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Abstract 

We formulate four alternative Bayesian models of causal 
strength judgments, and compare their predictions to two sets of 
human data. The models were derived by factorially varying the 
generating function for integrating multiple causes (based on 
either the power PC theory or the ∆P rule) and priors on 
strengths (favoring necessary and sufficient (NS) causes, or 
uniform). The models based on the power generating function 
provided much better fits than those based on the linear 
function. The models that included NS priors were able to 
account for subtle asymmetries between strength judgments for 
generative and preventive causes. 

Keywords: Bayesian inference; causal strength; causal power 

Strength Judgments in a Bayesian Framework 

Humans and other animals are able to use contingency 

information to judge the potency of a cause that acts to 

produce or prevent an associated effect. For example, the 

HIV virus almost always leads to development of the 

disease AIDS (high causal strength), whereas smoking a 

pack of cigarette every day for a year leads to cancer with 

some small probability (low causal strength). In the simplest 

possible causal situation, a single binary candidate cause, C, 

varies along with a binary effect, E, against a constant 

background, B, that also might produce E (Figure 1). We 

assume B and C occur prior to E. The available contingency 

data takes the form of a tally of the frequencies with which 

E does or does not occur in the presence of either B alone 

(base rate of the effect) or B and C together. How can such 

contingency information be translated into an estimate of 

the causal strength of C? 

 

 

 

 

 

 

 

Judging causal strength can be formalized as a Bayesian 

problem of parameter estimation within a fixed causal graph 

as shown in Figure 1 (Griffiths & Tenenbaum, 2005; Jaynes, 

2003). Within the Bayesian framework, inference depends 

jointly on the likelihoods of data given alternative 

hypotheses, and on priors for these hypotheses.  For 

strength judgments, likelihoods depend on the causal 

generating function, i.e., how do the influences of potential 

causes B and C in Graph 1 combine to influence E? The 

relevant priors are initial probabilities assigned to possible 

values of the weights wo and w1 (representing causal 

strengths) on the causal links for B and C, respectively. 

Derivation of Bayesian Models 

Based on observation of contingency data D, a Bayesian 

model can be formalized to infer causal strength.  The 

Bayesian model is able to assess the probability distribution 

of w1
 so as to quantify statistical properties of the causal 

strength of candidate cause C to produce or prevent E. In 

this paper we compare the average human strength rating 

with the mean of w1
 in the causal structure shown in Figure 

1.  The mean of w1
 is determined by  
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where ),|( 10 wwDP  is the likelihood term. ),( 10 wwP  

corresponds to prior probabilities that model the learner’s 

beliefs about the values of causal strengths. P(D)  is the 

normalizing term, denoting the probability of obtaining the 

observed data.  Let −+ /  indicate the value of the variable 

to be 1 (present) versus 0 (absent).  The likelihood term 

),|( 10 wwDP  is given by 

  

 

w0 w1 

B C 

E 

Figure 1. A simple causal graph. 

B, C, and E are binary variables.  

Weights w0 and w1 in Graph 1 

indicate causal strength of the 

background cause, B, and the 

candidate cause, C, respectively.    
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 where }1,0{,, ∈ecb  denotes the absence and the presence 

of the causes B, C, and the effect E. 




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k

n  denotes the number 

of ways of picking k unordered outcomes from n 

possibilities. 

 

Alternative Generating Functions Griffiths and 

Tenenbaum (2005) pointed out that Bayesian models of 

causal judgments can be constructed using either of two 

generating functions derived from models in the 

psychological literature. The generating function adopted by 

Griffiths and Tenenbaum in their “causal support” model is 

the power generating function, derived from the power PC 

theory (Cheng, 1997; see Glymour, 2001). For the situation 

in which background cause B and candidate cause C are 

both potential generative causes, the probability of 

observing the effect E is given by a noisy-OR function, 

P(e+ | b,c;w0,w1) = w0b + w1c − w0w1bc.       (4) 

It is assumed that b =1 because the background cause B is 

always present in the experimental setup. In the preventive 

case, B is again assumed to be potentially generative 

(following the power PC theory, which specifies that the 

background must not include preventive causes), whereas C 

is potentially preventive. The resulting noisy-AND-NOT 

generating function for preventive causes is 

.),;,|( 10010 bcwwbwwwcbeP −=
+          (5) 

For convenience we will refer to Eqs. 4-5 together as the 

power generating function. Because the power generating 

function obeys the laws of probability, the weights w0 and 

w1 are inherently constrained to the range [0,1]. 

