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Abstract

Safe and Efficient Human-Robot Collaboration

by

Yujiao Cheng

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

As the emphasis on manufacturing is shifting from mass production to mass customization,
the demands for flexible automation keep increasing. Human-robot collaboration (HRC),
as an effective and efficient way to enhance flexibility, has attracted lots of attention both
in industry and academia in the past decade. These robots are called co-robots. The
fundamental research question is how to ensure that co-robots operate efficiently and safely
with human partners.

To achieve that, two problems should be addressed: 1) co-robots should know the human’s
future trajectory and avoid potential collisions to guarantee safety, and 2) co-robots should
know the human’s intentions and take corresponding actions to ensure task efficiency. There-
fore, a robotic system is adopted, which reasons about human behavior and makes human-
aware planning using the reasoning information. For reasoning about human behavior, a hi-
erarchical probabilistic modeling method and two online adaptation algorithms are proposed
for human plan recognition and human trajectory prediction. The hierarchical probabilis-
tic modeling method explicitly utilizes the hierarchical behavior of the human and uses a
pipeline to identify human intention through the trajectory, the trajectory type, the action,
and finally the plan, which is explainable and data-efficient.Two online adaptation algo-
rithms, the adaptable neural network and the adaptable lognormal method, are proposed
for short-term and long-term trajectory prediction. These two adaptation algorithms enable
the prediction models to online accommodate different human behaviors and to deal with
the lack of human data. For short-term prediction, the adaptable neural network utilizes
the recursive least square-parameter adaptation algorithm to online adapt the last layer of a
neural network model, the prediction of which is employed to the real-time collision avoid-
ance. For long-term prediction, the adaptable lognormal method uses an objective-based
adaptation algorithm to online adapt the sigma-lognormal model, from which the duration
of the whole trajectory is estimated and later will be used in the task planner that optimizes
the task completion time. For making human-aware planning, a separation task planner is
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proposed, which uses the knowledge of human intention and makes the robot execute actions
that are parallel to the human actions, while minimizing the task completion time. Different
from those methods that only consider time efficiency, this separation task planner addition-
ally improves human satisfaction and avoids potential conflicts, which can be shown in the
experiment results.

This dissertation is organized as follows. Chapter 1 introduces the proposed robotic system.
Chapter 2 defines the hierarchical human behaviors. Chapter 3 illustrates the proposed
human plan recognition method. Chapter 4 and chapter 5 propose two online adaptation
algorithms for short-term and long-term human trajectory prediction. Chapter 6 discusses
a human-aware task planner, and Chapter 7 concludes the dissertation.
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Chapter 1

An Overview: a Robot System for
Human-Robot Collaboration

1.1 Introduction

As the emphasis on manufacturing is shifting from mass production to mass customiza-
tion, the demands for flexible automation keep increasing [20] [68]. Human-robot collabora-
tion, as an effective and efficient way to enhance flexibility, has attracted lots of attention
both in industry and academia in the past decade. These robots are called co-robots. As
shown in Fig. 1.1, co-robots can take advantage of both manual manufacture and automa-
tion: on the one hand, the number of human labors can be decreased, human labor costs
can be reduced, and the task efficiency and quality can be improved; on the other hand, the
human’s flexibility and adaptability can be introduced to automation, and humans can help
conduct some manipulation that robots cannot do.

Collaboration between humans and intelligent robots can be categorized into three lev-
els: 1) low-level collision avoidance, 2) middle-level efficient cooperation with task plan
recognition and trajectory prediction, and 3) high-level automatic task assignments. Many
researches have been conducted for the three levels. For example, in the first category, [7] [38]
regard humans as moving obstacles and designed algorithms to let the robot avoid collisions
with humans, and in the second category, [6] [88] [59] reason about human behavior and
studied the human plan recognition and human trajectory prediction algorithms. In the
third category, [22] studies the task assignment algorithms in peer-to-peer human-robot in-
teraction where humans and robots work as partners. In this dissertation, the focuses are
on the second and third categories. Robots reason about human behavior and plan their
own actions accordingly, which is beneficial for safe and efficient human-robot collaboration,
because:

• Robots predict the human trajectory so that they can plan their own trajectory to
avoid potential collisions, which guarantees safety;
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Figure 1.1: The demand for human-robot collaboration.

• Robots recognize the human plans, and they make their own plans accordingly, which
boosts task efficiency.

1.2 A Robot System

To ensure safety and efficiency, an integrated human-robot collaboration framework is
proposed, the architecture of which is shown in Fig. 1.2. It includes both an offline database
and online modules. Online modules include a sensor module, a perception module, a human
plan recognition module, a human trajectory prediction module, a task planner, a motion
planner module and the actuators (the robot).

• Sensor Module uses a Microsoft Kinect sensor, which is a RGBD camera, to detect the
environment and humans.

• Perception Module takes visual information as inputs and outputs the 3D positions of
objects as well as the 3D human poses.

• Human Plan Recognition Module is a key module in our proposed framework. It aims to
identify the action being executed by the human and infers human’s plan by observing
the trajectories of their key joints. The action estimate will be sent to both the planner
module and the trajectory prediction module.

• Task Planner Module assigns the next action to the robot based on the current states
and the recognized plan and the current action of the human. The action command
from the planner is sent to the motion planner module.
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Figure 1.2: A robotic system for human-robot collaboration.

• Human Trajectory Prediction Module aims to predict the future trajectories of the
human. Instead of directly predicting the future trajectories based on only current and
historical human trajectories, we leverage the action labels from the plan recognition
module.

• Motion Planner Module includes two controllers: an efficiency controller and a safety
controller, as in [51]. The efficiency controller is a long-term global controller to assure
the efficiency of the robot, and the safety controller is a short-term local controller to
guarantee real-time safety under uncertainties.

This robot system aims to make safe and efficient human-robot collaboration. At the trajec-
tory planning level, robots take the human future trajectory into account to avoid potential
collisions, which improves safety. At the task planning level, robots perceive the human
actions, infer the human plan, and adapt to human actions in advance, which boosts task
efficiency. These two aspects can be illustrated in Fig. 1.3.

In the following chapters, the human plan recognition module, the human trajec-
tory prediction module, and the task planner module will be discussed in detail.
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Figure 1.3: Safe and efficient human-robot collaboration. Left: the robot takes the human
future trajectory into account to avoid potential collisions. Right: the robot infers the human
plan and collaborates accordingly.

1.3 A Running Example Task

Figure 1.4: A running example task for the dissertation: a desktop assembly task.

Throughout the dissertation, a running example is utilized, which is a desktop assembly
task. This task aims to assemble a desktop case. The procedure includes assembling the
CPU fan, assembling memories, routing cables, assembling system fans, etc.. In the Fox-
conn factory, the whole assembly line, as shown in Fig. 1.4, is occupied by human labors.
To decrease human labor costs and to free human labors from repetitive work, it is neces-
sary to introduce robots to the assembly line to collaborate with humans. Therefore, this
collaborative desktop assembly is studied.
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1.4 Chapter Conclusion

This chapter displayed that human-robot collaboration arose as it could solve some prob-
lems that neither manual manufacturing nor full automation could solve. To guarantee
human safety and to boost task efficiency, this chapter showed that it is important to do
reasoning about human behavior, and to plan the robot actions using the reasoning results.
A robot system was proposed for the safe and efficient human-robot collaboration, which
featured a human plan recognition module, a human trajectory prediction module, and a
human-aware task planner module. Besides, a running example task, i.e. a desktop assembly
task, was illustrated.
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Chapter 2

Hierarchical Human Behavior

2.1 Introduction

Human behavior is the potential and expressed capacity (mentally, physically, and so-
cially) of human individuals or groups to respond to internal and external stimuli throughout
their life [25]. For human-robot collaboration, some researchers focus on physical human mo-
tions, which can be captured by vision sensors [61][89], some researchers analyze humans by
modeling human mental states [81][14], and some researchers study social human-robot in-
teraction [8][2]. For us, we reason about human behavior at the physical level. Robots are
designed to make safe and efficient collaboration taking account of human physical motions,
while considering human mental comfort without explicitly modeling the human mental
feelings.

It is hard to learn human physical motions. On the one hand, human motions are very
complicated. They are highly nonlinear, time-varying, and stochastic [73]. On the other
hand, there is not enough human data to learn the human motions. A lot of data-driven
methods require a huge amount of data, while there is no existing database that can provide
sufficient data for the assembly setting. Public databases, such as CMU Graphics Lab Motion
Capture Database (Mocap) 1, captures human motions for daily activities, and they do not
apply to our collaborative assembly task. If we collect human data by ourselves, it would be
very time-consuming, and it will take a lot of effort. Therefore, the fundamental challenge
of reasoning human behavior is how to learn human behavior from limited data. To
cope with this challenge, two aspects are proposed:

• Defining hierarchical human behavior;

• Proposing adaptation algorithms for learning human behavior online.

First, instead of learning human behavior from end to end, i.e. learning the high-level hu-
man plan from image inputs, we define hierarchical human behavior and use hierarchical

1Repository URL: http://mocap.cs.cmu.edu/
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modeling methods to reduce the dimension of the problem and reduce the data pressure.
The definitions of hierarchical human behavior are explained in the next section, and the
hierarchical modeling method is explained in Chapter 3. Second, from limited data, some
patterns of human behavior may be missing and we could not learn a universal model offline,
so online we continue to adjust our model to suit different human behavior by using adap-
tation algorithms. Two adaptation algorithms, the adaptable neural network and adaptable
lognormal functions, are proposed, and they will be discussed in Chapter 4 and Chapter 5,
respectively.

2.2 Definitions of Hierarchical Human Behavior

To understand human behavior, a set of hierarchical human behavior is defined as follows:

• Trajectory: A time series of the joint positions of the human in Cartesian space. It
represents the continuous movements of an agent.

• Trajectory Type: A discrete variable/label to represent different types/patterns of
trajectories. For instance, typical trajectory types in factory scenarios include “Fetch-
ing”, “Screwing” and “Taping”. Different trajectories can be generated to perform the
same trajectory pattern.

• Action: A paired discrete variable/label including a trajectory type and a target
object to act on, i.e., action = {trajectory type, object}. For example, we can define
actions as “{fetching, screwdriver}” and “{taping, cables}”.

• Subtask: An element of completing a larger task (defined below), whose initial states
and the goal states do not depend on other subtasks. It might be implemented with
several sequences of actions, depending on their orders.

• Plan: A sequence of ordered subtasks. It represents the preferences to finish a task
(defined below). Different orders of actions in different plans come from either the
orders of subtasks, or the orders of actions within subtasks.

• Task: The work to be conducted by agents. It specifies the initial states, the goal
states and the participants. A task can be decomposed into a set of subtasks and
executed via a variety of plans.

Fig. 2.1 illustrates the trajectory, the trajectory type, the action, and the plan in a desktop
assembly example. Furthermore, Fig. 2.2 illustrates the hierarchical relationship of the task,
the subtask, and the action. A task (“desktop assembly”) can be decomposed into three
subtasks (“installing a CPU fan”, “installing a system fan”, “taping cables”). Suppose each
of them has a unique action order, then the permutation of three subtasks totally generates
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Tape Cables
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Trajectory

Trajectory Type

Action
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Figure 2.1: Examples for hierarchical human behavior.

six different plans, all of which are stored in the plan library as action2 sequences of the
human and the robot. Furthermore, within each action, the trajectory type can be executed
by infinite many (theoretically) trajectories.

2In the desktop assembly example, Action H1-H9 are “fetching the CPU fan”, “receiving the screwdriver
A”, “screwing the CPU fan”, “fetching the system fan”, “receiving the screwdriver B”, “screwing the sys-
tem fan”, “taping the cables”, “receiving scissors”, and “cutting the tape”. Action R1-R3 are “delivering
screwdriver A”, “delivering screwdriver B” and “delivering scissors”
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Figure 2.2: A hierarchical and temporal decomposition of a task.

Trajectory prediction is to forecast the future movement of the human, thus the robot can
make safe trajectory planning avoiding potential collisions. Plan recognition is to choose the
correct plan in a human’s mind, which is to choose the predefined action sequence in the plan
library. As shown in Fig. 2.2, without plan recognition, the robot (the “reactive” robot) can
only acquire its next action after the human finishes some key actions (such as Action H1,
Action H4, and Action H7), while with a plan recognition, the robot (the “predictive” robot)
can foresee the future actions of the human and execute its following actions in advance to
boost the efficiency of the collaboration.

2.3 Chapter Conclusion

This chapter showed that human behavior is complicated, and learning complex human
behavior requires a lot of data. To deal with the challenge of insufficient data, hierarchical
human behavior was defined, and adaptation algorithms for learning human behavior online
were proposed. This chapter explained and illustrated the definitions of hierarchical human
behavior, which laid the foundation for the plan recognition and trajectory prediction in the
later chapters.
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Chapter 3

Human Plan Recognition

3.1 Introduction

Human plan recognition is to identify human intentions for plans. There are many ways
that humans can communicate this intention. Some researchers study verbal conversation
[69][62]. Robots can query the human plan by asking humans questions. Since human makes
decisions on the fly, robots should constantly check in case that the human changes the plan.
Thus, after some time, humans can be annoyed by repeated questions. Human gaze can also
carry intention information [64][71], but such gaze communication really relies on the very
fine detection of eye movement. Some researchers also study gestures [55][54]. Since humans
have to use some specific gestures before every decision, it is highly possible that humans
either forget from time to time or humans get exhausted physically and mentally. To release
the communication burdens from humans, we let the humans do their own work, and we
recognize the human plan based on the perceived human behavior.

To solve this problem, some existing works focus on deep learning frameworks with
RGBD images as inputs [87] [67] [99]. Typically, the features selected mainly focus on
humans, for instance, the body pose, hand positions, motion information and histogram
of oriented gradients (HOG). No information about the objects of interaction is included.
However, the objects can provide rich information for inferring what the human is doing
via the intrinsic hierarchy among actions, trajectory types and the objects. Hence, in this
chapter, we explore such hierarchy to design a more robust plan recognition algorithm based
on the hierarchical human behavior defined in Chapter 2. Such a hierarchical modeling
method decouples the problem of learning plans to learning the trajectory, the trajectory
type, the action, and finally the plan. This can reduce the dimension of the problem and
reduce the data pressure.

We evaluated our hierarchical modeling method through experiments and simulations.
Experimental results showed that the average task completion time is significantly reduced,
i.e., more efficient human-robot collaboration can be achieved. In addition, our system
is robust with respect to noises in the model inputs and errors in the intermediate steps
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such as trajectory type classification. We combine a long short-term memory network with
algorithms based on Bayesian inference instead of end-to-end learning. This not only helps
improve the robustness of the algorithm, but also reduces the dimension of the problem, and
enhances its generalization ability using less data.

The main notation used in this chapter is summarized in Table 3.1

Table 3.1: Table of Notation.

k ∈ N Time step.
m ∈ N Trajectory type.
nm ∈ N Number of trajectory types.
h ∈ R3 Hand Position.
l ∈ N Number of finger keypoints.
w ∈ N2l Finger keypoints.
o ∈ N Object label.
a ∈ N Action label.
g ∈ N Plan label.

3.2 A Hierarchical Modeling Method

By utilizing the definitions of the hierarchical human behavior, which is explained in
Section 2.2, the pipeline for human plan recognition is proposed as shown in Fig. 3.1. From
continuous human trajectories, the discrete trajectory types are first recognized via a long
short-term memory (LSTM) network. Based on the trajectory types and the trajectories,
target objects are estimated through Bayesian inference. After the target object is known,
the human action is obtained by a combination of the trajectory type and the target object.
By using the history of the action sequence, the plan is then recognized based on the dynamic
time warping (DTW) algorithm. The upper figure of Fig. 3.1 shows the data flow, and the
lower figure of Fig. 3.1 shows the proposed methods.

