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Abstract

We apply the local linear regression technique for estimation of functional-coeÆcient regres-

sion models for time series data. The models include threshold autoregressive models (Tong

1990) and functional-coeÆcient autoregressive models (Chen and Tsay 1993) as special cases

but with the added advantages such as depicting �ner structure of the underlying dynamics and

better post-sample forecasting performance. We have also proposed a new bootstrap test for

the goodness of �t of models and a bandwidth selector based on newly de�ned cross-validatory

estimation for the expected forecasting errors. The proposed methodology is data-analytic and

is of appreciable 
exibility to analyze complex and multivariate nonlinear structures without

su�ering from the \curse of dimensionality". The asymptotic properties of the proposed esti-

mators are investigated under the �-mixing condition. Both simulated and real data examples

are used for illustration.
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1 Introduction

Until recently much of time series modeling has been con�ned to linear ARMA models (Box and

Jenkins 1970). Although the original ARMA framework has been enlarged to include long range

dependence with fractional ARMA (Granger and Joyeux 1980, and Dahlhaus 1989), multivariate

VARMA and VARMAX models (Hannan and Deistler 1988) and random walk nonstationarities

via cointegration (Engle and Granger 1987), there still exist so-called nonlinear features beyond

the capacity of linear ARMA-modeling. For example, various \non-standard" phenomena such

as non-normality, asymmetric cycles, bi-modality, nonlinear relationship between lagged variables,

variation of prediction performance over the state-space, non-reversibility, and sensitivity to initial

conditions have been well observed in many real time series data including some benchmark sets

such as the sunspot, lynx and blow
y data. See Tong (1990, 1995) and Tj�stheim (1994) for further

discussion in this aspect. Beyond linear domain, there are in�nite many nonlinear forms to be ex-

plored. Early development of nonlinear time series analysis focused on various nonlinear (sometimes

non-Gaussian) parametric forms (Tong 1990; Tj�stheim 1994, and references within). The success-

ful examples include, among others, the ARCH-modeling of 
uctuating structure for �nancial time

series (Engel 1982, and Bollerslev 1986), the threshold modeling for biological and economic data

(Tong 1990, and Tiao and Tsay 1994). On the other hand, recent development in nonparametric

regression techniques provides an alternative to model nonlinear time series (Tj�stheim 1994; Yao

and Tong 1995; H�ardle, L�utkepohl and Chen 1997, and Masry and Fan 1997). The immediate

advantage of this is that no prior information on model structure is assumed. Further, it may

provide useful insight for further parametric �tting. However, an entire nonparametric approach

is hampered by the requirement of large sample sizes and is often practically useful only for, for

example, autoregressive models with order 1 or 2.

This paper adapts the functional-coeÆcient modeling technique to analyze nonlinear time series

data. The approach allows appreciable 
exibility on the structure of �tted model without su�ering

from the \curse of dimensionality". Let fYi; Xi; Uig1i=�1 be jointly strictly stationary processes

with Xi taking values in <p and Ui taking values in <k. Typically k is small. Let E(Y 2

1
) <1. We

de�ne the multivariate regression function

m(x; u) = E (Y jX = x; U = u) ; (1.1)

where (Y; X; U) has the same distribution as (Yi; Xi; Ui). In a pure time series context, both

Xi and Ui consist of some lagged values of Yi. The functional-coeÆcient regression model has the

form

m(x; u) =

pX
j=1

aj(u)xj ; (1.2)

where aj(�)'s are measurable functions from <k to <1 and x = (x1; : : : ; xp)
T with T denoting the

transpose of a matrix or vector. The idea to model time series in such a form is not new; see,

for example, Nicholls and Quinn (1982). In fact, many useful time series models may be regarded

as special cases of model (1.2) (often with speci�ed parametric forms for aj(�)'s; see x2 below).

However, the potential of this modeling technique had not been fully explored until the seminal

work of Cleveland et al. (1992) and Hastie and Tibshirani (1993) and Chen and Tsay (1993),
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in which nonparametric techniques were developed for estimation of the functions aj(�)'s. In the

context of independent samples, Fan and Zhang (1997) provided an innovative two-step method

and insightful asymptotic results for the local polynomial estimation of aj(�)'s. They also pointed

out that model (1.2) has strong connections with the functional linear models discussed in Ramsay

and Silverman (1997) and Brumback and Rice (1998). Yet, few results are available in the time

series context.

In this paper we adapt local linear regression technique to estimate the coeÆcient functions

aj(�)'s. By smoothingU only, our method is particularly easy to implement. Within the framework

of (1.2), the detailed form of model is determined by data, which will reduce the bias of �tting

automatically. Since only k-dimensional functions are estimated, the diÆculties associated with the

\curse of dimensionality" will be substantially eased. Indeed, our data-analytic approach increases

the modeling 
exibility with little sacri�ce of estimability (see Theorem 2 in x6 below). The

speci�ed form of (1.2) also facilitates the interpret-ability of the �tted model when k is small. This

is particularly relevant in modeling longitudinal data where it is reasonable to assume that the

coeÆcients change over time t. See Hoover et al. (1997) for a novel application of functional-

coeÆcient models to longitudinal data. Model (1.2) is also important for modeling the population

dynamics where it is reasonable to expect that animals behave di�erently based on its population

size. Thus, using model (1.2) with u being the population size of a previous year captures such

a kind of feature in the population dynamics. See Tong (1990, p.377) and (2.6) below for further

discussions.

An important statistical question in �tting model (1.2) is if the coeÆcient function is really

varying (namely, if a linear AR model is adequate) or more generally if a parametric model �ts

the given data. This amounts to testing if the coeÆcient functions are constant or in a certain

parametric form. A new testing procedure is proposed based on the comparison of the residual

sum of squares under the null and the alternative models. A bootstrap method is proposed for

�nding the null distribution of the test statistic. Our simulation shows that the resulting testing

procedure is indeed powerful and the bootstrap method does give the right null distribution.

In x2, we list several familiar nonlinear times series models which can be regarded as special

cases of model (1.2). Through the famous Canadian lynx data, we illustrate the advantages of the

new approach over the existing parametric models on both modeling the underlying dynamics and

post-sample forecasting. x3 presents the local linear regression estimators for functional-coeÆcient

functions and a simple and fast algorithm for bandwidth selection. In x4, a bootstrap method is

proposed for testing the goodness-of-�t of a parametric model against model (1.2). In x5, we use
both simulated models and real data sets to illustrate the proposed methodology. The application

with real data lends further support to use some well-known parametric models. The asymptotic

properties of the proposed estimators are studied in x6. All technical proofs are relegated to the

Appendix.
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2 Models and an illustrative example

The general setting (1.2) includes many familiar time series models. We mention a few below.

Some of them will be used in numerical illustration in x5.
FAR model. Chen and Tsay (1993) proposed the functional-coeÆcient autoregressive (FAR)
model

xt = a1(X
�

t�1)xt�1 + � � �+ ap(X
�

t�1)xt�p + "t; (2.1)

where X�
t�1 = (xt�i1 ; : : : ; xt�ik)

T , f"tg is a sequence of i.i.d. random variables, and "t is indepen-

dent of fxt�i; i > 0g. Chen and Tsay (1993) studied probabilistic properties of FAR models and

proposed an iterative algorithm to estimate the coeÆcient functions. In fact, their algorithm is in

the spirit of local constant �tting, although they did not apply local regression technique directly.

