
UC Berkeley
UC Berkeley Previously Published Works

Title

Odd Diffusivity of Chiral Random Motion

Permalink

https://escholarship.org/uc/item/7mv9520p

Journal

Physical Review Letters, 127(17)

ISSN

0031-9007

Authors

Hargus, Cory
Epstein, Jeffrey M
Mandadapu, Kranthi K

Publication Date

2021-10-22

DOI

10.1103/physrevlett.127.178001

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7mv9520p
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Odd Diffusivity of Chiral Random Motion

Cory Hargus,1, ∗ Jeffrey M. Epstein,2 and Kranthi K. Mandadapu1, 3, †

1Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
2Department of Physics, University of California, Berkeley, CA, USA

3Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Diffusive transport is characterized by a diffusivity tensor which may, in general, contain both
a symmetric and an antisymmetric component. Although the latter is often neglected, we derive
Green-Kubo relations showing it to be a general characteristic of random motion breaking time-
reversal and parity symmetries, as encountered in chiral active matter. In analogy with the odd
viscosity appearing in chiral active fluids, we term this component the odd diffusivity. We show how
odd diffusivity emerges in a chiral random walk model, and demonstrate the applicability of the
Green-Kubo relations through molecular dynamics simulations of a passive tracer particle diffusing
in a chiral active bath.

DOI: 10.1103/PhysRevLett.127.178001

Introduction. Among the historic successes of nonequi-
librium statistical mechanics is the explanation of macro-
scopic transport phenomena in terms of microscopic fluc-
tuations occurring at equilibrium [1–5]. More recent ef-
forts aim to generalize this framework to include sys-
tems whose steady states are not Boltzmann distributed,
and whose dynamics are not determined by Hamiltonian-
conserving forces. A major impetus for this generaliza-
tion is the study of active matter, i.e. systems com-
posed of particles that are propelled by microscopic driv-
ing forces and thus maintained out of equilibrium.

Chiral active matter is composed of particles driven by
microscopic torques and may be synthetic, as in the case
of active colloids [6–9], or biological, as in the case of
certain bacteria, algae, and spermatozoa [10–12]. Such
systems have been shown to exhibit emergent transport
behavior reminiscent of their equilibrium counterparts,
yet with striking differences. For instance, chiral active
fluids may exhibit Newtonian constitutive behavior, but
with a novel viscosity coefficient termed the odd (or Hall)
viscosity emerging as a consequence of breaking time-
reversal and parity symmetries at the level of stress fluc-
tuations [13–16]. In this Letter we examine an analogous
quantity appearing in the context of diffusive transport.

In dilute solutions, Fick’s law posits the linear consti-
tutive relation

J = −D ·∇C (1)

between the diffusive flux J and the concentration gra-
dient ∇C, with D being a rank-two diffusivity tensor.
In general D may contain both a symmetric and anti-
symmetric part. We term the latter the “odd diffusiv-
ity,” emphasizing its connection to odd viscosity. Just as
odd viscosity generates normal stresses perpendicular to
shear flow, odd diffusivity generates fluxes perpendicular

∗ hargus@berkeley.edu
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to concentration gradients. Like odd viscosity [13–18],
we will show odd diffusivity to emerge as a consequence
of breaking time-reversal and parity symmetries at the
level of microscopic fluctuations.

For simplicity, we examine odd diffusivity in isotropic
systems. As there exists no rank-two tensor in three di-
mensions which is both isotropic and antisymmetric [14]
we restrict our attention to two-dimensional diffusion,
where the diffusivity tensor takes the form

Dij = D‖δij −D⊥εij =

[
D‖ −D⊥
D⊥ D‖

]
. (2)

Here, δij = δji is the symmetric Kronecker delta and
εij = −εji is the antisymmetric Levi-Civita permutation
tensor. D‖ is the ordinary isotropic diffusivity coefficient
driving flux from regions of high to low concentration
while D⊥ is the odd diffusivity driving flux in the per-
pendicular direction (as in Figure 1a). Combining (1)
and (2) with the continuity equation ∂tC = −∇·J yields
the diffusion equation

∂tC = D‖∇2C , (3)

which is unaffected by the divergence-free fluxes pro-
duced by D⊥. Thus, while D⊥ may influence C in the
presence of boundary conditions involving fluxes (e.g. im-
permeable obstacles, see Appendix A.1), D⊥ cannot af-
fect C for boundary conditions involving solely the con-
centration.