3.2.1 Trajectory Type Classification

Trajectory type classification aims to categorize different trajectories given segments of
trajectories of the human’s key joints. Long-short-term-memory (LSTM) neural networks
have been extensively proved to be an effective approach to model the dynamics and de-
pendencies in sequential data [57]. Hence, we design an LSTM recurrent neural network for
trajectory type classification. The structure of the LSTM network is depicted in Fig. 3.2.
The input data is the human pose from the Perception module. To be more specific, in an
assembly task, the input vector at time step k is

xk = {wk,hk},
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Figure 3.2: The LSTM network for trajectory type classification.

where hk is the hand position in the world frame at time step k and wk are the velocities
of selected key points on the human fingers. The output at time step k is a trajectory type
label mk ∈ {1, 2, ...nm}, where nm ∈ N is the number of trajectory types. The LSTM is
trained using the ”Motion Model” database in Fig. 1.2.

3.2.2 Target Object Estimation

Given the classified trajectory type labels and a history of human pose, Bayesian inference
is commonly used to update the beliefs on different target objects, e.g. [21]. Let ok be an
object at time step k, O be the object set, m1:k be the historical trajectory type labels, and
h1:k be the historical human poses. Then we need to obtain the robot’s beliefs on the object,
i.e., a probability P (ok|h1:k,m1:k). Applying the Markov assumption, the following equation
holds:

P (ok|h1:k,m1:k) ∝
P (mk|ok, hk−1,mk−1) · P (hk|ok, hk−1,mk)∑

ok−1∈O

P (ok|hk−1,mk−1, ok−1) · P (ok−1|h1:k−1,m1:k−1)

We compute the P (hk|ok, hk−1,mk) with an assumption that humans are optimizing some
value function as [5] suggests. Then a Boltzmann policy can be applied:

P (hk|ok, hk−1,mk) ∝ exp(βVg(hk, ok;mk))

where Vg is the value function. We model Vg for each trajectory type as a function of distance
and velocity.

To compute P (mk|ok, hk−1,mk−1) and P (ok|hk−1,mk−1, ok−1), we impose conditional in-
dependence assumption of mk and hk−1 given ok and mk−1, and conditional independence
assumption of ok and hk−1 given ok−1 and mk−1. Then, with predefined or learned models
of P (mk|mk−1, ok) and P (ok|mk−1, ok−1), P (ok|h1:k,m1:k) can be updated iteratively.
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3.2.3 Plan Inference

With results from trajectory type classification and object estimation, we can uniquely
determine a sequence of actions by observing the human trajectories. Note that a plan is a
sequence of subtasks, and each subtask is represented by one action or an ordered sequence
of actions. Hence, a plan can be uniquely represented by a temporal sequence of actions.
Therefore, we first build a plan library offline in the Database where each plan is represented
by a reference sequence of actions. Then we utilize the reference sequences to online infer
potential plans based on Bayes’ rule,

P (g|a1:k) ∝ P (a1:k|g)P (g),

where P (g) is a prior belief of plan g, and P (g|a1:k) is a posterior belief based on the
likelihood of observed action sequence a1:k given plan g. Similarly, with Boltzmann policy,
the likelihood of the action trajectory can be defined as

P (a1:k|g) ∝ exp(−d(a1:k; g)),

where the function d is a distance function measuring the similarity between the observed
action sequence (A, namely a1:k) and the reference action sequence (R) of the plan g. The
larger the distance is, the less likely the human is following the plan [39]. We adopt the
open-end dynamic time warping (OE-DTW) algorithm [91] to calculate d. This algorithm is
to best match the query sequence to a reference sequence and to calculate the dissimilarity
between the matched portion. Given a reference time series R = (r1, r2, ..., rN) and a query
sequence A = (a1, a2, ..., aM), the OE-DTW distance between A and R is calculated via
minimizing the dynamic time warping distances (DTW) between A and any references Rj

truncated from reference R at point j = 1 : N .

DOE(A,R) = min
j=1,...,N

DDTW (A,Rj).

Here is a short introduction to DTW. The indices of the two series will be mapped
through φt and ψt, t = 1, 2, ..., T , that satisfy the following constraints [91]:

• Boundary condition: φ1 = 1, ψ1 = 1 and φT = N , ψT = M

• Monotonic conditions: φt−1 ≤ φt and ψt−1 ≤ ψt

• Continuity conditions: φt − φt−1 ≤ 1, and ψt − ψt−1 ≤ 1

• Local slope constraints: certain step patterns are allowed.

The optimal Φ̂ = (φ̂t, ψ̂t) minimizes the distance between the two warped time series:

(φ̂t, ψ̂t) = argmin
φt,ψt

T∑

t=1

d(rφt , aψt)mt,Φ∑
tmt,Φ

,
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where d(·, ·) is any distance function and mt,Φ is a local weighting coefficient. Therefore, the
dynamic time warping distance between A and R is

DDTW (A,R) =
T∑

t=1

d(rφ̂t , aψ̂t
)mt,Φ∑

tmt,Φ

.

3.2.4 Posterior Action Correction

As we obtain the posterior estimate of the plan g∗, the best-matched reference sequence
R∗j

∗
is also obtained. We correct the action label estimate ak by retrieving the action in the

best-matched reference plan as follows,

apostk = R∗(j∗) = r∗j∗ .

This step is of key importance to reduce the sensitivity of the learning models to noises so
that the robustness of the plan recognition can be improved. The effectiveness of this step
is verified in experiments.

3.3 Experiment and Simulation

3.3.1 A Desktop Assembly Scenario

We evaluate our proposed framework in a desktop assembly task in industrial settings.
The task of the HRC team is to assemble a desktop (desktop assembly example explained
in Section 1.3). This task can be decomposed into three un-ordered subtasks: installing a
CPU fan, installing a system fan and taping cables. Each subtask is implemented by only
one action sequence. Thus, by a hierarchical decomposition, as shown in Fig. 2.2, there are
at most six different plans to finish the task. The robot is designed to assist the human by
delivering necessary tools to the human as he/she needs.

What we expect to see in the experiments is that the robot can recognize the human
plan correctly and respond to the human in a timely and proactive manner as shown in Fig.
2.2. A predictive robot with an effective plan recognition will recognize the human’s plan in
the second subtask, and proactively execute the following actions in sequence. For example,
if the human is doing the first plan, namely, installing a CPU fan, installing a system fan,
and finally taping the cables. We expect that the correct plan is inferred when the human
is fetching the system fan and then the robot will execute the following actions (”delivering
the screwdriver” and ”delivering the scissors”) in sequence.

3.3.2 The Robot System

As shown in Fig. 1.2, the output of the Plan recognition module is sent to the Planner
to generate commands for the Motion planner module. With the identified plan and the
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human action estimate, the Task planner module acquires the next action of the robot from
the plan library and sets the goal states of the Motion planner module to generate safe and
executable trajectories.

Since the plan recognition results are probabilistic, we need to design a decision-making
mechanism to decide on the robot actions. There are two cases that we might encounter.
The first one is that the probability of one plan is prominently higher than that of others.
This gives the Task planner a clear idea about the plan the human is executing, and it
can directly acquire all the following actions for the robot from the plan library. The other
case is where there are two or more candidate plans with similar probabilities from the plan
recognition algorithms. Under this situation, the Task planner will look at the two most
likely plans, and find out whether the next action of the robot for each plan is the same. If
the next action is the same, Task planner will directly let the robot execute it. Otherwise,
the Task planner will wait and collect the human’s information to clear out the confusion.

The Task planner also takes changes of a plan into consideration. If the robot’s next
action is not consistent with what the robot is doing, it will recover the current action and
responsively adjust its action. For example, if the robot is delivering a screwdriver to the
human, while suddenly the next action becomes bringing the scissors. The robot will put
back the screwdriver if it already grabs it, and go to scissors immediately.

The pseudo-code for the workflow of our proposed system is presented as Algorithm 1.

Algorithm 1 Proposed HRC system

Input plan library Q, motion models M; trajectory prediction models f ∗; object set O
1: Init: RobotIsDoing = {}, NewHumanPose = {}, RobotActionBuffer={}
2: while true do
3: NewHumanPose = getValidPoseFromPerception()
4: if notEmpty(NewHumanPose) then
5: record historical human joint trajectory h1:k

6: mk← TrajectoryClassification(h1:k, M)
7: ok ← TargetObjectEstimation (m1:k, o1:k−1, h1:k)
8: hk+1:k+M ← TrajectoryPrediction(h1:k, f

∗, mk, ok)
9: obtain ak = {mk, ok}

10: generate action trajectory a1:k

11: p(g|a1:k), a
post
k ← OEDTWPlanInference(Q, a1:k)

12: ĝ[1], ĝ[2] ← the best and second best plan estimates
13: if p(ĝ[1]|a1:k) >Threshold then
14: RobotActionBuffer← nextActionSequence(ĝ[1],apostk ,Q)
15: action1 ← nextAction(ĝ[1],apostk ,Q)
16: action2 ← nextAction(ĝ[2],apostk , Q)
17: if action1==action2 then
18: RobotActionBuffer←action1
19: end if
20: end if
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21: if notEmpty(RobotActionBuffer) then
22: if notEmpty(RobotIsDoing)& RobotActionBuffer{1}!=RobotIsDoing then
23: recover what robot is doing
24: RobotIsDoing ← RobotActionBuffer{1}
25: end if
26: end if
27: end if
28: Execute(RobotIsDoing, hk+1:k+M)
29: if ActionExecutionFinished then
30: if notEmpty(nextInBuffer) then
31: RobotIsDoing ← nextInBuffer
32: else
33: RobotIsDoing = {}
34: end if
35: end if
36: end while

3.3.3 Experiment Design

Hypothesis

We evaluate the effectiveness of the proposed plan recognition by verifying the following
three hypotheses.

• H1: Human plan recognition improves the efficiency of the HRC team.

• H2: The performance of the proposed pipeline for plan recognition is robust to noises
or errors caused by some intermediate steps such as trajectory type classification.

• H3: The human subjects are more satisfied with our collaborative robots than with a
responsive robot in terms of some criteria

Experiment setup

We test our system on an industrial robot FANUC LR Mate 200iD/7L. A Kinect V2 for
windows is placed close to the table on which a robot arm and a human worker do the task
together. Some necessary tools lie in the tool area and a CPU fan and a system fan are in
the part area.

We conduct experiments with the human in the loop. Eight human subjects participate
in the experiments.
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Manipulated variables

To evaluate the effectiveness of the proposed framework, we manipulated two controlled
variables in our experiments: plan recognition schemes and trajectory prediction schemes.
Plan recognition schemes include:

• “plan recognition = 0”: no plan recognition;

• “plan recognition = 1”: recognition ground truths provided by human subjects;

• “plan recognition = 2”: recognition results generated by the proposed algorithm.

When “plan recognition = 0”, the robot is completely reactive, meaning that it receives the
information of the human action after the human completes the action. The robot only starts
to move once it detects the human’s actions, and it can only collaborate with the human
within subtasks. When “plan recognition = 1”, the robot has perfect plan knowledge, and it
moves based on the ground truths of human’s actions and the plan. When “plan recognition
= 2”, the proposed algorithm will let the robot automatically identify the human’s actions
and infer about the potential plan, so that the human and the robot can collaborate across
subtasks. For trajectory prediction schemes, they include:

• “trajectory prediction = 0”: no predictions of human trajectory;

• “trajectory prediction = 1”: prediction via our proposed method, which will be ex-
plained in Chapter 4.

By manipulating the two variables, we have six groups of experiments. Under each group,
every human subject performs the task using any plan three times. Thus, there will be 24
trials in each experimental group and in total we collect 144 trials for all groups.

Dependent measures

• To quantify efficiency, we use a timer to keep track of the task completion time. The
timer starts when a human subject starts to move, and ends when the task is finished.

• To quantify the plan recognition performance, we calculate the plan recognition accu-
racy and the action recognition accuracy which is an intermediate result of the plan
recognition module. Plan and action recognition accuracy is the percentage of plan
estimates and action estimates that conform to the true values labeled by human sub-
jects. Notice that plan recognition takes place at every time step, and there might be
multiple plan labels in the early phase. As long as the estimate is one of the labels, it
is regarded as correct.

• To quantify human’s satisfaction with our collaborative robots, we ask the eight human
subjects to rate the following statements on Likert scale from 1 (strongly disagree) to
5 (strongly agree), similar to [44]:
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– The robot was collaborative and helped;

– The robot did the right thing at the tight time;

– I am satisfied working with the robot;

– I will work with this robot again in the future.

3.3.4 Implementation Details

The hardware configuration of the robot system is shown in Fig. 3.3. A workstation
PC, a host PC, a target PC and a FANUC LR Mate 200iD/7L is connected via cables
and networks. The workstation PC has a high image processing power with four EVGA
GeForce GTX 1080 Ti GPUs. The perception module, the trajectory prediction module,
and plan recongition module are implemented in this workstation. The planner modules,
i.e. the trajectory planner and the task planner, are implemented in the host PC. The
target PC receives signals from the host PC and controls the robot to move. For software

Host PC
Windows OS

Target
PC

Network Switch

(4 Ports)

Workstation
Windows OS

Figure 3.3: Hardware configuration of the system.

implementation, the input feature of the trajectory type classifier is x = {w,h} ∈ N42×R3,
where h ∈ R3, is the right hand position of the human in the world frame, and w ∈ N42 is
the coordinates of 21 keypoints [85] of the fingers of the right hand in the image frame. The
LSTM layer of the trajectory type classifier has 50 hidden units, and the fully connected
layer has 3 units, which is the number of the trajectory types (“fetching”, “screwing” and
“winding”). To train the LSTM newtork, the MATLAB deep learning toolbox is used. The
batch size is set to 10, the initial learning rate is set to 0.01, and the maximum epoches is
set to 15. For target object estimation, the object set is {CPU fan, system fan, tape}. The
P (mk|mk−1, ok) and P (ok|mk−1, ok−1) are predefined as the illustrated in the left and right
subfigure of Fig. 3.4 respectively. σ is set to 0.01. The value functions of the Boltzmann
policy is cosine distance of the human hand movement vector and the displacement vector
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between the human hand and the object for “fetching” , sine distance of the human hand
movement vector and the displacement vector between the human hand and the object for
“winding” for constant distance for “screwing” .

𝑚!
𝑚!"#

“Fetch” “screw” “wind”

“fetch” 1−σ 1−σ σ
“screw” σ σ σ
“wind” 1−σ σ 1−σ
“fetch” 1−σ 1−σ σ
“screw” σ σ σ
“wind” 1−σ σ 1−σ
“fetch” 1−σ σ 1−σ
“screw” 1−σ 1−σ σ
“wind” σ σ σ

𝑜!$#
𝑜!

Cpu fan System fan tape

Cpu fan 1−σ σ σ
System fan σ 1 −σ σ

tape σ σ 1−σ
Cpu fan 1−σ σ σ

System fan 1−σ σ σ
tape 1−σ σ σ

Cpu fan σ σ 1−σ
System fan σ σ 1−σ

tape σ σ 1−σ

CPU fan System fan tape𝑜! “fetch” “screw” “wind”𝑚!$#

Figure 3.4: Predefined probability matrices.

3.3.5 Results

H1: Human plan recognition improves the efficiency of the HRC team. The task
completion time for different plan recognition schemes was recorded among trials with the
eight human subjects. As shown in Fig. 3.5, without plan recognition (“plan recognition
= 0”), the average task completion time is 90.0 ± 10.9s, which is the longest. With our
proposed plan recognition algorithm (“plan recognition = 2”), the average task completion
time is 64.6 ± 10.6s, which is reduced by 29.1%. Thus, the proposed framework with plan
recognition significantly improves (p < 0.01) the efficiency of the HRC team compared to
the system without the plan recognition. As a matter of fact, our system can achieve similar
performance as a system with perfect plan recognition (“plan recognition = 1”) with 1.2s
more average task completion time and larger variance.
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Figure 3.5: Task completion time fro different plan recognition schemes. “plan recognition
= 0” means no plan recognition, “plan recognition = 1” means recognition ground truths
provided by human subjects, and “plan recognition = 2” means the recognition results
generated by the proposed algorithm

Table 3.2: Quantitative experimental results for recognition. TT means trajectory type, and
PR means plan recognition.