Instead, they constructed estimators based on an iterative recursive formula.

TAR model. One of the simplest nonlinear time series models is the threshold autoregressive

(TAR) model

xt = �
(i)
1
xt�1 + � � �+ �

(i)
p xt�p + "

(i)
t if xt�d 2 
i; i = 1; : : : ; k; (2.2)

where f
ig form a (non-overlapping) partition of the real line. For both theoretical properties and

practical implementations of TAR modeling, we refer to Tong (1990).

EXPAR model. The following generalized exponential autoregressive (EXPAR) model was pro-

posed and studied by Haggan and Ozaki (1981) and Ozaki (1982)

xt =

pX
i=1

n
�i + (�i + 
i xt�d) exp(��1 x2t�d)

o
xt�i + "t; (2.3)

where �i � 0 for i = 1; : : : ; p.

Regression with random coeÆcients. Consider the model of Granger and Ter�asvirta (1993):

Yt = �(t)T Xt + ut; (2.4)

where futg is a sequence of i.i.d. random variables with E(ut) = 0 and Var(ut) = �
2 and is

independent of fXtg and f�(t)g. Further, E(�(t)) = � and Var(�(t)) = �, Cov(�(s); �(t)) = 0

for s 6= t. The above random coeÆcient model has received considerable attention in econometrics;

see Granger and Ter�asvirta (1993). If Xt = (Yt�1; : : : ; Yt�p)
T , then (2.4) is the random coeÆcient

autoregressive model surveyed in Nicholls and Quinn (1982).

All the above models have been proved successful for modeling some nonlinear features. For

example, the TAR model has received considerable attention due to its easy implementation and

often nice interpretation. The application to Canadian lynx data (i.e. the annual fur returns of lynx

at auction in 1982{1934) is arguably a showcase of the TAR modeling technique; see Tong (1990).

The periodic 
uctuation displayed in this time series has profoundly in
uenced ecological theory.

The data set has been constantly used to examine the concepts as \balance-of-nature", predator

and prey interaction, food web dynamics and etc; see Stenseth et al. (1999) and references within.
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Having incorporated biological evidence, Tong �tted the following TAR model with two regimes

and the delay variable at lag 2 to the lynx data at the logarithmic scale with the base 10

xt =

(
0:62 + 1:25xt�1 � 0:43xt�2 + "

(1)

t ; xt�2 � 3:25,

2:25 + 1:52xt�1 � 1:24xt�2 + "
(2)

t ; xt�2 > 3:25:
(2.5)

See Tong (1990, p.377). This simple model admits nice biological interpretation. Indeed it can be

viewed as derived from basic predator (lynx) and prey (hares) interaction model in ecology (see

equation (2) in Stenseth et al. 1999). The lower regime corresponds roughly to the population

increase phase, and the upper regime corresponds to the population decrease phase. Note that

the coeÆcient of xt�1 in the model is signi�cant positive, but less so during the increase phase.

The coeÆcient of xt�2 is signi�cantly negative, and more so during the decline phase. The signs

of those coeÆcients re
ect that lynx and hares relate with each other in a speci�ed prey-predator

interactive manner. The di�erence of the coeÆcients in increase and decrease phases re
ects the

so-called phase-dependence and density-dependence in ecology (Stenseth et al. 1999). The phase-

dependence means that both lynx and hares behave di�erently (in hunting or escaping) when lynx

population increases or decreases. The density-dependence implies that the reproduction rates of

animals as well as their behavior depend on the abundance of the population. Clearly the above

threshold model simpli�ed the varying behavior into two states. With the new technique proposed

in this paper, we �t the lynx data with the model

xt = a1(xt�2)xt�1 + a2(xt�2)xt�2 + "t; (2.6)

in which the coeÆcient a1(:) and a2(:) vary with respect to \threshold variable" xt�2. Both a1(:) and

a2(:) are estimated through a simple one-dimensional kernel regression. The estimators are plotted
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(a) Estimated Coefficient Function a_1(u) in Model (2.6)
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(b) Estimated Coefficient Function a_2(u) in Model (2.6)

Figure 1: Canadian Lynx data. The local linear estimator of (a) a1(xt�2) and (b) a1(xt�2) in model

(2.6).

in Figures 1(a) and (b). Except a few points near the low end, a1(:) is a positive increasing function,

which depicts the smooth (rather than radical) density dependence. The function a2(:) is negative
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and largely decreasing. This pictures a gradual change in animals' behavior in corresponding to the

change of population abundance. By allowing the coeÆcient varying with respect to population

density, the model presents the lynx and hares interaction in the manner which is one-step further

closer to the reality than the TAR models. The advantages of the new technique on other aspects

such as prediction will be reported in Section 5.

3 Estimation

For the simplicity we only consider the case k = 1 in (1.2). Extension to the case k > 1 involves

no fundamentally new ideas. Note that models with large k are often not practically useful due to

\curse of dimensionality".

3.1 Local linear regression estimation

The local linear �ttings have several nice properties. They possess high statistical eÆciency in an

asymptotic minimax sense and are design-adaptive (Fan 1993). Further, they automatically correct

edge e�ects (Fan and Gijbels 1992, Hastie and Loader 1993 and Ruppert and Wand 1994). We

estimate the functions aj(�)'s using local linear regression method from observations fUi;Xi; Yigni=1
,

where Xi = (Xi1; : : : ; Xip)
T . We assume throughout the paper that aj(�) has continuous second

derivative. Note that we may approximate aj(�) locally at u0 by a linear function aj(u) � aj +

bj (u� u0): The local linear estimator is de�ned as baj(u0) = baj , where f(baj ;bbj)g minimize the sum
of weighted squares

nX
i=1

24Yi � pX
j=1

faj + bj (Ui � u0)g Xij

352Kh(Ui � u0): (3.1)

where Kh(�) = h
�1
K(�=h), K(�) is a kernel function on <1 and h > 0 is a bandwidth. It follows

from the least squares theory that

baj(u0) = nX
k=1

Kn;j(Xk; Uk � u0)Yk; (3.2)

where

Kn;j(x; u) = e
T
j;p

� eXT
W eX��1 � x

ux

�
Kh(u): (3.3)

In the above expression, ej;p is the p�1 unit vector with 1 at the j-th position, eX denotes an n�2p

matrix with (XT
i ;X

T
i (Ui � u0)) as its i-th row, and W = diag fKh(U1 � u0); : : : ; Kh(Un � u0)g.

3.2 Bandwidth selection

Now we propose a simple and quick method to select bandwidth for the above estimation. It can

be regarded as a modi�ed multi-fold cross-validation criterion which is attentive to the structure of

time series data. Let m and Q be two given positive integers and n > mQ. The basic idea is �rst

to use Q sub-series of lengths n�qm (q = 1; ; � � � ; Q) to estimate the unknown coeÆcient functions
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and then to compute the one-step forecasting errors of the next section of the time series of length

m based on the estimated models. More precisely, we choose h which minimizes

AMS(h) =

QX
q=1

AMSq(h); (3.4)

where for q = 1; � � � ; Q,

AMSq(h) =
1

m

n�qm+mX
i=n�qm+1

8<:Yi �
pX

j=1

baj;q(Ui)Xi;j

9=;
2

;

and fbaj;q(�)g are computed from the sample f(Yi; Ui; Xi); 1 � i � n� qmg with bandwidth equal

h( n
n�qm

)1=5. Note that for di�erent sample sizes, we re-scale bandwidth according to its optimal

rate, i.e. h / n
�1=5. In the practical implementation, we may use m = [0:1n] and Q = 4. We take

m = [0:1n] rather than m = 1 simply because of computation expediency.