Using the power generating function, Cheng (1997) 

derived quantitative predictions for judgments of causal 

strength. Let q represent a point estimate of the value of 

causal power. When certain assumptions are satisfied, the 

predicted value of causal power for a generative cause is 
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and the predicted value of power for a preventive cause is 

qP =
−∆P

P(e+ | c−)
 ,                                      (7) 

where ∆P is simply the difference between the probability 

of the effect in the presence versus absence of the candidate 

cause, i.e., 

         ∆P = P(e+ | c + ) − P(e+ | c− ).                 (8) 

Griffiths and Tenenbaum (2005) showed that causal power 

(q in Eqs. 6-7) corresponds to the maximum likelihood 

estimate for the random variable w1 on a fixed graph (as 

shown in Figure 1) under the power generating function. 

The term P(e+ | c−)  in the denominator of Eqs. 6-7 is 

often termed the base rate of the effect, as it gives the 

prevalence of the effect under background conditions in the 

absence of the candidate cause. The base rate determines the 

value of w0 in the causal structural graph shown in Figure 1. 

Note that the derivation of causal power for generative 

causes (Eqs. 4, 6) versus preventive causes (Eqs. 5, 7) is 

inherently asymmetrical with respect to the base rate of the 

effect.  

An alternative generating function can be derived directly 

from ∆P (Eq. 8), which has been interpreted by some 

theorists as an estimate of causal strength (Jenkins & Ward, 

1965). Under certain conditions, when learning is at 

asymptote the ∆P rule is equivalent to the Rescorla-Wagner 

associative learning model (see Danks, 2003), which has 

been advanced as a model of causal inference (Shanks & 

Dickinson, 1987). The ∆P model yields a linear generating 

function, 

P(e
+

| b,c;w0,w1) = w0b + w1c              (9) 

where w0  is within the range [0,1], and  w1  is within the 

range [-1,1] and with an additional constraint that w0 + w1 

must lie in the range [0,1] so as to result in a legitimate 

probability distribution.  Eq. 9 simply states that the 

candidate cause C changes the probability of E by a constant 

amount regardless of the presence or absence of other 

causes, such as B.  Griffiths and Tenenbaum (2005) proved 

that Eq. 9 yields ∆P as the maximum likelihood estimate of 

w1 when substituted for Eqs. 4-5.  

 

Alternative Priors The second component in Eq. 2 is the 

prior on causal strength, ),( 10 wwP , within the causal 

structure in Figure 1. When C is an unfamiliar cause, a 

natural assumption is that people will have no substantive 

priors about the values of w0 and w1, modeled by priors that 

are uniform over the range [0,1]. Griffiths and Tenenbaum 

(2005) adopted uniform priors in their causal support model. 

An alternative proposal is that people have priors for 

necessary and sufficient (NS) causes (Lu et al., 2006). Our 

NS power model integrates the power generating function 

with generic priors (cf. Lu & Yuille, 2006) about the 

relationship between the powers of alternative potential 

causes. We make the assumption that people prefer causal 

networks that are relatively simple (Novick & Cheng, 2004, 

p. 471) and that people have a deterministic bias regarding 

causal strength. Causal simplicity (Chater & Vitányi, 2003) 

potentially manifests itself in multiple ways, which likely 

include a preference for fewer causes (Lombrozo, 2007) and 

for causes that do not involve interactions (Novick & Cheng, 

2004; Liljeholm & Cheng, in press). Deterministic causal 

preference biases causal strength towards 0 and/or 1. NS 

priors imply that people have a prior belief favoring causes 

that are necessary and sufficient (e.g., a genetic defect on 

chromosome 4 is necessary and sufficient to cause 

Huntington’s disease). But rather than being a strict logical 

condition, NS priors are assumed to be probabilistic. Pearl 

(2000) interpreted generative causal power (Eq. 3) as 

“probability of sufficiency,” and ∆P (Eq. 6) as “probability 

of necessity and sufficiency.” (For preventive causes the 

analogous quantities are preventive causal power and −∆P, 

respectively.) Developmental data provide support for the 



assumption of NS priors. Recent evidence indicates that 

preschool children tacitly believe in “causal determinism”, 

inferring unobserved causes to explain apparently stochastic 

patterns of effects (Schultz & Sommerville, 2006). 