Subjects TT accuracy(%) PR accuracy (%)

Subject 1 (6 trials) 85.3 ±1.3 97.6 ±0.3
Subject 2 (6 trials) 69.6 ±15 98.5 ±0.5
Subject 3 (6 trials) 81.4 ±1.1 97.4 ±1.2
Subject 4 (6 trials) 87.9 ±7.0 97.6 ±1.1
Subject 5 (6 trials) 79.4 ±6.5 96.4 ±1.8
Subject 6 (6 trials) 80.7 ±12.0 97.9 ±0.1
Subject 7 (6 trials) 84.8 ±9.5 97.6 ±0.6
Subject 8 (6 trials) 85.8 ±8.8 90.5 ±0.3

H2: The performance of the proposed pipeline for plan recognition is robust
to noises or errors caused by some intermediate steps such as trajectory type
classification. This hypothesis can be proved via quantitative results in Table 3.2. One can
see that although some trajectory type classification accuracy is low1, the plan recognition
accuracy still remains high. The Pearson product-moment correlation coefficient for the
two variables is −0.11(p < 0.01), which indicates a weak correlation. This means that the

1The online trajectory type classification deteriorated mainly because there were a lot of random or
transition movements during the experiments that do not belong to any class of the four trajectory types.
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overall performance of the proposed plan recognition algorithm is not sensitive to the errors
in the intermediate LSTM step. This is mainly benefiting from the Bayesian inference step
and the dynamic time warping step. These two steps serve as a low pass filter, eliminating
the wrong trajectory type estimates. Besides, the plan is actually estimated by the nearest
neighbor in DTW step, and the six plans as action sequences lie sparsely in an increasingly
high dimensional space, and they get farther away from each other over time. As long as the
estimates do not deviate from the true point too much, the plan estimate should be correct.

To further validate the robustness brought by the DTW step, we assumed that the target
object detection was perfect and did simulations by varying the trajectory type classification
(MC) performance and then tested the plan recognition (PR) accuracy. First, we obtained
the true positive rates for each trajectory type throughout all the experiments with “plan
recognition = 2”: 83.4% for “screwing”, 64.2% for “fetching”, 59.1% for “receiving”, and
84.2% for “taping”. Then we varied each true positive rate by δ(%), which took values
of 0,−5,−10,−15,−20,−30,−40, and −45. Based on these sets of true positive rates, we
simulated 15 trials of action sequences for each of the six plans in the desktop assembly
task, and so we had 90 trials for each δ. As we can see in the Fig 3.6, when δ is equal
to −30 (true positive rate for each trajectory type is 53.4%, 24.2%, 29.1%, 54.2%) and the
overall trajectory type classification is 30%, the plan recognition accuracy remains higher
than 85%, which shows robustness of our plan recognition to the trajectory type accuracy.

H3: The human subjects are more satisfied with our collaborative robots than
with a responsive robot in terms of some criteria. Fig. 6.9 shows the comparison of
human subjects’ ratings for the six types of robots on four criteria mentioned above. Human
subjects rated the robot with our proposed plan recognition algorithm (“plan recognition =
2”) significantly higher (p < 0.01) than the robot without plan recognition (“plan recognition
= 0”) on all four criteria. Between robots with ground truths of plan recognition (“plan
recognition = 1”) and robots with our plan recognition algorithm (“plan recognition = 2”),
there is no significant difference (p > 0.05) on all the criteria except for the criteria “The
robot did the right things at the right time” (p = 0.04). Furthermore, there is also no
significant difference (p > 0.05) between the robots with trajectory prediction (“trajectory
prediction” = 1) and the robots without trajectory prediction (“trajectory prediction” =
0). This might be because the trajectory prediction is too short to influence the human’s
feedback. Recalling the fact that ”plan recognition” has a significant influence, we can see
that humans care more about efficient plan recognition.

Aside: The sensitivity of the threshold in Algorithm 1 is not obvious. We de-
signed a new experiment by varying the threshold value in Algorithm 1 on the experiment
data we collected. It was found that the plan recognition results remained the same when
the threshold was dropped from 0.70 to 0.58, where 0.70 is the threshold we used in other
experimental results. Therefore, the sensitivity of threshold in Algorithm 1 is not obvious.
To further study the sensitivity of the threshold requires more experiments in the future.
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Figure 3.6: Simulations for plan recognition accuracy when reducing the trajectory type
classification accuracy by δ. MC represents trajectory type classification, and PR represents
plan recognition.

3.3.6 Extension to Multiple Tasks

Table 3.3: The result table for the three tasks.

Tasks Precision Recall F0.5

ours MEMM ours MEMM ours MEMM
Drinking water 97.0 87.9 95.4 80.8 96.7 86.4

Cooking (stirring) 88.9 65.5 98.4 43.9 90.6 59.7
Opening pill container 84.3 86.4 87.0 58.0 84.4 78.7

Our plan recognition algorithm also works to distinguish different tasks. We test our
algorithm on three different tasks in the CAD-60 Cornell Activity Dataset [87]: cooking
(stir), opening a pill container and drinking water. Table 3.3 shows the comparison of
the results in the “new person” setting using our algorithm and the two-layered maximum
entropy Markov model (MEMM) method in [87]. We can see that our plan recognition
algorithm can also achieve very high accuracy compared to the approach in [87]. This
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(b) Robot did the right things at the right time.
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(c) I am satisfied working with the robot.
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(d) I will work with this robot again.
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Figure 3.7: Human subjects’ ratings for six types of robots on four different criteria. PR is
short for plan recognition and TP is short for trajectory prediction.

verifies our claim that exploiting the rich object information can help improve the task/plan
recognition performance.

In addition, compared to end-to-end learning, our algorithm advantages in two aspects:

• The learning process is easier, since a hierarchical combination of trajectory type clas-
sification and target estimation reduces the dimension of the classification problem;

• The learning pipeline is more interpretable and predictable.

As a cost, however, the proposed method requires stronger prior knowledge, i.e., all possible
plans of the new task should be predefined offline, which might be hard when the task is
complicated.
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3.4 Change of Plans

It is possible that humans change the plans during operations. By using our plan recog-
nition method, the robot can quickly recognize the human’s new plan, and adapt its actions
accordingly. We evaluate this point by an experiment. Fig. 3.8 shows several clips of the
video2 captured when conducting this experiment. The human intends to assemble the CPU
fan at first. While the human is reaching for the CPU fan, the robot recognizes this intention
and moves to the screwdriver, which is the tool needed for the subtask of assembling CPU
fan. However, the human then changes to tape the cables, when the robot has already picked
up the screwdriver. The robot identifies that the human changes the plan, so it releases the
screwdriver and goes to scissors, which is the tool needed for the subtask of taping the cables.
Therefore, by using our algorithm, the robot detects the change of the plan correctly.

(a) (b)

(c) (d)

Figure 3.8: The robot’s response to the human’s change of plans. (a) The human goes to
the CPU fan, and the robot goes to the screwdriver. (b) While the robot is picking up the
screwdriver, the human changes to tape the cables. (c) The robot releases the screwdriver
and goes to pick up the scissors. (d) The robot delivers the scissors.

2The video of this experiment can be found in https://www.youtube.com/watch?v=4DlgnFjfwkY.
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3.5 Chapter Conclusion

In this chapter, we designed a robust plan recognition algorithm based on neural net-
works and Bayesian inference. by explicitly leveraging the hierarchical relationships among
plans, actions and trajectories. Experiments with humans in the loop were conducted on a
desktop assembly task. The results showed that with our proposed framework, the average
task completion time was reduced by 29.1%. Moreover, the proposed plan recognition algo-
rithm was robust and reliable. High plan recognition accuracy was achieved even when the
trajectory type labels via neural networks were of low accuracy. We verified the effectiveness
of the proposed algorithms on both a designed desktop assembly experiment and the CAD60
dataset compared with another human activity recognition approach.
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Chapter 4

Short-Term Human Trajectory
Prediction

4.1 Introduction

Smooth interactions among intelligent entities depend on a clear understanding of what
the others would do in various circumstances. For example, soccer players predict the motions
of their teammates for better cooperation; pedestrians have a notion of where others are
going so as to avoid collisions. Similarly, robots that interact in proximity with humans
are required to know what the human is going to do in the near future. The benefits are
that, based on the predictions, the robot can plan collision-free trajectories to assure the
human’s safety and schedule their actions in advance to improve task efficiency. Human
motion prediction has applications well beyond human-robot interaction [98] [42] [23], it also
plays a key role in computer vision. Adequate prediction of human motion can facilitate 3D
people recognition and tracking [33], motion generation in computer graphics (CG) [45], and
psychology biological motion modeling [92].

However, human motion is inherently difficult to predict due to the nonlinearity and
stochastic in human behavior [73]. In addition, individual differences are also prominent.
Prediction models that work for one person may not apply to another.

Early attempts have been made to predict human motion using Kalman filter and particle
filter [43] [12], where the problem is posed as a tracking problem. Another category of
approaches assumes that human is rational with respect to certain cost functions. Human
trajectories can then be predicted by optimizing the cost function [37]. The difficulty of
this method is that the cost functions of humans are hard to obtain due to stochasticity
and complexity in human intention. Another domain of work prominently focuses on latent
variable based probabilistic models. Wu et al. [97] use hidden Markov models (HMMs)
combined with multi-layer perceptrons to model the evolution patterns of motion trajectory.

Similar to HMMs, recurrent neural networks (RNNs) have distributed hidden states to
store information about the past, and many works on RNNs have obtained big success on hu-
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man motion prediction [29] [1], but they still suffer from several problems. The first problem
is that RNNs are hard to train. Heroic efforts of many years still fail to accelerate the train-
ing speed of RNNs. The second problem is that predictions from RNNs are deterministic,
which is not satisfactory in human-robot interaction, since the robot needs the uncertainty
level of human’s future motion for safe motion planning. The last serious problem is that
the RNN models are fixed and they cannot adapt to time-varying human behaviors.

We aim to solve these problems by proposing a semi-adaptable neural network. To
be specific, a neural network is trained offline to represent the human motion transition
model, and then a recursive least square parameter adaptation algorithm (RLS-PAA) is
adopted for online parameter adaptation of the last layer in the neural network and for
uncertainty estimation. The proposed method advantages human motion prediction in three
aspects. First, it is computationally more efficient to use a feedforward neural network than
to use a RNN for approximation of the human transition model. In the meanwhile, the
mechanism for adaptable feedforward neural networks is equally applicable to adaptable
RNNs. Second, it adapts the model to time-varying behaviors and individual differences in
human motion, which yields more accurate predictions. Third, it computes the uncertainty
level of the predictions, which is important for the safe motion planning of robots. To verify
the effectiveness of our adaptation scheme, we compare our method with the state-of-the-
art online learning algorithm called the identifier-based algorithm [78]. The identifier-based
algorithm adapts all the parameters in the offline-trained neural network model online, using
gradient descent to minimize the prediction error. Results demonstrate that our method
achieves a higher prediction accuracy, and the performance is maintained across a variety of
motion categories and motion datasets.

The main notation used in this chapter is summarized in Table 4.1

Table 4.1: Table of Notation.

M ∈ N Prediction horizon.
N ∈ N Past horizon.
x ∈ R3M Future M-step human hand position.
x∗ ∈ R3N Past N-step human hand position.
a ∈ N Action.
k ∈ N Time step.

4.2 Problem Formulation

Predicting human motion is important for smooth human-robot interaction, because first,
if the robot knows what the human is going to do, it can adapt its actions to collaborate
with humans in an efficient way, and second, plan collision-free trajectories to guarantee
human safety [53]. This work concerns the prediction of one human joint (e.g., wrist), which
is reasonable because when a human works in close proximity to a robot, special attention
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should be paid to the movement of a human’s hand. Moreover, one joint motion prediction
is extendable to that of multiple joints, which will be discussed in Section 5.5.

The transition model of human joint motion is formulated as

x(k + 1) = f ∗(x∗(k), a) + wk, (4.1)

where x(k + 1) ∈ R3M denotes human’s M -step positions of the joint at future time steps
k + 1, k + 2, . . . , k +M in a Cartesian coordinate system. M ∈ N is the prediction horizon.
Denoting the Cartesian position of the joint at time step k by p(k) ∈ R3, x(k + 1) is
obtained by stacking p(k+ 1), p(k+ 2), ..., p(k+M). x∗(k) ∈ R3N denotes human’s past N -
step positions of the joint. It is also constructed by stacking the position vectors p(k), p(k−
1), ..., p(k −N + 1). a ∈ N is an action label to distinguish different motions, and this label
is obtained by the action recognition module of the system [53]. wk ∈ R3M is a zero-mean
white Gaussian noise. The function f ∗(x∗(k), a) : R3N ×N1 → R3M represents the transition
of the human motion, which takes historical trajectory and current action label as inputs,
and outputs the future positions of the joint, which is illustrated in Fig. 4.1.

Since human behavior differs greatly across individuals and is highly time-varying, func-
tion f ∗ may not be a time-invariant function. Though f ∗ takes the discrete parameter action
label a as one of the inputs to accommodate some of the variances, an adaptable model of
f ∗ is still desired to account for continuous changes online in order to provide accurate
prediction.

4.3 Semi-adaptable Neural Networks

Since human motion is not only time-varying but also highly nonlinear, we propose to
use a neural network to construct the model f ∗, because neural networks have good model
capacity. To make it adaptable, notice that if we remove the last layer, the pre-trained
neural network becomes an effective feature extractor [4], the features from which are better
than handcrafted ones [84]. Therefore we only adapt the weights of the output layer of
the neural network online, which fixes the weights of the remaining layers, hence fixing
the extracted features. This approach combines offline training and online adaptation for
function approximation, which takes advantages of both methods. Offline training of the
neural network extracts global features from the data. Online adaptation changes the way
that the global features are combined by adjusting the coefficients in the last layer of the
network locally to minimize real-time prediction error. The proposed procedure is as follows.

1. We first design a neural network architecture;

2. We train the model f ∗ offline;

3. During online execution, we adapt the parameters of the last layer of the neural network
using an efficient adaptation algorithm;
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4. We then compute the uncertainty level of predictions given the adaptation result.

The algorithm is shown in Algorithm 2.

4.3.1 Training the Neural Network

To train the transition model f ∗, we choose an n-layer neural network with ReLU acti-
vation function which takes the positive part of the input to a neuron.

f ∗(x∗(k), a) = W T max(0, g(U, sk)) + ε(sk), (4.2)

where sk = [x∗(k)T , a, 1]T ∈ R3N+2 is the input vector, g denotes (n − 1) - layer neural
network, whose weights are packed in U . ε(sk) ∈ R3M is the function reconstruction error,
which goes to zero when the neural network is fully trained. W ∈ Rnh×3M is the weights
of the last layer, where nh ∈ N is the number of neurons in the hidden layer of the neural
network [78].

4.3.2 Parameter Adaptation Algorithm

To accommodate both the time-varying behavior of human and individual differences
among different people, it is important to update the parameters online. In this work, we
applied the recursive least square parameter adaptation algorithm (RLS-PAA) with forget-
ting factor [31] to asymptotically adapt the parameters in the neural network.

By stacking all the column vectors of W , we get a time varying vector θ ∈ R3Mnh to
represent the weights of last layer. θk denotes its value at time step k. To represent the

kk-1k-2
k-N+1

k+1
k+2

k+M

...

...

= 𝑓∗ , 𝑎 + 𝑤"

Predicted trajectory
Observed trajectory

Feature Extractor Update last layer

... ...