Past studies of odd diffusivity have generally been lim-
ited to equilibrium systems, most commonly systems of
charged particles in magnetic fields. Such systems ac-
quire an antisymmetric component of both the diffusiv-
ity tensor and the mobility tensor, which describes the
current response to an electric field. This is the basis of
the Hall effect, and has consequences for the transport
of confined plasmas and cosmic rays [19–26]. Odd diffu-
sivity has also been recognized in certain mathematical
models of chiral random walks [27, 28], and in convection-
diffusion processes in chiral porous media [29].
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In this Letter we suggest a unifying framework within
which to understand these phenomena, which extends
beyond equilibrium. We begin by asking: given that
the existence of odd diffusivity is compatible with the
macroscopic theory of diffusion, what microscopic condi-
tions are necessary for it to appear? Through deriving
a Green-Kubo relation for the odd diffusivity, we will
show that it emerges in systems breaking time-reversal
and parity symmetries, as characterized by chiral ran-
dom motion of particle trajectories. Odd diffusivity is
thus characteristic of a broad range of diffusive processes,
and of particular interest for out-of-equilibrium systems
such as chiral active matter, where time-reversal sym-
metry can be broken by microscopic driving forces. We
validate the derived Green-Kubo relations exactly for a
model chiral random walk and numerically in active mat-
ter simulations, demonstrating good agreement with di-
rect measurements of the flux in response to an imposed
concentration gradient.

Green-Kubo relations. We now proceed to ob-
tain Green-Kubo relations for Dij . We follow an ap-
proach similar in spirit to the celebrated work of Ein-
stein, Smoluchowski and others [30, 31], which connected
molecular-scale Brownian motion with the macroscopic
diffusion equation (3), and we will rely on similar ar-
guments about the separation of timescales. However,
because the odd diffusivity D⊥ does not contribute to
equation (3), such an approach can yield no information
about D⊥. The same is true when taking as a starting
point the Onsager regression hypothesis [1, 2, 32], itself
formulated upon equation (3), as in a recent derivation of
Green-Kubo relations for the odd viscosity [14]. Accord-
ingly, rather than considering the time evolution of the
concentration via the diffusion equation (3), we will in-
stead directly examine the microscopic basis of the fluxes
appearing in the constitutive law (1), similar to the route
taken in linear response theory [33]. In doing so, however,
we will not require any linear response relation between
the diffusivity and the mobility.

We begin by considering a dilute solution of particles
undergoing random motion, e.g. due to collisions with
a solvent bath. Let f(r,v, t) indicate the probability
density of finding a particle at position r with velocity
v at time t. The local, instantaneous flux J(r, t) is then
defined as

J(r, t) =

∫
dv f(r,v, t)v . (4)

Let us now consider the subensemble of all single-
particle trajectories compatible with the conditions
rα(t) = r and vα(t) = v, where α is an index over tra-
jectories. As particles cannot be created or destroyed,
continuity requires that

f(r,v, t) =
〈
f
(
rα(t− τ),vα(t− τ), t− τ

)〉
rα(t)=r
vα(t)=v

, (5)

where
〈
·
〉
rα(t)=r
vα(t)=v

denotes an average over all trajecto-

ries leading into point r with velocity v at time t. Sup-
pose there exists a correlation timescale τc, such that for
τ � τc a particle’s velocity vα(t) is uncorrelated with its
earlier value vα(t− τ) and thus becomes distributed ac-
cording to the unconditional probability density function
φ(v), which we assume to be independent of t (station-
ary) and r (translationally invariant). Then, for τ � τc,
equation (5) factorizes to

f(r,v, t) = φ(v)〈C
(
rα(t− τ), t− τ

)
〉rα(t)=r
vα(t)=v

, (6)

where the concentration C(r, t) =
∫
dv f(r,v, t).

Let the timescale over which the system relaxes from
a state of nonuniform concentration be denoted τr, e.g.
τr ≈ L2/D‖, for the macroscopic length L describing the
variation in C(r, t). We now assume that τ may be cho-
sen to satisfy the separation of timescales

τc � τ � τr , (7)

following Einstein, Smoluchowski, Kubo and others [14,
30–32, 34]. With these assumptions, the subensemble-
averaged concentration appearing in equation (6) may
be approximated by expanding about r to first order and
about t to zeroth order〈

C
(
rα(t− τ), t− τ

)〉
rα(t)=r
vα(t)=v

≈ C(r, t) +
〈
rα(t− τ)− rα(t)

〉
rα(t)=r
vα(t)=v

·∇C(r, t) .

(8)

Noting the relationship between a particle’s displace-
ment and its velocity

rα(t− τ)− rα(t) = −
∫ τ

0

dt′ vα(t− t′) (9)

and inserting the results of equations (6)-(9) into equa-
tion (4) yields

J(r, t) =

∫
dv φ(v)v ×[

C(r, t)−
∫ τ

0

dt′
〈
vα(t− t′)

〉
rα(t)=r
vα(t)=v

·∇C(r, t)

]
= −

∫ τ

0

dt′ 〈v(t)⊗ v(t− t′)〉 ·∇C(r, t) , (10)

with ⊗ indicating the dyadic product. The convective
term proportional to C(r, t) vanishes under the assump-
tion that φ(v) is unbiased, i.e.