3.3 Choosing smooth variable

It is important to choose an appropriate smooth variable U in applying functional-coeÆcient re-

gression models. Knowledge on physical background of the data may be very helpful, as we have

witnessed in modeling lynx data in Section 2. When no prior information is available, it is perti-

nent to choose U in terms of some data-driven methods such as AIC, cross-validation and other

criteria. Ideally we would choose U as a linear function of given explanatory variables according to

some optimal criterion, which is obviously beyond the scope of this paper and will be explored in

a follow-up paper separately. Nevertheless, we propose here a simple and practical approach: let

U be one of the given explanatory variables such that AMS de�ned in (3.4) obtains its minimum

value. Obviously this idea can also be extended to select p as well. See Example 4 in Section 5.2

for practical implementation of this approach.

4 Goodness of �t test

To test whether model (1.2) holds with a speci�ed parametric form such as TAR or EXPAR models

(see x2), we propose a goodness-of-�t test based on the comparison of the Residual Sum of Squares

(RSS) from both parametric and nonparametric �ttings.

Consider the null hypothesis

H0 : aj(u) = �j(u; �); 1 � j � p; (4.1)

where �j(�;�) is a given family of functions indexed by unknown parameter vector �. Let b� be an

estimatior of �. The residual sum of squares under the null hypothesis is

RSS0 = n
�1

nX
i=1

n
Yi � �1(Ui;

b�)Xi1 � � � � � �p(Ui;
b�)Xip

o
2

:

Analogously, the residual sum of squares corresponding to model (1.2) is

RSS1 = n
�1

nX
i=1

fYi � ba1(Ui)Xi1 � � � � � bap(Ui)Xipg2 :
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The test statistic is de�ned as

Tn = (RSS0 �RSS1)=RSS1 = RSS0=RSS1 � 1

and we reject the null hypothesis (4.1) for large values of Tn. We use the following nonparametric

bootstrap approach to evaluate p-value of the test.

1. Generate the bootstrap residuals f"�i gni=1
from the empirical distribution of the centered

residuals fb"i � �b"gni=1
, where

b"i = Yi � ba1(Ui)Xi1 � � � � � bap(Ui)Xip;
�b" = 1

n

nX
i=1

b"i;
and de�ne

Y
�

i = �1(Ui;
b�)Xi1 + � � �+ �p(Ui;

b�)Xip + "
�

i :

2. Calculate the bootstrap test statistic T �n based on the sample fUi; Xi1; : : : ; Xip; Y
�
i gni=1

.

3. Reject the null hypothesis H0 when Tn is greater than the upper-� point of the conditional

distribution of T �n given fUi; Xi1; : : : ; Xip; Yigni=1
.

The p-value of the test is simply the relative frequency of the event fT �n � Tng in the replications

of the bootstrap sampling. For the sake of simplicity, we use the same bandwidth in calculating

T
�
n as that in Tn. Note that we bootstrap the centralized residuals from the nonparametric �t

instead of the parametric �t, because the nonparametric estimate of residuals is always consistent,

no matter the null or the alternative hypothesis is correct. The method should provide a consistent

estimator of the null distribution even when the null hypothesis does not hold. Kreiss, Neumann

and Yao (1998) considered nonparametric bootstrap tests in a general nonparametric regression

setting. They proved that asymptotically the conditional distribution of the bootstrap test statistic

is indeed the distribution of the test statistic under the null hypothesis. It may be proved that the

similar result holds here as long as b� converges to � at the rate n�1=2.

5 Numerical properties

We illustrate the proposed methods through two simulated and two real data examples. The

estimators fbaj(�)g are assessed via the square-Root of Average Squared Errors (RASE):

RASEj =

24n�1
grid

n
gridX
k=1

fbaj(uk)� aj(uk)g2
351=2 ; and RASE =

pX
j=1

RASEj; (5.1)

where fuk; k = 1; : : : ; ngridg are regular grid points. We also compare the post-sample forecasting

performance of the new method with existing methods such as linear AR model, TAR model

and FAR model (implemented by Chen and Tsay 1993). We consider three predictors based on

functional-coeÆcient modeling: the one-step ahead predictor

bxt+1 = ba1(X�

t )xt + � � � + bap(X�

t )xt�p+1;
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the iterative two-step ahead predictor

bxt+2 = ba1(X�

t+1
)bxt+1 + ba2(X�

t+1
)xt + � � �+ bap(X�

t+1
)xt�p+2; (5.2)

and the direct two-step ahead predictor based on the model

xt+2 = b1(X
�

t )xt + � � �+ bp(X
�

t )xt�p + "
0

t: (5.3)

Note that model (2.1) does not necessarily imply (5.3). In this sense, the direct two-step ahead

prediction explores the predictive power of the proposed modeling techniques when the model is

misspeci�ed. We always use the Epanechnikov kernel K(u) = 0:75
�
1� u

2
�
+
. For the two real data

examples, we repeat bootstrap sampling 1000 times in goodness-of-�t tests and the bandwidths are

selected by the method proposed in x3.2.

5.1 Simulated examples
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Figure 2: Simulation results for Example 1. (a) The local linear estimator (dotted line) of the

coeÆcient function a1(xt�1) (solid line). (b) The local linear estimator (dotted line) of a2(xt�1)

(solid line). (c) The boxplots of the 400 RASE-values in estimation of a1(�) and a2(�). (d) The plot
of power curve against � for the goodness-of-�t test.
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Example 1. We �rst consider an EXPAR model. We replicate simulation 400 times and each

time we draw a time series with length 400 from the model

xt = a1(xt�1)xt�1 + a2(xt�1)xt�2 + "t; (5.4)

where a1(u) = 0:138 + (0:316 + 0:982u) e�3:89 u
2

, a2(u) = �0:437 � (0:659 + 1:260u) e�3:89 u
2

,

and f"tg are i.i.d. N
�
0; 0:22

�
. We choose the optimal bandwidth hn = 0:41 which minimizes the

sum of the integrated squared errors of estimators for a1(�) and a2(�). Figures 2(a)-(b) present

the estimated a1(�) and a2(�) from a typical sample. The typical sample is selected in such a

way that its RASE-value is equal to the median in the 400 replications. The boxplot for 400

RASE-values is presented in Figure 2(c). To gauge the performance of our procedure in terms of

RASE, we computed the standard deviation of the time series fxtg, denoted by �X . The mean and

the standard deviation of the �X , in the simulation with 400 replications, are 0.5389 and 0.0480

respectively. Overall, the proposed modeling procedure performs fairly well.

u
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(a) a_1 under H_1 vs a_1 under H_0
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(b) a_2 under H_1 vs a_2 under H_0

Figure 3: The coeÆcient functions under the null hypothesis and a speci�c alternative hypothesis

with � = 0:4. Solid curves are coeÆcient functions under H1 and dashed lines are the coeÆcient

functions under H0.