Figure 4.1: The adaptable neural network for human trajectory prediction.
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Algorithm 2 Semi-adaptable neural network for human trajectory prediction

Input Offline trained neural network (4.2) with g, U and W
Output Future trajectory x(k + 1)
Variables Adaptation gain F , a priori mean squared estimation error of states Xx̃x̃,

mean squared estimation error of the parameters Xθ̃θ̃, neural network last layer parameters
θ, estimated rate of change δθ (approximation of ∆θ), variance of zero-mean white Gaussian
noise V ar(wk)

1: Init: F = 1000I, θ = column stack of W ,Xx̃x̃ = 0, Xθ̃θ̃ = 0, λ1 = 0.998, λ2 = 1
2: while True do
3: Wait for a new joint position p captured by Kinect and current action label a from

action recognition module
4: Construct sk = [p(k), p(k − 1), ..., p(k −N + 1), a, 1]T

5: Obtain Φ(k) by diagonal concatenation of max(0, g(U, sk))
6: Update F by (4.7)
7: Adapt the parameters θ in last layer of neural network by (4.6)
8: Calculate future joint trajectory x(k + 1) by (4.3)
9: Update δθ and calculate Xx̃x̃ and Xθ̃θ̃ by (4.8) and (4.11)

10: send x(k + 1) and Xx̃x̃ to robot control.
11: end while

extracted features, we define a new data matrix Φk ∈ R3M×3Mnh as a diagonal concatenation
of M pieces of max(0, g(U, sk)). Using Φk and θk, (4.1) and (4.2) can be written as

x(k + 1) = Φkθk + wk. (4.3)

Let θ̂k denotes the parameter estimate at time step k, and let θ̃k = θk− θ̂k be the parameter
estimation error. We define the a priori estimate of the state and the estimation error as:

x̂ (k + 1|k) =Φkθ̂k, (4.4)

x̃ (k + 1|k) =Φkθ̃k + wk. (4.5)

The core idea of RLS-PAA is to iteratively update the parameter estimation θ̂k and
predict x(k + 1) when new measurements become available. Note that x(k + 1) is available
after M steps. The parameter update rule of RLS-PAA can then be summarized as:

θ̂k+1 = θ̂k + FkΦ
T
k x̃ (k + 1−M |k −M) , (4.6)

where Fk is the learning gain updated by:

Fk+1 =
1

λ1(k)
[Fk − λ2(k)

FkΦkΦ
T
kFk

λ1(k) + λ2(k)ΦT
kFkΦk

] (4.7)

where 0 < λ1(k) ≤ 1 and 0 < λ2(k) ≤ 2. Typical choices for λ1(k) and λ2(k) are:
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1. λ1(k) = 1 and λ2(k) = 1 for standard typical least squares gain.

2. 0 < λ1(k) < 1 and λ2(k) = 1 for least squares gain with forgetting factor.

3. λ1(k) = 1 and λ2(k) = 0 for constant adaptation gain.

4.3.3 Mean Squared Estimation Error Propagation

To guarantee safety, the uncertainty of the prediction is also quantified during online
adaptation [52].

State estimation Note that θ̂k only contains information up to the (k − 1)th time step,
and θ̃k is independent of wk. Thus the a priori mean squared estimation error (MSEE)

Xx̃x̃ (k + 1|k) = E
[
x̃ (k + 1|k) x̃ (k + 1|k)T

]
is

Xx̃x̃ (k + 1|k) = ΦkXθ̃θ̃(k)ΦT
k + V ar(wk), (4.8)

where Xθ̃θ̃(k) = E
[
θ̃kθ̃

T
k

]
is the mean squared error of the parameter estimate and V ar(wk)

is the variance of zero-mean white Gaussian noise.

Parameter estimation Since the system is time varying, ∆θk = θk+1−θk 6= 0. According
to parameter estimation algorithm in (4.6), the parameter estimation error is

θ̃k+1 = θ̃k − FkΦT
k x̃ (k + 1−M |k −M) + ∆θk. (4.9)

The estimated parameter is biased and the expectation of the error can be expressed as

E
(
θ̃k+1

)
=
[
I − FkΦT

kΦk

]
E
(
θ̃k

)
+ ∆θk

=
k∑

n=0

k∏

i=n+1

[
I − FiΦT (i) Φ (i)

]
∆θn. (4.10)

The mean squared error of parameter estimate follows from (4.9) and (4.10):

Xθ̃θ̃ (k + 1)

=FkΦ
T
kXx̃x̃ (k + 1−M |k −M) ΦkFk −Xθ̃θ̃(k)ΦT

kΦkFk

− FkΦT
kΦkXθ̃θ̃(k) + E

[
θ̃k+1

]
∆θTk

+ ∆θkE
[
θ̃k+1

]T
−∆θk∆θ

T
k +Xθ̃θ̃(k). (4.11)

Since ∆θk is unknown in (4.10) and (4.11), we define dθk = θ̂k − θ̂k−1, and approximate
∆θk as δθk which is the average of dθi, i = k − nw + 1, k − nw, ..., k, where nw ∈ N is the
window size.

At step k, the predicted trajectory x̂(k + 1|k) together with the uncertainty matrix
Xx̃x̃(k + 1|k) is then sent to robot control to generate the safety constraint.
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4.4 Experiment and Simulation

4.4.1 Four Datasets

To demonstrate the effectiveness of the proposed method, we evaluate the proposed al-
gorithm on four different human motion datasets. Two of them are real data, and two of
them are simulated data. The reason that we use synthetic data is because that several fac-
tors can contribute to the effectiveness of human motion prediction, including noise-reduced
measured data and well-defined adaptation procedures. In order to gain a deeper insight into
the mechanism behind the proposed algorithm, we artificially simulate the human motion,
where the scale of measurement noise and the noise-free trajectories can be controlled. The
four datasets will be explained in the following.

Kinect Dataset

Human trajectory data is collected when a human and a robot collaborate to assemble a
desktop. The experimental setup is shown in Fig. 4.2. A Kinect for Windows v2 is utilized
to capture the trajectory of the human right wrist at an approximate frequency of 20Hz.
Human has two options: one is to obtain and insert the RAMs in the motherboard, and
the other is to fetch and assemble the disk to the desktop case. 50 trajectories for each
trajectory type are obtained, of which 80% is utilized for offline neural network training,
and the remaining is for the validation of the online adaptation algorithm. To smooth the
trajectories, we use a low-pass filter ps(k) = 0.6p̂(k−1)+0.4p̂(k). ps(k) ∈ R3 is the smoothed
position of the joint at time step k, which is the weighted average of joint positions p̂(k− 1)
and p̂(k) measured at time step k − 1 and k. We set the number of past and future joint
positions N and M both to be 3, which implies that we are doing predictions of three
time steps approximately 0.15s. The prediction horizon can be controlled by adjusting the
magnitude of M according to the specific applications.

CMU Motion Capture Dataset

Human activities are captured by the Vicon system 1. Humans wear a black jumpsuit
and have 41 markers taped on. The Vicon cameras see the markers in infra-red. The images
that the various cameras pick up are triangulated to get 3D data. There are various motion
categories, and we choose the data of “walking”, “running” and “jumping” of all subjects.

Time Varying System (TV)

In human dynamics model (4.1), the future trajectory depends on the past trajectory
x∗. However, the trajectory itself is indeed a 3D curve parameterized by a one dimensional
parameter. Here we parameterize the trajectory by time t. We use a polynomial function to

1Available at http://mocap.cs.cmu.edu/motcat.php
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Figure 4.2: Experimental setup for human trajectory prediction.

represent the (x, y, z) trajectory:

x(t) = ax(t+ w)2 + bx(t+ w)

y(t) = ay(t+ w)2 + by(t+ w)

z(t) = az(t+ w)2 + bz(t+ w)

where w denotes the artificial noise and t ∈ [0, 5s]. The trajectory is sampled every 0.05s.
It is easy to verify that given the 3D curve, the resulting dynamic model in the form of (4.1)
is time-varying. We have applied two sets of parameters [ax, bx, ay, by, az, bz] to generate two
different simulated motions, [0.4,−2, 0, 0.9, 0, 1.05] and [0.41,−1.9, 1, 0.9, 0, 0.95], the unit for
three axes is m. We also add artificial noise to the artificial motion trajectory data since
measurement noise exists in real world data. Therefore, uniformly distributed noise w in the
range [−1, 1] is added to t. For each motion kind we simulate 50 independent trials.

Time Invariant System (TI)

In contrast to the time varying system, the time invariant system has constant model f
that does not depend on time. Here we also choose a quadratic formula to parameterize the
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time-invariant state transition model:

x(t+ ∆t) = axx(t)2 + bxx(t) + w

y(t+ ∆t) = ayy(t)2 + byy(t) + w

z(t+ ∆t) = azz(t)2 + bzz(t) + w.

We obtain the TI trajectory with the following strategy: we first randomize the initial
position, and then at each sample iteration we get a new position using the quadratic state
transition model above provided with the position from last iteration. In the experiment
setting, we use two sets of parameters [ax, bx, ay, by, az, bz] to represent two kinds of motion
classes as well, [0.06, 0.92, 0, 0.9, 0, 1.05] and [0.061, 0.93, 0, 1.05, 0, 0.96]. The unit for three
axes is dm and the sample time ∆t = 0.05s. Uniformly distributed noise is also added to
the simulated data.

4.4.2 One Baseline

We compare our algorithm with the state-of-the-art online learning algorithm called
identifier-based algorithm. The identifier-based algorithm adapts all the parameters in the
offline-trained neural network model online using gradient descent to minimize the prediction
error. Same architecture of the neural network as specified in [78] is utilized for a fair
comparison. Both neural networks are trained offline for 100 epochs before online adaptation.

4.4.3 Implementation Details

The past trajectory input to the neural network x∗ ∈ R9 is past 3-timestep positions in
the world frame, and the future trajectory ouput by the neural network x ∈ R9 is future
3-timestep positions. We use a 3-layer neural network with 40 nodes in the hidden layer.
The loss function is set to be L2 loss. The learning rate is set to 0.001 and the number of
epochs is 100.

After obtaining the neural network model for motion transition, we use RLS-PAA to
adapt the weights of the last layer. Since the number of nodes in the last layer is 9, and
each node has 41 parameters, of which 40 correspond to the outputs from the hidden layer,
and the remaining one parameter is a bias term. In total, there are 369 parameters to be
adapted online. In the case that the initial values for all the parameters are set to be 10, the
three parameters we randomly choose quickly settle into finite bounds as shown in Fig. 4.3.

4.4.4 Results

We evaluate the performance of online adaption algorithms by prediction errors. The
comparison between the identifier-based algorithm and our methods is demonstrated in Fig.
4.4. We also compare the prediction errors by the neural network models without online
adaptation. RLS-PAA results in the smallest prediction errors on all the datasets, which
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Figure 4.3: Parameter adaptation results.

demonstrates the effectiveness of our proposed algorithm. The mean squared estimation
error (MSEE) of all methods are shown in Table 4.2. Compared to the identifier-based
algorithm, RLS-PAA has a much smaller MSEE across four different datasets in all x, y, z
axes.

As for the training efficiency, since gradient operation is expensive to compute for large
neural networks, we observed that it takes roughly 0.375s for the identifier-based algorithm to
adapt one motion sample using standard gradient operation whereas it only takes 0.031s for
our proposed method to adapt one sample. Our method is better for real-time applications.
For the identifier-based algorithm that adapts all parameters in the neural network, even
though it is possible to accelerate gradient operation using central difference approximation,
the computation complexity grows exponentially as the complexity of the neural network
grows. All the experiments are performed on the MATLAB 2016 platform with 2.7GHz
Intel Core i5 Processor.

4.4.5 Discussion

State-of-the-art identifier-based adaptation algorithm requires heavy coefficient tuning.
The performance of the identifier-based algorithm highly relies on the scale of update step
size. The computation of the gradient has inertia that it cannot adapt to the sudden change
quickly. However, sudden change of velocity happens a lot in human motion. Therefore, some
peak prediction error can be observed from time to time as shown in Fig. 4.4, especially at
the beginning of each motion trial, since there is a clear velocity jump between the beginning
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(a) Time Invariant dataset
(k+1)

(b) Time Invariant dataset
(k+2)

(c) Time Invariant dataset
(k+3)

(d) Time Varying dataset (k+1) (e) Time Varying dataset (k+2) (f) Time Varying dataset (k+3)

(g) Kinect dataset (k+1) (h) Kinect dataset (k+2) (i) Kinect dataset (k+3)

(j) CMU dataset (k+1) (k) CMU dataset (k+2) (l) CMU dataset (k+3)

Figure 4.4: Prediction error comparison between RLS-PAA (blue system) and Identifier-
based (red system) algorithm on four datasets. From top to bottom, each row is the exper-
iment result tested on one trial of each motion on artificial time invariant system dataset,
artificial time variant system dataset, Kinect dataset, and CMU dataset. In the experiment,
when a new measurement is available, three future positions are predicted, and they are
shown in the separate three columns respectively. The vertical black dash lines denote the
boundaries of different motion classes.
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NN w ID NN w RLS-PAA NN w/o ID NN w/o RLS-PAA

MSEE cm2(CMU) 21.9248 5.5728 27.5121 30.2721

MSEE cm2(Kinect) 27.3493 12.0419 29.6521 16.3973

MSEE cm2(TV) 2.9093 2.2261 3.1889 2.5108

MSEE cm2(TI) 4.2925 1.3180 5.3221 4.2642

Table 4.2: Mean Squared Estimation Error (MSEE) of predictions on four datasets for
identifier-based algorithm (ID), recursive least square parameter adaptation algorithm (RLS-
PAA), offline trained neural network in ID case without adaptation (NN w/o ID), and offline
trained neural network in RLS-PAA case without adaptation (NN w/o RLS-PAA)

and the end of two different trials.
The number of past joint positions being considered has an impact on the prediction

performance. RLS-PAA looks back into historical trajectory with exponentially decayed
weights. The forgetting factor controls how far back the algorithm is using the past informa-
tion. In our experiment on Kinect data, the optimal forgetting factor is 0.9998. Note that
to accommodate a more rapidly changing motion, the forgetting factor may be set smaller
so that the algorithm looks back in a short range.

Our proposed algorithm can be easily applied to many fields and extended by combination
with other algorithms. Generally speaking, we can apply the method to many other time
series data prediction, such as vehicle and pedestrian motion prediction. In these cases, we
regard the vehicles and pedestrians as joints in our method, and adapt the model and obtain
uncertainty level online, which is beneficial in autonomous driving. Our proposed algorithm
can also be combined with other algorithms by modeling the velocity state transition pattern,
which can be used to adjust the update step size.

The proposed algorithm can handle abnormal human behavior. Since humans are easily
distracted from work, and they might do random things during the execution of a collabo-
rative task. Under this situation, our adaptation algorithm can quickly accommodate the
unseen behavior.

In many human-robot interaction applications, humans often work with robots over ta-
bles, standing or sitting in a fixed position where only the human upper body prediction
is required. Note that the human upper body can be viewed as a fixed-base cascade robot
arm, which can be represented by a kinematic chain model. In our experiments, we focus
on motion prediction for one wrist joint, which can be viewed as the end-point position in
the chain model. Whole arm movement can be predicted either using inverse kinematics or
dynamic simulation given the prediction of the wrist position.

4.4.6 Integration to the Robot System

The trajectory prediction ensures a safe HRC framework. In Section 3.3.3, to quantify the
safety of the proposed framework which includes the proposed trajectory prediction method,
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we measure the minimum distance between a human subject and the robot during the entire
task in each trial. Smaller the minimum distance, the less safe it is for the human. We
compare between two trajectory prediction schemes:

• “trajectory prediction = 0”: no predictions of human trajectory;

• “trajectory prediction = 1”: prediction via our proposed method.

Through extensive experiments, the minimum distance between the human subjects and the
robot for experiments with “trajectory prediction = 0” (72 trials) was 34.9 ± 3cm and for
that with “trajectory prediction = 1” (72 trials) was 36.0 ± 2cm. Under both experiment
conditions, the minimum distances were within a safe distance and no collisions happened.
The minimum distances in experiments with “trajectory prediction = 1” were larger than
those in the experiments with “trajectory prediction = 0”, although not significantly differ2

(p > 0.05). There are two possible reasons: 1) in our scenario, the robot and the human
worked in a relatively large space, so predictions of the human trajectory did not make much
difference to the robot trajectory planning; 2) human subjects were conservative around the
robot, and they intentionally kept a safe distance from the robot.

To show that the trajectory prediction module in our framework improves safety, we did
additional tests where the human subjects aggressively move towards the robot end effector
(We have a safety mechanism which immediately stops the robot if contact happens.). 100
trials with trajectory prediction and 100 trials without trajectory prediction were collected.
The collision rates were 0/100 and 64/100, respectively. Such results qualitatively showed
that the trajectory prediction module can improve safety.

