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ABSTRACT OF THE DISSERTATION

Investigating the Ground State of Organic Frustrated Magnets using Nuclear Magnetic

Resonance

by
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Doctor of Philosophy in Physics

University of California, Los Angeles, 2023

Professor Stuart Brown, Chair

Quantum Spin Liquids (QSLs) are novel, exotic states of matter that have been proposed

to be the key to topological quantum computing and high temperature superconductivity.

The QSL is defined, in theory, to be a nonmagnetic insulator with quantum disordered,

highly entangled spins. Unfortunately, the connection between theory and experiment in

this field is still incomplete. While lack of magnetic order is easy to detect experimen-

tally, quantum disorder and long range entanglement are more difficult to prove. Conse-

quently, there are many candidate QSL materials, but there are no undisputed QSLs to

date. This dissertation investigates the first quasi-2D QSL candidate ever to be discovered,

κ-(BEDT-TTF)2Cu2(CN)3, and its cousins, κ-(BEDT-TTF)2Hg(SCN)2Cl, and κ-(BEDT-

TTF)2Hg(SCN)2Br, through the lens of Nuclear Magnetic Resonance (NMR) in an attempt

to answer some of the outstanding questions still present almost 20 years after the dis-

covery of κ-(BEDT-TTF)2Cu2(CN)3. First, the effects of charge degrees of freedom on

the ground state of κ-(BEDT-TTF)2X materials are examined via the study of κ-(BEDT-

TTF)2Hg(SCN)2Cl and κ-(BEDT-TTF)2Hg(SCN)2Br, both of which are more likely to be

charge ordered than κ-(BEDT-TTF)2Cu2(CN)3. Then, the question of whether or not the

NMR signature of κ-(BEDT-TTF)2Cu2(CN)3 is compatible with a spinon fermi surface and

the nature of the ”6 K anomaly” in κ-(BEDT-TTF)2Cu2(CN)3 is revisited via low tem-
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perature, high field NMR. In the case of κ-(BEDT-TTF)2Hg(SCN)2Cl, it is found that

impurity spins dominate the low temperature NMR relaxation signature masking the in-

trinsic behavior. The 1/T1 relaxation of κ-(BEDT-TTF)2Hg(SCN)2Cl is very similar to

that of κ-(BEDT-TTF)2Cu2(CN)3, and it is reasonable to believe the same ”masking” may

apply in the latter case. κ-(BEDT-TTF)2Hg(SCN)2Br, on the other hand, behaves quite

differently from the other two. While none of the materials studied exhibit any signs of

long range magnetic order, signatures for short range magnetic order were detected in κ-

(BEDT-TTF)2Hg(SCN)2Br. κ-(BEDT-TTF)2Cu2(CN)3 is revisited at high fields in order

to test the theory that impurity spins mask intrinsic relaxation behavior, as NMR signatures

from impurities should be frozen out at sufficiently high fields. The relaxation signature of

κ-(BEDT-TTF)2Cu2(CN)3 is found to be gapped, inconsistent with a spinon fermi sur-

face. The nature of this gap remains unclear. Some exploration into the Inverse Laplace

Transform (ILT) method as a tool for analyzing the stretched exponential in the context of

κ-(BEDT-TTF)2Cu2(CN)3 is discussed as well.
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CHAPTER 1

Motivation and Background

1.1 Motivation

Low dimensional magnetism remains an active field of study in condensed matter physics

due to its complexity and the promise of novel quantum phenomena such as the fractional

quantum hall effect and Kondo effect. However, solving for the ground state of a system

of interacting, near-neighbor (NN) antiferromagnetic (AFM) spins is surprisingly difficult.

While the AFM Ising and Heisenberg Hamiltonians (to be discussed in section 1.2.2) were

solved exactly for 1D chains in the early 1900s [3, 4], for a very long time, theorists were

unable to solve for the ground states of 2D systems, as many solutions required the help of

numerical methods which were not available at the time. The 2D, isotropic triangular lattice

was one of those systems. The NN AFM Ising model was solved by Wannier in 1950, who

determined that there is no Néel temperature below which AFM order is expected, and the

system remains disordered even at 0 K [5]. However, no exact, analytical solution exists for

the AFM Heisenberg on a triangular lattice (AFMHTL) or any other lattice in d>1, and

theorists have relied on rough approximations to predict the ground state. Before numeri-

cal computation methods were available, Philip W. Anderson’s 1973 Quantum Spin Liquid

(QSL) theory was among the most influential. Motivated by the geometrical frustration of

the triangular lattice, which makes it impossible for all spins to anti-align with their NNs, he

argued that the ground state of the AFMHTL is a fluctuating singlet state called a QSL and

later proposed that QSLs in a square lattice have ties to high temperature superconductivity

[6, 7]. Despite growing scientific consensus that the ground state of the AFMHTL is, in fact,

a 120o long range ordered (LRO) Néel state [8–10], the potential utility of a QSL motivated
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many to continue searching for suitable models. The search for QSL states on a triangular

lattice eventually led to the experimental study of κ-(BEDT-TTF)2X charge transfer salts.

In this dissertation, I present research on the group of materials responsible for spear-

heading the experimental study of QSLs in 2D triangular lattices, κ-(BEDT-TTF)2X, using

Nuclear Magnetic Resonance. Within this group of materials, κ-(BEDT-TTF)2Cu2(CN)3

(κ-CuCN) emerged in 2003 as the first 2D triangular QSL candidate [11]. Despite having an

exchange interaction, J , of approximately 250 K, 1H NMR experiments detected no magnetic

order, long range or short range, down to temperatures of 32 mK. However, lack of magnetic

order is not definitive evidence for a QSL state. In fact, it has not yet been clarified what

exact set of experimental evidence is needed to qualify a QSL [12, 13]. Bridging the gap

between theory and experiment remains an ongoing problem. The work in this dissertation

involving κ-CuCN and its cousin compounds, κ-(BEDT-TTF)2Hg(SCN)2Cl (κ-HgCl) and

κ-(BEDT-TTF)2Hg(SCN)2Br (κ-HgBr), serves two primary aims: first, to investigate the

role of charge degrees of freedom in promoting or limiting QSL manifestation in κ-(BEDT-

TTF)2X materials, and second, to investigate the nature of the low energy excitations in

κ-CuCN in order to determine its ground state.

1.2 Quantum Spin Liquid Theory

1.2.1 What is a Quantum Spin Liquid?

Despite continued excitement about this novel state and its potential applications, the QSL is

not well understood, even among many within the condensed matter community. I will first

provide an overview of the definitive properties of the QSL state that distinguishes it from

other states of matter. Despite some attempts to experimentally investigate QSL properties,

theoretical treatments are still quite varied, with many models in existence describing QSLs

with distinct characteristics. In this chapter, I will focus on triangular models – a full

discussion of models is outside the scope of this work, but see [13–16] for some excellent

reviews.
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All of the models agree on one thing: a QSL is a state of matter with quantum disordered,

highly entangled spins. The cartoon picture of a QSL is best described by Anderson’s

Resonating Valence Bond (RVB) description. To start, we define a Valence Bond Solid

(VBS) state which has every spin on the lattice form a singlet pair, or a Valence Bond, with

a nearest-neighbor spin (see Fig. 1.1(a)). Because singlets don’t have any spin, the VBS state

is nonmagnetic. The biggest distinction between a VBS and a QSL is that the singlet pairs

in a VBS are restricted to nearest-neighbors and form along a fixed direction. Therefore, a

transition into a VBS state, at the very least, breaks translational or rotational symmetry.

In contrast, spins in a QSL do not have any preference which spin they form bonds with, and

are not restricted to pair only with nearest neighbors. Thus, the QSL is the superposition

of all possible microstates of valence bond pairings, including long distance pairings that

are restricted in the VBS, and allows fluctuation between these states without any cost in

energy. The QSL remains nonmagnetic like the VBS, but its singlet pairs are constantly

fluctuating or “resonating” even at 0 K, thus the name “Resonating Valence Bond.” This

resonating nature is the “quantum disorder” in QSLs.

The most important property of the high level entanglement in QSLs is the ability to

support non-local and fractionalized excitations. In fact, the low-energy effective theory of

QSLs is currently a deconfined gauge theory [15]. Since transition into a QSL state does not

require any symmetry breaking, one instead needs to prove the presence of non-local, de-

confined excitations in the ground state along with nonmagnetic, insulating properties. One

of the most frequently encountered quasiparticles mentioned in QSL theory is the fermionic

spinon which carries half-odd integer spin, usually spin 1/2. However, there are models

which support anyons, photons, and other types of quasiparticle excitations.

The original theory, proposed by P.W. Anderson in 1973, suggested looking for such a

state in an isotropic triangular lattice with AFM interactions [6]. Supposedly, the ”frustra-

tion,” arising from the fact that there is no spin orientation that can anti-align all nearest

neighbors simultaneously, can suppress magnetic order and enable the quantum fluctuations

that define a QSL state. Although this original formulation has fallen out of favor, different
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Figure 1.1: (a) Illustration of a Valence Bond Solid state. (b) The QSL is a superposition

of all possible valence bond pairings in a lattice. Adapted from Reference [14].

models which include frustrated lattices like the distorted triangular and Kagome lattices

(Fig. 1.2) have been found to host QSL-like ground states.

Because this dissertation is focused on organic conductors with triangular lattices, I will

focus my discussion on a subset of triangular lattice models most relevant to the work,

although this discussion is not exhaustive.

1.2.2 Relevant Hamiltonians

Before discussing the details of each model, I will briefly describe the most frequently encoun-

tered Hamiltonians, the meanings of the variables in them, and their physical implications.

1.2.2.1 The Hubbard Model

One of the earliest models encountered in condensed matter that includes electron correla-

tions is the Hubbard Model. In the simplest picture, electrons with kinetic energy hop on a
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Figure 1.2: (a) Triangular lattice with 120o Néel state ordering. (b) Kagome lattice with the

same order. Adapted from Reference [14].

lattice from one site to another while being repelled by the Coulomb force of other electrons.

It is written as:

H = −
∑
⟨i,j⟩σ

tij
(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
+ U

∑
i

n̂i↑n̂i↓ (1.1)

In the first term, tij is the “hopping term” and is a measurement of how much overlap

there is between ionic wave functions centered at lattice sites, i and j. Greater overlap means

higher chance of electrons hopping between the two sites. ĉ† and ĉ are electron/spin cre-

ation and annihilation operators, respectively. The subscripts of the operator indicate which

lattice site a spin, σ, is being created/annihilated at. The second term in the Hamiltonian

adds a Coulomb energy cost, U , should two electrons, required to obey the Fermi-Exclusion

Principle, sit on the same site.

Sometimes, it is necessary to use the extended Hubbard model which includes the Coulomb

interaction between next-nearest-neighbor (NNN) spins:

HNN = V
∑
⟨i,j⟩

n̂in̂j (1.2)

Inclusion of this term allows for charge order in a lattice, which becomes relevant for

certain materials, such as κ-(BEDT-TTF)2Hg(SCN)2Cl and κ-(BEDT-TTF)2Hg(SCN)2Br.
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1.2.2.2 The Heiseinberg Model

For half-filled lattices in the limit of U ≫ t, the tight binding model would normally predict

conducting properties. However, the Hubbard Model predicts that when the cost of placing

two electrons on one site is significantly large, the system prefers a state where electrons

are localized, despite being in a half-filled band. The result is a special type of insulator

called a “Mott Insulator”. In the Mott Insulator limit, it is assumed that no electron hopping

occurs, and the Hubbard Hamiltonian, after some algebra, is transformed into the Heisenberg

Hamiltonian:

H =
∑
⟨i,j⟩

4t2ij
U

Si · Sj =
∑
⟨i,j⟩

JijSi · Sj (1.3)

where Jij > 0 is the AFM exchange interaction between neighboring spins, Si and Sj .

1.2.2.3 The Ising Model

Eliminating exchange terms SixSjx and SiySjy leads to the Ising Hamiltonian:

H =
∑
⟨i,j⟩

Jijσiσj (1.4)

In the Ising Model, the spin vectors are dropped and replaced with scalars, σ, which are

restricted to the values of + or - 1, representing alignment or anti-alignment, respectively,

along the ẑ axis.

1.2.3 Classification of QSLs

If an approach to estimating the ground state of any of these Hamiltonians on a lattice

results in a QSL-like state, some attempt at classifying the state is made. There is no

general convention for the classification of QSLs, but most follow this pattern: [Spectrum of

Low-Energy Excitations ] + [Lattice Gauge Symmetry ]. In an effort to make the terminology

more familiar for the reader, I shall summarize the meanings of those classifications here.
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1.2.3.1 Energy Spectrum

A QSL is first classified by the spectrum of its low-energy excitations. The energy spectrum

may be continuous, having excitations very close to 0 K, in which case it is considered gapless.

It may also contain a gap between the ground state and the lowest energy excitation, which

would classify at as activated, or gapped. Gapped spectra typically have exponentially de-

caying thermodynamic observables with respect to temperature while gapless spectra exhibit

power law behaviors. In general, gapped QSLs can have topological origins while gapless

QSLs require more involved approaches, for example a combination of parton theory and

gauge theory, to explain.

1.2.3.2 Lattice Gauge Theory

The QSLs in each of these models are subject to a certain lattice gauge theory, meaning

the system is defined by a field with which a certain set of operations leaves the measur-

able observables invariant, or unchanged. The conditions for the deconfined phase(s), its

quasiparticles, and the associated excitation spectrum follow closely from the gauge theory.

Therefore, it is important that QSLs are identified according to the lattice gauge theory

with which they are subject to. A full discussion of gauge theory is outside the scope of this

dissertation. Instead, I will summarize the main properties of the symmetry groups most

frequently mentioned in the models of section 1.2.4: U(1) and Z2. SU(2) is also common

in QSL literature, but does not show up in any of the models discussed in this dissertation.

The interested reader should refer to the review by Zhou, Kanoda, and Ng for a detailed

explanation as to what it means to be a SU(2) QSL [16].

U(1) QSLs are easy to explain due to the fact that they share the same gauge theory as

electromagnetism (EM), except applied to a discretized spacetime. The gauge field is the

vector field Amn. However, unlike in EM, Amn lives on the edges of a lattice, effectively quan-

tizing the lattice, and is named by the vertices of the edge it sits on. It is also conventional

to use the compact U(1) gauge theory which restricts 0 ≤ Amn ≤ 2π. The vector field repre-
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sents two important observables, the “electric” and “magnetic” flux, given by Emn = −Ȧmn

and Φmnpq = Amn + Anp + Apq + Aqn, respectively. Whereas the electric flux is defined by

a single edge, the magnetic flux is defined by a “plaquette” which is a closed loop of four

edges in counter-clockwise order. The resulting deconfined phase or the “Coulomb Phase” is

defined by four different types of quasiparticles. First, there exist gapless photon modes at

the lowest end of the spectrum. Then, at energies greater than the gap, “electric charges”

and “magnetic monopoles” carry energy and interact with ’like’ charges via a “Coulomb” 1/r

potential. Lastly, there are gapped combinations of the electric and magnetic charges called

“dyons.” The first three quasiparticles are considered bosons while the dyons are fermions.

To produce gapless fermionic spinon excitations, one must go beyond pure gauge theory and

couple U(1) gauge theory with parton theory [17].