To demonstrate the power of the proposed bootstrap test, we consider the following null hy-

pothesis:

H0 : aj(u) = �j; j = 1; 2;

namely a linear AR-model, against the alternative

H1 : aj(u) 6= �j; for at least one j:

The power function is evaluated under a sequence of the alternative models indexed by �:

H1 : aj(u) = a
0

j + �(a0j (u)� a
0

j); j = 1; 2 (0 � � � 1);

where fa0j (u)g are the solid curves given in Figures 2(a) and (b) and a
0

j is the average height

of a0j(u). We apply the goodness-of-�t test described in x4 in a simulation with 400 replication.
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For each realization, we repeat bootstrap sampling 500 times. Figure 2(d) plots the simulated

power function against �. When � = 0, the speci�ed alternative hypothesis collapses into the null

hypothesis. The power is 0:0470, which is close to the signi�cant level 5%. This demonstrates that

bootstrap estimate of the null distribution is approximately correct. The power function shows that

our test is indeed powerful. To appreciate why, consider the speci�c alternative with � = 0:4. The

functions faj(u)g under H1 are shown in Figure 3. The null hypothesis is essentially the constant

curves in Figure 3. Even with such a small di�erence under our noise level, we can correctly detect

the alternative over 80% of the 400 simulations. The power increases rapidly to one when � = 0:8.

When � = 1, we test the constant functions in Figure 3 against the coeÆcient functions in Figures

2 (a) and (b).

Example 2. Now we consider a TAR model

xt = a1(xt�2)xt�1 + a2(xt�2)xt�2 + "t; (5.5)

where a1(u) = 0:4 I(u � 1) � 0:8 I(u > 6), a2(u) = �0:6 I(u � 1) + 0:2 I(u > 1), and f"tg are

i.i.d. N(0; 1). With sample size n = 500, we replicate simulation 400 times. As in Example 1, the

optimal bandwidth hn = 0:325 is used. The boxplot for 400 RASE-values is presented in Figure

4(c). Further, the local linear estimators of a1(�) and a2(�) from a typical sample are plotted in

Figures 4(a)-(b). The typical sample is selected in such a way that its RASE-value is equal to the

median in the 400 replications.

To compare the prediction performance of the three predictors from functional-coeÆcient mod-

eling with the best �tted linear AR(2) model

bxt = b�0 + b�1 xt�1 + b�2 xt�2;
we predict 10 post-sample points in each of the 400 replicated simulations. The mean and standard

deviation (in parentheses) of average absolute predictive errors (AAPE) are recorded in Table 1. It is

clear that the functional-coeÆcient autoregressive modeling while overparametrized provides more

relevant predictors for the given model (5.5). Note that the direct predictor based on functional-

coeÆcient model (5.3) performs reasonably well due to the 
exibility of the functional-coeÆcient

models.

Table 1: The mean and standard deviation of AAPE based on 400 replications

One-step Iterative two-step Direct two-step

Model (5.5) 0.784(0.203) 0.904(0.273) 0.918(0.281)

Linear AR(2) 1.131(0.485) 1.117(0.496)

5.2 Real-data examples

Example 3. We continue the discussion on Canadian lynx data in x2. To �t model (2.6), we

select the bandwidth such that AMS(h) de�ned in (3.4) obtains its minimum. To this end, we

let Q = 4 and m = 11. Figure 5(b) plots the AMS-values against h. The selected bandwidth is

hn = 0:90. The �tted values from both functional-coeÆcient model (2.6) and TAR model (2.5)

10
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Figure 4: Simulation results for Example 2. (a) The local linear estimator (dotted line) of the

coeÆcient function a1(xt�2) (solid line). (b) The local linear estimator (dotted line) of a2(xt�2)

(solid line). (c) The boxplot of the 400 RASE-values in estimation of a1(�) and a2(�).
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(a) Observed and Fitted Values for Lynx Data for Model (2.6)
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(b)  AMS(h) for Model (2.6)

Figure 5: Canadian Lynx data. (a) Time plots of the �tted values from TAR model (2.5) (solid

line) and the �tted values of functional-coeÆcient model (2.6) (dashed line). The true values are

indicated by \�". (b) The plot of the AMS against bandwidth.
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are very close to each other (see Figure 5(a)). Our goodness of �t test lends further support to

the use of the TAR model. In fact, the residual sum of squares RSS1 for model (2.6) is 0:0406,

which is slightly smaller than RSS0 = 0:0414 for the TAR model (2.5). The p-value of the test is

0:714. Indeed, the TAR model (2.5) and the model (2.6) with coeÆcient functions given in Figure

1 are statistically indistinguishable for this data set. The di�erence lies in the interpretation of

the two models (see x2). On the other hand, the p-value of the goodness-of-test to test for linear

AR(2) model against the functional-coeÆcient model (2.6) is less than 0:001, which reinforces the

existence of nonlinearity in lynx data.

To compare the prediction performance of various models, we estimate the functional-coeÆcient

model (2.6), a TAR model and a linear AR(2) model using the �rst 102 data points only. We leave

out last 12 points to check the prediction performance. The �tted TAR model is

bxt =
(

0:424 + 1:255xt�1 � 0:348xt�2; xt�2 � 2:981;

1:882 + 1:516xt�1 � 1:126xt�2; xt�2 > 2:981:
(5.6)

The �tted linear AR(2) model is bxt = 1:048 + 1:376xt�1 � 0:740xt�2. Both TAR and linear models

are estimated using the least squares method. The threshold was searched among 60% inner sample

points. The absolute prediction errors are reported in Table 2, which shows that the performance

of functional-coeÆcient model is better than both TAR and linear AR(2) models. For example,

for one-step ahead prediction, the average absolute predictive errors (AAPE) was reduced by 36%

when the TAR model was used instead of linear AR(2) model. The AAPE was further reduced by

25% when the functional-coeÆcient model was used instead of the TAR model.

Table 2: The post-sample predictive errors for Canadian Lynx data

Model (2.6) TAR Model (5.6) Linear AR(2)

Year xt One-step Iterative Direct One-step Iterative One-step Iterative

1923 3.054 0.157 0.156 0.209 0.187 0.090 0.173 0.087

1924 3.386 0.012 0.227 0.383 0.035 0.269 0.061 0.299

1925 3.553 0.021 0.035 0.195 0.014 0.038 0.106 0.189

1926 3.468 0.008 0.037 0.034 0.022 0.000 0.036 0.182

1927 3.187 0.085 0.101 0.295 0.059 0.092 0.003 0.046

1928 2.723 0.055 0.086 0.339 0.075 0.015 0.143 0.148

1929 2.686 0.135 0.061 0.055 0.273 0.160 0.248 0.051

1930 2.821 0.016 0.150 0.318 0.026 0.316 0.093 0.434

1931 3.000 0.017 0.037 0.111 0.030 0.062 0.058 0.185

1932 3.201 0.007 0.014 0.151 0.060 0.043 0.113 0.193

1933 3.424 0.089 0.098 0.209 0.076 0.067 0.191 0.347

1934 3.531 0.053 0.175 0.178 0.072 0.187 0.140 0.403

AAPE 0.055 0.095 0.206 0.073 0.112 0.114 0.214

Tong (1990) also suggested a further re�ned model involving 7 lagged variables

xt =

8><>:
0:546 + 1:032xt�1 � 0:173xt�2 + 0:171xt�3 � 0:431xt�4

+0:332xt�5 � 0:284xt�6 + 0:210xt�7 + "
(1)

t ; if xt�2 � 3:116,

2:632 + 1:492xt�1 � 1:324xt�2 + "
(2)

t ; if xt�2 > 3:116:

(5.7)
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(See Tong, 1990, p.387). We �t the following more complex functional-coeÆcient model accordingly

xt =
7X

j=1

aj(xt�2)xt�j + "t: (5.8)

The selected bandwidth is hn = 1:45 (see Figure 6(c)). The estimated functions aj(�)(1 � j � 7)

are plotted in Figure 6(a), which shows that the dynamical change is predominantly dictated by

a1(�) and a2(�). The �tted values of the two models are very close with each other, as shown

in Figure 6(b). We apply the goodness-of-�t test to test for the TAR model (5.7) against the

functional-coeÆcient model (5.8). The p-value is 0:883, which again supports the use of the TAR
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(a) Estimated Coefficient Functions for Lynx Data for Model (5.8)
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(b) Observed and Fitted Values of Lynx Data for Model (5.8)
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(c)  AMS(h) for Model (5.8)

Figure 6: Canadian Lynx data. (a) The estimated curves for functional coeÆcients ai(xt�2) (i =

1; : : : ; 7) in model (5.9). (b) The time plots of the �tted values from model (5.8) (solid line) and

the �tted values from model (5.9) (dashed line). The true values are indicated by \�". (c) The plot

of the AMS against bandwidth.
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model for the lynx data.

Example 4. In many respects, Wolf's annual sunspot numbers are known to be challenging (see,

for example, Tong 1990). Following the convention in the literature, we apply the transform xt =

2
�p

1 + yt � 1
�
to the 288 annual sunspot numbers in 1700 - 1987 �rst. (See, for example, Ghaddar

and Tong 1981, and Chen and Tsay 1993.) We apply the technique proposed in Section 3.3 to select

the optimum functional-coeÆcient models among the class of models xt =
Pp

j=1
aj(xt�d)xt�j + "t

with 1 � d � p and 2 � p � 11. We let m = 28 and Q = 4 in AMS de�ned as in (3.4). Table 3

Table 3: The selected functional-coeÆcient models for Sunspot Data

p 2 3 4 5 6 7 8 9 10 11

d 1 3 3 2 2 3 3 5 3 5

AMS 18.69 13.46 13.90 12.26 13.93 11.68 11.95 14.06 14.26 13.91

records the best model with each value of p between 2 and 11. The overall optimum model should

be of the order p = 7 or 8, and the smooth variable at lag d = 3.

Note that the FAR model proposed by Chen and Tsay (1993, p.305) is

xt =

8><>:
1:23 + (1:75� 0:17 jxt�3 � 6:6j)xt�1 + (�1:28 + 0:27 jxt�3 � 6:6j)xt�2

+0:20xt�8 + "
(1)
t ; if xt�3 < 10:3,

0:92� 0:24xt�3 + 0:87xt�1 + 0:17xt�2 � 0:06xt�6 + 0:04xt�8 + "
(2)
t ; if xt�3 � 10:3:

(5.9)

Combining this with the aforementioned result from the model selection, we �t the data with the

functional-coeÆcient model

xt = a1(xt�3)xt�1 + a2(xt�3)xt�2 + a3(xt�3)xt�3 + a6(xt�3)xt�6 + a8(xt�3)xt�8 + "t: (5.10)

The estimated coeÆcient functions are plotted in Figures 7(a){(e). The selected bandwidth is

hn = 4:75 (see Figure 7(f)), which minimizes the AMS de�ned as in (3.4).

To compare the prediction performance, the �rst 280 data points (in 1700-1979) are used to
estimate the coeÆcient functions in (5.10). Table 4 reports the absolute errors in predicting the

Table 4: The post-sample predictive errors for Sunspot data

Model (5.10) FAR Model (5.9) TAR Model (5.11)

Year xt One-step Iterative Direct Error Iterative Error Iterative

1980 154.7 1.4 1.4 1.4 13.8 13.8 5.5 5.5

1981 140.5 11.4 10.4 3.7 0.0 3.8 1.3 0.0

1982 115.9 15.7 20.7 12.9 10.0 16.4 19.5 22.1

1983 66.6 10.3 0.7 11.0 3.3 0.8 4.8 6.5

1984 45.9 1.0 1.5 4.3 3.8 5.6 14.8 15.9

1985 17.9 2.6 3.4 7.8 4.6 1.7 0.2 2.7

1986 13.4 3.1 0.7 1.9 1.3 2.5 5.5 5.4

1987 29.2 12.3 13.1 18.9 21.7 23.6 0.7 17.5

AAPE 7.2 6.5 7.7 7.3 8.3 6.6 9.5

sunspot numbers in 1980 { 1987 from the newly estimated model (5.10) as well as those from the
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(a) Estimated Coefficient Function a_1(u) in Model (5.10)
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(b) Estimated Coefficient Function a_2(u) in Model (5.10)

• •••
••
••
••
•••
••••
••••••••

•••••••••••••••••••••••••••••
••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •
•

•

•

•

0 5 10 15 20 25

-1
.5

-1
.0

-0
.5

0.
0

(c) Estimated Coefficient Function a_3(u) in Model (5.10)
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(d) Estimated Coefficient Function a_6(u) in Model (5.10)
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(e) Estimated Coefficient Function a_8(u) in Model (5.10)
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Figure 7: Wolf's sunspot numbers. (a)-(e) The estimated functional coeÆcients in model (5.10).

The x-axis is xt�3. (f) The plot of the AMS against bandwidth (for estimation of model (5.10)).

FAR model (5.9) and the following TAR model (Tong 1990, p.420)

xt =

8><>:
1:92 + 0:84xt�1 + 0:07xt�2 � 0:32xt�3 + 0:15xt�4 � 0:20xt�5 � 0:00xt�6

+0:19xt�7 � 0:27xt�8 + 0:21xt�9 + 0:01xt�10 + 0:09xt�11 + "
(1)
t ; if xt�8 � 11:93,

4:27 + 1:44xt�1 � 0:84xt�2 + 0:06xt�3 + "
(2)
t ; if xt�8 > 11:93:

(5.11)

Note that both models (5.9) and (5.11) were estimated using the �rst 280 sample points too (see

Tong 1990, p.420 and Chen and Tsay 1993, p.304). According to the average absolute predictive
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errors, the functional-coeÆcient model performs as well as both TAR and FAR models in one-step

ahead prediction. Furthermore, it performs better in two-step prediction with both iterative and

direct methods.

Finally we apply the goodness-of-�t test to test the hypothesis of the FAR model (5.9) against

the nonparametric model (5.10). The residual sum of squares RSS1 for model (5.10) is 2:932 in

contrast to RSS0 = 3:277 for the FAR model. The p-value for this test is 0:454, which lends further

support to using the FAR model in this context. We also apply the goodness-of-�t test to test the

hypothesis of the TAR model (5.11) against the functional-coeÆcient model

xt =
11X
j=1

aj(xt�8)xt�j + "t: (5.12)

The residual sum of squares RSS1 for model (5.12) is 2:077, which is about 43:64% smaller than

RSS0 = 3:685 for the TAR model. The p-value of the test is 0:101.