4.5 Chapter Conclusion

This chapter proposed a semi-adaptable neural network to predict human motion, which
is capable of adapting the model online and provides uncertainty levels for safety constraints.
The offline trained neural network takes the historical joint trajectory as input and outputs
the predictions. In an online test, the parameters of the last layer in the neural network
model are adapted to accommodate individual differences and time-varying behaviors. The
extensive experiment results demonstrated that our method significantly outperforms the
state-of-the-art method on the majority of the motion datasets in terms of prediction error.
Moreover, our model is much more computationally efficient and is free of onerous tuning,
and the performance is robust across different motion categories and datasets. Last but
not the least, the proposed trajectory prediction was integrated into our robot system, and
experiments showed that the trajectory prediction is good for ensuring human safety.

2We use paired t-test for all the statistical tests.
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Chapter 5

Long-Term Human Trajectory
Prediction

5.1 Introduction

Trajectory prediction is for the purpose of safety. The more we predict into the future, the
better it is for the robot trajectory planner to avoid potential collisions. Previous methods
always focus on a fixed time step prediction [32][19], such as M step in our our semi-adaptable
neural network method in Chapter 4. Now we want to solve for a longer horizon. For example,
in Fig. 5.1, the human is reaching for the CPU fan. Based on our plan recognition module, it
is predicted that the human will also obtain and install the CPU fan. Therefore, we want to
predict the whole trajectory over the three actions. The benefit of such long-term prediction
is that we can also estimate the duration of the action/whole trajectory from the long-term
prediction, which is very useful for those task planning methods that optimize the task time
[13][10].

It is challenging to make accurate predictions of the human movement due to the non-
linearity and stochasticity of human behavior and the variety of its external and internal
stimuli [80]. However, for the human workers in the assembly line, their movement behavior
is mainly driven by the task goals and the layout of the parts, and it is possible to make
good predictions using such contextual information. For example, as shown in Fig. 5.1, the
human worker is assembling a desktop computer. By using the worker’s hand trajectory,
task information and the layout of the parts, we can infer that the human is going to reach
the CPU fan, and we can also anticipate that the human will obtain the CPU fan and install
it in the computer case. Therefore, human hand trajectory can be predicted in the long
term, not only for the current action (reaching for the CPU fan), but also for the predicted
actions (obtaining the CPU fan and installing the CPU fan). Besides, from the trajectory
prediction, we can also estimate the action duration. Action duration is the time required to
complete an action, which is an important input for many task planners. Therefore, in this
chapter, we study the following problem: predict the human hand trajectory and estimate the
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Assemble
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Figure 5.1: From short-term trajectory prediction to long-term trajectory prediction.

durations for the human’s current action and future actions with the knowledge of historic
trajectory, the task information and the scene context.

For trajectory prediction, two categories of approaches are proposed: 1) learning-based
approaches such as recurrent neural networks (RNNs) [61] and inverse reinforcement learning
[86], and 2) model-based approaches such as social force model [35] and minimum jerk
model [26]. We are interested in developing model-based methods for their intuitive physical
meanings and data efficiency property, and we propose to use sigma-lognormal equations to
model human kinematics. To the best of our knowledge, it is the first time that this model
is applied to the human-robot collaborative field. Besides, most works predict the trajectory
by a preset horizon, while our prediction horizon is not fixed and it depends on how far
in the future we could predict the human’s actions, which is the longest prediction horizon
given the results of the human intent recognition.

We propose to use a recognition-then-prediction framework. For the recognition, as
shown in Chapter 3, the human’s current action and future actions can be recognized by ap-
plying a hierarchical modeling method. For prediction, we propose to use a sigma-lognormal
function to model and predict the human’s velocity profile. The parameters of this model
are trained offline, and we propose an adaptive algorithm to change the parameters online
to suit different human behaviors. The prediction of the trajectory and the action duration
estimation are both based on this model. Experiments validate the effectiveness of the pro-
posed framework and demonstrate the superiority of our prediction method over the other
four baseline methods in terms of trajectory prediction accuracy and duration estimation
accuracy. Besides, experimental results also show that our adaptation algorithm can quickly
adapt the model to human movement with the same motion type but with different starting
and ending points.
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The main notation used in this chapter is summarized in Table 5.1

Table 5.1: Table of Notation.

~v ∈ R3 Measured velocity vector.
t ∈ R Time.
vx, vy, vz ∈ R Measured velocity on the x, y, and z axis.

~̂v ∈ R3 Model prediction of the velocity vector.
v̂x, v̂y, v̂z ∈ R Model prediction of the velocity on the x, y, and z axis.
~α = [t0, µ, σ] ∈ R3 Parameters for the lognormal function.
~β = [Cs, ts, Ds] ∈ R3 Parameters for online adaptation.

5.2 Framework

Our goal is to predict the human hand trajectory over the horizon of the human’s current
intended action and the human’s future actions. There are three aspects to be addressed: (i)
obtaining the human pose from the sensor input, (ii) recognizing the human’s current action
and predicting the future actions, a.k.a. human intent recognition, and (iii) predicting the
trajectory over those actions and estimating the action durations.

The pipeline of the proposed approach is schematically illustrated in Fig. 5.2. For
the pose estimation module, Kinect Software Development Kit (SDK) is directly applied,
which features real-time tracking of a human skeleton. For the intent recognition module, a
hierarchical modeling method is utilized as in Chapter 3. Finally, for the long-term trajectory
prediction module, we propose to use a sigma-lognormal model, and from this model, the
future trajectory and the action durations are predicted.

5.3 Adaptable Lognormal Function

This section explains how we predict the trajectory and estimate the duration. We model
human movements for each action in the task as the sigma-lognormal equations, and offline
learn the parameters from the training data. Online, the model parameters are adapted every
time when the measured data comes. We propose an adaptation algorithm, which utilizes the
knowledge of the human intention and the target location. Finally, we predict the trajectory
by using the updated model and we estimate the duration by the stable zero-crossing point
of the velocity profile with some threshold.

5.3.1 Sigma-lognormal model

Many human movement models have been proposed based on various techniques such as
neural networks [27], minimization principals [26], and kinematic theories [75]. Among them,
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Figure 5.2: The framework for long-term human trajectory prediction. Given the image
sensor inputs, we first detect (a) 3D human pose. We then predict the (b) human’s inten-
tion which includes the current and the future actions. Finally, our model predicts the (c)
trajectories over those actions.

the kinematic theory and its sigma–lognormal model explain most of the basic phenomena on
human motor control [75], and it is proved that it is ideal for describing the impulse response
of a neuromuscular network which is composed of some subsystems controlling the velocity
of a movement [75]. It achieves many successes in applications like signature verification
[74] and handwriting learning [24]. We now apply it to the human-robot collaboration field,
which, to the best of our knowledge, is the first application. The model takes the following
form:

~̂v(t) =
N∑

i=1

~̂vi(t) =
N∑

i=1

~Di(t)Λi(t; t0i, µi, σ
2
i );N ≥ 3, (5.1)

Λi(t; t0i, µi, σ
2
i ) =

1

σi
√

2π(t− t0i)
exp(
−(ln(t− t0i)− µi)2

2σ2
)

where ~̂v(t) is the velocity of the human hand at time t, and Λ(t, t0, µ, σ
2) is a lognormal

distribution with the time shift t0, the expected value of the t’s natural logarithm µ and
the standard deviation of the t’s natural logarithm σ. The velocity ~̂v(t) is composed of N

lognormal distributions Λi, each scaled by variable ~Di, i = 1, ..., N . Since the human’s hand
is moving in three dimensions, the number of lognormal distribution N is equal to or larger
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than 3. For example, simple reaching or pointing gestures require three weighted lognormals
to describe the speed profile. More complex trajectories require more lognormals.

An empirical way of deciding N is to project the velocity profile to the spaces defined
by the x-axis, the y-axis and the z-axis, and sum up the observed number of bell shapes in
each file. Indeed, Equation (5.1) can be decomposed into three independent scalar equations,
and they can be learned and adapted independently. Fig. 5.3 shows an example of using
sigma-lognormal functions to represent the velocity profile of one axis. The dashed curves
are two lognormal functions, and the solid curve is a velocity profile. The velocity profile
can be approximated by the superposition of the two lognormal functions.

Figure 5.3: An example of using sigma-lognormal functions to represent the velocity profile.
The dashed curves are two lognormal functions, and the solid curve is a velocity profile. The
velocity profile can be approximated by the superposition of the two lognormal functions.

5.3.2 Offline model fitting

To use the sigma–lognormal model for analyzing the human movement, we need to choose
the values for parameters ~α = { ~Di, t0i, µi, σ

2
i }, i = 1, ..., N such that the model can fit

the training data well. Two categories of parameter extractors have been proposed in the
literature: the Xzero-based extractor [70] and the prototype-based extractor [76]. The Xzero-
based extractor has closed-form solutions by analyzing several characteristic points located in
the original velocity profile, but it lacks the knowledge of the nature of the movement and it
is easily influenced by the noise in the data. The prorotype-based extractor takes advantage
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of a priori information and works well for stereotypical movements. It first synthesizes the
prototype, then it adjusts the parameters by scaling and offsetting. This is a good philosophy
for online parameter extraction, but not suitable for offline model fitting.

We propose to use the Levenberg–Marquardt algorithm [83], also known as the damped
least-squares method, to solve the following problems: given a set of m data points (tj, ~vj)
from the collected trajectories, find ~α such that the sum of the squares of the deviations
S(~α) is minimized:

~α∗ = arg min
~α
S(~α) = arg min

~α

m∑

j=1

||~vj − ~̂v(tj, ~α)||22.

5.3.3 Online parameter extraction

Since human behavior is time-varying and different people have different motion styles,
it is necessary to adapt the offline learned model to accommodate such variations. [96] con-
cludes that the time scaling and shifting account for a large variability of human movement,
and only the modification of µi and the t0i is required through scaling factor Csi and tsi in
Equation (5.2) and Equation (5.3). In addition to Csi and tsi, we add one more scaling factor
Dsi for Di to account for more variations as in Equation (5.4).

t0is = Csit0i + tsi (5.2)

µis = µi + ln(Cs) (5.3)

Dis = DsiDi (5.4)

Therefore, the sigma-lognormal model becomes ~̂v(t; ~α∗, ~β), where ~β = {Csi, tsi, Dsi}, i =
1, ..., N . The problem of adapting the sigma-lognormal model is to learn the values of
~β. The initialization of ~β requires that the sigma-lognormal model starts from the offline
learned model in Section 5.3.2. Thus, the scaling factors Csi and Dsi are set to 1, and the
time shifting factor tsi is set to 0, for i = 1, ..., N . As indicated in Section 6.2, the sigma-
lognormal equation in Equation (5.1) comprises three scalar equations which can be adapted

independently. Hence, we decouple the parameter ~β into three parts {~βx, ~βy, ~βz} and adapt
them separately.

To adapt ~β when a new data point is available, two clues are essential: 1) how the
new data point deviates from the model prediction can direct the modification of the model
parameters, and 2) the integral of the velocity file should be aligned with the human’s
intentions and the target locations.

By the first clue, ~β is updated using Levenberg–Marquardt algorithm as in Equation (5.5)
(5.6) and (5.7). Note that the operator “.” indicates an element-wise operation throughout
this chapter. v̂x,tk , v̂y,tk , v̂z,tk and vx,tk , vy,tk , vz,tk are the model predictions and the measure-
ments of the velocities in x, y and z directions at time tk. ∇~βx

,∇~βy
,∇~βz

are the gradients of

v̂x,tk , v̂y,tk , v̂z,tk with respect to ~βx, ~βy, ~βz, and ~λx, ~λy, ~λz are the non-negative damping factors,
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which make the algorithm interpolate between the Gauss–Newton algorithm and the method
of gradient descent [48]. If values of ~λ’s components are large, the step goes in the direction
for the gradient descent algorithm, and if values are small, the step will be close to the step
in the Gauss–Newton algorithm.

~βx ← ~βx − (v̂x,tk − vx,tk)∇~βx
v̂x,tk ./((∇~βx

v̂x,tk).2 + ~λx) (5.5)

~βy ← ~βy − (v̂y,tk − vy,tk)∇~βy
v̂y,tk ./((∇~βy

v̂y,tk).2 + ~λy) (5.6)

~βz ← ~βz − (v̂z,tk − vz,tk)∇~βz
v̂z,tk ./((∇~βz

v̂z,tk).2 + ~λz) (5.7)

Second, to take advantage of the human intentions and the scene information, we further
update ~β to minimize the following three objectives.

J1(β) = ||
∫ tf

tk

~̂v(s; ~α∗, ~β)ds− ~dtogo||22 (5.8)

J2(β) = ||~vtk − ~̂v(tk; ~α
∗, ~β)||22 (5.9)

J3(β) = ||~̂v(tf ; ~α
∗, ~β)||22 (5.10)

The objective function (5.8) implies the predicted displacement from the current time tk to

the final time tf should be close to the displacement to the goal ~dtogo, where the final time

tf is obtained from a stable zero-crossing of the model ~̂v(t; ~α∗, ~β) with a threshold, and ~dtogo
is obtained by ~pO− ~ptk . ~ptk is the current position of the human hand and ~pO is the position
of the target. In addition, the objective function (5.9) and (5.10) ensure the model precision
at the current time tk and the final time tf , respectively. Therefore, to optimize the three
objective functions is to fix the two ends of the future velocity file and to modify velocities
in between so that the human’s hand can reach the goal at the anticipated final time. Since
(5.8)(5.9)(5.10) may not necessarily be minimized for the same value of β, we make weighted

sum of the three objectives as K(tf , ~β) = γ1J1(~β) + γ2J2(~β) + γ3J3(~β), and update ~βx, ~βy
and ~βz by:

~βx ← ~βx +K(tf , ~β)∇βxK./((∇βxK).2 + ~λ′x) (5.11)

~βy ← ~βy +K(tf , ~β)∇βyK./((∇βyK).2 + ~λ′y) (5.12)

~βz ← ~βz +K(tf , ~β)∇βzK./((∇βzK).2 + ~λ′z) (5.13)

The outline of the algorithm at time tk is shown in Algorithm 4. Lines 1-3 receive the
position of the human hand ~xtk . Lines 2 represents the intent recognition process, and it

determines the current action atk and the future actions ~a′q∗ . Line 3 obtains the current
velocity where δT is the time difference between the current time step and the last time
step. Lines 4-7 retrieve the current action model and the future action models if the action
recognition changes. Lines 8-15 illustrate the model adaptation process. Finally, Lines 16-22
predict the trajectory for the current action and the predicted actions.
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Algorithm 3 Long-term motion prediction algorithm at time tk.

Input ~v1:tk−1
, ~x1:tk−1

, atk−1
, ~̂v, ~̂v1,2,...,np

Output tf , ~̂xtk+1,...,tf

1: ~xtk = PoseEstimation()

2: atk ,
~a′q∗ = IntentRecognition(~x1:tk)

3: ~vtk = (~xtk − ~xtk−1
)/δT

4: if atk changed then

5: ~̂v(t; ~α∗, ~β) = RetrieveMotionModel(atk)

6: ~̂v1,2,...,np(t; ~α
∗, ~β) = RetrieveMotionModel( ~a′q∗)

7: end if
8: for Iteration = 1,2, ... do
9: Update ~β using Equation (5.5)(5.6)(5.7)

10: end for
11: tf = ZeroCrossing(~̂v(t; ~α∗, ~β))
12: for Iteration = 1,2, ... do
13: Update ~β using Equation (5.11)(5.12)(5.13)

14: tf = Zero-Crossing(~̂v(t; ~α∗, ~β), threshold)
15: end for
16: for t = tk+1,...,tf do

17: ~̂x(t) = ~x(tk) +
∫ t
tk
~̂v(s; ~α∗, ~β)ds

18: end for
19: ~tf ’ = Zero-Crossing(~̂v1,2,...,np(t; ~α

∗, ~β),threshold)
20: for i = 1, 2, ..., np do
21: Predict ~̂x(t), for t = t′f i−1 : t′f i
22: end for

5.4 Experiments

5.4.1 Scenario

A computer assembly task is considered. The task includes three subtasks, “Assemble
CPU fan,” “Assemble memory” and “Assemble system fan,” where the human should com-
plete “Assemble CPU fan” first, and then complete either “Assemble memory” or “Assemble
system fan”. Therefore there are two plans in total. For all subtasks, the action sequence is
reaching the part, obtaining the part and installing the part.