∫
dv φ(v)v = 0. The

second equality in (10) follows from the definition of the
conditional expectation. The condition rα(t) = r has
been dropped due to the assumption of translational in-
variance; consequently, the average in the final expression
is taken over all trajectories. Comparing with the con-
stitutive relation (1), we conclude

Dij =

∫ τ

0

dt′ 〈vi(t)vj(t− t′)〉 . (11)
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Invoking stationarity to set 〈vi(t)vj(t−t′)〉 = 〈vi(t′)vj(0)〉
and carrying out the limit τ →∞ due to the requirement
τ � τc yields the Green-Kubo relations

Dij =

∫ ∞
0

dt 〈vi(t)vj(0)〉 . (12)

These relations hold independently for each component of
the diffusivity tensor, including any antisymmetric part.
Considering the specific form of Dij in (2), we may con-
tract with δij and εij to obtain

2D‖ =

∫ ∞
0

dt 〈vi(t)vj(0)〉δij

= lim
t→∞
〈∆ri(t)vj(0)〉δij = lim

t→∞

1

2t
〈|∆r(t)|2〉 ,

(13)

2D⊥ = −
∫ ∞

0

dt 〈vi(t)vj(0)〉εij

= − lim
t→∞
〈∆ri(t)vj(0)〉εij .

(14)

The first equality in equations (13) and (14) is of the
usual Green-Kubo form [32, 34]. In the second equality
the integral has been carried out, permitting a geometric
interpretation of the two diffusion coefficients in terms
of the position-velocity correlation functions (as in Fig-
ure 1b). The third equality in (13) is the well-known
relationship between D‖ and the mean squared displace-
ment; note that no such relation exists for D⊥ due to its
absence from the diffusion equation (3).

The antisymmetric tensor εij in equation (14) projects
out the time-reversal-symmetric and even-parity part of
the correlation function, indicating that whereas D‖ is
even under time reversal and parity inversion, D⊥ is
odd under both operations. Onsager’s reciprocal rela-
tions [1, 2] similarly require that transport coefficient ten-
sors be symmetric as a consequence of time-reversal sym-
metry. It should be noted however that D⊥, being non-
dissipative, is not compatible with entropic arguments
pertaining to the reciprocal relations, an issue that was
previously discussed in a Fokker-Planck context [35, 36].
The Green-Kubo relation (14) provides, instead, a direct
statement of how time-reversal symmetry should be bro-
ken for odd diffusivity to appear.

In equilibrium systems, the diffusivity and the mobility
are connected by the Einstein relation. In such systems,
the Green-Kubo relation (14) may be shown from lin-
ear response theory [33]. The derivation above shows
that equation (14) can be applied even to inherently
nonequilibrium systems such as active matter, where ef-
fective Einstein relations may exist under special circum-
stances [37–41], but in general need not. Consequently,
odd diffusivity can arise even in cases where the antisym-
metric mobility vanishes (as demonstrated in Appendix
A.3 for a chiral active Brownian particle), or where mo-
bility has no physical meaning, as in cases of animal nav-
igation with a documented steering bias [42–46].

Chiral random walk. To illustrate the microscopic ori-

FIG. 1. Relationship between odd diffusivity and chi-
rality of particle trajectories in a left-turning random walk
(Γ1 = 1,Γ2 = Γ3 = 0). (a) A linear concentration gradi-
ent induces a uniform flux field (arrows) with a perpendicular
component due to D⊥. (b) Logarithmic spiral form of the
position-velocity correlation functions from equations (25)-
(26). The Green-Kubo relations (13)-(14) specify that the x-
and y-coordinates converge to the two diffusivity coefficients
as t → ∞, while the angle θ is identical to that in (a), as
annotated. (c) Random sample of 50 time-reversed trajecto-
ries ∆rα(−t) satisfying either vα(0) = v0êx (indicated by→)
or vα(0) = −v0êx (indicated by ←) for t ∈ [0,Γ−1

1 ] together
with the subensemble-averaged trajectories 〈∆rα(−t)〉→ and
〈∆rα(−t)〉← for t ∈ [0,∞).

gins of D⊥ and D‖, consider a particle which moves at
a constant speed v0 and reorients by turning left, revers-
ing direction, or turning right at random intervals with
frequency Γ1, Γ2 and Γ3, respectively. Between these
changes in direction, the particle moves in a straight line.

We may understand the diffusive behavior of this
model by decomposing the probability density P (x, y, t)
of the particle sitting at coordinates (x, y) at time t
into a sum of joint probabilities associated with the four
possible directions of motion: P (x, y, t) = P→(x, y, t) +
P↑(x, y, t) + P←(x, y, t) + P↓(x, y, t). By considering the
continuity of these joint probabilities, we arrive at the
coupled master equations [47]

∂tP→ = Γ1P↓ + Γ2P← + Γ3P↑ − γP→ − v0∂xP→ , (15)

∂tP↑ = Γ1P→ + Γ2P↓ + Γ3P← − γP↑ − v0∂yP↑ , (16)

∂tP← = Γ1P↑ + Γ2P→ + Γ3P↓ − γP← + v0∂xP← , (17)

∂tP↓ = Γ1P← + Γ2P↑ + Γ3P→ − γP↓ + v0∂yP↓ , (18)

where γ = Γ1 + Γ2 + Γ3. Suppose we are interested in
a steady state in which concentration varies only in the
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x-direction. Then, from equation (4), we may define

Jx(x) = v0〈P→(x)− P←(x)〉 , (19)

Jy(x) = v0〈P↑(x)− P↓(x)〉 , (20)

and, upon subtracting equation (18) from (16) and aver-
aging, obtain

∂tJy(x) = 0 = (Γ1 − Γ3)Jx(x)− (γ + Γ2)Jy(x) . (21)

Solving for the ratio Jy(x)/Jx(x), we find

Jy(x)

Jx(x)
=
D⊥
D‖

=
Γ1 − Γ3

γ + Γ2
. (22)

Examining this expression we note that D⊥ 6= 0 when-
ever Γ1 6= Γ3, indicating a preference between left and
right turns, i.e. chirality of random motion.