6 Asymptotic Results

Let Fb
a be the �-algebra generated by f(Uj ; Xj; Yj); a � j � bg. Denote by

�(k) = sup
A2F0

�1

B2F1
k

jP (AB)� P (A)P (B)j

The coeÆcient �(k) is called the strong mixing coeÆcient of the stationary processes fUj ; Xj; Yjg1j=�1.
If �(k)! 0 as k !1, the processes fUj ; Xj; Yjg1j=�1 are called strongly mixing.

Among various mixing conditions used in literature, �-mixing is reasonably weak, and is known

to be ful�lled for many stochastic processes including many time series models. Gorodetskii (1977)

and Withers (1981) have derived the conditions under which a linear process is �-mixing. In fact,

under very mild assumptions linear autoregressive and more generally bilinear time series models

are strongly mixing with mixing coeÆcients decaying exponentially. Auestad and Tj�stheim (1990)

provided illuminating discussions on the role of �-mixing (including geometric ergodicity) for model

identi�cation in nonlinear time series analysis. Chen and Tsay (1993) showed that the FAR process

de�ned in (2.1) is geometrically ergodic under certain conditions. Further, Masry and Tj�stheim

(1995, 1997) showed that under some mild conditions, both autoregressive conditional heteroscedas-

tic (ARCH) process and additive autoregressive process with exogenous variables (NAARX), which

are particularly popular in �nance, are stationary and �-mixing.

We �rst present a result on mean square convergence which serves as a building block to our

main result and is also of independent interest. We introduce some notation now. Let

Sn = Sn(u0) =

�
Sn;0 Sn;1
Sn;1 Sn;2

�
; and Tn = Tn(u0) =

�
Tn;0(u0)

Tn;1(u0)

�
(6.1)

with

Sn;j = Sn;j(u0) =
1

n

nX
i=1

XiX
T
i

�
Ui � u0

h

�j

Kh(Ui � u0); (6.2)
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and

Tn;j(u0) =
1

n

nX
i=1

Xi

�
Ui � u0

h

�j

Kh(Ui � u0)Yi: (6.3)

Then, the solution to (3.1) can be expressed as

b� = H�1 S�1n Tn; (6.4)

where H = diag (1; : : : ; 1; h; : : : ; h) with p-diagonal elements ones and p diagonal elements h's.

To facilitate the notation, we denote

�j =

Z
1

�1

u
j
K(u) du; �j =

Z
1

�1

u
j
K

2(u) du;

and


 = (!l;m)p�p = E

�
XXT jU = u0

�
: (6.5)

Also, let f(x; u) denote the joint density of (X; U) and fU(u) be the marginal density of U . We

use the following convention: if U = Xj0 for some 1 � j0 � p, then f(x; u) becomes f(x) the joint

density of X.

Theorem 1. Let Condition 1 in the Appendix hold, and f(x; u) be continuous at the point u0.

Let hn ! 0 and nhn !1, as n!1. Then it holds that

E(Sn;j(u0))! fU(u0)
(u0)�j ; and nhnVar(Sn;j(u0)l;m)! fU(u0) �2j !l;m

for each 0 � j � 3 and 1 � l; m � p.

As a consequence of Theorem 1, we have

Sn
P�! fU(u0)S; and Sn;3

P�! �3 fU(u0)


in the sense that each element converges in probability, where

S =

�

 �1


�1
 �2


�
:

Put

�
2(x; u) = Var(Y jX = x; U = u); (6.6)

and


�(u0) = E

h
XXT

�
2(X; U) jU = u0

i
: (6.7)

Denote by c0 = �2=
�
�2 � �

2

1

�
and c1 = ��1=

�
�2 � �

2

1

�
.

Theorem 2. Let �2(x; u) and f(x; u) be continuous at the point u0. Then under Conditions 1

and 2 in the Appendix,

p
nhn

"ba(u0)� a(u0)� h
2

2

�
2

2
� �1 �3

�2 � �2
1

a00(u0)

#
D�! N

�
0; �2(u0)

�
; (6.8)
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provided that fU(u0) 6= 0, where

�2(u0) =
c
2

0
�0 + 2 c0 c1 �1 + c

2

1
�2

fU(u0)

�1(u0)


�(u0)

�1(u0): (6.9)

Theorem 2 indicates that the asymptotic bias of baj(u0) is
h
2

2

�
2

2
� �1 �3

�2 � �
2

1

a
00

j (u0);

and the asymptotic variance is (nhn)
�1

�
2

j (u0), where

�
2

j (u0) =
c
2

0
�0 + 2 c0 c1 �1 + c

2

1
�2

fU(u0)
e
T
j;p


�1(u0)

�(u0)


�1(u0) ej;p:

When �1 = 0, the bias and variance expressions can be simpli�ed respectively as h2

2
�2a

00
j (u0) and

�
2

j (u0) =
�0

fU(u0)
e
T
j;p


�1(u0)

�(u0)


�1(u0) ej;p:

The optimal bandwidth for estimating aj(�) can be de�ned to be the one which minimizes the

squared bias plus variance. The optimal bandwidth is given by

hj;opt =

264�22 �0 � 2�1 �2 �1 + �
2

1
�2

fU(u0)
�
�2
2
� �1 �3

�2 e
T
j;p


�1(u0)

�(u0)


�1(u0) ej;pn
a00j (u0)

o
2

375
1=5

n
�1=5

: (6.10)

Recently, Fan and Gijbels (1995) and Ruppert et al. (1995) developed data-driven bandwidth

selection schemes based on asymptotic formulas for the optimal bandwidths, which are less variable

and more e�ective than the conventional data-driven bandwidth selectors such as cross-validation

bandwidth rule. The similar algorithms can be developed for estimation of functional-coeÆcient

models based on (6.10), which is however beyond the scope of this paper.
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Appendix

We �rst impose some conditions on the regression model. They are not the weakest possible.

Condition 1

(i) The kernel function K(�) is a bounded density with a bounded support [�1; 1].
(ii) jf(x0; u; x1; v; l)� f(x0; u) f(x1; v)j �M , for all l � 1, where f(x0; u; x1; v; l) is the joint

density of (X0; U0) and (Xl; Ul).

(iii) The processes fUi; Xi; Yig are �-mixing with
P
k
c[�(k)]1�2=Æ < 1 for some Æ > 2 and

c > 1� 2=Æ.

(iv) EjXj2 Æ <1, where Æ is given in Condition 1(iii).

Condition 2

(i) Assume that

f(x0; u; x1; v; l) �M1; and E

n
Y

2

0
+ Y

2

l jX0 = x0; U0 = u; Xl = x1; Ul = v

o
�M2;

(A.1)

for all l � 1, x0; x1 2 <p, u and v in a neighborhood of u0.