5.4.2 Hypothesis

We evaluate the effectiveness of the proposed method through experiments by verifying
the following hypotheses.
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• H1: Our method makes better trajectory prediction and duration estimation than
other baseline methods when the human’s intentions are known.

• H2: Our method makes good trajectory prediction and duration estimation when the
human’s intentions are unknown.

• H3: Our proposed adaption algorithm can quickly adapt the movement model to the
motions with the same motion type but different starting and ending positions.

The conditions that the human’s intentions are known or unknown reflect whether the
human intent recognition module in Section 5.2 is involved or not. The first hypothesis
shows the effectiveness of our trajectory prediction module in Section 5.3 only, and the
second hypothesis shows the effectiveness of the overall structure.

5.4.3 Experiments

We conducted three comparative studies to evaluate the effectiveness of our method. The
first study compares different methods. Our algorithm is compared against the following
baseline methods:

– Vector field method [15]: This method performs long-term predictions of human motion
by employing a map of vector fields. The final time of an action for this method can be
estimated by setting a velocity threshold.

– Minimum jerk model [26]: This model states that human arms move by minimizing mean-
square jerk for any unconstrained point-to-point movement. As proposed in [46], the value
of the final time can be obtained by a search algorithm.

– DTW-based method [60]: This method utilizes dynamic time warping (DTW) algorithm
to align the online activity with a reference template, then it estimates the expected
duration by proportionally manipulating the alignment time.

– Our method without task context: This is our method without the adaptation steps in
Lines 12-15 of Algorithm 4.

The second study considers task types. Two types are considered: (1) the task that only
includes a simple reaching task (“reaching the CPU fan” as in Section 5.4.1), where the
human’s intention is determined and known beforehand, and (2) the whole task as described
in Section 5.4.1, where the human’s intention is uncertain and needs to be recognized. Our
method and all the 4 baseline methods are applied to the first task type, while for the second
task type, we only test our method.

The third study studies a set of progress percentages for the test timings. They are
10%, 30%, 40% 50%, 60%, 70%, 80%, 85% and 90%. For the reaching task, at these
progress percentages of the reaching motion, we will study trajectory prediction and duration
estimation, while for the whole computer assembly task, we will study trajectory prediction
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and duration estimation at these progress percentages of the reaching motion of the second
subtask, when the human intent recognition starts to take an important role to decide on
which subtask the human intends to do.

In these three studies, we have 54 groups of experiments in total. For each group, we
use 42 trials for offline training and 7 trials for the test. If the method does not require
training data, the set of training trials is set aside. To have a fair comparison, the training
and test set come from a random selection, and the two sets are the same through different
groups. Besides, the hyperparameters are chosen by grid search cross-validation so that each
algorithm can perform its best.

5.4.4 Dependent measures

To quantify the accuracy of trajectory prediction, we measure the mean Euclidean dis-
tance between the predictions and the observed data. For duration estimation, we compute
the mean absolute percentage error. The absolute percentage error is the absolute time error
divided by the groundtruth duration.

5.4.5 Implementation Details

For both task types, the number of lognormal functions are chosen as 3. The velocity
profiles are fit in the x, y, and z directions independently, so we are fitting a one dimensional
time series to a lognormal function. At offline training, the MATLAB function nlinfit is
utilized for batch fitting. At online adaptation, the weighting parameters λ1, λ2 and λ3 are
fine tuned based on the performance in the validation set, and they are set to 1, 1, and 0.01
respectively. The threshold for identifying zero crossing points in Algorithm 3 is set to 0.1
millimeter per second.

5.4.6 Results

H1: Our method makes better trajectory prediction and duration estimation
than other baseline methods when the human’s intentions are known. Table 5.2
shows the duration estimation results when the human is conducting a simple reaching task.
Our method has significantly smaller average percentage errors than other baseline methods
at all the test timings except for the timing at the 80% progress, where ours is the second
best. By doing a paired t-test, we find that the results of our method are significantly better
than any other baseline method (P < 0.05). Besides, after the 30% progress, the average
percentage error of our method drops below 5%, while for other baseline methods except
for our method without task context, the errors are always above 5%. For our method and
the minimum jerk method, the average percentage error drops as time elapses, while for
the other methods, the average percentage error oscillates or even increases at the latter
part. A possible reason is that our method and minimum jerk method explicitly utilize the
knowledge of the target positions, while the others do not. Among the baseline methods, the
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DTW-based method is the best in the early phase before the 30% progress, the vector field
method is the best in the middle phase from the 30% to the 60% progress, and our method
without task context is the best in the latter phase after the 60% progress.

Table 5.3 shows the trajectory prediction results when the human is conducting a simple
reaching task. Our method has the least average distance errors at all the test timings except
for the timings at 85% and 90% progress, where ours is the second best and the third best
respectively. By doing a paired t-test, we find that the results of our method are significantly
better than any other baseline method (P < 0.05). Besides, all the average distance errors
of our method remain within 20 mm, and it drops below 10 mm after the 60% progress. For
our method, the vector field method and the minimum jerk method, the average percentage
errors show a trend of decreasing as time elapses. However, the DTW-based method and
our method without task context show a slight increase in the early phase before the 50%
progress. Among the baseline methods, the minimum jerk method is the best throughout
all the test timings except for the timing at 90% progress, and the DTW-based method is
the worst throughout all the test timings except for the timing at 10% progress.

H2: Our method makes good trajectory prediction and duration estimation
when the human’s intentions are unknown. Table 5.4 displays the results of the
trajectory prediction and the duration estimation for the computer assembly task. For the
current action, the average percentage error of the duration estimation varies between 1.3%
and 14.9%, and it drops below 5% after the 30% progress. The average distance error for
trajectory prediction varies between 3.6 mm to 19.7 mm, and it drops below 10 mm after
the 60% progress. For the predicted actions, different from the results for the current action,
the errors do not feature a decreasing trend, which means ~β is not the same among different
motions for one task. The average percentage error of the duration estimation varies between
6.9% and 13.2%, and the average distance error of the trajectory prediction varies between
7.7 mm to 21.4 mm. The largest average distance error of the trajectory prediction 21.4
mm appears at the 10% progress, when the human intent recognition module has difficulty
distinguishing the human’s plan due to the lack of observations. After the 30% progress, the
distance error drops exceedingly, because the human’s intentions are correctly recognized.
Overall, the duration estimation is good, since the error is within 5% for the current action
and within 14% for the future actions after the 30% progress; the trajectory prediction is
good, since errors are less than 25 mm, which is within the safety distance as in [16].

H3: Our proposed adaption algorithm can quickly adapt the movement model
to the motions with the same motion type but different starting and ending
positions. We adapt the sigma-lognormal model which is trained on the “reaching for the
CPU fan” task to a new task “reaching for the memory”, where the motion type is the same,
but the starting and the ending positions of the human hand are different. Fig. 5.4 shows
the distance errors of the model predictions for 7 trials. The model parameters are adapted
through the first trial to the seventh trial, and the distance errors are calculated at 10%, 30%,
40% 50%, 60%, 70%,80%, 85% and 90% progress of each trial. As shown in the figure, the
distance errors are large for the first trial, which can reach up to 40 mm. However, the error
drops drastically after the first trial, which means the model can adapt to the new reaching
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task within one trial. Table 5.5 summarizes the statistics for the results of the trajectory
prediction and the duration estimation, and it shows that the results are comparable with
the results of our method in Table 5.2 and Table 5.3, where the model is trained and tested
on the same reaching task. For the duration estimation, the percentage error is below 10%
after the 30% progress and below 5% after the 50% progress. For the trajectory prediction,
all the average distance errors remain within 20 mm, and it drops below 10 mm after the
50% progress.

5.5 Discussion
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Figure 5.4: The distance errors of the model predictions for adapting to a new task.

D1: The intermediate time estimate tf is important for the accuracy of the duration
estimation and trajectory prediction. We vary tf in line 19 of Algorithm 4 by setting the
value to 1

4
T , 1

2
T , T , 2T , 3T and 4T , where T is the groundtruth final time. We compare the

results of duration estimation and trajectory prediction between our original method and
the method using the set of preset intermediate time estimates for the simple reaching task.
Table 5.6 displays the p-values of significance using paired t-test. As shown in the table,
there are significant differences through all settings except for tf being T . This indicates
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that if the intermediate time estimate deviates far from the groundtruth, the results of our
algorithm will be heavily impacted.
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Figure 5.5: Histograms and normal fits for the residuals of the minimum jerk model and the
lognormal model.

D2: The sigma-lognormal model fits the human motion data better than the minimum
jerk model. Fig. 5.5 shows the residual diagrams for the minimum jerk model and the sigma
lognormal model of one trial for the simple reaching task. Both diagrams are unskewed and
include no outliers, and both residuals are normally distributed with probability P = 0.09 >
0.05 (χ2 = 4.81, df = 2) and probability P = 0.18 > 0.05 (χ2 = 3.41, df = 2) respectively
for D’Agostino-Pearson’s test. Actually, this normality conclusion holds for all the other 6
test trials, which indicates that we can trust the results of the regression analysis. Note that
although normality assumption is not needed for nonlinear regression, if it is clearly violated,
we may not trust the model. That is why we do the normality test.

Next, we check the mean absolute residual to see which model fits the data better. The
mean absolute residual for the minimum jerk models is 1.20 ± 1.05 mm, and the mean
absolute residual for the sigma lognormal models is 0.52 ± 0.42 mm. The sigma-lognormal
model has 56.5% less error. This shows that the sigma-lognormal model fits the data better
than the minimum jerk model.

D3: Our proposed system shown in Fig. 6.3 runs at 15 ∼ 30 hertz, which meets the
real-time requirement for human-robot collaboration. The bottleneck is the pose estimation
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Table 5.6: P-values of the duration estimation results and the trajectory prediction results
between our method and methods using 1

4
T , 1

2
T , T , 2T , 3T and 4T as in line 19 of algorithm

4. The shaded cells indicate that there are significant differences when the significance level
is set to 0.05.

1
4
T 1

2
T T 2T 3T 4T

time result 0.000 0.023 0.099 0.793 0.000 0.000
trajectory result 0.000 0.000 0.306 0.041 0.022 0.000

module. The body stream of the Kinect sensor returns body data at 15 frames per second
(average quality) and 30 frames per second (high quality) [93]. For the intent recognition
module and the prediction module, it takes around 3 and 2 milliseconds, respectively. There-
fore, if a higher frequency is required, the pose estimation module should be replaced by a
faster method.

D4: The adaptation algorithm takes the goal location as an input, and assumes that
humans are focused on the goal. However, humans do not always concentrate on work and
might get distracted by random things, such as picking up cell phones. Our adaptation
algorithm cannot handle such abnormal activities well.

5.6 Chapter Conclusion

We proposed a recognition-then-prediction framework for long-term human hand predic-
tion and action duration estimation, where the prediction horizon relies on how far in the
future we can predict the human actions rather than a preset time. We improved the recog-
nition method by introducing scaling vectors, which takes advantage of the task knowledge
of action transitions. The sigma-lognormal equation was proposed to model the human’s
movement, and an adaptation algorithm was proposed to accommodate different human
behaviors. We conducted experiments for a computer assembly task. The results showed
the effectiveness of the overall framework and the effectiveness of the trajectory prediction
module only. The proposed method had significantly smaller average percentage errors as
well as average distance errors. This is a definite advantage in predicting the long-term
human hand trajectory for collaborative task planning. The experiments also showed that
our adaptation algorithm can quickly adapt the movement model to the trajectories with
the same motion type but different starting and ending positions.
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Chapter 6

Human-Aware Task Planner

6.1 Introduction

When robots work with humans for a collaborative task, they need to plan their actions
while taking humans’ actions into account. In Section 3.3.2, an assistive robot planner has
already been proposed, where the robot is asked to deliver tools to the human. Actually,
this robot planner only plans fixed actions and it does not have other options. Although it
improves the time efficiency as indicated in Section 3.3.5, it can be even better if we make
the robot be more proactive, and let the robot do real assembly work. As shown in Fig.6.1,
the proactive robot assembles the memory and participates in the real assembly while taking
account of the human.

“Assistive” “Proactive” 

2

“Assistive” +

Figure 6.1: From assistive task planner to proactive task planner.

So far, there have been many research efforts on human-aware task planning. Some works
such as [36] [47] [63] solve this problem by empowering a human worker or a centralized
planner to be a supervisor. The existence of supervisors makes the system less flexible and
makes the human more stressed. Other works do not include supervisors. They build a robot
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planner which takes as input the human’s actions, the human intention, environment states,
task models, and etc., and enables the robot to collaborate as a teammate. The mechanism
usually consists of two steps: offline obtaining task knowledge and online generating plans. In
the literature, task knowledge can be acquired via engineering by experts [17] [49] [95] [18] [65]
or learning from demonstration [44]. Online plans can be generated by techniques such as
search algorithms [17] [49] [18] [65], optimization of the collaborative cost [95], or a Q-learning
method [44]. In this chapter, we adopt this two-step mechanism, where task knowledge is
extracted from human demonstration offline, and robot actions are planned by optimization
online.

Task knowledge is often described by graphical task models. Depending on the structure
of the models, they can be categorized as flat models, such as a plan network [49], or hierar-
chical models, such as and/or graphs [41] [11]. Hierarchical models have shown superiority
over flat models for human-robot collaboration, because levels of abstraction in hierarchical
models are close to human intuitions, which can help predict actions of the human and plan
predictable actions of the robot. To our advantage, we propose a sequential/parallel task
model which is a hierarchical task model. This model inherits the feature from the model
in [79] that it explicitly models parallel relationships of subtasks and actions. To learn the
hierarchical task models, Hayes and Scassellati in [34] proposed a conjugate task graph and
an aggregation algorithm for the identification of the underlying structure of a task. Nev-
ertheless, the introduction of a conjugate task graph shrinks the task space, which makes it
less applicable to some use cases. We propose to extract the sequential/parallel task model
using the idea of aggregation but without introducing conjugate graphs.

Optimization-based planners formulate the planning problem as finding a robot action
from all feasible actions that minimizes the collaborative costs including factors such as
completion time [30], human fatigue [50], spatial interfaces [30], and etc.. The more factors
considered, the more complex the cost function becomes, and it is nontrivial to decide on the
weights for each factor. With poor modeling, the planning results can be far below expec-
tations. We propose an optimization-based planner, the objective of which is to minimize
the task completion time. Different from other methods, we give priorities to actions that
are parallel to the human’s actions. The perspective is that it is worth sacrificing some com-
pletion time for conducting parallel actions, because this has potential benefits in reducing
spatial interfaces and improving human satisfaction, which is not explicitly included in the
objective function.

The main notation used in this chapter is summarized in Table 6.1.

6.2 A Hierarchical Task Model

Hierarchical task models surpass the flat models in the fields of human-robot collabo-
ration in three ways. First, hierarchical task models provide more intuitive abstractions of
the task for the robots, which can help improve the human-robot communication about the
intermediate goals of the task [28] [66]. Second, since humans follow the hierarchical ab-
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Table 6.1: Table of Notation.

m ∈ N Number of actions in a demonstration.
a ∈ Action space Action.
ξ [a1, a2, ..., am] Action sequence.
n ∈ N Number of action sequences.
Ξ {ξ1, ξ2, ..., ξn} Demonstration set.
s ∈ {0, 1}m Execution indicator.
req(·) ∈ {0, 1}m Requisite execution indicator.
prod(·) ∈ {0, 1}m Resulting execution indicator.
Cr ∈ Action space Robot capability.
Ch ∈ Action space Human capability.
k ∈ N Planning horizon.
xr ∈ {0, 1}k Robot task assignment vector.
xh ∈ {0, 1}k Human task assignment vector.

stractions when accomplishing a task, hierarchical task models can help predict the human’s
actions [77] [72]. Finally, it has been found that such hierarchical abstractions can be learned
remarkably fast from relatively little data compared with what is needed for learning at lower
levels due to overhypotheses [90] [40] [82]. Thus, in this work, we adopt a hierarchical task
model named a sequential/parallel task model. Fig. 6.2 shows an example of the sequen-
tial/parallel task model for the desktop assembly task. The root node represents the task,
and all the other nodes represents subtasks. Leaf nodes are atomic subtask, also known as
actions. Nodes can be categorized to the following three types according to the relationship
among their child nodes.