If the U(1) QSL observables, which take on integer values, are instead restricted to

binary (±1) values, the theory becomes Z2 gauge theory, often called the Ising Gauge. The

observables in this gauge are defined by the Pauli operators, σx ∼= (−1)E and σz ∼= e±iA,

where
∏

plaquette σ
z ∼= eiΦ. Despite being different from U(1) theory, the quasiparticles that

come from Z2 gauge theory are very similar. Pure Z2 gauge theory does not produce gapless

excitations, therefore there are no photon modes in this model. However, there are gapped

anyonic excitations. The three different types of anyons bear a striking resemblance to

the U(1) particles. They are the “electric” particles (e), “magnetic” particles (m), and

fused/bound e and m particles (ϵ). As in U(1) theory, e and m are bosons while the ϵs are

fermions. Unlike their U(1) counterparts, however, these excitations carry binary units of

energy (as is required by Z2 gauge theory). Pure Z2 gauge theory is also sometimes referred

to as topological Z2 gauge theory, because it is identical to Kitaev’s “Toric Code,” which

produces four-fold topologically degenerate ground states [18]. Kitaev’s honeycomb model,

which is solved via a combination of parton physics and gauge theory, is an example of a Z2

model which supports gapless excitations [19].
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Figure 1.3: Intra-chain interaction J1 vs Inter-chain interaction J ′
1.

1.2.4 QSL Models on a Triangular Lattice

The reader should now be familiar enough with the minimal knowledge required to under-

stand the basis of each model in this section as well as the implications of the predictions

made by the models. I will summarize the main assumptions of each approach and what

kind of QSL they predict.

1.2.4.1 Heisenberg ++

Although the NN AFMHTL orders in a 120o ground state, it is reasonable to ask whether

modifications to the couplings might suppress the long range order. It turns out, with slight

modifications to the Heisenberg Hamiltonian, one can find states with QSL-like properties.

The QSLs in these models are identified as areas where there is little to no magnetic moment

per lattice site.

Two of the most common modifications include adding weak but non-negligible NNN

interactions and spatial anisotropy of the NN. The complete Hamiltonian, including both of

these terms, is of the form:

H = J1
∑
⟨i,j⟩

Si · Sj + J ′
1

∑
⟨i,j⟩

Si · Sj + J2
∑
⟨⟨i,j⟩⟩

Si · Sj (1.5)

where J1 and J ′
1 denote NN intra-chain and inter-chain interaction strengths, respectively

(see Fig. 1.3). Note, the definitions of J1 and J1’ are usually switched in the literature for

κ-(ET)2X materials. J2 is the NNN interaction.

Monte Carlo calculations, which neglected NNN interactions, but included spatial anisotropy
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between NN, found QSL states in the regime J ′/J < 0.8 (subscripts dropped) [20, 21].

Above 0.8, in the J ′/J ∼ 1 range, is the 120o Néel state, as expected, while the J ′/J ≫ 1

limit, which approaches a square lattice, produces the collinear Néel state. The study, which

looked closer at the J ′/J < 0.8 region, found a gapless, fractionalized QSL for J ′/J ≲ 0.65

and a gapped, topological Z2 QSL in the intermediate J ′/J ≲ 0.65 ≲ 0.8 range [21].

The case where anisotropies are ignored, but NNN interactions are included, has also

been examined using variational Monte Carlo [22, 23] and density matrix renormalization

group (DMRG) [24, 25]. QSL states are stable in the region 0.06 ≲ J2/J1 ≲ 0.17. Similar

to the above studies, which only included anisotropy, the 120o Néel state and collinear Néel

state are sitting nearby, with the 120o state directly below the QSL region and the collinear

state above.

Unlike the anisotropy-only case, it is less clear which QSL state is produced by this

model. The most recent suggestion is a Z2-type QSL, possibly with a chiral (time reversal

symmetry breaking) QSL nearby. Hu et al., who studied the J1 − J2 case using DMRG,

added anisotropy to the nearest-neighbors and concluded that the Z2 state becomes more

stable with a weaker J ′
1 while the chiral correlations are more “enhanced” with larger J ′

1 [25].

1.2.4.2 Hubbard

As mentioned in section 1.2.2, when the on-site Coulomb interaction is not strong enough

relative to the hopping constant, the Heisenberg Hamiltonian is not valid, and it is necessary

to use the Hubbard Model. Most theorists now believe this to be the case with κ-(ET)2

salts, which are the materials studied in this dissertation.

One very notable study which analyzes this Hamiltonian was done by Morita et al., who

tackled the case of the anisotropic triangular lattice, which they dubbed the t-t’TH model

[26]. The Hamiltonian took the form:

H = −t
∑
⟨i,j⟩σ

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
+ t′

∑
⟨k,l⟩σ

(
ĉ†k,σ ĉl,σ + ĉ†l,σ ĉk,σ

)
+ U

∑
i

n̂i↑n̂i↓ (1.6)

which should be interpreted as usual, except with two nearest-neighbor hopping terms of dif-
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ferent magnitude (t′ representing the intra-chain hopping term, t the inter-chain). Applying

a fairly new technique at the time called the path integral renormalization group (PIRG),

Morita et al. found a “non-magnetic insulator” state in the range 4 < U/t < 10 with no sign

of any symmetry breaking. This range of U/t can be interpreted as “Mott insulators nearby

the Mott metal insulator transition.” This was a very early study, and the type of QSL was

not specified, but later studies of this model have converged upon a gapless U(1) QSL with

fermionic spinon excitations [27].

1.2.4.3 Permutations and Projections

The approaches listed below focus on summations of permutation or projection operators

over all possible dimers or plaquettes in a lattice.

Figure 1.4: Four-site rhombus plaquette on a triangular lattice with arrows indicating the

direction in which spins would be swapped by the P1234 operator.

The first of the two models which I will discuss is called the Ring Exchange model and

was developed as a way to bypass some problems that stemmed from the Hubbard approach

[28]. This model is technically a Heisenberg model with the addition of a so-called “ring

exchange.” The Hamiltonian is:

HRE = J2
∑

P12 + J4
∑

(P1234 + P †
1234) (1.7)

The first term sums over all possible dimer configurations in the lattice and swaps the

spins with a strength denoted by J2. This term is the Heisenberg interaction, since P12 =

P †
12 = 2S1 · S2 + 1/2 using the ℏ = 1 notation. The P1234 operator in the second term sums
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over all four-site rhombi plaquettes and permutates the spins in a clockwise direction, like

musical chairs (see Fig. 1.4). P †
1234 does the same, but counter-clockwise. The tendency

of this “ring exchange” to occur is denoted by J4. Through a variational approach, trial

wavefunctions for this Hamiltonian were compared, and, indeed, a QSL state was found for

J4/J2 ≳ 0.3 of the same type obtained by the Hubbard approach.

The last model I will discuss is the Quantum-Dimer Model (QDM). Despite being the last

mentioned approach, this is the original approach used by Anderson to describe the RVB

state. In his original paper, Anderson deliberately constructed variational wavefunctions

which were linear combinations of singlet (quantum-dimer) pairings on the spin-1/2 Heisen-

berg triangular lattice and showed that those wavefunctions produced a lower energy than

the 120o Néel state [6]. His calculations were limited to a railroad-trestle lattice and turned

out to be incorrect for the larger 2D triangular lattice. Nonetheless, a new QDM model

inspired by Anderson’s RVB description was formulated with a Hamiltonian of a different

form:

HQDM =

Np∑
i=1

{
− t

3∑
α=1

(
| ⟩⟨ |+ | ⟩⟨ |

)
+ V

3∑
α=1

(
| ⟩⟨ |+ | ⟩⟨ |

)}
(1.8)

The outer summation considers all possible 4-site rhombi plaquettes in the lattice while

the two inner summations go over the three different types of plaquettes possible. Bold

lines in the plaquette symbol indicate bonded pairs while dashed lines indicate no bond.

Note, spins can only form a bond with one other, nearest-neighbor spin at a time in the

QDM model. The first term in the Hamiltonian decreases the energy of the system any

time a “flippable” plaquette (one containing parallel dimers) is encountered and flips the

dimers in the plaquette. The second term increases the energy of the system whenever a

flippable plaquette is encountered but otherwise leaves the system alone. This Hamiltonian

was originally applied to the square lattice by Rokhsar and Kivelson [29] who found a QSL,

a state described by the superposition of flippable plaquettes, that later turned out to be

unstable. Moessner and Sondhi applied the same approach to the triangular lattice and

found a stable QSL nearby V ≲ T , which is described as short ranged (not forming pairs

with far away neighbors), gapped, with spinon excitations [30].
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1.3 Properties of κ-(BEDT-TTF)2X

Several models on the triangular lattices have been shown to exhibit QSL ground states. This

is a primary justification for investigation of κ-(ET)2X materials, which have a triangular

lattice structure and properties that fall within the bounds of interest for QSL manifestation.

This section summarizes the properties of these materials and elucidates why these materials

are considered good candidates.

1.3.1 Crystal Structure

The 3D lattice groups for the κ-(ET)2X compounds are often debated, with the structure

varying between different compounds. This is of little consequence, because the conducting

properties of each depend primarily on the in-plane, 2D structure of the BEDT-TTF layer,

which will be discussed later. It has been long thought that the structure of κ-CuCN is

monoclinic [31, 32], but a recently proposed recalculation claims the actual structure is

triclinic [33]. Similarly, when κ-HgCl and κ-HgBr first appeared in literature, their crystal

structures were quoted as monoclinic [34], but authors in a later study on κ-HgBr cited the

structure as unknown [35].

Regardless of what the actual crystal groups are, all κ-(ET)2X consist of alternating

layers of organic donor molecules (BEDT-TTF or ET for short) and polymeric anion (X)

sheets as shown in Fig. 1.5(a). The mostly planar structure of the ET molecules (Fig

1.5(c)) allows them to be stacked closely to each other, resulting in sufficient overlap of the

ET molecular orbitals. Because of this, the bulk of the conduction occurs within the ET

layers, and the κ-(ET)2X transfer salts are considered quasi-2D conductors. This makes the

structure of the donor layer, which is rhombic or anisotropic triangular (Fig. 1.5(b)), much

more important than the bulk 3D structure. The ET stacking is achieved through the joint

donation of an electron from two ET molecules to one anion X. Ideally, each anion carries

-1e charge, while each ET molecule carries +0.5e charge. However, inequivalencies do exist

among the donor molecules resulting in charge disproportionation or charge ordering (CO).
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Figure 1.5: (a) Layered structure of κ-(BEDT-TTF)2X salts. (b) Within the conduction

layer, dimers sit on a triangular lattice with varying degrees of dimerization. (c) Molecular

structure of ET molecule with central carbons replaced by 13C.

1.3.2 Band Structure

While all κ-(ET)2X transfer salts possess relatively strong intra-ET coulumb repulsion (U

in Eq. 1.1), they have a range of electronic properties which depend greatly on temperature

and the transfer integrals (t, t′, td) between the ET molecules. Among the transfer integrals,

the strength of dimerization, td/t, between pairs of ET molecules plays the biggest roll in

whether or not the material will undergo a Mott metal insulator transition (MIT).

1.3.2.1 Weak Dimerization

At high enough temperatures or for weak levels of dimerization (right side of Fig. 1.5(b)), the

quasi-2D band structure, obtained via tight binding methods, looks similar to the structure

pictured in Fig. 1.6(a). There are a total of four distinguishable bands. The higher energy

bands are composed of anti-bonding orbitals while the lower bands are composed of bonding

orbitals. The lattice is 1/4 filled, and it is clear that the higher energy bands, which intersect

EF , form a 2D fermi surface.

14



Figure 1.6: (a) Generic quasi-2D band structure of a κ-(ET)2X crystal in the metallic phase,

calculated via tight binding methods. (b) Fermi surface associated with energy dispersion

in (a). Figure adapted from Ref [36].

1.3.2.2 Strong Dimerization

In some κ-(ET)2X salts, low temperatures and/or strong dimerization can lead to a Mott-

Insulating state. When the strength of dimerization is strong enough, one can transition

from considering each ET molecule as a lattice site to instead considering each dimer as a

lattice site (left side of Fig. 1.5(b)). The number of lattice sites per unit cell is effectively

halved, and what was once a 1/4 filled lattice is now a half-filled lattice. As temperature

decreases, the strength of t decreases relative to U , and the conditions for a Mott-Insulator

are met. It has been shown that the strength of dimerization in κ-(ET)2X is positively

correlated with the energy gap between the anti-bonding and bonding bands [37], and for

strong enough dimerization, the anti-bonding bands are pushed completely above the Fermi

energy as shown in Fig. 1.7.

A very important feature to note is that all κ-(ET)2X compounds are considered weak

Mott-Insulators, with U/t = 7.3 for κ-CuCN [31, 38, 39] and 4.4 for κ-HgCl and κ-HgBr [39].

As a result, there is debate as to whether the Heisenberg or Hubbard Hamiltonian is the

appropriate model to use when studying these materials. The current standard for weakly

dimerized variants is to use the extended Hubbard Model which includes NNN Coulomb
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Figure 1.7: (a) Generic band structure of a κ-(ET)2X crystal in the insulating phase, calcu-

lated via tight binding methods. Figure from Ref [36].

interactions, allowing for the possibility of charge order. Nevertheless, as discussed in section

1.1.4.2, it has been proposed that frustrated magnets sitting nearby a Mott transition can

host QSL states.

1.3.3 The ET Molecule and its HOMO

All of the models in section 1.2.4 begin at the Hamiltonian and do not specify any real

materials. It is the job of experimentalists to connect the properties of their real crystal

system to the relevant variables in each of these models. As previously described, one

ET dimer pair is considered a single lattice site in κ-(ET)2X as long as the dimerization

strength (td/t) is sufficiently large. It is also important to know that the strength of the

transfer integrals, exchange interactions, and Coulomb repulsions depend on the shape, size,

and overlap of the electron orbitals surrounding the ET molecules. Since the ET layer is

the donor layer, the molecular orbital of importance is the highest occupied molecular orbital

(HOMO).

I start with the physical structure of the ET molecule. ET is short for BEDT-TTF, which

is short for bis(ethylenedithio)tetrathiafulvalene, and has the molecular formula C10H8S8.

While the chemical name is cumbersome, the structure of the molecule can be broken down
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Figure 1.8: Molecular structure of BEDT-TTF, reused to show the important parts of the

molecule. Red box is the center tetrathiafulvalene (TTF) while the blue boxes are the

ethylenedithio (EDT) molecules.

into two parts. First, the center of the molecule is a tetrathiafulvalene (TTF) molecule,

(H2C2S2C)2, without the hydrogen atoms at the end (red box in Fig. 1.8). Instead of

hydrogens, the carbons at the end of TTF connect with an ethylene (C2H4) with 2 sulfurs,

denoted in chemical nomenclature as ethylenedithio (EDT) (blue boxes in Fig. 1.8). The

bis (B) in front of the EDT tells us that there are two EDT, one at each end of the TTF.

Because the ethylenes are connected to two sulfur atoms via the carbon atoms, the carbon

double bond in ethylene is instead a single bond in EDT. The ethylenes at the end of the

molecule are often referred to as the ethylene end groups (EEG).

More important than the physical structure of the ET molecule is the HOMO, which is

a measurement of the carrier density around each atom in the molecule, since the charge

transfer to the counterion sublattice leads to unfilled states originating with the HOMO. The

general structure of a neutral ET HOMO is shown in Fig. 1.9. In the neutral molecule, it is

clear that the atomic orbitals which contribute the most to conductivity are located in the

TTF center. The orbitals are p-type orbitals with the axes pointing almost perpendicularly

out of the TTF plane.

It is also important to note that ET molecules are not perfectly planar and are not all

equivalent in the lattice. The TTF part of BEDT-TTF is planar while the BEDT ends, owing

to the different conformations of the EEGs, tilt slightly out of plane. ET molecules take one

of two, eclipsed or staggered (Fig. 1.10), conformations. At higher temperatures, κ-(ET)2X

often have some level of EEG disorder, possessing a mixed population of staggered and
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Figure 1.9: (a) Highest occupied molecular orbital (HOMO) of a neutral ET atom. Figure

taken from Ref [40].

eclipsed ET without any clear pattern. While a naive examiner looking at the HOMO would

conclude that the conformations, which differ only in the orientation of the EEGs, should

have little effect on the electronic properties of κ-(ET)2X, experimental studies have proven

otherwise. For example, one study suggests EEG disorder may play a role in stabilizing a

MIT [41], and the Tc dependence on cooling rates in some superconducting materials have

also been linked to EEG disorder [42].