We now consider the Green-Kubo relation (13) for this
model. Recognizing that only four velocity states are
possible, we expand the correlation functions as

D‖ = lim
t→∞

1

2
〈∆ri(t)vj(0)〉δij

= lim
t→∞

1

8
v0

[
〈x(t)〉→ − 〈x(t)〉← + 〈y(t)〉↑ − 〈y(t)〉↓

]
= lim
t→∞

1

2
v0〈x(t)〉→ , (23)

where 〈·〉→ indicates an average conditioned on the par-
ticle initially moving to the right from the origin. The
other terms 〈·〉↑, 〈·〉← and 〈·〉↓ follow the same notational
convention. The simplification on the final line is due to
isotropy. Likewise, from equation (14),

D⊥ = lim
t→∞

1

2
v0〈y(t)〉→ . (24)

The averages are obtained by solving equations (15)
through (18) with the initial condition P→(x, y, 0) =
δ(x)δ(y) (see Appendix A.1). In doing so, we find that
the mean trajectory is a logarithmic spiral, i.e.

〈x(t)〉→ = v0

ν − e−νt
(
ν cos(ωt) + ω sin(ωt)

)
ν2 + ω2

(25)

〈y(t)〉→ = v0

ω − e−νt
(
ω cos(ωt)− ν sin(ωt)

)
ν2 + ω2

(26)

where for compactness we have defined ω = Γ1 − Γ3 and
ν = Γ1 + 2Γ2 + Γ3. This logarithmic spiral functional
form, shown in Figure 1b, is remarkably common, ap-
pearing in the mean trajectories of charged particles dif-
fusing in a magnetic field [19, 21, 48, 49], as well as those
of chiral active colloids [6, 7] and certain biological sys-
tems [43, 50]. Inserting equations (25)-(26) into (23)-(24)
yields

2D‖ = v2
0

ν

ν2 + ω2
, (27)

2D⊥ = v2
0

ω

ν2 + ω2
, (28)

FIG. 2. Position-velocity correlation functions computed from
molecular dynamics simulations of a passive tracer in a chiral
active dumbbell bath with density ρbath = 0.4 (a) and ρbath =
0.1 (b). Stars mark converged values as t→∞. Both D⊥ and
D‖ increase with Pe, as does the ratio D⊥/D‖, as indicated
by dashed lines. The inset in (b) depicts the model system.

in agreement with equation (22), showing the emergence
of D⊥ when chirality is present (ω 6= 0).

Figure 1 illustrates the origins of odd diffusivity in
a chiral random walk which permits only left turns
(Γ1 = 1,Γ2 = Γ3 = 0), for which D‖ = D⊥, from equa-
tions (27)-(28). Figure 1a displays the steady-state solu-
tion to equations (1)-(3) for diffusion between two reser-
voirs with concentrations C(x=0) = C0 and C(x=L) =
0, resulting in a linear concentration profile C(x) =
C0(1−x/L) and uniform flux J = C0

L

[
D‖êx+D⊥êy

]
with

a nonzero y-component due to odd diffusivity. In the
presence of impermeable boundaries this solution must
be modified, with D⊥ affecting not only the flux but also
the concentration, as shown in Appendix A.1. Figure 1b
plots the position-velocity correlation functions entering
into the Green-Kubo relations (13) and (14). Finally,
Figure 1c shows a random sample from the subensembles
of time-reversed trajectories ∆rα(−t) passing through
the origin at time t = 0 with either vα(0) = +v0êx or
vα(0) = −v0êx. Due to chirality, the paths in these two
subensembles lead backwards in time to regions differing
not only in the x- but also the y-coordinate, so that a gra-
dient in the y-direction generates a flux in the x-direction.
This is the microscopic basis of odd diffusivity.

Diffusion in a chiral active bath. Several recent
studies have described novel behavior of the symmet-
ric diffusivity D‖ [51–54] as well as an antisymmetric
mobility [55–58] in active systems. In this section, we
study the odd diffusivity of a passive tracer particle dis-
solved in a two-dimensional chiral active fluid composed
of torqued dumbbells, which was found in previous stud-
ies to exhibit odd viscosity and an asymmetric hydro-
static stress [15, 59]. The positions ri and velocities vi
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FIG. 3. Comparison of the diffusion coefficients D⊥ (a)
and D‖ (b) computed from the Green-Kubo relations (solid
lines) with those measured in boundary-driven flux simula-
tions (dashed lines) for several densities of the active dumb-
bell bath ρbath and values of Pe. Error bars are smaller than
the symbols.

