

Tre/10
6GeV

)

≃ 2000 (ns − 0.96) between the re-
heat temperature Tre and the scalar spectral index ns. If
a reheat temperature considerably above the electroweak
scale is desired, then ns will have to be larger than its
central value. For example, if reheating was nearly in-
stantaneous and set Tre ≃ 1016 GeV, as may be re-
quired by GUT-scale baryogenesis models, then m2φ2

inflation with canonical reheating requires ns ≃ 0.965.
(Note here that this ns corresponds to the pivot scale
k = 0.05 Mpc−1 used by Planck. The value inferred for
ns increases to roughly ns ≃ 0.967 for the WMAP pivot
scale k = 0.002 Mpc−1.)
For models with smaller power-law indexes (e.g. α =

2/3, 1), canonical reheating is too efficient in diluting
the energy density if ns falls within its 1σ error range.
A reheat temperature above even the BBN temperature
requires wre < 0. Thus, unless ns turns out to be above
the current 1σ upper limit, axion-monodromy models re-
quire some exotic mechanism of reheating, beyond that
in the canonical scenario. On the other hand, models
with larger power-law indexes (e.g. α = 3, 4) require
wre > 1/3 (dilution of energy density faster than that
that occurs with the radiation-dominated phase) and
thus also pose a challenge for reheating models, unless
ns is near the lower limit of the current 2σ range. Our
results also indicate that instantaneous reheating is disfa-
vored by current measurements except for α = 2 ∼ 3. To-
gether, these arguments (and the results shown in Fig. 2)
tend to favor the simplestm2φ2 models over other power-
law models.

Recently, Ref. [8] proposed that future measurements
of ns − 1 and r with high precision will serve as a non-
trivial consistency check of the potential shape. Their
method of determining the power-law index α does not
rely on good knowledge of the inflationary e-folds Nk,
and is independent of the reheating physics. Here our
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FIG. 2: We plot Nre (upper panels) and Tre (lower panels) as determined from Eq. (11) and Eq. (7), respectively. Results for
power-law indexes α = 2/3, 1, 2, 4 are each shown separately. Different effective equation-of-state parameters for reheating are
considered in each case: wre = −1/3 (red dashed), wre = 0 (blue solid), wre = 1/6 (orange dash-dotted), and wre = 2/3 (green
long-dashed). All curves intersect at the point where reheating occurs instantaneously. The width of each curve corresponds
to a variation of the termination condition 0.1 . ǫ0 . 1 and also roughly the uncertainty in r. The light purple regions are
below the electroweak scale TEW ∼ 100 GeV. The dark purple regions, below 10 MeV, would ruin the predictions of big bang
nucleosynthesis (BBN). Temperatures above the intersection point are unphysical as they correspond to Nre < 0. The light
yellow band indicates the 1σ range ns − 1 = −0.0397 ± 0.0073 from Planck [9], and the dark yellow band assumes a projected
uncertainty of 10−3 [8] for ns − 1 as expected from future experiments (assuming the central value remains unchanged).

test of the potential shape is complementary to theirs in
the sense that it only requires precise determination of
ns − 1, and not of r.

Conclusions. The recent BICEP2 measurement of a
large tensor-to-scalar ratio r hints, if confirmed, at large-
field power-law inflaton potentials. By matching the
end of the inflationary epoch to the beginning of the
radiation-dominated phase we can, with improving mea-
surement of the scalar tilt, begin to make quantitative
inferences about the physics of reheating. Our analy-
sis suggests that of the power-law inflationary models,
those with α ∼ 2, which includes the m2φ2 model, are
most compatible with the simplest canonical reheating
scenario. Axion-monodromy models (with power-law in-
dexes α = 1 or α = 2/3) require something more exotic

in the way of reheating physics, unless ns falls above
its current 1σ range. Models with α = 4, on the other
hand are also disfavored for the 1σ range for ns. While
the statistical significance is not yet conclusive, it is in-
triguing that the current data do seem to favor a sim-
ple quadratic inflaton potential if a simple reheating sce-
nario is assumed. Future more precise measurements of
ns should help make these arguments sharper.

Although we have focused on power-law potentials, the
test we propose can in principle be applied to other po-
tentials, provided that r ≃ 0.2 already fixes the energy
density during slow-roll.

We have presented a definitive relation between Tre and
ns, if inflation does indeed occur via a quadratic poten-
tial and is then followed by canonical reheating. Similar
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relations for wre 6= 0 can be read off from Fig. 2. If,
moreover, the reheat temperature is considerably above
the electroweak scale, then the central value of ns should,
with more precise measurements, veer upward in value,
close to ns = 0.965 as the reheat temperature approaches
the GUT scale. Fortunately, a precision of ∼ 10−3 in the
value of ns should eventually be achieved with future ex-
periments such as EUCLID [25] and PRISM [26], and
with cosmic 21-cm surveys [27, 28]. In case high preci-
sion in ns cannot be achieved soon, one can instead use
an r measured to a similar level of precision for the same
test.
Finally, laser interferometry experiments [29] are pro-

posed to detect the inflationary gravitational-wave spec-
trum on solar-system scales, some 40 e-folds below the
CMB scales [30]. These gravitational waves re-enter the
horizon during reheating if Tre < 104 GeV and will thus
also probe the physics of reheating [31].
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