For the generative case, the background B and candidate 

C are both potentially generative, and hence will implicitly 

compete as alternative NS causes. Accordingly, we set 

priors favoring NS generative causes with the prior 

distribution peaks for 0w , 1w  at 0,1 (C is an NS cause) and 

1,0 (B is) (see Figure 2A). We specify the priors using a 

mixed distribution with exponential functions, 
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where α  is a parameter controlling how strongly necessary 

and sufficient causes are preferred. When 0=α , the prior 

follows a uniform distribution, indicating no preference to 

any values of causal strength. 22 /)1(2)( αα α−
−= eZ  denotes a 

normalization term that ensures the sum of the prior 

probabilities equals 1. Figure 2A depicts the shape of a 

distribution when α = 5.  

 
Figure 2. Prior distributions over w0 and w1 with NS priors. A: 

Generative case, 5=α  (peaks at 0,1 and 1,0); B: Preventive case, 

5=α  (peaks at 1,1 and 1,0). 

The NS prior will differ for the preventive case (Figure 

2B). Because the background cause, B, is assumed to be 

generative regardless of the existence of the preventive 

candidate cause C, B and C will not compete as alternative 

NS causes in the preventive case. The issue of prevention 

will arise under the assumption that the effect is being 

generated; hence the peak weight of w0 for the background 

cause B (the only possible generative cause) is assumed to 

be biased towards 1. The maximum probability of necessity 

and sufficiency for C as a preventer will then obtain when B 

is a sufficient generative cause, 10 =w , yielding a 

distribution peak for 0w , 1w  at 1,1. If C is not sufficient, 

the alternative consistent with causal determinism is that it 

is completely ineffective, yielding an additional peak at 1,0. 

We again use an exponential formulation,  
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where all parameters are defined as in Eq. 10. 

Note that the two peaks of the NS priors for the 

preventive case (Figure 2B) are not symmetrical with those 

for the generative case (Figure 2A). As we will see, the 

asymmetrical NS priors for generative versus preventive 

causes yield systematic asymmetries in human causal 

judgments as a function of causal direction. 

In summary, the factorial combination of two alternative 

generating functions (power versus linear) and two 

alternative priors (NS or uniform) yields four alternative 

Bayesian models: Model I (power, NS), Model II (power, 

uniform), Model III (linear, NS), and Model IV (linear, 

uniform). Model I corresponds to the NS power model (Lu 

et al., 2006) when adapted to estimate causal strength. 

Model II corresponds to the causal support model (Griffiths 

& Tenenbaum, 2005) when adapted to estimate strength 

(Danks, Griffiths & Tenenbaum, 2003). Model IV 

corresponds to a Bayesian formulation of the ∆P rule 

(Jenkins & Ward, 1965) and the equivalent variant of the 

Rescorla-Wagner model (e.g., Shanks & Dickinson, 1987). 

Model III, identical to Model IV except with NS priors, has 

never been previously considered. 

Simulations of Human Strength Judgments 

We tested these four models by comparing the predictions 

of each for two data sets of human judgments of causal 

strength. Methodological issues arise in selecting data for 

quantitative modeling of strength judgments. Many studies 

have used rating scales to assess causal strength. As pointed 

out by Buehner et al. (2003), such scales may be ambiguous, 

leading participants to give responses that conflate causal 

strength with reliability. An elicitation procedure for 

strength judgments that minimizes ambiguity is to ask 

participants to estimate the frequency with which the 

candidate cause would produce (or prevent) the effect in a 

new set of cases that do not already exhibit the effect 

(Buehner et al., 2003, Experiments 2-3). The two data sets 

we selected for modeling used this type of query, coupled 

with summary displays of contingency information in which 

individual cases are presented in a single organized display 

(see Figure 3 for an example). Such presentations provide a 

vivid display of individual cases, making salient the 

frequencies of the various types of cases, while minimizing 

memory demands.  

Data Set 1: “Headache” Cover Story 

We first modeled a large data set from a study by Liljeholm 

and Cheng (2007, Experiment 1). 

 

Method  Fifty-two undergraduates at the University of 

California, Los Angeles (UCLA) were assigned in equal 

numbers to generative and preventive conditions. 