Figure 1.10: Comparison of eclipsed vs. staggered ET molecules. Figure from [43].

1.3.4 The Effects of Disorder

It has become clear in recent years that disorder has profound effects on the low temperature

behavior of κ-(ET)2X materials. Disorder has been considered before in the literature [44–

46], but cannot be described by a universal model because of its broad definition. Disorder

can mean a couple of different things:
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Quenched Disorder: Real materials are not perfectly clean, and κ-(ET)2X materials

are known to be impure. Site disorders in the form of impurities, vacancies, and other defects

are not unheard of, although the prevalence of these defects is unknown. Proposed effects

range from the creation of unpaired spins, which destroy order in what otherwise would be

an ordered lattice, to a random distribution of J , leading to a spin-glass state.

Entropy Disorder: Disorder can also refer to the symmetry of the state being described.

This can lead to some confusion as the QSL is considered a disordered state, but in this

context means a state with no broken symmetry. However, this type of disorder has also

been discussed as a potential mechanism for QSL emergence. For example, it has been

proposed that the presence of a fluctuating (disordered) electric dipole state could introduce

frustration to a system and stabilize the QSL state [45].

Because there are too many particularities when it comes to disorder, I will reserve deeper

discussions to the parts of the dissertation in which they arise.

1.3.5 Comparison of X = CuCN, HgCl, HgBr

1.3.5.1 QSL candidate or not?

Before any of the results in this dissertation were published, κ-CuCN was the only QSL can-

didate among the three materials studied. So far, the qualifying property for QSL candidacy

is the absence of magnetic order at very low temperatures without symmetry breaking, since

many QSL models do not agree on other behaviors. Early electron paramagnetic resonance

(EPR) measurements on κ-HgCl saw a sharp increase in ∆H accompanied by a rising g-

factor [34] at T = 27 K. This behavior was tentatively linked with AFM ordering and, if

true, disqualified κ-HgCl as a QSL candidate. However, the NMR experiments detailed in

this dissertation detected no magnetic order down to 25 mK, making κ-HgCl a QSL candi-

date. To date there has not been any evidence for long range order in κ-HgBr but compari-

son of zero-field-cooled (ZFC) and field-cooled (FC) EPR measurements revealed a possible

glassy-state transition at T = 40 K [47], also disqualifying κ-HgBr as a QSL candidate. The
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same authors also saw signatures of weak ferromagnetism below 20 K. More recent magnetic

susceptibility and magnetic torque measurements support the ferromagnetism claim while

disputing the glassy-state [48].

1.3.5.2 The Current Status of κ-CuCN as a QSL

It has been 20 years since κ-CuCN became the first known 2D triangular QSL candidate,

but the list of questions related to its ground state continues to grow. For example, it is still

disputed exactly what type of QSL κ-CuCN hosts, if any at all.

The Gap Problem:

Perhaps one of the biggest road blocks toward identification of the QSL is the uncertainty

surrounding the low energy excitation spectrum of the material. It is crucial to determine

whether the ground state is gapped or ungapped in order to narrow down the number of

models with which the QSL can be described by. However, early attempts at doing this

returned mixed results. Specific heat measurements by S. Yamashita et al. showed a field-

independent, linear term, γT , where γ ≈ 15 mJ/K2 mol [49]. The presence of this term

suggests the existence of low energy excitations attributed to fermi-like quasiparticles. Just

a year later, M. Yamashita et al. conducted thermal conductivity measurements which

showed a vanishing κ/T , where κ is the thermal conductivity. Their results were interpreted

as evidence for a spin-gap of 0.46 K [50]. However, there are additional results which are

interpreted as consistent with a gapless state, such as NMR relaxation and magnetic sus-

ceptibility [11, 51]. Furthermore, another organic triangular QSL candidate, M [Pd[dmit]2]2,

consistently exhibits gapless behavior [52, 53], and it was assumed that κ-CuCN was gapless

as well. However, very recently, Miksch et al. published results in which the EPR response

was interpreted as evidence for the opening of a spin gap ∆ ≃ 12 K that onsets at T ≃ 6 K

[54]. In response to the renewed challenge of the gapless state, high field NMR experiments

were performed and are discussed in chapter 5 of this dissertation.

The 6 K Anomaly:
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Miksch et al. were motivated by a particular phenomenon well known to occur in κ-

CuCN. In almost every low energy measurement performed on κ-CuCN, there exists a “6 K

Anomaly”. Inverse spin-lattice relaxation, spin susceptibility, and thermal conductivity (see

Fig. 1.11) are a few examples where an anomalous dip occurs at 6 K, followed by a peak

which falls off as T → 0 [11, 50, 51].

Figure 1.11: Examples of 6K anomaly in measurements of κ-CuCN with red arrow pointing

at anomaly. (a) 13C 1/T1 [51]. (b) Susceptiility [11]. (c) Thermal conductivity [50]

The true origin and/or nature of this anomaly is still unknown, but many in the QSL

community now believe it to be associated with a second-order phase transition that is also

coupled with a structural change in the crystal [55, 56]. It is currently a topic of debate

whether or not this second-order phase transition can be consistent with a QSL state. If the

broken symmetry implied by the transition is related to the spin degrees of freedom, then

κ-CuCN cannot be a QSL. Some believe the anomaly marks the appearance of coexisting

quantum electric dipoles, which may help stabilize the spin liquid [45], while others believe
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it marks a transition into a Valence Bond state rather than a QSL [44]. A general and

comprehensive discussion of the ”6 K anomaly” is presented in Ref. [57].

1.3.5.3 κ-CuCN vs. κ-HgCl and κ-HgBr

In this dissertation, I conducted experiments on κ-CuCN with the intent of investigating

the 6 K anomaly and its potential connection to a VBS transition or other states. The

information learned from studying κ-HgCl and κ-HgBr were informative in that regard.

However, studying κ-HgCl and κ-HgBr also allowed us to examine the interplay of charge

and magnetic degrees of freedom in κ-(ET)2X insulators with specific emphasis on any roles

the charge degrees of freedom might have in the stabilization of a spin liquid.

κ-HgCl and κ-HgBr differ from κ-CuCN and other previously studied κ-type compounds

because their anion layers, Hg(SCN)2X, are mercury based instead of copper based. There

are still questions as to what exactly the difference entails, but one consequence appears to

be a change in the strength of dimerization (td/t). The strength of dimerization in κ-HgCl,

and κ-HgBr, is weaker than in κ-CuCN (td/t
′ ≈ 3 vs 4, respectively) [11, 58]. They also have

weaker Coulomb repulsion (U/t ≈ 7.3 in κ-CuCN vs 4.4 in κ-HgCl and κ-HgBr) [31, 38, 39].

As a result, κ-HgCl and κ-HgBr are more likely to be charge-ordered, and it is important to

keep observe their charge degrees of freedom, whereas the same attention has not been paid

in κ-CuCN, due to its established status as a Mott insulator.

κ-CuCN does not have any MITs at ambient pressure. However, application of pressure

at low temperatures pushes κ-CuCN through a MIT and into a superconducting state [59–

61]. Both κ-HgCl and κ-HgBr are conductors at room temperature with metal insulator

transitions occurring at 34 K [34] and 90 K [35], respectively. Because κ-HgCl and κ-HgBr sit

in a more ambiguous regime, their MITs cannot be immediately classified as Mott insulator

transitions. In fact, Raman Spectroscopy experiments detected a charge disproportionation

of δρ = 0.2 within the dimers in κ-HgCl , and the MIT transition was determined to be

a charge-order transition rather than a Mott transition [39]. The same experiment on κ-

HgBr did not return the same results. However, a different state, coined a “quantum dipole
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liquid”, was instead suggested, implying the existence of fluctuating electric dipole moments

between the molecules in a dimer [62]. This interpretation was strongly motivated by the

“quantum electric dipole” model that was introduced for κ-CuCN, suggesting κ-HgBr may

have similar physics as κ-CuCN.
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CHAPTER 2

Experimental Methods

2.1 Theory of Spin Dynamics

Nuclear Magnetic Resonance experiments take advantage of the well-known interactions

between a spin and a magnetic field. Generally, a large, uniform magnetic field is applied

to the sample, inducing a nonzero net magnetization that is aligned with the magnetic field.

This state is considered the equilibrium state for all experiments. Then, a perturbation is

applied in order to knock the net magnetization out of equilibrium. What the spins do after

the perturbation depends heavily on the magnetic environment around them. Therefore,

the information extracted during the relaxation process is extremely valuable and can reveal

many things about the material being studied.

2.1.1 Uniform Magnetic Fields and Larmor Precession

In classical mechanics, a static magnetic moment, µ, in a uniform magnetic field, Ho,

interacts with the field through these two equations:

τ = µ×Ho (2.1)

U = −µ ·Ho (2.2)

where τ is the torque experienced by the magnetic moment and U is the energy of the moment

in the field. As suggested by these two equations, a classical moment will experience torque,

which causes it to precess about the magnetic field. The spin prefers to be aligned with the

field, but has no means to do so in an isolated environment.
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Quantum mechanical spins behave equivalently. The source of magnetic moment in nuclei

is their intrinsic angular momentum, and the magnetic moment originating from the spin

angular momentum is given by

µs =
gq

2m
S = γS (2.3)

where g is the dimensionless g-factor, q is charge, m is mass, γ is the gyromagnetic ratio, and

S is the spin angular momentum vector. When a magnetic moment with angular momentum

is subject to a uniform magnetic field, the moment will precess about the field with frequency,

ωo = −γH . This is known as Larmor Precession and is illustrated in Fig. 2.1. Both γ and

Figure 2.1: Larmor Precession of spin magnetic moment about a field.

S are particle/nuclei dependent, therefore different types of particles/nuclei will precess at

different frequencies.

For a single, “classical” spin, the time averaged magnetic moment aligns along the field

axis, and its magnitude is equal to the projection of µs onto Ho. The uniform field, Ho, by

convention, is aligned along the z-axis, therefore:

⟨µs⟩ = µs cos(θ)ẑ (2.4)

In quantum mechanics, the x and y components of the spin state oscillate while the z

component remains the same. It is equivalent to write

⟨µs⟩ = γSz ẑ = γ(ℏmz)ẑ (2.5)
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where ℏ is the reduced Plank constant and mz is the spin quantum number of the spin in

the z-basis at the time the field was applied. mz ranges from −s,−s+ 1, ..., s− 1, s where s

is total spin. It follows from Equation 2.2 that the energy of a spin in a uniform magnetic

field oriented along ẑ, or the Zeeman Energy, is

UZeeman = −ℏγmzHo (2.6)

The typical solid consists of many spins, all randomly oriented as in Fig. 2.2. Before a

uniform magnetic field is applied, the net magnetization of the spins is zero. After a field is

applied, if all spins behaved independently, the net magnetization would still be zero, because

Larmor Precession does not change the distribution of spins oriented up versus down.

Figure 2.2: Random orientation of spins in a solid.

Thus, it is not possible to explain the theory of magnetic resonance without considering

the picture of many, interacting spins in an environment with nonzero temperature. This

requires the introduction of concepts from statistical mechanics.

2.1.2 Macroscopic Spin Picture and Thermal Equilibrium

Thermal fluctuations in the environment cause each spin to feel a field that is fluctuating in

both magnitude and direction. This causes the spins to “wander”, resulting in a change of

orientation over time. Because it is a thermal environment, the wandering is not isotropic –

meaning, the spins will prefer to be in a state of less energy.

For a single set of (same type) spins in thermal equilibrium at a temperature, T , the net
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magnetic moment per volume along ẑ is solved via statistical mechanics and is given by

⟨M⟩ = nℏγ⟨m⟩ (2.7)

= nℏγ
∑

m eℏγmHo/kBTm

eβℏγmHo/kBT
(2.8)

=
nℏγ
2

[
(2s+ 1) coth

(
(2s+ 1)

γℏHo

2kBT

)
− coth

(
γℏHo

2kBT

)]
(2.9)

where n is the number of spins per volume, ⟨m⟩ is the average quantum number per spin,

and kB is the Boltzmann constant.

The above equation is quite ugly but can often be simplified due to the fact that NMR

experiments typically operate in the regime where the Zeeman energy is much less than

temperature. In this limit, Equation 2.9 reduces to

⟨M⟩ = nℏ2γ2

3kBT
s(s+ 1)Ho (UZeeman ≪ kBT ) (2.10)

Equation 2.10 implies that the system has a net magnetization that is aligned with the

field. NMR observes the behavior of the macroscopic (net) magnetization.

2.1.3 Rotating Field and Rabi Oscillations

A static, uniform magnetic field is what establishes the equilibrium condition of magnetic

resonance experiments. In order to perturb the net magnetization away from equilibrium, a

rotating field is often applied in addition to the uniform field.

Regardless of whether one solves the problem classically or quantum mechanically, the

result is the same. If we apply a total field

H(t) = Hoẑ +H1[cos(ωzt)x̂+ sin(ωzt)ŷ] (2.11)

where Ho is the uniform field applied along ẑ and H1 is a field along the xy-plane rotating

about ẑ at a frequency of ωz, the effective field in the rotating frame, F ′, where H1 is static

is given by

He =
(
Ho +

ωz

γ

)
ẑ′ +H1x̂′ (2.12)
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When the frequency of H1 is chosen to match the resonant frequency, ωz = −γHo and

the ẑ component of the applied field effectively vanishes. Equation 2.12 becomes

He (res) = H1x̂′ (2.13)

In the rotating frame, the spins feel a static magnetic field along x̂′ which results in the

rotation of net magnetization about x̂′ at a frequency of ω1 = −γH1. Although it may

be tempting to call this a Larmor Precession, this phenomenon is actually called a Rabi

Oscillation.

2.1.4 The Bloch Equations and Relaxation

In 1946, Felix Bloch published equations of motion combining both the thermal effect of

alignment with Ho and the effects of an arbitrary alternating field H1 on the components

of net magnetization. These equations, expressed below, came to be known as the Bloch

Equations.
dMz

dt
= γ(M ×H)z −

Mz −Mo

T1

(2.14)

dMx

dt
= γ(M ×H)x −

Mx

T2

(2.15)

dMy

dt
= γ(M ×H)y −

My

T2

(2.16)

Here, Mo is equal to the net magnetization along ẑ when the system is in thermal equi-

librium. H need not be restricted to applied fields and can include interactions. Exactly

how to solve these equations and which limits to apply depends on the measurement being

taken and the specifics of the experiment. Regardless of the situation, the expected behavior

of the magnetization in the lab frame can be summarized like so: After perturbation, the

moment will gradually return to full alignment with Bo while also precessing about Bo at

a frequency of ω = −γBo. This behavior is illustrated in Fig. 2.3.

Bloch also introduced constants, T1 and T2, which represent the longitudinal or spin-

lattice relaxation time and transverse or spin-spin relaxation time of the magnetization,

respectively.
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Figure 2.3: Trajectory of magnetization after perturbation.

(Spin-Lattice Relaxation) T1: a measure of the time it takes the magnetization to

return to thermal equilibrium from a perturbed position. T1 relaxation, by definition, is not

energy conserving. This type of relaxation requires coupling to a thermal reservoir that is

ready to absorb or emit the energy required for transitions between different spin states.

(Spin-Spin Relaxation) T2: a measure of the time it takes for the xy-component of

the magnetization to vanish. Unlike T1 relaxation, T2 relaxation does not require coupling to

a thermal reservoir. The transverse magnetization often vanishes long before full relaxation

of the longitudinal component due to field inhomogeneities as well as spin decoherence.