of particle i evolve according to underdamped Langevin
dynamics

ṙi = vi ,

v̇i = − ∂

∂ri
U + fAi − ζvi + ηi ,

(29)

with particle masses set to one. Here, − ∂
∂ri

U is the

conservative force on particle i due to interactions (see
Appendix A.2 for model and simulation details). fAi
is a nonconservative active force inducing rotation of
the dumbbell. ζ is the dissipative bath friction and ηi
are the bath fluctuations, modeled as Gaussian white
noise characterized by 〈ηi〉 = 0 and 〈ηi(t) ⊗ ηj(t′)〉 =
2kBTζδijδ(t − t′)I, where kBT is the bath temperature
and I is the identity matrix. In all simulations the density
of active dumbbells, ρbath, is spatially homogeneous. The
magnitude of fA = |fAi | relative to thermal fluctuations
is quantified by a non-dimensional Péclet number defined

as Pe = 2fAd
kBT

, where d is the equilibrium dumbbell bond
length.

Molecular dynamics simulations [60, 61] with fully
periodic boundaries allow for the measurement of the
position-velocity correlation functions, which are plot-
ted in Figure 2. We have taken the convention that
Pe > 0 corresponds to clockwise rotation of the dumb-
bells, which induces counterclockwise motion of the pas-
sive tracer, as depicted in the inset of Figure 2b. When
Pe 6= 0, an antisymmetric part of the correlation function
appears, with a shape resembling the logarithmic spirals
identified in the chiral random walk model (Figure 1b)

and magnitude depending strongly on the density of the
active dumbbell bath. The resulting Green-Kubo esti-
mates of D⊥ and D‖ are plotted in Figures 3a and 3b for
a range of active bath densities, where D⊥ is seen to be
an odd function of Pe while D‖ is an even function of Pe.

To validate the Green-Kubo relations, we indepen-
dently performed boundary-driven flux simulations in
which passive tracer particles at high dilution were intro-
duced at the left boundary of the simulation box and re-
moved from the right boundary at a constant rate, while
the top and bottom boundaries remained periodic. The
resulting steady state exhibits a uniform concentration
gradient in the x-direction, and uniform flux with a y-
component emerging for Pe 6= 0 (see Appendix A.2). The
diffusion coefficients D⊥ and D‖ were then computed di-
rectly from the constitutive relations (1) and (2). The re-
sulting values are plotted in Figure 3 against the Green-
Kubo predictions, demonstrating good agreement. We
note that this system exhibits an antisymmetric part of
the mobility, but with no apparent Einstein relation con-
necting this quantity to the odd diffusivity (see Appendix
A.3).

Conclusion. Ordinarily, isotropic diffusion involves
fluxes parallel to concentration gradients. In general,
however, there may emerge fluxes in the perpendicular di-
rection. This behavior appears as an antisymmetric part
of the diffusivity tensor, which we have termed odd diffu-
sivity. From a first-principles consideration of the micro-
scopic basis of the constitutive relations describing these
perpendicular fluxes, we have derived a Green-Kubo re-
lation for odd diffusivity, showing it to exist only when
time-reversal and parity symmetries are broken, whether
in or out of equilibrium. This approach may help to
characterize additional odd transport phenomena with
divergence-free fluxes, such as odd heat conduction and
odd couplings between viscous and diffusive transport.
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Appendices

A.1. CHIRAL RANDOM WALK

In this appendix, we present derivations of the analytical expressions in the main text concerning the chiral random
walk model. We begin by considering the balance equations for the joint probability densities of the particle occupying
coordinates (x, y) at time t while moving in one of the four available directions indicated by {→, ↑,←, ↓} with fixed
speed v0. For instance,

P→(x, y, t+ δt) = P→(x− δx, y, t) + δt
[
Γ1P↓(x, y, t) + Γ2P←(x, y, t)

+Γ3P↑(x, y, t)− γP→(x, y, t)
]
,

(A.1)

where δx = v0δt and γ = Γ1 + Γ2 + Γ3 is the total turning frequency. Taking the limit δt → 0 and repeating the
process for the other directions yields the coupled master equations (15)-(18). We can solve the master equations by
applying Fourier and Laplace transforms in space and time, respectively:

(s+ γ)P̃→(k, s) + ikxv0P̃→(k, s)− Γ1P̃↓(k, s)− Γ2P̃←(k, s)− Γ3P̃↑(k, s) = P→(k, 0) , (A.2)

(s+ γ)P̃↑(k, s) + ikyv0P̃↑(k, s)− Γ1P̃→(k, s)− Γ2P̃↓(k, s)− Γ3P̃←(k, s) = P↑(k, 0) , (A.3)

(s+ γ)P̃←(k, s)− ikxv0P̃←(k, s)− Γ1P̃↑(k, s)− Γ2P̃→(k, s)− Γ3P̃↓(k, s) = P←(k, 0) , (A.4)

(s+ γ)P̃↓(k, s)− ikyv0P̃↓(k, s)− Γ1P̃←(k, s)− Γ2P̃↑(k, s)− Γ3P̃→(k, s) = P↓(k, 0) , (A.5)

where the transforms are defined as

f(x, t) =
1

2π

∫ ∞
−∞

dk f(k, t)eik·x , (A.6)

f(x, t) =

∫ ∞
0

ds f̃(x, s)est . (A.7)