Participants first read a cover story about a pharmaceutical 

company investigating whether various minerals in an 

allergy medicine might produce headache (generative 

condition) as a side effect. The preventive cover story was 

identical except that the word “remove” was substituted for 

“produce”. Participants were further informed that each 

mineral was to be tested in a different lab, and that the 

number of patients who had a headache before receiving any 

mineral, as well as the total number of patients, might vary 

across patient groups from different labs. Participants were 



then presented with data from the tests of the allergy 

medicine.  Each trial was depicted as the face of an allergy 

patient.  As illustrated in Figure 3, each patient was 

represented by a cartoon face that was either frowning 

(headache) or smiling (no headache). The data were divided 

into 2 subsets, each an array of faces. The top subset 

represented patients before receiving the mineral and 

depicted P(e+|c-); the bottom subset represented patients 

after receiving the mineral and depicted P(e+|c+).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Contingency conditions were varied within-subjects. Two 

samples sizes (16 and 64) were combined with two causal 

powers, .25 and 1, and three base rates: 0 (for generative; 1 

for preventive), .25, and .75, yielding a total of 24 

conditions (see Figure 4). The code in Figure 4 indicates 

number of patients with headache out of total number before 

receiving the mineral (i.e., base rate of the effect), and 

number with headache out of total number after receiving 

the mineral (where the mineral is C and headache is E). In 

Figure 4, generative and preventive conditions are identical 

except that the frequencies of headache and no headache are 

transposed. For example, the generative case 0/16, 4/16, 

where the base rate P(e+|c-) = 0, P(e+|c+) = .25, power 

= .25, and the sample size is 16, is matched to the 

symmetrical preventive case 16/16, 12/16, where P(e+|c-) = 

1, P(e+|c+) = .75, power = .25, and the sample size is 16. 

Before answering the strength query, participants were 

asked if “The mineral has absolutely no influence on 

headache.” Strength ratings were not obtained for those 

participants who agreed with this assertion. The subsequent 

query (generative conditions) was, “Suppose that there are 

100 people that do not have headaches. If this mineral was 

given to these 100 people, how many of them would have 

headaches?” The preventive version simply substituted “do” 

for “do not” and “have” for “not have”. Participants had 

been instructed not to provide any numerical rating when 

selecting the first answer option, as well as to not put a zero 

rating when selecting the second answer option. The 

dependent measure of causal strength was the average of 

numerical rating (1-100) elicited in each condition for the 

second query.  

 

Fits of Bayesian Models 

Predicted mean strength values can be derived from 

Bayesian models under the assumption that people estimate 

strength by implicitly sampling values drawn at random 

from the posterior probability distribution over w1 (cf. 

Mamassian & Landy, 1998). Accordingly, in our 

simulations the mean of w1 for each contingency was used 

to predict the corresponding mean strength rating. 

Following Buehner et al. (2003) and Liljeholm and Cheng 

(2007), we assume that mean strength ratings on the 100-

point scale approximate a ratio scale of causal power.
1
  

 
Figure 4. Strength ratings (Data Set 1). Numbers along top show 

stimulus contingencies for generative cases; those along bottom 

show contingencies for matched negative cases. A: Mean human 

ratings (error bars indicate 1 standard error); B~E: Predictions 

from four models. 

 

Hence, a successful model must aim to account for the 

actual values obtained for human strength judgments, 

without any further data transformation. Accordingly, we 

report model fits not only based on correlations, but also on 

root-mean-squared (RMS) deviations from the human data. 

In addition, the models with NS priors predict systematic 

interactions as a function of causal direction. For Models I 

and III only, we therefore computed not only the overall 

correlation of model predictions with human data, but also 

the correlation (rd) between the observed and predicted 

difference between the mean strength judgments for 

matched generative and preventive contingencies. The 

                                                           
1
 The assumption of a ratio scale is likely to break down for 

strength estimates near the extremes (0 or 100 on the scale) due to 

measurement issues (errors necessarily fall one side of the true 

mean).  
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“headache” display, 

showing patients who 
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(bottom) received a 

mineral used in an 

allergy medicine, and 

who had or had not 

developed headaches. 



predicted difference score is always 0 for Models II and IV, 

which assume uniform priors; hence rd is not computable. 

The human data (Figure 4A) were well fit overall by 

Models I and II based on the power generating function, 

either with NS priors (Figure 4B) or uniform priors (Figure 

4C; r = .97 and .96, respectively). Model I (NS power) has a 

slight advantage in terms of lower RMS, and in addition 

yields a positive correlation with the difference in strength 

ratings for matched generative and preventive contingencies 

(rd = .41). Models III and IV based on the linear generating 

function (Figure 4D-E) yielded substantially poorer overall 

fits (r = .86 for each), roughly doubling the RMS relative to 

the models based on the power generating function.  The 

reason for the poor fits of the linear models is that they 

erroneously predict that human strength judgments will 

asymptote at values corresponding to values of ∆P, whereas 

human judgments actually approach values of causal power 

at asymptote. The linear Model III with NS priors does, 

however, yield a positive correlation with difference scores 

for generative versus preventive causes (rd = .61). 