Field inhomogeneity causes a reversible ”spreading” of the spins along the xy-plane due to

a distribution of resonance frequencies. On the other hand, spin decoherence is a result of

spin flopping and other transitions in the spin states that are irreversible. In experiment,

the observed decay rate of the NMR signal is denoted as T ∗
2 , which includes decay from both

inhomogeneous spreading and decoherence. T2 is reserved for irreversible spin decoherence

processes.

2.2 Dominant Interactions

The energy levels of each individual spin are determined by the total local magnetic field

felt by the spin. In general, the Hamiltonian for a single spin includes interaction with the

applied field, Ho, the field from nearby nuclei, Hn, the field from nearby electrons, He, and
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the quadrupole moment, HQ, for any nuclei with s > 1
2
.

H = Ho +Hint +HQ (2.17)

= −µs · (Ho +Hint) +HQ (2.18)

= −µs · (Ho +He +Hn) +HQ (2.19)

This dissertation only includes measurements probing 1H and 13C, both of which have spin

1
2
, therefore HQ = 0 and will no longer be considered.

Nuclear spins interact, typically, as a result of direct dipolar coupling. On the other hand,

they interact with electrons indirectly through hyperfine coupling. Any proper attempt to

solve for the energy levels of the spins generally treats the interactions as a perturbation to

the Zeeman Hamiltonian (Ho). This approach is called the Secular Approximation.

2.2.1 Dipolar Coupling

Dipolar coupling is the interaction of a nuclear moment with the magnetic field produced by

another nuclear moment some distance, r, away. Basic electromagnetism dictates that the

Hamiltonian representing this interaction is

Hdip = −µi ·Hj(rij) (2.20)

=
γiγj
4π

Si · Sj − 3(Si · r̂ij)(Sj · r̂ij)
r3ij

(2.21)

where the subscripts i and j represent the values for nucleus i and nucleus j respectively.

Between like nuclei, dipolar coupling results in broadening or splitting of the spectrum.

Under the secular approximation, a splitting of order

Dij ∼
γiγjℏ
4πr3

(3 cos2 θ − 1) (2.22)

is expected where θ is the angle between the vector r connecting the two nuclear spins and

the magnetic field Bo.
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2.2.2 Hyperfine Coupling

Hyperfine coupling is the interaction between a nuclear spin and an electron spin. The

complete Hamiltonian is shown below.

Hhf =

[
µS · µL

4πr3

]
+

[
µS · µI − 3(µS · r̂)(µI · r̂)

4πr3

]
−
[
2

3
µS · µIδ(r)

]
(2.23)

Orbital Term: The first term represents the coupling between the nuclear spin moment

µS, and the electron moment due to its orbital angular momentum, µL. In a crystal, the

orbital motion of electrons is typically quenched until application of a field [63]. Once a field

is applied, the orbital term results in a shift of the magnetic resonance frequency that scales

with the applied field, known as the chemical shift.

Anisotropic Term: The second term is the dipolar interaction between the nuclear spin

and an electron spin, I. All contributions from the electron wavefunction which do not sit

exactly at the site of the nucleus are included here. In NMR, this term typically leads to

an orientation-dependent shift in the resonance frequency, but can evolve into splitting or

broadening of the spectra at lower temperatures.

Isotropic Term: The last term in the Hamiltonian is necessary for s-orbital electrons

whose wavefunctions allow for the possibility of the electron and nucleus to occupy the same

position in space. This isotropic term is a correction to the previous term, which fails in

the limit that r → 0. The main effect is the same, except the shift is not affected by the

orientation of the sample. This term is formally called the Fermi Contact Interaction.

The Hyperfine Shift: All three above contributions make up what is known as the Hy-

perfine Shift :

∆H/Ho = δ = σ + κ (2.24)

where σ represents the chemical shift from the spin-orbit coupling, and κ is the paramagnetic

shift or Knight shift (as it is called in metals) from both the anisotropic and isotropic dipolar

contributions. In solid state NMR, the Hyperfine shift is of considerable interest because it

holds a direct relationship to the spin susceptibility of the material, since

κ = ⟨A⟩χs (2.25)
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where ⟨A⟩ is the hyperfine coupling constant and is normally experimentally determined for

a specific crystal orientation.

2.3 Pulsed NMR Spectroscopy

2.3.1 Technique

The technique used in an NMR experiment is not very different from what was explained in

section 2.1. The steps for a pulsed NMR experiment are detailed below:

1. Apply a fixed, uniform magnetic field, Bo, to the sample to achieve a net magnetization

aligned with ẑ.

2. Send in a sequence of short, square wave pulses of alternating current at a precise radio

frequency, ωRF . The pulses do two things. First, they produce the alternating field,

B1, that perturbs the magnetization to the desired orientation via Rabi Oscillation. A

pulse which rotates the magnetization 90o is called a ”π/2-pulse”, while a pulse which

rotates 180o is called a ”π-pulse”. Square waves excite a range of transitions about

energy ℏωRF . The bandwidth (BW) of excitation is equal to the inverse of the pulse

length, τP .

Pulse BW =
ℏ
τP

(2.26)

3. Detect and record the induced Electromotive Force (EMF) from the relaxing magneti-

zation. This is considered the raw, real time NMR signal and is often further processed

to analyze spectra in the frequency domain, T1, T2, or any other relevant observable.

2.3.2 NMR Spectrum

The NMR spectrum is obtained via a Fast Fourier Transform (FFT) of the real time signal.

The real time signal is proportional to the time varying transverse net magnetization of the

sample after a pulse. For spin-1/2 systems, it is easiest to consider the NMR spectrum a

histogram of the resonance conditions felt by each individual spin in the system.
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In general, the real time NMR signal produced by a group of spins with a single resonance

frequency, ωi, relaxing from the xy-plane is expected to produce a signal of the form

Si(t) = Sio exp[i(ωi − ωREF )t] exp(−t/T2) (2.27)

where Sio represents the weight of the spins with resonance frequency ωi relative to spins

with other resonance conditions. ωREF is the frequency generated by the source and is also

referred to as the reference frequency. Applying a Fourier transform to the real time signal

yields

Re[Si(ω)] = Sio
1/T2

(1/T2)2 + [(ωi − ωREF )− ω]2
(2.28)

which is a Lorentzian centered about the difference between the resonance and reference

frequencies. The real part FT of magnetization is referred to as the ”absorption” Lorentzian.

The full width half maximum (FWHM) of the homogeneously broadened peak is given by

FWHM =
1

πT2

(2.29)

A homogeneously broadened peak implies that the linewidth of the peak is not due to

an inhomogeneous distribution of magnetic fields in the sample, which would result in a

distribution of resonance frequencies. In a solid, a T2 dominated linewidth is on the kHz

scale.

In most solids, however, the NMR peaks are inhomogeneously broadened. Instead of a

Lorentzian shape, the peak takes on the shape of a Gaussian (or something else) correspond-

ing to the distribution of local magnetic fields. In this case, T2 is replaced by T ∗
2 in Eqs.

2.27-2.29, which includes the loss of spin along the xy-plane due to inhomogeneous spreading

as well as decoherence.

2.3.3 T1 Measurements

The most simple T1 measurement involves applying what is called an FID pulse sequence:

π
2
− τ − ACQUIRE. This pulse sequence first perturbs the net magnetization onto the xy-

plane, waits some time τ , and then measures Mz(τ). For a spin starting on the xy-plane,
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the Bloch equations predict

Mz(τ) = Mo[1− exp(−τ/T1)] (2.30)

By measuring Mz(τ) at several different τ values, one can obtain a complete recovery

curve which can then be used to extract T1.

2.3.4 T2 Measurements

A measurement of the T2 constant due to irreversible processes requires a spin-echo sequence:

π
2
− τ − β − τ − ACQUIRE. The spin-echo sequence brings the magnetization to the xy-

plane, allows spreading of the spin due to field inhomogeneity, reverses the spreading, and

then measures the net magnetization along the xy-plane. The pulse length, β, required for

maximal reversal of spreading depends on the details of the experiment. Even with full

reversal, the magnetization is still expected to decay exponentially to zero over time due to

irreversible processes. The decaying magnetization due to T2 processes can be expressed by

M⊥(2τ) = Mo exp(−2τ/T2) (2.31)

2.4 Experimental Setup

Magnet:

All NMR experiments utilize a magnet to supply the uniform, homogenous magnetic

field, Bo. The magnet is often superconducting and has a bore large enough to house an

entire probe as well as a cryostat for temperature control.

Transmitter:

The transmitter generates and processes the wave that will act as B1. The components

of a transmitter are listed below.

1. A frequency generator or synthesizer produces a continuous wave at a well defined

frequency. The frequency is easily tuned in an NMR experiment.
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Figure 2.4: (a) Schematic of a Pulsed NMR Experiment. Figure from [64].

2. In a pulsed NMR experiment, the wave is then sent through a phase shifter, where its

phase is changed in order to suit experiment needs. From the phase shifter, it passes

trough a pulse gate, controlled by a pulse programmer, where it is transformed into

short pulses.

3. An amplifier adjusts the the power of the wave before it is sent to a duplexer.

Duplexer:

In a normal setup, the transmitted wave and returning signal travel through the same

line. This is a problem, because the strength of the transmitted wave is drastically larger

than that of the signal and would overpower the signal if not removed before reaching the

receiver. The purpose of the duplexer is to direct the transmitted wave into the sample space

and ensure that only the resonance response from the sample enters the receiver.
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Probe:

The probe houses the sample and ensures that it sits at the center of the magnet, where

the field is most uniform. The probe also makes up the bulk of the resonance circuit. The

resonance circuit is a transmission line, composed of resistors, an inductor, and a capacitor,

tuned to have the same resonance, γnBo, as the nucleus to be probed. The sample is

located inside the inductance coil which doubles as the solenoid carrying the transmitted

alternating RF current. The current in the coil produces the B1 required for perturbation

of the magnetization and the coil is oriented such that B1 ⊥ Bo. The same coil also detects

the induced electromotive force (EMF) from the changing magnetization in the sample.

Receiver:

Once a resonance condition has been met and the response signal has been properly routed

by the duplexer, the signal is sent, first, to an amplifier and then to a quadrature receiver.

All modern day experimentalists process and analyze their data digitally. This requires the

signal to go through an analogue-to-digital (ADC) converter. However, because the real

time NMR signal is oscillating at frequencies on the hundreds of MHz scale, ADC converters

cannot keep up. The quadrature receiver mixes the sample signal with the reference wave (fed

in by the generator) and returns a signal with frequency equal to the difference between the

two, ωnew = ωo − ωRF. The receiver also splits the signal into an in-phase (real) component

and 90o out-of-phase (imaginary) component.
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CHAPTER 3

Effects of Impurity Spins on Low-T Behavior of κ-HgCl

It was mentioned in sections 1.1 and 1.3.5.3 that there is considerable interest in the inter-

play of charge degrees of freedom and magnetic degrees of freedom in κ-(ET)2X materials.

Comparison of κ-CuCN and κ-CuCl reveal that exchange interaction, J , and dimerization

strength, td/t, are not enough to explain differences in magnetic behavior as κ-CuCN is a

QSL candidate and κ-CuCl is antiferromagnetic below T = 26 K despite having similar J

and td/t [11, 65]. Thus, it became necessary to look for other factors, including frustration

and how charge degrees of freedom might affect it. κ-HgCl and κ-HgBr emerged as prime

materials for the study of such interactions. With dimerization strengths weaker than other

κ-(ET)2X materials, these two compounds have a stronger tendency toward charge order

[11, 58, 66].

This chapter of the dissertation covers 1H NMR experiments performed on κ-HgCl. At

the time the experiments were done, a lot was known about the charge degrees of freedom

of κ-HgCl, including a CO MIT at T ≈ 30 K and an inter-dimer charge disproportionation

δ = 0.2e [39, 58], while information on the magnetic degrees of freedom was lacking.

The conclusion from this study is that there is no signature for magnetic order in this

material down to as low as 25 mK, as evidenced by a roughly temperature independent NMR

spectrum. This is in contrast to a previously proposed AFM transition at TAFM = 27 K [34].

1/T1T measurements confirm a MIT at TCO, and the 1/T1 behavior is qualitatively similar to

those of current κ-(ET)2X QSL candidates such as κ-CuCN and κ-AgCN. However, instead

of interpreting the power law behavior of 1/T1 vs T as evidence of gapless spin excitations

as with the case for κ-CuCN and κ-AgCN, the possibility of a low T response due to proton
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Figure 3.1: (a) Illustration of layered structure along the a axis of

κ-(BEDT-TTF)2Hg(SCN)2Cl. Alternating layers of (BEDT-TTF)+2 molecules (grayscale)

stacked side by side and [Hg(SCN)2Cl]
− anion sheets (blue). (b) Along the b/c conducting

plane, BEDT-TTF molecules form a triangular lattice. Important transfer integrals, t, are

marked for reference.

dipolar coupling to S=1/2, g=2 spin degrees of freedom is considered. Subsequent arguments

are made to support the theory of impurity-spin dominated low-temperature relaxation.

3.1 Methods

κ-(BEDT-TTF)2Hg(SCN)2Cl single crystals with typical dimensions of 1 × 0.5 × 0.3 mm3

were grown by electrochemical methods reported in previous studies of the material [58].

NMR experiments were performed with custom made spectrometers used in conjunction

with a superconducting, Oxford Instruments magnet with the ability to vary field between

0 T and 12 T. For sample 1, measurements were taken at a fixed frequency νo = 112.575 MHz

and magnetic field Bo = 2.6447 T aligned close to Bo ∥ c (see Fig. 3.1 for crystal axes). Field

dependent measurements were performed on sample 2 with the field aligned perpendicular

to the plane of the crystal (Bo ∥ a). Standard 4He flow cryostats were employed above 1.6 K,

whereas a 3He/4He dilution refrigerator was used to cool down to 25 mK. The spin-lattice

relaxation rate was determined via free-induction decay following saturation, and analyzed

using stretched-exponential fits.
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3.2 NMR Spectra

Figure 3.2: (a) Temperature dependence of 1H NMR spectra for sample 1. Spectra above

2 K were obtained in a 4He cryostat while temperatures below 2 K were obtained in the

dilution refrigerator. A small difference in crystal orientation between setups is expected.

(b) The frequency of the four resolved peaks (colored open shapes) is tracked across different

angles.

The 1H NMR spectra for sample 1 were taken from just above the supposed CO transition

temperature TCO = 30 K to well below 1 K. The spectral lineshape in Fig. 3.2 (a) consists

of four distinct peaks, three of which are visible at the angle measured. Angle dependent

measurements of the spectrum is plotted in Fig. 3.2 (b). Given the amount of inequivalent

protons in the EEGs, the expected number of peaks is actually eight. However, the smallest

splitting (which would turn four peaks into eight) is too small to be resolved. No significant

change in the lineshape is observed upon cooling below TCO. Should a phase transition into

a magnetically ordered state occur, specifically AFM, obvious splitting of the peaks, like

that shown in Fig. 3.3, would be observed. Thus, the NMR spectra of κ-HgCl show no

indications of magnetic order throughout the CO phase.
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Figure 3.3: Temperature dependence of 1 H NMR spectra for

κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Very obvious splitting of the lineshape upon transi-

tion into an AFM state is seen between 27 K and 25 K. Figure borrowed from [65].

3.3 Spin-Lattice Relaxation

3.3.1 1/T1T vs T

In NMR, 1/T1T is often used to gauge the dynamic spin susceptibility of a material. For

paramagnetic materials, χ ∝ 1/T1T , and in fermi-liquids, or metals, this quantity is expected

to be constant. The latter is a well known phenomenon called Korringa Relaxation [63].