To quantify D‖, we ask how the total probability density P̃ (k, s) = P̃→(k, s)+ P̃↑(k, s)+ P̃←(k, s)+ P̃↓(k, s) spreads
out in time from a point, allowing us to calculate the mean-squared displacement. To this end, we specify the isotropic
initial conditions P→(k, 0) = P↑(k, 0) = P←(k, 0) = P↓(k, 0) = 1/4 and consequently are free to choose any direction
for k. Arbitrarily setting k = kxêx and solving algebraically yields

P̃ (kx, s) =
2(2γ − 2Γ2 + s)

[
(Γ1 − Γ3)2 + (γ + Γ2 + s)2

]
+ k2

xv
2
0(γ + Γ2 + s)

2s(2γ − 2Γ2 + s)
[
(Γ1 − Γ3)2 + (γ + Γ2 + s)2

]
+ 2k2

xv
2
0

[
(γ + s)2 − Γ2

2

] . (A.8)

We may then obtain the second moment of the probability density as

〈∆x̃(s)2〉 = −∂2
kx P̃ (kx, s)

∣∣
kx=0

=
v2

0(γ + Γ2 + s)

s2
[
(Γ1 − Γ3)2 + (γ + Γ2 + s)2

] . (A.9)

Taking the diffusive limit s → 0 and performing the inverse Laplace transform (A.7) yields an expression for the
diffusion coefficient D‖ from the mean-squared displacement relation in the third equality of (13) in the main text:

lim
t→∞
〈∆x(t)2〉 = 2D‖t =

(
v2

0(γ + Γ2)

(Γ1 − Γ3)2 + (γ + Γ2)2

)
t . (A.10)

As noted in the main text, because the diffusion equation (3) does not involve D⊥, the second moment of P (x, y, t)
does not contain any direct information about D⊥. Instead, from the expansion described in (23)-(24), we may
consider the first moment when specifying both the initial position and initial velocity in equations (A.2)-(A.5). For
example, to obtain 〈x(t)〉→ we set P→(k, 0) = 1 and P↑(k, 0) = P←(k, 0) = P↓(k, 0) = 0, and choose k = kxêx.
Solving equations (A.2)-(A.5) as before and adding to obtain the total probability density yields

P̃ (kx, s) =
(2γ − 2Γ2 + s)

[
− ikxv0(γ + Γ2 + s) + (Γ1 − Γ3)2 + (γ + Γ2 + s)2

]
s(2γ − 2Γ2 + s)

[
(Γ1 − Γ3)2 + (γ + Γ2 + s)2

]
+ k2

xv
2
0

[
(γ + s)2 − Γ2

2

] . (A.11)
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Note that, unlike in equation (A.8), P̃ (kx, s) now has an imaginary part due to the asymmetry of the initial conditions.
Differentiating in kx obtains the first moment

〈x̃(s)〉→ = i∂kx P̃ (kx, s)
∣∣
kx=0

=
v0(s+ γ + Γ2)

s
[
(s+ γ + Γ2)2 + (Γ1 − Γ3)2

] . (A.12)

Taking the same approach but choosing instead k = kyêy, we find

〈ỹ(s)〉→ = i∂ky P̃ (ky, s)
∣∣
ky=0

=
v0(Γ1 − Γ3)

s
[
(s+ γ + Γ2)2 + (Γ1 − Γ3)2

] . (A.13)

Finally, introducing the notation ω = Γ1−Γ3 and ν = Γ1+2Γ2+Γ3, and performing the inverse Laplace transform (A.7)
on equations (A.12)-(A.13) leads to the logarithmic spiral form given in (25)-(26). The diffusion coefficients D‖ and
D⊥ given in equations (27)-(28) then follow directly from the long-time response as t→∞.

One can understand the effect odd diffusivity may have on the concentration by constructing a boundary value
problem. Let us consider a channel of length L whose top and bottom boundaries are impermeable and separated
by a distance W , and to which particles are added at the left boundary and removed from the right boundary at
a constant rate J0W . These boundary conditions suggest the ansatz J(x, y) = J0êx for all (x, y). Then, from the
constitutive relations of (1) and (2), we have

J0 = −D‖∂xC +D⊥∂yC , (A.14)

0 = −D‖∂yC −D⊥∂xC . (A.15)

Upon defining the average concentration C0 = 1
LW

∫ L
0
dx
∫W

0
dy C(x, y) = C(0, 0), equations (A.14)-(A.15) permit

the solution

Css(x, y) = C0 +
J0

D2
‖ +D2

⊥

(
−D‖x+D⊥y

)
= C0 +

J0

v2
0

(
− νx+ ωy

)
.

(A.16)

When D⊥ 6= 0, as seen from equation (A.16), asymmetric accumulation occurs along the impermeable channel walls
giving rise to a linear concentration profile not only in the x-direction but in the y-direction as well.