• Sequential nodes: their child nodes must be executed in the order from left to right,
which is denoted by the operator “→”. For example, the subtask “Install CPU fan” is
a sequential node, and its child “obtain CPU fan” must be conducted before “Insert
CPU fan”.

• Parallel nodes: their child nodes can be executed in parallel, which is denoted by “‖”.
For example, the subtask “Install motherboard” is a parallel node, its children “install
CPU fan”, “install memory” and “Tape cables” can be executed simultaneously.

• Independent nodes: their child nodes can be executed in any orders, which is denoted
by “⊥”. Parallel nodes are a special case of independent nodes. For example, a root
node is an independent node but not a parallel node. Its child nodes “Applying labels
to hood” and “Assemble main body” have no fixed order, but they cannot be executed
in parallel if “close hood” is in progress.

Following the description of [16] [56], actions can be defined as a = [{motion, object}, attribute],
where motion indicates types of the movement and object indicates the object of interaction.
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Task: desktop assembly

Assemble main body Apply labels 
to hood

Close hood
Install 

motherboard

Tape cables
Install 

memory
Install CPU 

fan

Obtain 
memory

Insert
memory

Obtain 
CPU fan

Insert
CPU fan

Obtain 
tape

Wrap 
cables

⊥

-->

||

--> --> -->

Obtain 
label

Apply 
label

-->

Figure 6.2: The sequential/parallel task model for a desktop assembly task.

The pair of motion (e.g. inserting) and object (e.g. CPU fan) is sufficient to distinguish
different actions. In addition, the attribute contains information such as completion time,
energy consumption, etc., which are useful in the planning process. For assembly tasks, the
relationships of actions also take three forms.

• Two actions a and b are independent (written as a ⊥ b or b ⊥ a ) if the occurrence
of one action does not rely on the occurrence of the other.

• Action a is dependent on the action b (written as a 6⊥ b) if a can not occur in the
absence of the occurrence of action b.

• Actions a and b are parallel (written as ab) if a and b are independent and they do
not share objects of interaction.

An action a is dependent on the action b implies that b produces some consequences
that a requires in order to be executed. We use the execution indicator to represent this
connection, each component representing an action being executed or not. There are to-
tally 9 actions in the example, and thus the indicator is s ∈ {0, 1}9. Note that for as-
sembly tasks, the effects of several actions are addictive, thus indicator vectors can be
used as procedural states of the assembly. Based on this, we define two types of in-
dicator vectors, req(·) to be requisite execution indicator and prod(·) to be the result-
ing execution indicator of an action or an action sequence. In this sense, action a is
dependent on action b (a 6⊥ b) is equivalent to req(a)∧prod(b)=prod(b), where ∧ is a
bit-wise AND operator. In addition, that action d is dependent on action sequence bcd
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Figure 6.3: System overview.

(d 6⊥ abc) is equivalent to req(d)∧prod(abc)=prod(abc). As the effects of actions are addic-
tive, prod(abc)=prod(a)+ prod(b)+ prod(c), hence req(d)∧prod(abc)=prod(abc) is equiva-
lent to req(d)∧prod(a)=prod(a), req(d)∧prod(b)=prod(b) and req(d)∧prod(c)=prod(c). Be-
sides, for actions with independent relationships, action a is independent of action b (a ⊥ b)
if and only if req(a)∧prod(b)=0 and req(b)∧prod(a)=0. Action d and action sequence abc is
independent if and only if req(d)∧prod(abc)=0 and req(abc)∧prod(d)=0. Similarly, by the
addition characteristic of the effect, req(d)∧prod(abc)=0 is equivalent to req(d)∧prod(a)=0,
req(d)∧prod(b)=0 and req(c)∧prod(abc)=0.

6.3 Approach

Our goal is to develop a human-aware robot task planner for industrial assembly scenarios.
There are two aspects to be addressed: (i) learning the knowledge of assembly plans from
human demonstrations, and (ii) designing a human-aware robot task planner using the task
knowledge. Fig. 6.3 shows the proposed robotic system. We first learn a sequential/parallel
task model from human demonstrations at the offline learning phase. This model represents
the plans of a task with levels of abstraction, which provides information about the parallel
relationships that could not be directly seen in a collection of action sequences. At the online
execution phase, the planner takes as input the task model and human actions, then outputs
the robot action command to the controller to execute it. Our planner leverages the parallel
information in the sequential/parallel task model to guide the robot towards performing
actions parallel to the human’s action, while optimizing over task efficiency.
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6.4 Automatically Constructing the Task Model

With the fast development in computer vision techniques, action recognition for videos
can be accurate and fast using state-of-the-art methods such as [3] [58] [94]. Applying
such techniques to make annotations to each human demonstration video, a set of action
sequences Ξ = {ξ1, ξ2, ..., ξn} can be obtained, where n is the number of different plans
demonstrated and ξi = [ai1, a

i
2, a

i
3, ..., a

i
mi ] is the i-th action sequence with horizon mi. For

industry assembly tasks, the number of steps for any possible plan is often the same, thus
we omit the superscript of mi for simplicity. The set Ξ is complete if and only if it includes
all the possible plans.

To construct the sequential/parallel task model from Ξ, the key is to discover the inde-
pendent relationships and sequential relationships at all levels of abstraction. Once the inde-
pendent relationships are identified, recognizing parallel relationships is trivial by checking
objects of interaction. In the following, we first discuss how to find a sequential relationship
among actions, and second, we explain how to discover an independent relationship, and
then we introduce a bottom-up algorithm which iteratively aggregates actions and forms a
sequential/parallel task model. Finally, we discuss whether there is a requirement on the
completeness of the demonstration set and then we display time complexity.

6.4.1 Sequential relationships

To identify the actions with sequential relationships is to find the longest common sub-
sequence (LCS). The longest subsequence is common to all the given sequences ξi ∈ Ξ, i ∈
{1, 2, ..., n}, provided that the elements of the subsequence are required to occupy consec-
utive positions within the original sequences. By saying so, we impose an assumption that
the sequential actions are not interrupted by parallel actions in human demonstrations. For
example, “Apply labels to hood” cannot take place in between “Obtain CPU fan” and “In-
sert CPU fan”. This is a weak assumption because reasonable humans follow this way when
proceeding with tasks.

6.4.2 Independent relationships

Identifying the independent relationships is based on the following theorem.

Theorem 1 When Ξ is complete, for a subsequence η of ξ ∈ Ξ, and suppose η̄ is a reversed
η, the following two statements are equivalent:
(a) There exists a γ ∈ Ξ such that η̄ is a subseqence of γ.
(b) Each pair of actions in η are independent.

(a) “⇒”(b)
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Suppose subsequence η = [b1, b2, ..., bm],m ≥ 2, then η̄ = [bm, bm−1, ..., b1]. From η, we have

req(b1) ∧ prod(b2b3...bm) = 0

req(b2) ∧ prod(b3b4...bm) = 0

...

req(bm−1) ∧ prod(bm) = 0,

and from η̄, we have

req(bm) ∧ prod(bm−1bm−2...b1) = 0

req(bm−1) ∧ prod(bm−2bm−3...b1) = 0

...

req(b2) ∧ prod(b1) = 0.

Using the addition rule, we have req(bi) ∧ prod(bj) = 0, where i, j ∈ {1, 2, ...,m}. Thus,
bi ⊥ bj, i 6= j ∈ {1, 2, ...,m}, which indicates (b).
(b) “⇒”(a)
since bi ⊥ bj, i 6= j ∈ {1, 2, ...,m}, then req(bi) ∧ prod(bj) = 0, where i, j ∈ 1, 2, ...,m,
therefore, any orders of {b1, b2, ..., bm} are feasible. Hence (a) holds.

Therefore, an independent relationship can be identified by checking each pair of the
sequences {ξi, ξj}, i 6= j ∈ {1, 2, ..., n}. If there is a common subsequence of ξi and ξ̄j, where
ξ̄j is a reversed ξj, actions in this common subsequence are recognized as independent actions.

6.4.3 Algorithm

We propose the algorithm shown in Algorithm 4. It takes as input Ξ, the set of action
sequences labeled from demonstrations, and outputs a table T , which stores the information
about meta-actions. A meta-action is a fake action by compacting atomic actions or meta-
actions into one, which corresponds to the intermediate node in the model. Line 1 initializes
the table T to be empty. Lines 2-20 construct a hierarchical tree from bottom to top by
iteratively discovering the sequential and independent relationships. Lines 3-8 identify the
sequential relationship. First, the longest common subsequence ψ is found. If the length
of ψ is greater than 1, the actions in subsequence are compacted to a meta-action Am,
subsequence ψ is replaced with Am for every sequence in Ξ by the function refresh, and
in the meantime repeated sequences in Ξ are discarded. Finally, the table T is updated by
adding an entry of Am with information of the relation type and the replaced subsequence ψ,
where relation types ‘s’, ‘i’ and ‘p’ denotes sequential, independent and parallel relationships.
Lines 9-16 identify the independent relationships. The function refresh works differently in
Line 13. Replacement takes place not for all sequences but for those sequences that contain
the subsequence ψ or varying orders of subsequence ψ. The procedure of finding sequential
and independent relationships alternates until T table remains the same. Finally, Lines 21-
26 discover parallel relationships by checking the objects of interaction among independent
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Algorithm 4 Sequential/parallel task model construction

Input Ξ
Output T

1: init T = ∅
2: while True do
3: ψ = findLCS(Ξ)
4: if |ψ| > 1 then
5: create meta-action Am
6: Ξ.refresh(Am)
7: T.update(Am,relation=‘s’,ψ)
8: end if
9: for each pair {ξi, ξj} ∈ Ξ, i 6= j do

10: ψ = findLCS(reverse(ξi), ξj)
11: if |ψ| > 1 then
12: create meta-action Am
13: Ξ.refresh(Am)
14: T.update(Am,relation=‘i’,ψ)
15: end if
16: end for
17: if T is not updated in this iteration then break
18: end if
19: end while
20: for each entry t in T with relation=‘i’ do
21: Ao = retrieveAtomicActions(T, t.ψ)
22: if actions in Ao share no objects of interaction then
23: update t.relation=‘p’
24: end if
25: end for

actions. Function retrieveAtomicActions retrieves all the atomic actions that a meta-action
represents. Fig. 6.4 shows the T table and the updating demonstration set for the desktop
assembly task when running this algorithm.

6.4.4 Demonstration set requirement

Our algorithm does not require that the demonstration set to be complete for success-
fully constructing the task model. Suppose the number of independent nodes in the sequen-
tial/parallel task graph is p, and the number of children for ith independent node is li ∈ N
for i = {1, 2, ...p}. If p ≥ 1, which is often true, the minimum number of different plans
required by our algorithm is 2, while the number of all possible plans is

∏p
i=1 li. Since li ≥ 2

and p ≥ 1, thus 2 ≤ 2p ≤
∏p

i=1 li holds, indicating that complete demonstration set is not a
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Identifier Relation type Replaced 
subsequence

10 ‘s’ 1,2

11 ‘s’ 3,4

12 ‘s’ 5,6

13 ‘s’ 8,9

14 ‘i’ 10,11,12

15 ‘s’ 14, 8

16 ‘i’ 15,13

8
>><
>>:

[10, 3, 4, 5, 6, 7, 8, 9]
[10, 5, 6, 3, 4, 7, 8, 9]
[8, 9, 3, 4, 10, 5, 6, 7]

. . .

9
>>=
>>;

<latexit sha1_base64="7EQu8VX+7Bzjv7WJDC87VUuXCkc="></latexit>8
>><
>>:

[10, 11, 5, 6, 7, 8, 9]
[10, 5, 6, 11, 7, 8, 9]
[8, 9, 11, 10, 5, 6, 7]

. . .

9
>>=
>>;

<latexit sha1_base64="C/ZqNIqdJGQ+eIyEsg7Y3c+bQsY="></latexit>

…

⇢
[15, 13]
[13, 15]

�

<latexit sha1_base64="020lSrmVvEsxUEx4GxA8e65ZgoU=">AAACGHicbZDLSsNAFIYn9VbjLerSTbAILkpNWosuS924rGAv0IQymZ62QyeTMDMRS+hjuPFV3LhQxG13vo3TC6KtBwY+/v8c5pw/iBmVynG+jMza+sbmVnbb3Nnd2z+wDo8aMkoEgTqJWCRaAZbAKIe6oopBKxaAw4BBMxjeTP3mAwhJI36vRjH4Ie5z2qMEKy11rAsvgD7laTXEStDHsdl2y3m35HueplLeLfumB7z743esnFNwZmWvgruAHFpUrWNNvG5EkhC4IgxL2XadWPkpFooSBmPTSyTEmAxxH9oaOQ5B+unssLF9ppWu3YuEflzZM/X3RIpDKUdhoDv1fgO57E3F/7x2onrXfkp5nCjgZP5RL2G2iuxpSnaXCiCKjTRgIqje1SYDLDBROktTh+Aun7wKjWLBLRWKd5e5SnURRxadoFN0jlx0hSroFtVQHRH0hF7QG3o3no1X48P4nLdmjMXMMfpTxuQbqHKeSQ==</latexit>

T table

�
[16]

 
<latexit sha1_base64="NPtgRWQ6rJUE86SHXnu2KESN6Z4=">AAACC3icbVDLSsNAFJ3UV42vqks3oUVwVZIq6rLUjcsK9gFJKJPJTTt0MgkzE7GE7t34K25cKOLWH3Dn3zh9INp64MLhnHu5954gZVQq2/4yCiura+sbxU1za3tnd6+0f9CWSSYItEjCEtENsARGObQUVQy6qQAcBww6wfBq4nfuQEia8Fs1SsGPcZ/TiBKstNQrlb0A+pTnjRgrQe/Hpuuc+6YHPPyReqWKXbWnsJaJMycVNEezV/r0woRkMXBFGJbSdexU+TkWihIGY9PLJKSYDHEfXE05jkH6+fSXsXWsldCKEqGLK2uq/p7IcSzlKA50p75vIBe9ifif52YquvRzytNMASezRVHGLJVYk2CskAogio00wURQfatFBlhgonR8pg7BWXx5mbRrVee0Wrs5q9Qb8ziK6AiV0Qly0AWqo2vURC1E0AN6Qi/o1Xg0no03433WWjDmM4foD4yPb54Fmsg=</latexit>

8
>><
>>:

[1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 5, 6, 3, 4, 7, 8, 9]
[8, 9, 3, 4, 1, 2, 5, 6, 7]

...

9
>>=
>>;

<latexit sha1_base64="XxlkxfQSFjw5+7ZkSnnajqWr5s0="></latexit>

Ξ

Ξ"

Figure 6.4: T table and the updating demonstration set Ξ′for the desktop assembly task
when running algorithm 1. Action identifier 1-9 corresponds to the atomic action ’Obtain
CPU fan’, ’Insert CPU fan’, ’Obtain memory’, ’Insert memory’, ’Obtain tape’, ’Wrap cables’,
’close hood’, ’Obtain label’ and ’Apply label’.

must for our algorithm.

6.4.5 Complexity

The dominating complexity factor throughout the algorithm is the discovery of the inde-
pendent relationship. The step of finding the longest common subsequence can be accom-
plished in time O(mlog(m)) using the algorithm in [9], where m is the length of the sequence,
in our case the number of actions in a demonstration. Therefore, the time complexity of our
algorithm is O(mn2log(m)), where n is the number of demonstrations.

6.5 A Separation Planner

In this section, we will present a human-aware robot task planner. For simplicity, we
assume that there is one robot and one human. However, with a slight modification, the
algorithm can be applied to a team of multiple humans and multiple robots. The input
of the algorithm includes sequential/parallel task model T , the execution indicator s, the
capability of the human Ch and capability of robots Cr, which is a set of actions that the
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human or the robot is capable of doing. The planner optimizes a plan, and then sends the
robot’s first action to the controller to execute, and plans again, repeatedly.