1/T1T measurements for sample 1 plotted across temperature reveals temperature inde-

pendent behavior above T ≈ 30 K, and an abrupt, discontinuous jump right at 30 K. At

the jump, the energy scale changes from the fermi energy scale, EF ∼ 103 − 104 K, to the

exchange interaction energy, J ∼ 102 K, of the insulating state. Overall, the 1/T1T behavior

shown confirms a metal insulator transition (MIT) at TCO ≈ 30 K.
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Figure 3.4: 1/T1T measurements for sample 1 vs. temperature.

3.3.2 1/T1 vs T

The behavior of κ-HgCl below the transition temperature is examined in further detail via

typical 1/T1 vs temperature plots. In Fig. 3.5 (a), 1/T1 is roughly constant immediately

below TCO before it begins to fall off at 20 K. At T ∼ 10 K, 1/T1 rises again peaking at T ∼ 5

K and then falling off indefinitely. Below 5 K, the fall off is predominantly Arrhenius, obeying

a 1/T1 ∝ e−∆/kBT relationship. However, at temperatures much below 1 K, it deviates

from activated behavior to a power law relationship. Along the entire temperature range

measured, the exponential spin-lattice relaxation becomes increasingly stretched (described

by e(−t/T1)α), down to a value of α ≈ 0.6.

The most notable characteristic of the κ-HgCl relaxation is its remarkable resemblance

to the relaxation of other κ-(ET)2X materials, specifically ones considered QSL candidates

like κ-CuCN (see Fig. 1.11 (a) for an example). In those materials, the low-temperature

power law behavior has been attributed to a gapless continuum of spin excitations [11, 51,

53, 67]. However, there is enough evidence in the κ-HgCl measurements to show that the

low-temperature relaxation behavior can be attributed to something else: dipolar coupling

of the protons to localized S=1/2, g=2 spin degrees of freedom originating from impurities.

Low-temperature effects from disorder-induced spin defects has been considered before in
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Figure 3.5: (a) 1/T1 measurements for sample 1 vs. temperature plotted on a log-log scale.

Inlet, as well as red distribution map, plots the stretched exponential constant, α, across

temperature. (b) 1/T1 plotted against 1/T on a log-lin scale to show partial Arrhenius

behavior below 5 K. (c) Field dependence of 1/T1 in the temperature range about the peak.

Field dependent measurements were performed on sample 2.

Ref. [44].

The nuclear relaxation by dipolar coupling to magnetic impurities implies certain behav-

iors that can be compared to experiment. For example, 1/T1 of κ-AgCN is strongly reduced

with increasing Bo [67]; similar behavior is seen for κ-HgCl in Fig. 3.5 (c). Here, the field

dependence is pronounced at temperatures close to the 5 K maximum while the relaxation

for T ≃ 10 K remains rather unaffected. At a semiquantitative level, this is precisely the

temperature range corresponding to the Zeeman energy of a free spin. More specifically, the

peak and low-temperature suppression of 1/T1 is modeled for a single proton as

1

T1

=
2

5
µ2
oγ

2
Sγ

2
Iℏ2[S(S + 1)]r−6 τ

1 + ω2τ 2
(3.1)

where 1/τ is the bandwidth of longitudinal field fluctuations, taken to be of the form τ =

τo exp
Ez

kBT
, and Ez = gµBSBo is the Zeeman energy splitting of the impurity spin levels, using
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g = 2 and S = 1/2. The activated behavior arises from the polarization of the impurity spins

in the applied magnetic field. The dipolar coupling depends on the distance, r, between the

impurity spin and the nuclear site. The random arrangement of the impurities is related to

a distribution of local fields which results in the stretched-exponential recovery.

Looking at the plot in Fig. 3.5 (b), the behavior on the low-temperature side of the

maximum closely follows the associated thermal activation with kBTo ≈ µBBo down to 0.2

K. The peak value in Fig. 3.5 (c) roughly follows the expected (1/T1)max ∝ 1/Bo dependence,

and τ = ω−1 at the maximum yields τo in the nanosecond range, in agreement with the EPR

linewidth ∆H ≈ 3 mT in the insulating state [58]. Plugging this into Eq. 3.1, together with

the experimental values of 1/T1, yields r ≈ 6− 7 nm.

Using susceptibility measurements obtained via EPR [58], the impurity concentration

in κ-HgCl can be estimated via extrapolation of the Curie constant. In Fig. 3.6, χEPR,

originally plotted in arbitrary units, is scaled such that χ at higher temperatures matches

that of κ-CuCN. From the Curie law, C = χT , Cmol = 0.006 emuK/mol is extrapolated. A

more detailed version of the Curie law,

C =
µoµ

2
B

3kB
Ng2(S(S + 1)) = χT (3.2)

allows extrapolation of the impurity concentration

N =
kBCmol

µoµ2
BNA

(3.3)

Assuming a unit cell volume VUC = 3500 Å3 [39], an impurity concentration of order 10−2

per unit cell is obtained, implying r is of order a few nm. This value agrees with r estimated

from the 1/T1 measurement.

3.4 Comparison with other κ-(ET)2X

In Fig. 3.7, 1/T1 of κ-HgCl is compared with κ-(ET)2X QSL candidates κ-CuCN [11] and

κ-AgCN [67] on common scales and across varying Bo as indicated. Although occurring at

different temperatures and not necessarily of the same origin, all of these compounds have
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Figure 3.6: The absolute values of the spin susceptibility of κ-(BEDT-TTF)2Cu[N(CN)2]Cl

(determined by EPR measurements in Ref. [58]) was approximated by χmol of

κ-(BEDT-TTF)2Cu2(CN)3 [11].

a dynamic contribution with similar characteristics as that elaborated above for κ-HgCl.

Above the low-temperature maximum, 10 K ≤ T ≤ 30 K, the data are similar in magnitude.

In the case of κ-CuCN and κ-AgCN, the behavior is attributed to gapless spinons. Generally,

however, the quantitative similarity across compounds is not surprising considering they all

have comparable exchange energies. Because the low-temperature relaxation is dominated

by the dynamic maximum, no clear conclusion on whether or not there is a spin gap can

be made. High field experiments, which will be discussed in later chapters, could possibly

disclose the intrinsic magnetic properties.

The overall suppression of the g = 2, S = 1/2 peak with increasing Bo is similar for

κ-HgCl and κ-AgCN as summarized in Figs. 3.7 (b) and (d). The published 1/T1 [67] on

1H and 13C (after renormalization of the gyromagnetic ratios and local charge density) show

pronounced field dependence around the maximum, while the intrinsic response at higher

T remains unaffected. A similar feature is also seen in the magnetic susceptibility: χT is

plotted in the insets of 3.7 (b) and (c) in order to compare with 1/T1 [58, 68]. Similar to

κ-HgCl and κ-AgCN, the 1H and 13C data of κ-CuCN acquired at 2 and 8.5 T [11, 51],
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11,51

58

68

Figure 3.7: (a) 1H 1/T1 data in the insulating state of κ-HgCl plotted alongside paradig-

matic QSL candidates κ-CuCN and κ-AgCN. Here, 1/T1 in the shaded region follows a

field-independent approximately linear T dependence suggesting that this is the intrinsic

response with J/kB ≈ 200 K. (b)–(d) While peaked at different Tmax, the low-temperature

contribution exhibits a similar suppression with higher Bo for all three compounds; 13C data

(scaled by γn) match well with the 1H results acquired at the same Bo [11, 51, 67]. A similar

field-dependent contribution is observed in high-frequency susceptibility data plotted as χT

(inset of (b) at 9.37 GHz [58]; inset of (c) at 16.5 GHz [68]).

respectively, coincide above 4 K but deviate near the maximum at lower T (Fig. 3.7 (c),

where appreciable field dependence is also seen by different probes [68–70]. Due to the lack of

consistent 1/T1(T ) data upon varying Bo, other contributions below 4 K cannot be excluded

in κ-CuCN.

Even though the NMR characteristics of κ-HgCl resemble the response of various QSL
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candidates in minute detail, its thermodynamic properties clearly indicate the absence of

itinerant spin and charge excitations. That is, extrapolating C/T down to T = 0 yields a

Sommerfield coefficient indistinguishable from zero [62], much smaller than that of κ-CuCN

and κ-AgCN where γ ≈ 10 − 20 mJ/K2mol [49, 67]. Note that the sister compound κ-

HgBr, for which fluctuating CO has been suggested [62], exhibits γ comparable to the QSL

candidates, and will be discussed next chapter. Thus, the reduced entropy in κ-HgCl is

consistent with gapped charge and spin degrees of freedom (for instance if the latter resulted

from a valence bond solid state below 20 K). Similar to κ-CuCN [49], Cp/T from Ref. [62]

reveals a Schottky-like increase towards lower temperatures observed at a few hundred mK,

coincident with the power law in 1/T1. It remains to be elucidated to what extent disorder

is relevant for the material under study, particularly in view of the stretched exponential

relaxation at low temperatures that suggests a continuum of low-energy decay channels.

It should be mentioned that a similar ”hump-like” behavior in 1/T1 with pronounced

field dependence has been seen in several disordered quantum systems [71–73] other than

the κ-(ET)2X materials mentioned here. In Fig. 3.7, the absolute values and temperature

of the maximum in 1/T1 differ from compound to compound. If the origins are similar, this

could be associated with differing impurity concentrations (affecting r) as well as timescales,

τ . Performing a similar dipolar relaxation for κ-CuCN and κ-AgCN as that in the previous

subsection yields slightly lower impurity densities than in κ-HgCl, but of similar order of

magnitude. The results are plotted in Table 3.4.

Compound 1/T1min
(1/s) C (emu*K/mol) Vcell (Å

3) N (per unit cell)

κ-Hg-Cl 0.1 0.006 3500 [39] 0.016

κ-Ag-CN 0.04 0.0024 1756 [67] 0.0064

κ-Cu-CN 0.03 0.0018 1695 [31] 0.0048

Table 3.1: Impurity spin densities for κ−(BEDT-TTF)2Hg(SCN)2,

κ-(BEDT-TTF)2Cu(CN)3 [31], and κ-(BEDT-TTF)2Ag2(CN)3.

Lastly, the origin of the magnetic impurities in κ-HgCl is briefly discussed. The clear
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evidence for a discontinuous phase transition at 30 K allows for the possibility of multiple CO

domains and accompanying domain walls, as recently observed in (TMTTF)2X by Raman

spectroscopy [74]. One possible explanation is that the impurity states are located at domain

walls. If that were the case, the absence of CO in κ-CuCN and κ-AgCN would point to a

different origin of the dynamic contribution, likely linked to the anion layers [75–77].

3.5 Conclusion

In this chapter, 1H NMR experiments on κ-(BEDT-TTF)2Hg(SCN)2Cl were presented, with

a focus on the low-energy spin dynamics of κ-HgCl up through the metal-insulator transition.

The spin-lattice relaxation rate indicates a Fermi-liquid metal at elevated temperatures and

exhibits a pronounced, discontinuous increase upon cooling through TCO = 30 K into the

charge-ordered phase. Based on the unaltered NMR spectra (Fig. 3.2) and the smooth tem-

perature dependence of 1/T1 upon T → 0 (Fig. 3.5), we conclude that there is an absence

of long-range magnetic order. Furthermore, the magnetic response of κ-HgCl is essentially

identical to other κ-(ET)2X QSL candidates [11, 51, 67], including the stretched-exponential

recovery and a power-law-like tail well below 1 K as well as a pronounced maximum in

1/T1 (peaked around 5 K in κ-HgCl). This low-temperature contribution exhibits a strong

field dependence, similar to κ-AgCN and possibly κ-CuCN, consistent with a process orig-

inating from coupling to impurity spins. Taken together, these results imply that the low-

temperature NMR properties in all three of these magnetically frustrated materials [11, 51,

53, 67] are dominated by extrinsic magnetic contributions. Suppressing the dynamic relax-

ation channels with high fields (Bo ≥ 10 T) may recover the intrinsic electronic response,

providing a promising route to answer the question about a spin gap in the triangular sys-

tems. Given the lack of a nonzero fermionic contribution to the low-temperature specific

heat [62], the case for a spin-gapped ground state, with the gap opening at T ≈ 20 K, is

stronger for κ-HgCl than it is for κ-CuCN and κ-AgCN.
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CHAPTER 4

Slowing Spin Dynamics in κ-HgBr

Studying κ-HgBr can provide some additional information on how the charge degrees of

freedom in κ-(ET)2X materials affect their magnetic ground state. As mentioned in the

previous chapter as well as in Chapter 1, κ-HgCl and κ-HgBr both differ from other κ-

(ET)2X compounds in the sense that their anion layers are mercury based instead of copper

based, resulting in weaker dimerization strengths [11, 58]. A consequence of the weaker

dimerization is a larger tendency toward charge order than other κ-(ET)2X materials studied

thus far [66, 78]. While κ-HgCl has been confirmed to have a MIT corresponding with a CO

state [39], κ-HgBr does not have any confirmed charge order. Furthermore, while the case

for a gapped low-energy excitation spectrum was made for κ-HgCl in the previous chapter,

thermodynamic measurements reveal κ-HgBr to have a Sommerfield coefficient γ > 0, similar

to those of κ-CuCN and κ-AgCN, making it harder to argue the same for κ-HgBr.

Examining the differences between κ-HgCl and κ-HgBr may shed some light on the inter-

action between charge and magnetic degrees of freedom in frustrated magnets. Interestingly,

in spite of the MIT and the expectation for reduced frustration from charge order [58], a

proposed ground state for κ-HgBr is a gapless QSL [62], similar to that discussed for κ-CuCN

and κ-AgCN. As described, a key element for stabilization of a QSL in κ-HgBr is that it

emerges from a highly frustrated intermediate phase, the quantum dipole liquid (QDL) [45].

The QDL is described as an insulating phase exhibiting short-range, fluctuating charge order

for T → 0. In this picture, the magnetic frustration is maintained if the temporal charge

correlations are sufficiently short so as to suppress an associated reduced frustration.

This chapter of the dissertation presents the results of 13C NMR experiments performed
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on κ-HgBr with a focus on the nature of the MIT, and the emergent low-temperature mag-

netic properties. The results challenge the QDL interpretation for κ-HgBr finding evidence

for charge disproportionation (CD) in the 13C NMR spectra at T < TMI . On cooling to

T < 40 K, there is enormous line broadening, i.e. an increase in full width half maximum

(FWHM), which is associated with short-range magnetic correlations. Thus, the 13C NMR

results indicate that κ-HgBr is not a QDL, and whether the magnetic ground state is quan-

tum disordered remains an open question. However, the findings include inhomogeneous

line widths one order of magnitude greater than for κ-CuCN [51], and spin-lattice relaxation

rates two orders of magnitude greater. It is proposed that both are linked to substantial

exchange disorder in κ-HgBr, which results from the strongly inhomogeneous short-range

CD. Since the freezing of ethylene end groups (EEG) in related κ-phase compounds occurs

around T ∗ ≈ 60 K [62], which is below TMI , the evidence suggests that charge order is

strongly affected by the associated quenched disorder.

4.1 Methods

Single crystals of κ-HgBr used in this study were synthesized by standard electrochemical

method, as previously reported [79]. BEDT-TTF with the 13C central atoms labeled was

obtained from Aldrich. The electrolyte consisted of a mixture of Hg(SCN)2 and [P(C6H5)4]Br

in a 90/10 1,1,2-trichloroethane/ethanol solvent. As is usual, the relevant hyperfine fields

are associated with 100% 13C spin labeling of the two bridging central carbon sites of the

BEDT-TTF molecules, see Fig. 4.1(c). A full crystal structure determination was performed

(for crystals with a natural isotopic abundance) with a more complete x-ray diffraction data

set and refinement than previously reported [79]1.