We check this solution by running numerical simulations of the chiral random walk model with corresponding
boundary conditions, where the probability density P is interpreted as the concentration C. Specifically, we simulate
the dynamics of a particle governed by equations (15)-(18) with either Γ1 = 1,Γ2 = 0,Γ3 = 1 (left- and right-turning)
or Γ1 = 1,Γ2 = 0,Γ3 = 0 (left-turning only) for a single particle in a box of dimensions L = 10, W = 10, advancing
the dynamics in timesteps of δt = 0.01. Whenever the particle crosses the boundary at x = L, it is replaced at x = 0
on the next timestep. In Figure A.1 we plot the steady-state simulation average, finding the resulting flux field to be
uniform while the concentration field depends linearly on x and y, in agreement with equation (A.16) where C0 = 0.01
and J0 = 0.0001.

FIG. A.1. Steady-state concentration profile for diffusive flux through a channel with impermeable walls obtained from
numerical simulation of the chiral random walk model without odd diffusivity (a; achiral, Γ1 = 1,Γ2 = 0,Γ3 = 1) and with odd
diffusivity (b; chiral, Γ1 = 1,Γ2 = 0,Γ3 = 0).
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FIG. A.2. Results of a typical boundary-driven flux simulation of diffusion of a passive tracer particle in a chiral active bath.
Parameters ρactive = 0.1 and Pe = 16 have been chosen arbitrarily. (a) The flux field (arrows) is spatially homogeneous with a
component in the y-direction due to odd diffusivity, while the concentration C(x) varies linearly in the x-direction. The profiles
of the flux and the concentration along the x-direction are plotted in (b) and (c), respectively. All quantities are averaged over
2× 108 timesteps.

A.2. MOLECULAR DYNAMICS SIMULATION DETAILS

Molecular dynamics simulations of a passive tracer particle diffusing in a chiral active bath composed of self-spinning
dumbbells were performed in LAMMPS [60] with custom modifications1 implementing the microscopic active forces
and constant-flux boundary conditions. The nonconservative active force fAi in equation (29) affects only the dumbbell
particles, with constant magnitude |fAi | = fA. The orientation of fAi is perpendicular to the bond vector ri − rj
for the bonded pair i and j, and directed oppositely (fAi = −fAj ), inducing rotation of the dumbbell. Chiral active

dumbbells are composed of two particles held together by a harmonic potential UHarm(r) = 1
2k(r − r0)2, where r is

the separation distance. We set the spring constant k = 100 and the reference bond length r0 = 1. All particles
(including the passive tracer) interact with non-bonded neighbors through a Weeks-Chandler-Andersen [61] potential
defined by

UWCA(r) =

4ε

[(
σ/r

)12 −
(
σ/r

)6]
+ ε r < 21/6σ

0 r ≥ 21/6σ ,
(A.17)

such that U = UHarm + UWCA in equation (29). Here, m, σ and ε are the particle mass, diameter and interaction
energy, providing characteristic mass, length and energy scales which define the Lennard-Jones units system. All
simulation results are reported in Lennard-Jones units. The Langevin dynamics described in equation (29) were
discretized with a velocity Verlet scheme with time step δt = 0.005 and bath temperature kBT = 1.0. The friction
coefficient was set to ζ = 2.0 for dumbbell particles and ζ = 0 for the passive tracer particles, such that the tracers
move ballistically between collisions. Simulations were performed at high dilution of the passive solute particles, where
all simulations contained at least twenty times the number of active dumbbell solvent particles as passive tracer solute
particles.

Calculation of the velocity autocorrelation tensor entering the Green-Kubo relations (13) and (14) was performed
in a fully periodic system in a non-equilibrium steady state exhibiting stationarity and spatial homogeneity of all
observables. Boundary-driven flux simulations were performed in a rectangular simulation box with special boundary
conditions affecting the diffusing passive solute particles but not the active bath particles. A passive solute particle
passing out of the simulation box through the right boundary behaves periodically, reappearing at the left boundary.
A passive solute particle particle passing through the left boundary is reflected back into the simulation box. All
interactions across the boundaries remain fully periodic. These conditions ensure a constant flux of particles across
the simulation box, with the concentration varying linearly in x, as shown in Figure A.2 for a particular simulation
with ρactive = 0.1 and Pe = 16.

1Our simulation and analysis code is publicly available at https://github.com/mandadapu-group/active-matter.



10

FIG. A.3. Effective kinetic temperature of the passive tracer particle across all values of ρbath and Pe corresponding to the
simulation results displayed in Figure 3 of the main text.

A.3. LINEAR RESPONSE MOBILITY TENSOR

The mobility tensor µ provides a linear relation between a particle’s drift velocity u and an applied body force g
which, within the context of linear response theory, is expected to be valid for sufficiently small g

ui = µijgj . (A.18)

For passive systems, the mobility and diffusivity are ordinarily connected by the Einstein relation

Dij = kBTµij . (A.19)

Active matter systems need not obey such a relation. Indeed, one of the hallmarks of many active matter models
is the “enhancement” of the diffusivity, due to the presence of active driving forces, over its value in the absence of
such forces. When such behavior is present, the Green-Kubo relations for the diffusivity coefficients in equations (13)-
(14) are expected to remain valid while predictions of the diffusivity coefficients from linear response theory via the
Einstein relation (A.19) cease to be applicable.