The key of our planner is the planning horizon, which is a collection of subtasks including:
1) the sequential subtask the human is currently conducting, and 2) the subtasks that are
parallel to the human’s current subtasks and are not executed yet, which is illustrated in
Fig. 6.5. Thus, the planning horizon is part of the remaining task and it varies as the
task proceeds. Since humans follow abstract hierarchies while doing a task, it is very likely
that the human conducts the following actions in the sequential subtasks after finishing the
current action, thus we assign the whole sequential subtask to the human to avoid the robot
choosing the same action as the human’s. The planning problem then becomes a scheduling
problem, which is to assign those parallel subtasks to the human and the robot such that
the completion time for the planning horizon is minimized. The optimization problem is
formulated as follows.

min
xh,xr

t

s.t. xTh t1 + to ≤ t

xTr t2 ≤ t

xh + xr = 1

xh, xr ∈ {0, 1}k

xh{C−Ch} = 0

xr{C−Cr} = 0

(6.1)

Decision variables xh and xr ∈ {0, 1}k are binary vectors for the assignment of subtasks,
where k is the number of subtasks in the planning horizon. The objective function t is
the completion time for the planning horizon, which is the upper bound of the human’s
completion time and the robot’s completion time. to is the remaining time for the human
to complete his current subtask. t1 and t2 are the empirical completion time for subtasks,
which are obtained based on Attribute of an action. {C − Ch} denotes the indices of the
actions that the human is unable to do, and {C−Cr} denotes the indices of the actions that
the robot is unable to do.

This planner is suitable to be integrated into a robot system which has two modes of
interaction. One mode is the “command” mode, where the human explicitly asks the robot
to perform an action through communication. The other mode is the “automation” mode.
The human and the robot collaboratively do tasks without communication. Our planner can
work under this “automation” mode, and it is switched to the other planner when humans
make commands.
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6.6 Simulations and Experiments

6.6.1 Three Scenarios

We use the following three different scenarios to decrease the impact of different tasks
for a fair comparison.

A desktop assembly scenario

We evaluate our proposed planning algorithm in a desktop assembly task whose sequen-
tial/parallel task model is shown in Fig. 6.2.

Two book shelving scenarios

We device two book shelving scenarios, corresponding to the two models in Fig. 6.5. The
initial state of the task is that the shelf is empty, and the goal state is shown in Fig. 6.6. The
difference of the two scenarios is the constraints on the shelving order. For the first scenario,
books must be shelved from bottom to top, which means that books must be shelved at
1st layer first and then 2nd layer and finally 3rd layer. This constraint still holds to small
layers such as the left two layers at the 1st layer. This task corresponds to the left model in
Fig. 6.5. For the second scenario, there is no constraint on the vertical axis, however, within
each layer, books must be shelved from left to right. This corresponds to the right model in
Fig. 6.5.

1st layer

2nd layer

3rd layer

left right

Figure 6.6: The book shelving scenarios. The solid boxes represent books, and the gray
frames constitute the bookshelf.
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6.6.2 Hypothesis

We evaluate the effectiveness of the proposed planning algorithm through simulations by
verifying the following four hypotheses.

• H1: The proposed algorithm generates efficient plans.

• H2: The proposed algorithm generates safe plans.

• H3: The performance of the proposed algorithm is robust to different levels of incom-
pleteness in demonstrations.

• H4: The human subjects are more satisfied with our collaborative robot planning than
with other baseline planners.

6.6.3 Simulation setup

We test our algorithm on a simulator built in MATLAB. Human subjects manipulate
the objects by using a mouse, dragging and dropping the objects with the mouse bottom
held down and released. Complex actions such as inserting and wrapping in the desktop
assembly scenario are simplified by dropping the objects. The robot actions are expressed
by the object moving and a sentence shown in the interaction window. The capability of
both the human and the robot is set to the whole action space for all the tasks.

Six human subjects participated in the simulation. After being instructed about the task
and the simulation environment, they operated each action for practice, and that was when
the completion time of actions for humans was collected. For robots, the completion time of
actions is manually set in the simulations.

6.6.4 Instructions to the human subjects

First, we teach the task knowledge to the human subjects. The task knowledge includes:
(1) the goals of the tasks, (2) which subtasks can be executed in random orders, and (3) which
subtasks must be executed in certain orders. Second, we explain the simulation interfaces,
and elaborate how to complete a task by moving a mouse and dragging a part in the interface.
Take computer assembly for example. In the simulation interface shown in Fig. 6.7, parts
that need to be installed or manipulated are represented by solid rectangles, and the dashed
boxes are where they should be installed or manipulated. All the assembly procedures are
simplified by locating, clicking, dragging, and releasing the part in the simulation. As long
as you drag a part inside the corresponding dashed box, that subtask is considered done.
For example, to do the subtask “install CPU fan”, you should drag the green rectangle
into the dashed box annotated with “fan”, and to conduct the subtask “closing hood”, you
should drag the gray solid rectangle inside the dashed box annotated with “computer case”.
Based on the mouse behavior operated by the human subjects, our algorithm computes
the “robot’s” task planning and visualizes the “robot’s” action by making the part go to
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the designated area automatically. For example, if the “robot’s” action is “installing the
memory”, the solid red rectangle goes to the dashed box annotated with “memory” by itself.
We also notice the human subjects that before they start to do the task, they should put
the mouse in the square box annotated with “human starts here”, so that once the mouse
leaves that square, the timer starts and our algorithm begins to track the mouse behavior
and recognizes human’s intentions and actions. Finally, we let the human subjects practice
for a while, and we observe and correct them if they make mistakes.

desktop computer assembly task

hood

Fan memory tape label

fan

memory

tape

label

computer case

human starts here

Figure 6.7: Simulation interface of desktop computer assembly task.

6.6.5 Manipulated variables

To evaluate the effectiveness of the proposed algorithm, we manipulated two controlled
variables in our simulations. The first one is planing schemes. Our algorithm is compared
with the following three baselines:

• Random policy: This planner models the task as a set of action sequences, which is a
single-level plan library. It tries to recognize the human’s plan by aligning the current
procedure/ action sequence to the action sequences in the plan library, and chooses the
most likely action sequences as the human’s intended plans, which can be many. After
that, the robot action is generated uniformly at random from the set of next actions
of those possible human’s plans.

• Anticipatory planning [44]: This algorithm models the human’s and the robot’s behav-
ior with an MDP and learns the policy from demonstrations by reinforcement learning.
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At the execution time, it also models that humans may not take the optimal action by
predicting the ratio of the human taking optimal action and human following habits.

• Shortest completion time optimizer: Similar to our algorithm, this algorithm also aims
to minimize the completion time, but the planning horizon is the whole task to go.

The other manipulated variable is level of incompleteness of the demonstration set. The
levels are set to be 0%, 30%, 50% which means these percentages of action sequences in the
demonstration set will be randomly dismissed.

Since the third baseline assumes the task model is already known, it does not rely on
the demonstration set. Thus, by manipulating the two variables, we have 10 groups of
simulations for each scenario. Under each group, every human subject performs the task
using any plan twice. Thus, there will be 20 trials in each simulation group and in total 120
trials for each scenario.

To have a fair comparison, all the algorithms use the same sets of action sequences as
inputs under all the incompleteness conditions for each scenario. For the hyperparameters
in the algorithm of anticipatory planning, grid search cross-validation is utilized to choose
the hyperparameters that perform the best.

6.6.6 Dependent measures

To quantify the safety of the proposed framework, we measure the percentage of robot
actions that conflict with the human’s. For efficiency, we set a timer to keep track of the
task completion time. The timer starts when a human subject starts to act, and ends when
the task is finished. As for the measurement of human’s satisfaction with our collaborative
robots, we ask the six human subjects to rate the following statements on Likert scale from
1 (strongly disagree) to 5 (strongly agree), similar to [44]:

• The robot was collaborative and helped;

• The robot did the right thing at the right time;

• I am satisfied working with the robot;

• I will work with this robot again in the future.

6.6.7 Implementation Details

The desktop assembly task includes a action space ({a | a ∈ N, 1 ≤ a ≤ 9}) as illustrated
in Fig 6.2. Ch is set as the whole action space, and Cr is set as the whole action space
excluding the “closing hood” action ({a | a ∈ N, 1 ≤ a ≤ 9, a 6= 7}). For the book shelving
task, both Ch and Cr are the whole action space ({a | a ∈ N, 1 ≤ a ≤ 10}). We use
MATLAB function intlinprog to solve the optimization problem 6.1.
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6.6.8 Results

H1: Table 6.2 shows the average task completion time for the three scenarios using
different planners. Our planner is significantly more efficient than the planners of random
policy and anticipatory planning under all situations1 (p < 0.01). Compared with the
shortest completion time optimizer, our planner can achieve similar results, as the average
task completion time is close and there is no significant difference among all trials (p > 0.1).
Possible reasons are that:

• Although shortest time optimizer computes the most efficient plan, the human subject
may not follow that plan;

• Shortest time optimizer does not consider humans’ preference of doing the next actions
with a sequential relationship. Thus, this planner is more likely to cause conflicts, which
increases the task completion time.

The random policy is most inefficient. Opposite to our algorithm, the random policy has no
knowledge of the parallel relationships, and it strictly plans the next actions of the current
plan, which results in a lot of waiting time. Compared with random policy, anticipatory
planning has a shorter task completion time, as it enables the robot to anticipate more in
the collaboration. However, its limitation is that it utilizes learned policies from single-agent
demonstrations. In the two-agent scenarios, humans can follow a different reward model,
which makes the learned policies less effective. Although this planner tries to adapt to the
human on the fly, it takes time.

H2: The average percentages of conflicts are 2.7 ± 0.2%, 15.0 ± 0.7%, 8.1 ± 0.4% and
6.2± 0.2% for our algorithm, random policy, anticipatory planning and shortest completion
time optimizer correspondingly, as shown in the Fig. 6.8. Our planner is the safest planner
among the other planners, as the robot conflicts with the human the least with significant
difference (p < 0.01). The planner guides the robot to do subtasks that are parallel to the
human’s current action, which naturally decreases the possibility of conflicts. This result
also validates the assumption stated in Section 6.4 that humans complete sequential actions
consecutively without switching to another parallel subtask. The planner with random policy
is the most unsafe one, as it causes conflicts the most with significant difference (p < 0.01).
This planner has no knowledge of the parallel relationships and it always plans the next
actions of the current recognized plan. However, when humans are conducting subtasks
with sequential actions, they also prefer to do the next actions, which can cause conflicts.
The planners with anticipatory planning and shortest completion time optimizer do not
explicitly utilize parallel information, nor do they explicitly utilize sequential information,
and their results are in-between.

H3: Through various simulations on different levels of incompleteness of demonstrations,
we show that our method consistently delivers comparable performance as shown in Table
6.2. The average task completion times do not increase as the level of the incompleteness

1We use paired t-test for all the statistical tests.
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Figure 6.8: The average percentages of conflicts for our algorithm, random policy, anticipa-
tory planning and shortest completion time optimizer.

increases. For example, when 30% of the demonstrations are deleted from the desktop
assembly scenario, the average task completion time even drops by 0.8 seconds. Besides,
through statistical tests, we find that there is no significant difference in the task completion
time and percentage of conflicts among all levels of incompleteness for each scenario (p <
0.01). Actually, the sequential/parallel task models retrieved from the demonstration set are
the same for all the tasks with different incompleteness levels. Thus, our algorithm is robust
to the incomplete demonstrations.

H4: Fig. 6.9 shows the comparison of human subjects’ ratings for the four types of
planners on the four criteria: 1. The robot was collaborative and helped; 2. The robot
did the right thing at the right time; 3. I am satisfied working with the robot; 4. I will
work with this robot again in the future. Human subjects rated the our planner significantly
higher than the other planners on all four criteria (p < 0.01). This indicates that human
subjects are more satisfied with our planner. It is also interesting to note that scores of the
anticipatory planning are significantly higher than that of random policy (p < 0.01), and
scores of shortest completion time optimizer are significantly higher than that of anticipatory
planning (p < 0.01).
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Table 6.2: The result table for the average task completion time (unit: second). M1, M2 and M3 are methods of
random policy, anticipatory planning and optimization respectively.

Incompleteness Desktop assembly Scenario book shelving scenario 1 book shelving scenario 2
ours M1 M2 M3 ours M1 M2 M3 ours M1 M2 M3

0% 8.3 12.6 10.0 8.5 16.6 23.7 18.9 15.5 13.2 20.6 17.7 14.1
30% 7.5 15.0 13.4 - 15.7 25.2 21.7 - 14.5 27.4 25.3 -
50% 8.1 15.9 15.8 - 17.5 28.1 27.5 - 15.1 28.0 27.4 -

Ours M1 M2 M3
1

2

3

4

5

statement 1

Ours M1 M2 M3
1

2

3

4

5

statement 2

Ours M1 M2 M3
1

2

3

4

5

statement 3

Ours M1 M2 M3
1

2

3

4

5

statement 4

Figure 6.9: Human subjects’ ratings for the four robot planners on four different statements. M1, M2 and M3 are
for planners of random policy, anticipatory planning and optimization correspondingly. Score 1 to 5 corresponds to 1.
strongly disagree, 2. disagree, 3. neutral, 4. agree and 5. strongly agree.
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6.6.9 Experiments

Figure 6.10: A robot and a human collaborate to assemble a desktop.

We test our planner on an industrial robot FANUC LR Mate 200iD/7L. A Kinect V2
for windows is placed close to the table for detecting the human and the objects. Fig. 6.10
shows that the robot is collaborating with the human to complete the desktop assembly
task, where the human is assembling the CPU fan, while the robot is going to assemble
the memory based on the plan computed by our planner. The video of the experiment is
available at: https://msc.berkeley.edu/research/serocs.html.

6.7 Conclusion

To solve the collaborative task planning problem, we proposed an algorithm to automat-
ically construct a hierarchical task model from human demonstrations, which captures the
sequential and parallel relationships of the task at all levels of abstraction. This algorithm
is very robust to the levels of incompleteness of demonstration. Actually, for any task, two
specific demonstrations are enough to retrieve the sequential/parallel task model. We then
proposed an optimization-based planner, which exploits the parallel relationships in the task
model and gives priorities to the actions that are parallel to the humans’, since conducting
parallel actions can reduce spatial interfaces, reduce task completion time and improve hu-
man satisfaction. These benefits were verified through various simulations for three different
scenarios when compared with other three baselines.
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Chapter 7

Conclusion

In this dissertation, the goal is to achieve a safe and efficient human-robot collaboration.
Specifically, two problems are studied:

• To guarantee human safety, robots should predict the human trajectory so that they
can plan their own trajectory to avoid potential collisions.

• To boost task efficiency, robots should recognize the human plans and intentions so
that they can make plans accordingly.
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Figure 7.1: Summary of the dissertation work.

A robot system, as shown in Fig. 1.2, is proposed, where the key modules are human
plan recognition, human trajectory prediction and human-aware task planning.
The main content of the dissertation is focused on these three modules, outlined by Fig. 7.1.
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Human plan recognition and human trajectory prediction are for reasoning about human
behavior. The fundamental challenge for reasoning about human behavior is that there is no
sufficient human data to learn human behavior. In order to learn from limited human data,
a hierarchical modeling method and two adaptation algorithms are proposed for human plan
recognition and human trajectory prediction, respectively. For human plan recognition, in-
stead of learning from end-to-end, the hierarchical modeling method decouples the problem
to learn the trajectory, the trajectory type, the action, and finally the plan from bottom
to top. This decreases the dimension of the problem and reduces the data pressure. For
trajectory prediction, the adaptable neural network method and the adaptable lognormal
method deal with the short-term and long-term prediction, respectively. Since human data
is insufficient, some patterns of human behavior may be missing, and we could not learn
a universal model offline, so online we continue to adjust our model to suit different hu-
man behavior by using adaptation algorithms. Comparing the two adaptable methods, the
adaptable neural network can be applied to collision avoidance with the capability to handle
abnormal human activities; the adaptable lognormal method estimates the durations for
humans’ actions/whole trajectories, which is of great use for the task planners that optimize
the task time.

Human-aware task planning plans robot actions while taking account of human actions.
A separation planner is proposed. Researchers often separate humans and robots at the
trajectory level to ensure safety, but it is the first planner that separates the human and the
robot at the task planning level, and it is shown that this planner can achieve good time
efficiency and good human satisfaction.
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