1Crystallographic data for κ-(BEDT-TTF)2Hg(SCN)2Cl: C22H16BrHgN2S18 , M = 1165.95, monoclinic,
space group C2/c, a = 37.0923(6), b = 8.32780(10), c = 11.7296(1) Å, V = 3623.18(10) Å3. T = 300K, Z
= 4, µ(MoKα) = 6.412 mm−1, 34713 reflections measured, 50000 unique (Rint = 0.0296), which were used
in all calculations. The final agreement factors were R1 = 0.0390, ωR2 = 0.0774, GoF = 1.025. CCDC
number 2000969. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif, or
by emailing data request ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
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NMR measurements on a crystal with approximate dimensions 1.5 × 1.5 × 0.10 mm3

were performed using a home-built homodyne spectrometer at magnetic field strengths of

B = 9.50 T and 6.54 T, orientated parallel to the a* axis, to an uncertainty of 10◦. The

relaxation rates, 1/T1 and 1/T2, approach extrema when B ∥ a∗, thus are not expected to

change significantly within the stated range of variation. A variable-temperature helium gas

flow cryostat provided the necessary cooling for measurements covering the range 2K < T <

115K.

Figure 4.1: (a) Layered structure of κ-HgBr, identical to that of κ-HgCl. (b) Intralayer

arrangement of cations in the bc plane with the respective transfer integrals, as indicated.

While the left side depicts a strongly dimerized structure (td ≫ t, t′ ), giving rise to Mot-

t-insulating behavior, weakly bound dimers (right) pronounce intersite Coulomb interaction,

with a tendency to charge order. Charge-rich and -poor molecules are distinguished by light

and dark colors, respectively. (c) The two central carbon atoms of BEDT-TTF have been

spin labeled by 13C for NMR investigations.

4.2 Spin-Lattice Relaxation

As shown in Fig. 4.2 panel (c), metallic behavior with temperature-independent 1/T1T occurs

for T > TMI . The discontinuous increase at TMIT = 90 K is consistent with the previously
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Figure 4.2: (a) The spin lattice relaxation rate, acquired at 6.5 T and 9.5 T, as a function

of temperature. At higher temperatures, the pulse excitations are non-selective. However, a

result of large inhomogeneous line widths and a fixed spectrometer bandwidth, the results

below 40 K correspond only to the center of the spectrum. (b) The maximum in T−1
1 is

highlighted on a logarithmic scale. (c) (T1T )
−1 emphasizes the metal-insulator transition at

TMI = 90 K.

reported first-order MIT [35, 47], very similar to the abrupt jump of 1/T1 seen in the last

chapter in κ-HgCl when charge order sets in. Upon cooling to T < TMI, a weak temperature

dependence is observed, characteristic of paramagnetic behavior. A notable increase in 1/T1

occurs at T ≲ 20 K, forming a maximum at T ≃ 5 K. There are only weak variations between

the two field strengths, 6.54 and 9.50 T, although some care should be taken as the pulse

excitations are selective as a consequence of the increasingly large and field-dependent line

widths.

4.3 NMR Spectra

While spectra in Fig. 4.3 (a) exhibit no appreciable temperature dependence in the metallic

state, a small but distinct increase of the line width sets in below TMI and the spectral

features are seen to broaden. A much stronger inhomogeneous broadening develops below
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T = 40 K (Fig. 4.3 (b)), in the same temperature range as the strong increase in 1/T1 as

shown in Fig. 4.3 (c). At the lowest temperature measured here (T = 2 K, B = 9.5 T), the

field-swept line width is 4320 ppm.

Figure 4.3: (a) Temperature-dependent evolution of 13C NMR spectra at 9.5 T (101.660

MHz). (b) Due to excessive line broadening, the spectra below 39 K were acquired via mag-

netic field sweeps. The 39 K spectrum from single field acquisition is included for comparison.

(c) Full width half maximum (FWHM) of the 9.5 T spectra as a function of temperature.

FWHM were obtained from the entire, broad spectrum. Inset: Field dependence at 2 K of

FWHM.
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4.4 Spin-Spin Relaxation

1/T2 decreases down to T ≃ 60 K, as shown in Fig. 4.4, and remains roughly constant down

to 20 K, setting at (1/T2)min ≃ 0.3 ms−1. The temperature-independent 1/T2, combined

with the considerably larger, steadily changing line widths in the insulating state, suggests

the spectra are inhomogenously broadened from a distribution of hyperfine fields, which will

be interpreted below as a signature of CD for T < TMI. An increase in 1/T2 accompanies

the steep rise of 1/T1 below 20 K.

Figure 4.4: 1/T2 between 2.5 K and 110 K. 1/T2 was determined by a measure of the echo

decau on varying the pulse separation. At higher temperatures, the pulse excitations are

nonselective. However, as a result of large inhomogenous line widths and a fixed spectrometer

bandwidth, the results below 40 K corrrespond only to the center of the spectrum.

4.5 On the NMR Collective Behavior

The behavior of the homogenous and inhomogeneous line width, as well as 1/T1 in the metal-

lic regime T > TMIT, is typical of conducting (BEDT-TTF)X compounds. That is, 1/T1T

changes only weakly with temperature, and the decreasing 1/T2 upon cooling is tentatively

attributed to fluctuating hyperfine fields, which are modulated by an electronic coupling to
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thermally activated conformational fluctuations of the EEGs [80]. In the range 20-60 K,

1/T2 acquires a temperature-independent value, which is similar to that from internuclear

dipolar coupling [51], indicating that the EEGs are frozen below T ≃ 60 K similar to related

compounds [58]. An important consequence of this thermally activated process is quenched

disorder in the molecular conformations (eclipsed and staggered) [81, 82], a phenomenon

well known to influence the electronic properties (See Ref. [41] and references therein).

Thus it is possible for quenched conformational disorder to influence the details of a

CO transition that could be underlying broken symmetry associated with the MIT. The

coexistence of sharp and broad peaks that persist to T ≃ 40 K can be taken as evidence for

a macroscopic and temperature-dependent phase segregation below a discontinuous phase

transition. Note that the temperature range of metal-insulator coexistence at the first-order

CO transition of α-(BEDT-TTF)I3 is considerably extended by internal strain [83]. Disorder

may have an even stronger effect on locally modulating the electronic correlation strength,

thus generating a random variation of transition temperatures on the nanoscale. Some

caution is warranted, however, since apart from spectra shown in Fig. 4.3 (a), there is no

known independent evidence for metallic regions persisting down to T ≃ 40 K in κ-HgBr.

The spectral features of the inhomogeneously broadened NMR lines, due to short-range

charge order on a strongly disordered lattice, are consistent with all results. It is reasonable to

suggest that a broad distribution of spatial and temporal magnetic correlations is indirectly

linked to the quenched structural conformations of the BEDT-TTF molecules, since the

conformations first suppress long-range order in the charge disproportionation, which onsets

at TMI. Furthermore, note that the inhomogeneous and homogenous line broadening at

low temperatures, as well as the increase in spin-lattice relaxation below T = 20 K, are all

naturally associated with slowing of magnetic correlations, an observation consistent with

the anomalous magnetic response reported in Ref. [35]. One possible explanation for why

the effects are seen first in the spectra is the fact that 1/T1 and 1/T2 below 40 K measure only

the spins at the center of the spectra, a consequence of large, inhomogeneous line widths.

The spectra at low temperature were measured via field sweeps, and so the entire spectra
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are accounted for in the FWHM measurements. The proposed charge, spin, and structural

degrees of freedom of κ-HgBr upon cooling in mapped in Fig. 4.5.

Figure 4.5: Chart of the proposed charge, spin, and structural degrees of freedom for κ-HgBr

versus temperature upon cooling.

The pronounced maximum in relaxation rate at T ≃ 5 K is consistent with a dynamical

slowing of magnetic fluctuations, which can be modeled as producing a nuclear relaxation

rate given by
1

T1

∼ γ2h2 τ

1 + (ωτ)2
(4.1)

where h2 is the mean square fluctuating transverse hyperfine field, τ a temperature-dependent

characteristic correlation time, and ω the nuclear Larmor frequency. Such a slowing process,

when coupled with the substantial increase in the line widths, is naturally attributed to an

increase in antiferromagnetic correlations.

The increase in 1/T2 can also be associated with the slowing of magnetic correlations.

The magnitude of T2 reveals that the
13C NMR spectra remain dominated by inhomogeneous

broadening. The observed FWHM at low temperatures is two orders of magnitude larger

than the homogenous line width expected from 1/(πT2). Indeed, the data presented here

exhibit no sharply defined peaks, consistent with a broad onset of short-range magnetic

correlations. At the lowest temperature measured, the field-swept line width (432 kHz at

9 T) corresponds to an on-site field induced moment of ∼ 0.4µB. In other words, there is

strong evidence that spectral broadening below 40 K is the result of nuclear spin coupling to
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field-induced and slowly fluctuating magnetic moments, possibly approaching a glassy state

[47].

4.6 Discussion

In relation to the expectations for the QDL scenario, the manifestation of broad, featureless

spectra in 13C NMR suggests the presence of nonzero CD that is static relative to the time

scale of the intrinsic homogenous line broadening associated with internuclear spin coupling,

≃ 1 ms or longer. If electric dipoles associated with CD were fluctuating faster than this,

the spectral impact of CD would be motionally narrowed such that extensive broadening of

the NMR lines would not occur. In this respect, it is not clear how to reconcile these results

with the QDL state proposed for κ-HgBr in Ref. [62].

Thus, there is an apparently unresolved experimental discrepancy. The prior suggestion

for the QDL state was based on a Raman study of the ν2 intramolecular vibrational mode

[62] whereby the resonance frequency is sensitive to the molecular charge of the BEDT-TTF

sites [84], and therefore a probe of CD. The crucial finding was the lack of evidence for

distinct molecular environment over a temperature range spanning widely on either side of

TMI . While it is unclear how to account for the difference, for the moment simply note

that the optical spectra reported in Ref. [35] do provide evidence for at least two molecular

environments. That is, the resolved splitting of the optically active ν27 vibrational mode is

consistent with a finite CD of 0.13e [84].

For the sake of completeness, it is worthwhile to compare and contrast the observations

reported here to comparable measurements of 13C line broadening (FWHM), 1/T2, 1/T1 on

κ-CuCN and κ-AgCN [51, 67], see Table 4.6. For each of these quantities, the values are

far greater for κ-HgBr. The significance is that while the relatively small line broadening

observed for κ-CuCN and κ-AgCN was reasonably attributed to a small number of magnetic

impurities [51, 67], the results for κ-HgBr indicate a far greater magnetic response. When

converted to an effective scale, the magnetic moment of κ-HgBris of order 0.4µB and keeps
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κ-HgBr κ-CuCN κ-AgCN

T−1
1 max 150 s−1 3 s−1 1.5 s−1

T−1
2 2.5 ms−1 1 ms−1

FWHM 500 kHz 50 kHz 40 kHz

Table 4.1: Comparison of 13C NMR quantities for κ-HgBr, κ-CuCN and κ-AgCN [51, 67].

1/T2 and FWHM are the T → 0 saturated values for B ≃ 8 T for κ-CuCN and κ-AgCN.

increasing at the lowest temperatures.

From the very large quantitative differences in relaxation rates, as well as the line widths

at comparable fields, it is natural to infer that the physical description of the low-temperature

properties of κ-HgBr is likely also qualitatively different than for the QSL candidates κ-CuCN

and κ-AgCN. In the present case, disorder effects are likely much more pronounced, likely

related to the MIT and the resulting short-range charge order, leveraging the occurrence

of microscopic imhomogenneities of the exchange interaction. While in the two related

compounds, as well as in κ-HgCl, dilute impurities dominate the low-temperature relaxation

consistent with a spin-gapped scenario [1], the NMR properties in κ-HgBr rule out a gap in

the temperature range measured and strongly suggests fluctuations of intrinsic spin degrees

of freedom. A remaining question is whether the present system exhibits a glasslike state,

with substantial static moments in the absence of an applied magnetic field in the limit

T → 0.

4.7 Conclusion

This chapter of the dissertation presented the results of 13C experiments on κ-(BEDT-

TTF)2Hg(SCN)2Br. The spin-lattice relaxation, spectra, and spin-spin relaxation are ex-

amined in the range T = 2 − 115 K. The sharp increase in 1/T1 and 1/T2 for T ≲ 20 K

as well as large line broadening of the spectra around the same temperature range suggests

slowing magnetic fluctuations. The symmetric nature of the broadening and field-dependent
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linewidths indicate that the slowing is driven dominantly by antiferromagnetic correlations.

At the lowest temperature measured, the field dependence of the line width indicates that

the system is still in a fluctuating disordered phase and, otherwise, the evidence for slow-

ing dynamics could be a precursor for the onset of glassy behavior at lower temperatures.

Altogether, the low-temperature spin degrees of freedom in κ-HgBr are best described by

short-range antiferromagnetism. It is also highly frustrated, and additionally quenched dis-

order results in short-range static charge disproportionation and consequently also strongly

varying nearest-neighbor exchange interaction. Strong quenched disorder in the electronic

structure of this insulating material is evidently associated with disordered and gapless mag-

netic degrees of freedom. It remains to be explored whether a glassy state is stabilized at

lower temperatures. In any case, the system is unlikely a host of propagating spinons.
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CHAPTER 5

Searching for a Gap in κ-CuCN

The energy spectrum of κ-CuCN has been a topic of dispute. After the discovery of its

QSL properties, measurements of the low energy excitation spectrum via specific heat, sus-

ceptibility, and NMR relaxation all failed to detect a gap [11, 49, 51]. Most notably, a

field-indepedent, linear term in the specific heat as T → 0 K, was interpreted as the signa-

ture of a spinon fermi surface [49], and models predicting a U(1) QSL with fermionic spinons

in κ-CuCN emerged [27, 28]. However, empirical support for this model is not robust. There

exists opposition to the gapless interpretation due to thermal conductivity measurements

which were interpreted as evidence for a small energy gap of ∆ = 0.46 K [50]. If κ-CuCN is,

in fact, gapped, a different QSL model must be considered.

Recently, there have been debates about whether or not κ-CuCN is a QSL, with one hy-

pothesis being that the ground state is actually a VBS [54, 57]. The hypothesis stems from

an earlier study by Manna et al., which showed, after proper removal of background contri-

butions, that the specific heat, gradient of susceptibility, and in-plane expansion coefficients

of κ-CuCN all exhibit a sharp peak at 6 K [55]. For a while, this study has been interpreted

as experimental evidence that the 6 K anomaly in κ-CuCN is associated with both a lattice

distortion as well as a second-order phase transition [85], in which case there must also be

a broken symmetry involved, although the symmetry is unknown. If the second-order phase

transition involves the spin degrees of freedom, then the findings are not consistent with

a QSL state. In this case, the VBS, which is a singlet state associated with broken spin

rotational symmetry as well as a lattice distortion, is a strong contender. However, lack of

evidence for a spin gap, which is also a requisite for the VBS state, has prevented the VBS

hypothesis from gaining traction.
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Now that missing evidence is emerging. Recent studies have provided good reason to

believe that the ground state of κ-CuCN may truly be gapped, and the proposed reason why

a gap has not been before detected is because impurities dominate and mask the intrinsic

low temperature response [54, 57]. In 2020, Miksch et al. interpreted the EPR response

of κ-CuCN as the signal of two components, one with a clear gap measuring ∆ = 12 K,

and the other presumed to be the signature of impurity/defect spins (see Fig. 5.1). In

addition to that, it was shown in Chapter 3 that, while the relaxation behavior of κ-HgCl

appears to be ungapped, it is possible to model the low temperature behavior as the sum

of an intrinsically gapped energy spectrum and an impurity spin response. The chapter also

showed that the qualitative behavior of several κ-(ET)2X QSL candidates is similar to that

of κ-HgCl, suggesting similar origins.