To illustrate this, let us briefly consider a simple model system which exhibits nonzero odd diffusivity but whose
mobility tensor contains no antisymmetric part. Namely, we consider an active Brownian particle in two dimensions
in the overdamped regime, driven by internally-generated forces oriented along a director û(t) =

(
cos θ(t), sin θ(t)

)
,

where θ(t) is the polar angle of the director. We consider the case where the evolution of the director has both a
random part, due to interactions with the environment or internal noise, as well as a deterministic bias, due to an
internally generated torque. This setup has been suggested as a minimal model for zooplankton such as Daphnia,
which tend to steer either left or right as they swim in-plane [42, 46]. The Langevin equations for such a system are

ṙ = v0û , (A.20)

θ̇ = ω0 +
√

2Drξr(t) , (A.21)

where ξr(t) is Gaussian white noise characterized by 〈ξr(t)〉 = 0 and 〈ξr(t)ξr(t′)〉 = δ(t− t′).
The velocity correlation functions for this isotropic system are

〈vx(t)vx(0)〉 = 〈vy(t)vy(0)〉 = v2
0〈cos θ(t) cos θ(0)〉 (A.22)

〈vx(t)vy(0)〉 = −〈vy(t)vx(0)〉 = v2
0〈cos θ(t) sin θ(0)〉 (A.23)

Using trigonometric product identities, one may show that

〈cos θ(t) cos θ(0)〉 =
1

2
〈cos

(
θ(t)− θ(0)

)
+ cos

(
θ(t) + θ(0)

)
〉 =

1

2
〈cosφ(t)〉 (A.24)

〈cos θ(t) sin θ(0)〉 =
1

2
〈sin

(
θ(t) + θ(0)

)
− sin

(
θ(t)− θ(0)

)
〉 = −1

2
〈sinφ(t)〉 (A.25)
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FIG. A.4. Comparison of the diffusion coefficients for a passive tracer particle in an active dumbbell bath with ρbath = 0.2
obtained from Green-Kubo and boundary-driven flux calculations (solid lines and dashed lines, respectively) against those
predicted from the from the mobility using the Einstein relation with an effective kinetic temperature.

where the second equality in both equations follows from isotropy and φ(t) = θ(t)− θ(0) is the displacement at time
t of the angle from its initial value.

The Fokker-Planck equation corresponding to the Langevin equation (A.21) is [47]

∂

∂t
f(φ, t) = ω0

∂

∂φ
f(φ, t) +Dr

∂2

∂φ2
f(φ, t) , (A.26)

where f(φ, t) is the probability density of the director angle. Defining the characteristic function of the angle distri-
bution as

f̃(k, t) = 〈eikφ〉 =

∫ ∞
−∞

dφ eikφf(φ, t) , (A.27)

Equation (A.26) can be solved in Fourier space resulting in

f̃(k, t) = exp
[
(ikω0 − k2Dr)t

]
. (A.28)

Thus,

〈cosφ(t)〉 = Re f̃(1, t) = cos(ω0t)e
−Drt , (A.29)

〈sinφ(t)〉 = Im f̃(1, t) = sin(ω0t)e
−Drt (A.30)

Finally, inserting equations (A.24)-(A.25) and (A.29)-(A.30) into the Green-Kubo relations (13)-(14) yields

D‖ =
v2

0

2

Dr

D2
r + ω2

0

, (A.31)

D⊥ =
v2

0

2

ω0

D2
r + ω2

0

. (A.32)
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Note that the functional form is identical to that of the chiral random walk model in equations (27)-(28), elucidating the
merits of this model in capturing the essential features of the odd diffusivity. Now, as the mechanisms generating active
propulsive forces and steering torques were assumed to be “internal”, i.e. not resulting from external interactions,
the mobility tensor in this idealized model will be symmetric and independent of the values of v0 and ω0, for instance
following Stokes’ Law.

We now evaluate the applicability of an effective Einstein relation for the chiral active dumbbell bath model
discussed in the main text, upon defining an effective temperature computed from the mean kinetic energy of the
diffusing passive tracer particle (A.19):

kBTeff =
1

2
〈|vtracer|2〉 . (A.33)

The dependence of this temperature on Pe is plotted for all densities of the dumbbell bath in Figure A.3, corresponding
to the simulation results plotted in Figure 3 of the main text. The temperature of the nonequilibrium stationary state
is determined by the competition between active forces and dissipative Langevin forces and, more noticeably at higher
dumbbell densities, collisions occurring between dumbbells.

The resulting relationship is plotted in Figure A.4, where we have defined the isotropic mobility tensor analogously
to the diffusivity as µij = µ‖δij − µ⊥εij . We observe that the linear response prediction captures only the qualitative
behavior of D⊥ and D‖, with the disagreement most pronounced at high Pe. Note, finally, that because the sign of
the linear response error differs for D⊥ and D‖ in Figure A.4, no single choice of Teff could simultaneously reconcile
the disagreement for both diffusion coefficients.
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