(ii) Assume that hn ! and nhn ! 1. Further, assume that there exists a sequence of positive

integers sn such that sn !1, sn = o

�
(nhn)

1=2
�
, and (n=hn)

1=2
�(sn)! 0, as n!1.
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(iii) There exists Æ� > Æ, where Æ is given in Condition 1(iii), such that

E

n
jY jÆ� jX = x; U = u

o
�M4 <1 (A.2)

for all x 2 <p and u in a neighborhood of u0, and

�(n) = O

�
n
���

�
; (A.3)

where �� � Æ Æ
�
=f2(Æ� � Æ)g.

(iv) EjXj2 Æ� <1, and n
1=2�Æ=4

h
Æ=Æ��1 = O(1).

Remark 1. We provide a suÆcient condition for the mixing coeÆcient �(n) to satisfy Conditions

1(iii) and 2(ii). Suppose that hn = An
��(0 < � < 1; A > 0), sn = (nhn= log n)

1=2 and

�(n) = O

�
n
�d
�
for some d > 0. Then Condition 1(iii) is satis�ed for d > 2(1� 1=Æ)=(1� 2=Æ) and

Condition 2(ii) is satis�ed if d > (1 + �)=(1 � �). Hence both conditions are satis�ed if

�(n) = O

�
n
�d
�
; d > max

�
1 + �

1� �
;
2(1 � 1=Æ)

1� 2=Æ

�
:

Note that this is a trade o� between the order Æ of the moment of Y and the rate of decay of the

mixing coeÆcient; the larger the order Æ, the weaker is the decay rate of �(n).

To study the joint asymptotic normality of ba(u0), we need to center the vector Tn(u0) by

replacing Yi with Yi �m(Xi; Ui) in the expression (6.3) of Tn;j(u0). Let

T
�
n;j(u0) =

1

n

nX
i=1

Xi

�
Ui � u0

h

�j

Kh(Ui � u0) [Yi �m(Xi; Ui)]; and T
�
n =

�
T
�
n;0

T
�
n;1

�
:

Since the coeÆcient functions aj(u) are conducted in the neighborhood of jUi�u0j < h, by Taylor's

expansion,

m(Xi; Ui) = XT
i a(u0) + (Ui � u0)X

T
i a

0(u0) +
h
2

2

�
Ui � u0

h

�
2

XT
i a

00(u0) + op(h
2);

where a0(u0) and a00(u0) are the vectors consisting of the �rst and the second derivative of the

functions aj(�). Then,

Tn;0 � T
�
n;0 = Sn;0 a(u0) + hSn;1 a

0(u0) +
h
2

2
Sn;2 a

00(u0) + op(h
2);

and

Tn;1 � T
�

n;1 = Sn;1 a(u0) + hSn;2 a
0(u0) +

h
2

2
Sn;3 a

00(u0) + op(h
2);

so that

Tn � T
�

n = SnH� +
h
2

2

�
Sn;2
Sn;3

�
a00(u0) + op(h

2); (A.4)

where � = (a(u0)
T
; a0(u0)

T )T . Therefore, it follows from (6.4), (A.4) and Theorem 1 that

H
�b� � �

�
= f

�1

U
(u0)S

�1
T
�

n +
h
2

2
S�1

�
�2


�3


�
a00(u0) + op(h

2) (A.5)
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from which the bias term of b�(u0) is evident. Clearly,
ba(u0)� a(u0) =


�1

fU(u0)
�
�2 � �2

1

� h�2 T �n;0 � �1 T
�

n;1

i
+
h
2

2

�
2

2
� �1 �3

�2 � �2
1

a00(u0) + op(h
2): (A.6)

Thus, (A.6) indicates that the asymptotic bias of ba(u0) is
h
2

2

�
2

2
� �1 �3

�2 � �
2

1

a00(u0):

Let

Qn =
1

n

nX
i=1

Zi; (A.7)

where

Zi = Xi

�
c0 + c1

�
Ui � u0

h

��
Kh(Ui � u0) [Yi �m(Xi; Ui)] (A.8)

with c0 = �2=
�
�2 � �

2

1

�
and c1 = ��1=

�
�2 � �

2

1

�
. It follows from (A.6) and (A.7) that

p
nhn

"ba(u0)� a(u0)� h
2

2

�
2

2
� �1 �3

�2 � �
2

1

a00(u0)

#
=


�1

fU(u0)

p
nhnQn + op(1): (A.9)

We need the following lemma, whose proof is more involved than that for Theorem 1. Therefore,

we only prove this lemma. Throughout this appendix, we denote by C a generic constant, which

may take di�erent values at di�erent places.

Lemma 1. Under Conditions 1 and 2 and the assumption that hn ! 0 and nhn !1, as n!1,

if �2(x; u) and f(x; u) are continuous at the point u0, then, we have

(a) hnVar(Z1)! fU(u0)

�(u0)

�
c
2

0
�0 + 2 c0 c1 �1 + c

2

1
�2

�
;

(b) hn
Pn�1j

l=1
jCov(Z1; Zl+1)j = o(1);

(c) nhnVar(Qn)! fU(u0)

�(u0)

�
c
2

0
�0 + 2 c0 c1 �1 + c

2

1
�2

�
.

Proof: First of all, by conditioning on (X1; U1) and using Theorem 1 in Sun (1984), we have

Var(Z1) = E

"
X1X

T
1
�
2(X1; U1)

�
c0 + c1

�
U1 � u0

h

��
2

K
2

h(U1 � u0)

#

=
1

h

h
fU(u0)


�(u0)
n
c
2

0
�0 + 2 c0 c1 �1 + c

2

1
�2

o
+ o(1)

i
: (A.10)

The result (c) follows in an obvious manner from (a) and (b) along with

Var(Qn) =
1

n
Var(Z1) +

2

n

n�1X
l=1

�
1� l

n

�
Cov(Z1; Zl+1): (A.11)
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Therefore, it remains to prove part (b). To this end, let dn !1 be a sequence of positive integers

such that dn hn ! 0. De�ne

J1 =
dn�1X
l=1

jCov(Z1; Zl+1)j; and J2 =
n�1X
l=dn

jCov(Z1; Zl+1)j:

It remains to show that J1 = o
�
h
�1
�
and J2 = o

�
h
�1
�
.

We remark that sinceK(�) has a bounded support [�1; 1], aj(u) is bounded in the neighborhood
of u 2 [u0 � h; u0 + h]. Let B = max1�j�p supju�u0j<h jaj(u)j and g(x) =

Pp
j=1

jxjj. Then

supju�u0j<h jm(x; u)j � B g(x). By conditioning on (X1; U1) and (Xl+1; Ul+1), and using (A.1)

and Condition 2(iii), we have, for all l � 1,

jCov(Z1; Zl+1)j
� C E

h
jX1X

T
l+1
j fjY1j+B g(X1)gfjYl+1j+B g(Xl+1)gKh(U1 � u0)Kh(Ul+1 � u0)

i
� C E

�
jX1X

T
l+1
j
n
M2 +B

2
g
2(X1)

o
1=2 n

M2 +B
2
g
2(Xl+1)

o
1=2

Kh(U1 � u0)Kh(Ul+1 � u0)

�
� C E

h
jX1X

T
l+1
j f1 + g(X1)g f1 + g(Xl+1)g

i
� C: (A.12)