Figure 5.1: (a) Spin susceptibility extracted from the EPR spectra by Miksch et al. [54] shows

one gapped component and a defect component which creeps in at the lower temperatures.

If the interpretations in the above two studies are correct and apply equally to κ-CuCN,

high field NMR measurements would be very informative. Should the impurity spins be

frozen out by sufficiently high fields, one can examine the intrinsic behavior of κ-CuCN

unhindered by those spins, and possibly confirm a gapped energy spectrum. This chapter of
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the dissertation presents the results of 13C NMR experiments performed at high magnetic

fields in light of such revelations. Conditions for frozen impurity moments are met when the

Zeeman energy of the impurity spin, Ez = gµBSBo, is much larger than the thermal energy

of the system, kBT . Given that the study focuses on temperatures lower than 10 K, it was

assumed that a 30 T field would be sufficient.

Remarkably, the results of this experiment show that κ-CuCN is gapped, but the gap

does not appear as a result of high field. We find signatures for a gapped spectrum in fields

as low as 12 T. Furthermore, the presence of a sharp peak in 1/T1, possibly marking the

onset of a second-order phase transition, is detected. We discuss these results as well as their

implications in comparison with previous measurements of 13C.

5.1 Methods

13C NMR data were obtained using spin-echo techniques at four different magnetic fields and

were collected at two different facilities. Data taken at 6.7 T were obtained at the UCLA

Brown lab using a custom made homodyne spectrometer at a frequency of 71.400 MHz. A

single crystal, sample A, with dimensions approximately 2mm x 1.5mm x 0.1mm was used.

Measurements at 12 T, 20 T, and 30 T (varying frequencies) were taken in the 32 T magnet at

the Tallahassee NHMFL through remote collaboration with Arneil Reyes, Elizabeth Green,

and Sanath Ramakrishna. A different sample, denoted sample B, with dimensions similar to

sample A, was used. In all NMR experiments, the magnetic field, Bo, was oriented parallel

to the a∗ axis, perpendicular to the conducting plane of the crystal. Typical VTIs, which can

access temperatures between 1.2 K and 300 K were used, however the experiments focused

on temperatures lower than 20 K.

Numerical Inverse Laplace Transformations (ILT) were also performed on the recovery

curves of κ-CuCN. The methodology and limitations of the method are detailed in Appendix

A. The smoothing factor, α, was chosen to be 3, slightly larger than the average aopt value

of approximately 2 (see Appendix A for details on what this means). The allowed range for
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1/T1 consisted of m = 150 logarithmically spaced bins from 10−4 to 104.

5.2 Results

Figure 5.2: BEDT-TTF pair with the inner and outer 13C atoms labeled.

Temperature dependence of the NMR spectra across four fields is plotted in Fig. 5.3.

Within the (BEDT-TTF)2 dimer, there are two inequivalent pairs of 13C atoms, dubbed

the ”inner” and ”outer” sites [51, 86] (See Fig. 5.2). Each pair is associated with a dif-

ferent hyperfine coupling constant, resulting in two peaks in the NMR spectrum. The two

13C atoms in a single BEDT-TTF molecule also experience dipolar coupling bringing the

expected number of peaks to four. However, the dipolar splitting is not resolvable in the

temperature range covered in this experiment, and only the inner and outer peaks are visible.

As the spin susceptibility drops, the distance between the peaks closes, until the two become

indistinguishable at T ∼ 5 K.

Below this temperature, the spectra begin to inhomogeneously broaden, at which point

a frequency sweep is needed to obtain the full spectrum. A comparison of second moments

is plotted in Fig. 5.4. Because the line shape is not Gaussian, the true relationship between

the standard deviation (σ) and full width half maximum (FWHM) is not known, but a

direct comparison suggests FWHM = σ/2. Except for the case of T < 3.5 K in 30 T, the

second moment reveals that the linewidth scales linearly with field. In other words, it is
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Figure 5.3: Temperature dependence of NMR spectra across four different fields. Asterisk

implies spectrum obtained via frequency sweep. Sudden shifts at frequency swept tempera-

tures likely systematic error due to field discrepancies. 6 T Inset: Spectral intensity * T vs

T. 30 T Inset: Comparison of field swept spectrum and single acquisition at 4 K.

associated with inhomogeneous, paramagnetic moments. Saturation of the 30 T linewidth

at a scaled value less than the other three fields can be interpreted as an indication that

paramagnetic moments in the material have frozen. However, no obvious peaks in 1/T1 were

detected (Fig. 5.5) at the temperature range in which the spins allegedly freeze, and no 1/T2

measurements were taken to confirm. Coincident with the onset of broadening is a spike

followed by a dramatic drop in the spectral intensity of the NMR spectrum, which is plotted

in the top-left inset of Fig. 5.3.

1/T1 was measured from slightly above the 6 K anomaly down to as low as 1.78 K.
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Figure 5.4: Standard deviation (STD, σ) of NMR spectra calculated from square root of the

second moment.

As expected for κ-CuCN, stretched exponentials with very long relaxation times made it

difficult to obtain fully relaxed saturation recovery (SR) curves in the low temperature

regime. Nevertheless, T1 was extrapolated by fitting the SR curves to a stretched exponential

(Eq. 5.1). The results are shown in Fig. 5.5.

The relaxation behavior above 6 K for all fields follows closely the behavior of previous 13C

NMR measurements [51], but diverges quickly below that temperature. Unlike in previous

13C measurements, the anomalous peak is much sharper and more reminiscent of a second-

order phase transition. This behavior is observed across three different samples and in three

different experimental setups. The peak is field-dependent increasing in temperature with

increasing field. Note however, that although it may appear that the 12 T relaxation does

not have a peak, this is the result of having no measurements in the temperature range

where the peak would be expected. The presence of a peak at high fields casts doubt on the

impurity spin interpretation, at least in the case of κ-CuCN, and reopens questions about

the nature of the 6 K anomaly.

Another significant difference from previous 13C measurements is that 1/T1 drops rapidly
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Figure 5.5: (a) 1/T1 vs. T from stretched exponential fits to saturation-recovery curves

plotted alongside results from Shimizu et al. [51]. For temperatures above ∼ 4.5 K, T1

is unbiased, otherwise T1 is measured from center of spectra due to excess linewidth. (b)

Variation of the stretching exponent, β, across temperature. (c) A closer look around the

peaks in 1/T1 that appear right before a significant fall off.

below the sharp peak, and there is no contribution from a broad peak masking Arrhenius

behavior. Although the gap appears to be field-dependent, the lack of data points and size of

the error bars prevents us from making any solid conclusions. It is best to fit an Arrhenius

curve over the entire set of data points, ignoring the peaks, to obtain an estimate of the

average gap size. Such a fit returns an energy gap of ∆ = 11.9 K ± 3.9 K.

Consistent with the spectral measurements, the behavior of the 30 T relaxation at low-

temperatures is different from the other three fields. Although the peak at higher temper-

atures is still present, 1/T1 does not fall off as dramatically as in 12 T and 20 T, possibly

indicating the closing of a gap.
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5.3 Analysis of T1 Distributions

Discerning the behavior of the gap is crucial for correct interpretation of the ground state

of κ-CuCN. While uncertainties in the form of the recovery prevent us from making conclu-

sive statements regarding the field-dependence of the gap, a stretched exponential is usually

interpreted as a signature of an inhomogeneous distribution of relaxation rates. Thus, ex-

amining the evolution of the 1/T1 distribution may to provide some insight into the general

behavior of the gap (its distribution and strength) in relation to the magnetic field.

There are a couple of methods available to extract the distribution of relaxation times

from a recovery ”fit” to the so-called stretched recovery form. The first is through the

parameters of the stretched exponential fit itself. The standard procedure when encountering

a stretched exponential in NMR is to fit it to the equation

M(t) = Mo

[
1−Be−(t/T ∗

1 )
β]

(5.1)

where M(t) is the magnetization of the nuclear spins along ẑ as a function of time t after

a pulse, Mo the fully recovered value of the magnetization, B a constant to account for

incomplete saturation, T ∗
1 the recovery rate of the spins, and β the stretched exponential

constant. The parameters 1/T ∗
1 and β returned from the fit are associated with a probability

distribution of relaxation times which has been analyzed by D.C. Johnston [87]. The problem

with this interpretation is that it assumes the recovery and associated distribution fits a

purely mathematical equation, while the distribution of a real system can be much more

complex.

Recently, others have been utilizing the Inverse Laplace Transform (ILT) method to de-

compose stretched exponential curves in order to extract information that cannot be learned

from a stretched exponential fit alone [88–91]. The ILT computes the probability density of

1/T1 without any bias other than the assumption that the recovery curve is the discrete sum

of single relaxation curves, each with their own weighting factor. This approach allows for

the possibility of recovering distributions with physical significance, like the bimodal peaks

seen in ref. [89]. However, the ILT fit comes with its own issues, described in detail in
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Appendix A. In summary, it is extremely sensitive to noise and prone to producing artifacts

when fed an incomplete recovery curve.

In this section, I compare and contrast the distributions implied from both the stretched

exponential fit and the ILT fit in an attempt to find out what both appear to agree on and

where they differ in interpretation.

5.3.1 Comparison of ILT and Johnston Distributions

Figure 5.6: Distribution of 1/T1 in the 13C NMR relaxation determined via ILT (solid lines)

and the Johnston model (dashed lines) plotted across 6.7 T, 12 T, 20 T, and 30 T. P (1/T1)

has been normalized so that
∑

P (1/T1) = 1.
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The distributions of 1/T1 across temperature for κ-CuCN as determined by the ILT fit

and Johnston model are plotted overlayed on top of each other in Fig. 5.6. There are

three obvious differences seen here. The first is that the Johnston distributions are much

sharper than the ILT distributions, especially at higher temperatures. This can be explained

by the fact that the ILT distribution depends on both the ”stretchedness”, or perceived β,

of the recovery as well as the α chosen for the calculation, whereas the broadness of the

Johnston distribution depends solely on β. For the entire ILT calculation, α was fixed at

3 (for reasons explained in the Appendix), which is a larger value than the optimal alpha

at higher temperatures. Had the optimal alpha been used, the ILT distributions at higher

temperatures would be much narrower. The second point of contrast is the apparent location

of the median. The median of the ILT distribution very consistently sits nearby 1/T ∗
1 , while

the median for the Johnston distribution seems to move toward smaller 1/T1 with decreasing

β. The latter is not actually true, as there is quite a bit of invisible weight in the tail for

the case of small β [87]. In fact, the median of the Johnston distribution also sits nearby

1/T ∗
1 for β ≥ 0.4 and diverges quickly toward ∞ below that. Due to its divergent behavior,

the Johnston distribution cannot be used as a measure of anything physical below β ≈ 0.4.

The last point of contrast, which will be discussed in more detail below, is the presence of

features in the ILT distribution at low temperatures.

5.3.2 Analysis of ILT Distributions

The ILT fit seems to confirm that one part of the original hypothesis is true, namely that

the low temperature relaxation of κ-CuCN is dominated by two contributions. A small

peak separates from the left side of the main peak below 4.5 K and separates further with

lower temperature and higher fields (see Fig. 5.7). The intensity of this second component

simultaneously increases as it separates. The faster component, although much higher in

magnitude, also decreases with lower temperature and higher field. In agreement with the

behavior of the stretched exponentials, the 30 T relaxation is again sporadic, diverging away

from the qualitative behavior of the other fields below 3.5 K.
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Figure 5.7: Distribution of 1/T1 in the 13C NMR relaxation determined via ILT (solid lines)

and the Gaussian fit of its compnents (dashed lines) plotted across 6.7 T, 12 T, 20 T, and

30 T. P (1/T1) has been normalized so that
∑

P (1/T1)∆(1/T1) = 1.

The distributions at low-temperature were fitted to two Gaussian peaks, and the results

of the fit are plotted in Fig. 5.7. The peak means are also plotted in Fig. 5.8. Due to bad

resolution, the ILT fit cannot confirm a field-dependent gap any better than the stretched

exponential fit, in this case. However, the 20 T relaxation, plotted in the inset of Fig. 5.8,

does seem to imply that both components fall dramatically below the initial 1/T1 peak, and

that fall off may be Arrhenius in nature.

A further issue is the identification of the two different relaxation mechanisms implied

by the ILT fit. Superficially, the behavior of the distribution resembles that of another QSL

candidate, herbertsmithsite [89], where 63Cu NQR measurements were performed alongside

an ILT fit. Just like in the case of 13C κ-CuCN, a small peak associated with slower relaxation

separates itself from a larger peak and grows in intensity as temperature decreases. The larger

peak, which differs from κ-CuCN, sits at a roughly constant relaxation time. The behavior

was explained using a model where spin singlets, whose relaxation times are dramatically

suppressed, form alongside paramagnetic impurities, whose relaxation times are enhanced

and constant. This model does not work for the case of κ-CuCN for a couple of reasons.
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Figure 5.8: 1/T1 as determined by an ILT fit to saturation-recovery curves. Solid circles

represent the faster relaxing component while squares represent the slower one. For com-

parison, the stretched exponential fits are plotted as dashed lines. An Arrhenius fit over all

fields estimates a gap size of 16.7 K. Inset: 20 T relaxation is plotted to highlight the general

behavior, per field, of the two components.

First, the faster relaxing component in κ-CuCN is not constant, and therefore cannot be

explained by paramagnetic spins. Second, the intensity of the slower component appears

to increase with field when temperature is held constant, a feature that is unexpected for

singlet physics. One can also consider the model used to explain the relaxation behavior of

κ-HgCl in Chapter 3 and find that it does not fit here, either. The response of 13C nuclear

spins coupled to paramagnetic impurities should be plateaued at 30 T. This is corroborated

by the fact that the NMR linewidth below 3.5 K at 30 T is saturated, implying that the

paramagnetic spins have reached full alignment and are therefore frozen out. The presence of

the faster component in the ILT at 30 T confirms that it is not the response of paramagnetic

impurities.

We should approach the interpretation of features in the ILT distribution carefully as
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Figure 5.9: ILT fits of simulated pure stretched recoveries, which normally do not have any

bumps or kinks. The parameters of the recovery curves are β = 0.5, 1/T1 = 1, S/N = 35,

and α = 3 was used in the ILT fit.

the recovery curves obtained in this experiment are not ideal candidates for ILT analysis.

Low signal to noise ratio as well as incomplete recovery at low temperatures are expected

to produce artifacts. As a result, it is imperative to consider the possibility that the peaks

observed in the ILT are the result of noise in the stretched recovery curve. Stretched recover-

ies, where β ≤ 0.5, naturally have long, prominent tails on the right side of the distribution.

Coupled with a sufficient amount of noise, the distribution could contain artifact kinks that

look like meaningful peaks. Fig. 5.9 illustrates the point. The distributions in the figure

are ILT fits of simulated stretched recoveries with β = 0.5, 1/T1 = 1, S/N = 35, and α = 3,

values close to that of the 20 T 2.5 K data point. Within the 5 generated curves, there

are 2-3 which have the same shape as the curve obtained from the experimental data. A

more robust examination, which computes the difference between the cumulative distribu-

tion function of a generated stretched exponential ILT and the experimentally observed ILT,

predicts that the experimental data is in the 70th percentile of the normal distribution of

curves produced by noise. However, this test does not account for the possibility that the
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intrinsic distribution may be quantitatively similar to a stretched exponential distribution,

and a different approach may be required to determine the significance of the bimodal peaks.

If we resign ourselves to the notion that we cannot prove the authenticity of the kinks and

therefore must ignore them, the picture is simplified. Now, we have a smooth distribution of

1/T1 which is collectively depressed as the temperature decreases and a field dependence that

cannot be resolved. The endpoints of the ILT indicate that the distribution of relaxation

times decreases sharply at temperatures below the second-order phase transition tempera-

ture. This allows us to classify κ-CuCN as a fully gapped material, even though the gap is

inhomogeneous.