Data Set 2: “DNA” Cover Story 

For generality, we performed an experiment to obtain 

strength ratings using a different cover story. 

 

Method  Seventy-four UCLA undergraduates served in the 

study. The cover story concerned a bio-genetics company 

testing the influence of various proteins on the expression of 

a gene. Participant were told that, in each of several 

experiments, DNA strands extracted from hair samples 

would be exposed to a particular protein and that the 

expression of the gene would then be assessed.  They were 

told that their job was to evaluate the influence of each 

protein on the expression of the gene.  Each participant then 

saw a series of “experiments”, each of which showed two 

samples of DNA strands, depicted as “vivid summaries” of 

the same basic sort used the “headache” study (see Figure 5).  

One sample of DNA strands had not been exposed to a 

particular protein, while the other sample of DNA strands 

had been exposed to that protein. The 16 contingencies used 

in the experiment are shown in Figure 6. Causal direction 

was varied between-subjects, contingency within-subjects. 

Strength judgments were obtained from all participants. 

The causal query in the generative condition was: “Suppose 

that there is a sample of 100 DNA strands and that the gene 

is OFF in all those DNA strands. If these 100 strands were 

exposed to the protein, in how many of them would the gene 

be TURNED ON?” The preventive query was identical 

except that “OFF” was replaced by “ON” and “TURNED 

ON” by “TURNED OFF”.  

 

Fits of Bayesian Models 

As for the data for the “headache” cover story, the human 

data based on the “DNA” cover story (Figure 6A) was well 

fit overall by Models I and II based on the power generating 

function, either with NS (Figure 6B) or uniform priors 

(Figure 6C; r = .98 for each). The RMS was very low for 

both models, with a slight advantage (less than 1 point on 

the 100-point scale) for Model II. However, Model I (NS 

power) yielded a substantial positive correlation with the 

difference in strength ratings for matched generative and 

preventive contingencies (rd = .80), whereas Model II with  

 
 

 
Figure 6. Strength ratings (Data Set 2). Same conventions as in 

Figure 4. 

 

uniform priors is completely unable to account for the 

pattern of interactions with causal direction. 

Once again, Models III and IV based on the linear 

generating function (Figure 6D for NS priors, Figure 6E for 

uniform priors) yielded substantially poorer overall fits (r 

= .77 and .76, respectively), roughly quadrupling the RMS 

relative to the models based on the power generating 

Testing Protein F:

= gene ON= gene of f

Leg end for gene expression

No Prot ein F

Protein F

These DNA st rands were not exposed

to protein F, and this is how they were:

These DNA st rands were exposed t o

protein F, and this is how they were:

Figure 5. Example of a 

“DNA” display, with 

DNA strands that had not 

(top) or had (bottom) 

been exposed to a 

protein, and indicating 

whether a gene was off or 

on. 



function. Model III with NS priors did, however, yield a 

positive correlation with difference scores for generative 

versus preventive causes (rd = .81). 

General Discussion 

In summary, the best overall account of human strength 

judgments for both the “headache” and “DNA” data sets 

was provided by the NS power model (Model I), which 

combines the power generating function with NS priors. NS 

priors provide the only formal account to date of 

asymmetries between causal judgments for generative and 

preventive causes. Similar asymmetries have been observed 

for judgments of whether or not a causal link is present 

(structure judgments; Lu et al., 2006).
2
 

The quantitative failure of the linear generating function 

(Models III and IV) confirms the negative conclusion that 

has been reached on the basis of more qualitative 

comparisons (e.g., Buehner et al., 2003; Liljeholm & Cheng, 

2007; Novick & Cheng, 2004).  We thus can rule out the 

possibility that adopting the Bayesian framework might 

somehow salvage the linear generating function as a 

psychological model of human causal learning (see also 

Danks et al., 2003), regardless of whether the linear function 

is cast directly in terms of ∆P (Jenkins & Ward, 1965) or 

indirectly in the Rescorla-Wagner model (Shanks & 

Dickinson, 1987). 

An important meta-point is that there may be many 

potential “rational” models of a given cognitive task. The 

Bayesian framework simply derives rational predictions 

from stated theoretical premises: if a reasoner has certain 

entering causal beliefs, and believes that causes follow a 

certain function in generating their effects, then some 

pattern of rational causal judgments follows. The four 

Bayesian models we have considered here differ in their 

underlying theoretical premises, and hence in their empirical 

predictions. The Bayesian framework provides a natural 

formalism for deriving and comparing the quantitative 

predictions of alternative “rational” models. 
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