It follows that

J1 � C dn = o

�
h
�1
�

by the choice of dn. Next we consider the upper bound of J2. To this end, by using Davydov's

inequality (see Hall and Heyde 1980, Corollary A.2), we obtain, for all 1 � j; m � p and l � 1,

jCov(Z1j ; Zl+1;m)j � C [�(l)]1�2=Æ
h
EjZj jÆ

i
1=Æ h

EjZmjÆ
i
1=Æ

: (A.13)

By conditioning on (X; U) and using Condition 2(iii), one has

E

h
jZj jÆ

i
� C E

h
jXj jÆ KÆ

h(U � u0)
n
jY jÆ +B

Æ
g
Æ(X)

oi
� C E

h
jXj jÆ KÆ

h(U � u0)
n
M3 +B

Æ
g
Æ(X)

oi
� C h

1�Æ
E

h
jXj jÆ

n
M3 +B

Æ
g
Æ(X)

oi
� C h

1�Æ
: (A.14)

A combination of (A.13) and (A.14) leads to

J2 � C h
2=Æ�2

1X
l=dn

[�(l)]1�2=Æ � C h
2=Æ�2

d
�c
n

1X
l=dn

l
c [�(l)]1�2=Æ = o

�
h
�1
�

(A.15)

by choosing dn such that h1�2=Æ dcn = C, so that the requirement that dn hn ! 0 is satis�ed.
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Proof of Theorem 2:

We employ the small-block and large-block technique. Namely, partition f1; : : : ; ng into 2 qn + 1

subsets with large-block of size r = rn and small-block of size s = sn. Set

q = qn =

�
n

rn + sn

�
: (A.16)

We now employ the Cram�er-Wold device to derive the asymptotic normality of Qn. For any unit

vector d 2 <p, let Zn;i =
p
hdT Zi+1, i = 0; : : : ; n� 1. Then

p
nh dT Qn =

1p
n

n�1X
i=0

Zn;i

and by Lemma 1

Var(Zn;0) = fU(u0)d
T 
�(u0)d

h
c
2

0
�0 + 2 c0 c1 �1 + c

2

1
�2

i
(1 + o(1)) � �

2(u0)(1 + o(1); (A.17)

and
n�1X
l=0

jCov(Zn;0; Zn;l)j = o(1): (A.18)

De�ne the random variables, for 0 � j � q � 1,

�j =

j(r+s)+r�1X
i=j(r+s)

Zn;i; �j =

(j+1)(r+s)X
i=j(r+s)+r

Zn;i; and �q =
n�1X

i=q(r+s)

Zn;i:

Then,

p
nh dT Qn =

1p
n

8<:
q�1X
j=0

�j +

q�1X
j=0

� + �q

9=; � 1p
n
fQn;1 +Qn;2 +Qn;3g : (A.19)

We will show that, as n!1,

1

n
E [Qn;2]

2 ! 0;
1

n
E [Qn;3]

2 ! 0; (A.20)

�����E [exp(i tQn;1)]�
q�1Y
j=0

E [exp(i t �j)]

�����! 0; (A.21)

1

n

q�1X
j=0

E

�
�
2

j

�
! �

2(u0); (A.22)

and

1

n

q�1X
j=0

E

h
�
2

j I
�j�j j � " �(u0)

p
n
	i! 0 (A.23)

for every " > 0. (A.20) implies that Qn;2 and Qn;3 are asymptotically negligible in probability;

(A.21) shows that the summands �j in Qn;1 are asymptotically independent; and (A.22) and (A.23)

are the standard Lindeberg-Feller conditions for asymptotic normality of Qn;1 for the independent

setup.
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Let us �rst establish (A.20). For this purpose, we choose the large-block size. Condition 2(ii)

implies that there is a sequence of positive constants 
n !1 such that


n sn = o

�p
nhn

�
; and 
n(n=hn)

1=2
�(sn)! 0: (A.24)

De�ne the large-block size rn by rn = b(nhn)1=2=
nc and the small-block size sn. Then, it can

easily be shown from (A.24) that, as n!1,

sn=rn ! 0; rn=n! 0; rn (nhn)
�1=2 ! 0; and (n=rn)�(sn)! 0: (A.25)

Observe that

E [Qn;2]
2 =

q�1X
j=0

Var(�j) + 2
X

0�i<j�q�1

Cov(�i; �j) � I1 + I2: (A.26)

It follows from stationarity and Lemma 1 that

I1 = qnVar(�1) = qnVar

0@ snX
j=1

Zn;j

1A = qn sn [�
2(u0) + o(1)]: (A.27)

Next consider the second term I2 in the right hand side of (A.26). Let r�j = j(rn + sn), then

r
�
j � r

�
i � rn for all j > i, we therefore have

jI2j � 2
X

0�i<j�q�1

snX
j1=1

snX
j2=1

jCov(Zn;r�i+rn+j1 ; Zn;r�j+rn+j2)j � 2
n�rnX
j1=1

nX
j2=j1+rn

jCov(Zn;j1 ; Zn;j2)j:

By stationarity and Lemma 1, one obtains

jI2j � 2n
nX

j=rn+1

jCov(Zn;1; Zn;j)j = o(n): (A.28)

Hence, by (A.25)-(A.28), we have

1

n
E[Qn;2]

2 = O

�
qn sn n

�1
�
+ o(1) = o(1): (A.29)

It follows from stationarity, (A.25) and Lemma 1 that

Var [Qn;3] = Var

0@n�qn(rn+sn)X
j=1

Zn;j

1A = O(n� qn(rn + sn)) = o(n): (A.30)

Combining (A.25), (A.29) and (A.30), we establish (A.20). As for (A.22), by stationarity, (A.25)

and Lemma 1, it is easily seen that

1

n

qn�1X
j=0

E

�
�
2

j

�
=

qn

n
E

�
�
2

1

�
=

qn rn

n
� 1
rn
Var

0@ rnX
j=1

Zn;j

1A! �
2(u0):

In order to establish (A.21), we make use of Lemma 1.1 in Volkonskii and Rozanov (1959) (see also

Ibragimov and Linnik 1971, p.338) to obtain�����E [exp(i tQn;1)]�
qn�1Y
j=0

E [exp(i t �j)]

����� � 16 (n=rn)�(sn)
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tending to zero by (A.25).

It remains to establish (A.23). For this purpose, we employ Theorem 4.1 in Shao and Yu (1996)

and Condition 2 to obtain

E

h
�
2

1
I
�j�1j � " �(u0)

p
n
	i � C n

1�Æ=2
E

�
j�1jÆ

�
� C n

1�Æ=2
r
Æ=2
n

n
E

�
jZn;0jÆ�

�oÆ=Æ�
: (A.31)

As in (A.14),

E

�
jZn;0jÆ�

�
� C h

1�Æ�=2
: (A.32)

Therefore, by (A.31) and (A.32),

E

h
�
2

1
I
�j�1j � " �(u0)

p
n
	i � C n

1�Æ=2
r
Æ=2
n h

(2�Æ�)Æ=(2 Æ�)
: (A.33)

Thus, by (A.16) and the de�nition of rn, and using Conditions 2(iii) and (iv), we obtain

1

n

q�1X
j=0

E

h
�
2

j I
�j�j j � " �(u0)

p
n
	i � C 


1�Æ=2
n n

1=2�Æ=4
h
Æ=Æ��1
n ! 0 (A.34)

since 
n !1. This completes the proof of the theorem.
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