5.4 Discussion/Conclusion

The results from the 13C NMR experiments on κ-CuCN in high magnetic fields highlighted in

this chapter have answered some important questions regarding the ground state of κ-CuCN.

First, both the relaxation from the stretched exponential and ILT fit agree that κ-CuCN is

fully gapped. Although 1/T1 is inhomogeneous, the entire distribution decreases rapidly

below a certain temperature, and that falloff can be fit to an Arrhenius curve. The findings

do not support the U(1) QSL model with a spinon fermi surface. Second, 1/T1 measurements

confirm that 13C NMR is, indeed, sensitive to the second-order phase transition. Instead of

a broad peak after the initial drop in 1/T1, as seen in previous 13C NMR measurements [51],

a short, sharp peak is observed. This peak is not the response of paramagnetic impurities, as

originally thought, but is similar to the one observed in 63Cu NQR experiments by Kobayashi

et al. [92], which has also been linked to a second-order phase transition.

Given that a spin-gap appears very close to the location of the second-order phase tran-

sition, it is likely that the broken symmetry involves the spin degrees of freedom, and it is

hard to make the case for a QSL ground state in κ-CuCN. Instead, future interpretations

need to consider models that include a gapped, nonmagnetic state that is associated with a

broken symmetry as well as a lattice distortion. This makes the recent VBS hypothesis a
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strong contender. However, we cannot fully confirm or deny the validity of the hypothesis,

due to a perceived field-dependence of the gap which is inconsistent with VBS behavior. The

field dependence, which is speculative because of large uncertainty, suggests that the gap

grows stronger with field, but is partially suppressed at 30 T.

Some effort to clarify the field dependence of the gap is necessary before the VBS ground

state can be seriously considered. However, NMR spectroscopy, in its current state, may not

be equipped for the task. Very long relaxation coupled with increasingly stretched recoveries

in κ-CuCN makes it difficult to obtain 1/T1 to high certainty. It was determined that the

Johnston approach fails in the case of very stretched exponentials, and ILT measurements

require an prohibitively large amount of data acquisition time to reduce noise and obtain

a fully recovered relaxation curve. It may be worthwhile to perform frequency dependent

measurements of χs via EPR, since the issue of inhomogeneity is not as prevalent in such a

probe.

73



APPENDIX A

Examination of ILT Method

A.1 Method

The implementation of the ILT follows closely what was outlined in the supplementary of

Singer et al. [88], except modified for saturation recovery instead of inversion recovery. The

interested reader should refer to Singer et al. for a more in depth explanation of the method.

The user assumes that the saturation recovery curve is the discrete sum of single exponential

recoveries:

M(t) =
∑
i

P (1/T1,i)
[
1− e−t(1/T1,i)

]
(A.1)

where P (1/T1,i) is the weight of the single exponential component with inverse relaxation

time (1/T1,i). Tikhonov Regression (or Ridge Regression) [93] is implemented in order to

solve for the distribution of P (1/T1,i), since the problem is inherently ill-posed. A typical

recovery curve will have somewhere on the order of 25-50 data points while the number of

parameters (1/T1,i) in the equation being fitted can be in the hundreds.

The equation, MILT , which the experimental data, Mexp, will be fit to is expressed as

a vector:

MILT = KP +E (A.2)

where Kij = [1 + e−ti(1/T1,j)], Pj = (1/T1,j), and E is a vector representing Gaussian noise.

The problem, then, is to the find a non-negative P which minimizes the cost function

||Mexp −KP ||2 + α||P ||2 (A.3)

The first term of the equation is the non-negative least squares cost function, but an

additional second term increases cost when utilizing too much of the P vector, in other

74



words, overfitting. Via the methodology described in refs. [93, 94], the optimal solution for

P is found by minimizing the function f(c) , defined in Eq. A.4, with respect to c using

a quasi-Newton algorithm. This was done with MATLAB using the fminunc function with

the quasi-Newton algorithm specified.

f(c) =
1

2
c′
[
G(c) + αI

]
c− c′Mexp (A.4)

In this equation,

G(c) =


H(K ′

1c) 0 . . . 0

0 H(K ′
2c) . . . 0

...
...

...

0 0 . . . H(K ′
mc)


H is the Heavyside function, K ′

j is the transposed jth column of K, and I is the identity

matrix. Once c(α) is found, P is chosen so that P = max{0, K ′c}. Note that c is a function

of α, which has yet to be determined.

According to Singer et al., the optimal value for α, αopt, is found in one of two ways.

When experimental noise is dominant, under the Bulter-Reeds-Dawson (BRD) condition

[93], α1 is found when χ(α) = α||c|| = σE

√
n, where σE is the experimental noise and n

is the number of data points. If systematic error is significant, α1 from the BRD condition

must be compared with the ”heel” condition, dlnχ(α)/dlnα|α2 = 10−1, and max(α1, α2) is

chosen. α1 was solved numerically by minimizing f(c(αo)) for 10 different values of αo,

logarithmically spaced from 10−3 to 102, and choosing the α where abs(σE

√
n−αo||c||) was

minimal. α2 was solved by choosing the α where abs(dχ(αo)
dαo

αo − 10−1) was minimal. For

reasons that will be explained in the next section, αopt was not used. Instead, a fixed α was

chosen for the entire data set based off the set of optimal α values.

Once P (1/T1) is found, it is initially returned such that
∑

i P (1/T1,i) = Mo. However,

for the purpose of performing Gaussian fits, it was normalized so that
∑

i P (1/T1,i)∆P = 1,

where ∆P = log10(1/T1,i+1)− log10(1/T1,i).
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A.2 Choosing Alpha

Alpha (α) functions a smoothing factor. Larger alphas will produce a fit that ignores kinks

and bumps in the experimental data while smaller alphas will try to fit to the data more

precisely, capturing noise and all. Increasing alpha effectively reduces the resolution of the

ILT fit, producing broader distributions, as shown in Fig. A.1.

Figure A.1: ILT fits for a simulated recovery curve with T1 = 1, Signal to Noise = 100,

α = 0.5 (blue) and α = 5 (orange).

Signal to noise (S/N) was estimated from the time transients recorded, and checked for

consistency against the recovery curves. S/N from the recovery curves were estimated by

fitting a pure, stretched exponential curve over the experimental data and choosing the root

mean square error (rmse) of the fit as the noise level, σE. Caution should be warranted here,

as the fit will produce larger values of σE if the recovery is not a purely stretched exponential,

but the sum of (for example) two main relaxation contributions.

The optimal α value per recovery curve is then calculated as described in A.1. However,

αopt would vary significantly across temperature, creating abrupt changes in the broadness

of the ILT peaks that did not reflect true changes in the system, but rather reflected the

level of noise for the measurement. An example, taken from κ-CuCN ILT fits, is shown in

Fig. A.2. It was decided that it would be more appropriate to choose a fixed value for α

close to the average of all the αopt values across the data set, keeping in mind the risk of
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losing information when α > αopt and picking up noise in the opposite case.

Figure A.2: (a) ILT fit of κ-CuCN 12 T relaxation using optimal α values (b) Optimal alpha

values for 12 T.

A.3 Effectiveness at Finding Distributions

The effectiveness of the ILT at finding the true distribution of a recovery curve was tested by

performing the ILT fit on simulated stretched exponentials and ”dummy” recoveries where

the distribution of 1/T1 is known. It was determined that the ILT is quite accurate at finding

the distributions when the curve is fully recovered and the level of noise is low. If those two

conditions are not met, artifacts are inevitable.

A.3.1 Complete Recovery

The ILT of several stretched exponentials with varying 1/T ∗
1 and β values is plotted in Fig.

A.3. The plot shows that the ILT accurately estimates the 1/T ∗
1 value of the stretched

exponential, as demonstrated by the center of gravity of the distribution. Furthermore, the

shape of the distribution agrees with those calculated by Johnston [87] where a tail appears

on the right side of the curve and becomes longer and more pronounced as the exponential
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Figure A.3: (a) ILT fit to several stretched exponential recoveries with varying 1/T1 and β

values. (b) The simulated stretched exponential (open circles) plotted alongside the calcu-

lated recovery curve from the ILT fit (solid line).

Figure A.4: ILT fit to several two-component recoveries with varying 1/T1 and amplitudes.

becomes increasingly stretched. However, the peak of the ILT distribution remains close to

1/T ∗
1 , while Johnston’s peaks shift to lower values of 1/T1 because the distribution’s tails

extend to 1/T1 = ∞. While such behavior is correct for a pure stretched exponential, it is

not realistic, and the ILT method better adjusts for cutoffs in 1/T1 range. The ILT was also

tested for several two-component recoveries with varying 1/T1 and amplitudes and it was

able to capture the correct distributions fairly well. The results of that simulation are shown
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in Fig. A.4.

A.3.2 Incomplete Recovery and Late Acquisitions

Figure A.5: (a) Generated stretched exponential curves with β = 1 and 1/T1 = 1. Blue

is a complete recovery, orange is slightly incomplete at the top, and yellow is extremely

incomplete. (b) ILT fit results on generated stretched exponentials. The fit for the incomplete

recovery shows a tail which is not present when the ILT is given the full curve, and a greatly

overestimated 1/T1 in the extreme case.

Tails can also appear in the ILT as a result of incomplete recovery, in other words, not

a sufficient amount of flatness at the top of the recovery. Fig. A.5 shows the effects of

performing an ILT fit on a recovery that is not fully recovered. For this simulation, β = 1,

1/T1 = 1, and the range of 1/T1 is fixed as 150 bins from 10−5 to 105. The true curve (in blue)

does not have any tails on either side of the P (1/T1) distribution. However, when performing

an ILT on a curve that is not fully recovered (orange), the ILT fit becomes unsure of where

the recovery actually ends. As a result, it produces a tail on the left side of the P (1/T1)

distribution, and the fitted recovery curve overshoots the true value of Mo. Despite this flaw,

1/T1 is still estimated correctly, at least for the values of β and 1/T1 chosen. However, for

more extreme cases of incomplete saturation, 1/T1 is overestimated, and the tail becomes

extreme.
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Figure A.6: (a) Generated stretched exponential curves with β = 1 and 1/T1 = 1. Blue is a

complete recovery, orange is incomplete at the bottom, and yellow is extremely incomplete

(b) ILT fit results on generated stretched exponentials. The fit for the incomplete recovery

shows a constant artifact on the right only in the extreme case.

If the curve is incomplete at the early end of the recovery, the effect is not as catastrophic.

The ILT can accurately predict where the true curve should begin, up to a certain limit.

Fig. A.6 shows a complete recovery curve (blue) and a curve where the acquisition begins

late (orange). For the orange curve, the fit correctly fills in the early end of the recovery,

producing only a slight difference in amplitude in the P (1/T1) distribution. However, the

ILT fails in the case of the yellow curve where less than half the recovery is captured. The

low end is not fitted to correctly, and a constant artifact is produced on the right side of

P (1/T1).

A.3.3 Incomplete Saturation

The issue of incomplete saturation was covered in Singer et al. [88], so it will not be discussed

in detail here. If a recovery curve starts at a nonzero value due to incomplete saturation, the

ILT will produce a constant peak in P (1/T1), similar to the one seen for late acquisitions,

at approximately the same timescale as the time of the first acquired point in the recovery.

Rather than setting a ”cutoff” frequency, as was suggested by Singer et al., it was found
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Figure A.7: (a) A recovery curve with incomplete saturation (orange) and the same curve

shifted and normalized so that the first point starts at 0 and the last point ends at 1 (blue).

(b) ILT fit for the two recoveries in plotted (a).

that shifting the recovery and renormalizing was sufficient enough to remove the artifact,

as shown in Fig. A.7. Care should be taken to distinguish an incomplete saturation from

a late acquisition, as the latter case can be left alone if not too extreme, and shifting the

recovery curve may lead to incorrect interpretation of 1/T1 by the ILT. One can identify an

incomplete saturation by a nonzero, flat line at the beginning of the recovery, but it may be

more difficult to detect in the case of very stretched exponentials.

A.3.4 The Effect of Noise

The effect of noise on the ILT distribution needs to be considered. In general, noise will pro-

duce artificial bumps in the distribution that could be misinterpreted as physically significant

peaks, as shown in Fig. A.8. The purpose of the smoothening factor, α, is to mitigate such

effects, but there is a limit to how much it can do. Even at very high levels of S/N, αopt does

not fully eliminate artificial bumps, although it does a sufficient job at smoothening them.

At S/N < 50, the effects of noise are significant. The effect of noise on the ILT distribution,

and the inability of αopt to fully remove noisy artifacts, highlights a need for experimentalists

81



Figure A.8: (a) Generated stretched exponentials with β = 0.3 and T1 = 1 with varying

levels of signal to noise. (b) ILT fit to the stretched exponentials in (a) using the calculated

αopt as the smoothing factor.

using ILT to approach interpretation of small peaks carefully, making sure to take steps to

distinguish real signal from noise.

A.3.5 Conclusion

The ILT is preferred over the Johnston model for purposes of obtaining 1/T1 distributions of

real systems, especially in the case of stretched exponential recoveries. When fit to a purely

mathematical stretched exponential, it returns the correct shape, as demonstrated by Fig.

A.3. It can also estimate 1/T ∗
1 of the stretched exponential, since 1/T ∗

1 is equivalent to the

center of gravity of the ILT distribution [88]. Since it is not restricted to an analytical form,

it is also able to produce unique distributions, like bimodal peaks, which the Johnston model

cannot.

However, as is the nature of any ill-posed problem, the ILT fits to the data too well. This

makes it extremely sensitive to noise and prone to producing artificial bumps and peaks,

even with smoothing factored in. In order to minimize artifacts, data taken for ILT purposes

take much more time to acquire compared to the average T1 measurement, as one needs
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to obtain a full recovery as well as average over many acquisitions to achieve satisfactory

results.

With these considerations in mind, the ILT is more suited for faster relaxation experi-

ments where such recovery curves can be obtained within a reasonable amount of time. For

cases of long relaxation, where some estimation of T1 is needed despite having an incomplete

recovery, it may not be worth the time and trouble, as the stretched exponential fit is actually

better at predicting a recovery curve (assuming the curve fits a pure stretched exponential),

and therefore better at estimating T1. However, the distribution returned by a pure stretched

exponential is unrealistic, and the ILT might still be a better way of extrapolating any fast

relaxing features that might be present in the partial recovery, thus giving it some use in the

case of long recoveries.
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heisenberg model”, Physical Review Letters 82, 3899–3902 (1999).

[9] S. R. White and A. L. Chernyshev, “Neél order in square and triangular lattice heisen-

berg models”, Physical Review Letters 99, 2–5 (2007).

[10] B. Bernu, C. Lhuillier, and L. Pierre, “Signature of Néel order in exact spectra of
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[55] R. S. Manna, M. de Souza, A. Brühl, J. A. Schlueter, and M. Lang, “Lattice effects

and entropy release at the low-temperature phase transition in the spin-liquid candidate

κ−(BEDT−TTF)2Cu2(CN)3”, Physical Review Letters 104, 016403 (2010).

[56] R. S. Manna, S. Hartmann, E. Gati, J. A. Schlueter, M. De Souza, and M. Lang, “Low-

temperature lattice effects in the spin-liquid candidate κ-(BEDT-TTF)2Cu2(CN)3”,

Crystals 8, 87 (2018).

[57] A. Pustogow, “Thirty-year anniversary of κ-(BEDT-TTF)2Cu2(CN)3: reconciling the

spin gap in a spin-liquid candidate”, Solids 3, 93–110 (2022).

89



[58] E. Gati, J. K. Fischer, P. Lunkenheimer, D. Zielke, S. Köhler, F. Kolb, H. A. K. Von
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