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ABSTRACT

Carbohydrate-processing enzymes, CAZymes, are
classified into families based on sequence and
three-dimensional fold. Because many CAZyme fam-
ilies contain members of diverse molecular function
(different EC-numbers), sophisticated tools are re-
quired to further delineate these enzymes. Such de-
lineation is provided by the peptide-based cluster-
ing method CUPP, Conserved Unique Peptide Pat-
terns. CUPP operates synergistically with the CAZy
family/subfamily categorizations to allow systematic
exploration of CAZymes by defining small protein
groups with shared sequence motifs. The updated
CUPP library contains 21,930 of such motif groups
including 3,842,628 proteins. The new implementa-
tion of the CUPP-webserver, https://cupp.info/, now
includes all published fungal and algal genomes
from the Joint Genome Institute (JGI), genome re-
sources MycoCosm and PhycoCosm, dynamically
subdivided into motif groups of CAZymes. This
allows users to browse the JGI portals for spe-
cific predicted functions or specific protein families
from genome sequences. Thus, a genome can be
searched for proteins having specific characteristics.
All JGI proteins have a hyperlink to a summary page
which links to the predicted gene splicing including
which regions have RNA support. The new CUPP im-
plementation also includes an update of the anno-
tation algorithm that uses only a fourth of the RAM
while enabling multi-threading, providing an annota-
tion speed below 1 ms/protein.
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INTRODUCTION

Enzymes that catalyze modification of carbohydrates, i.e.
CAZymes, are generally highly specific due to the huge
stereochemical diversity of their substrates. Based on se-
quence and three-dimensional fold, CAZymes are classified
into families covering 5 types of catalytic reactions (glyco-
side hydrolases, glycosyl transferases, polysaccharide lyases,
carbohydrate esterases, and ‘auxiliary activities’ which are
mainly redox enzymes) (1). So far, about 400 CAZy families
have been created, curated, and kept up-to-date for decades
by the dedicated work of the CAZy group at Aix Marseille
University, France (1-3). The CAZy group provides robust
family and subfamily delineations while keeping track of
relevant, characterized enzymes. As more genomes become
sequenced, more CAZyme members are added into each
family, and in cases of new enzyme activity descriptions, i.e.
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when new molecular function information becomes avail-
able, new families with potentially novel structure-function
relations are created (1).

Several CAZy families comprise members with distinct
molecular functions, meaning that they have unique speci-
ficities as described by an EC number approved by the In-
ternational Union of Biochemistry and Molecular Biology
Enzyme Commission. However, even though members of
the same CAZy family have the same protein fold, the fold
similarity does not always mean that their molecular func-
tions are the same, which is why several CAZy families
cover different enzyme functions as specified by EC num-
bers. Thus, an approach for automated and dynamic sub-
division for capturing differences is a desirable supplement
to the robust family and subfamily delineations provided in
the CAZy database. A range of CAZy family annotation
services based on the HMM’s of Pfam (4), InterProScan
(5) or dbCAN (6) already exist. Yet, although some efforts
have been successful using SACCHARIS (7) and eggNOG
(8,9), the establishment of phylogenetic trees for creation
of branches of distinct molecular function via genome an-
notation is not trivial; it is thus a major effort even for a
trained bioinformatician to manually divide the enzymes
(sequences) of large families into relevant areas (7). The
CUPP clustering and annotation tool was first launched
as a stand-alone algorithm (10), but subsequently the web-
server and database (https://cupp.info/) were published (11).

Here, we present an updated version of the CUPP-
webserver (https://cupp.info/), which features an improved
overall user interface, and not least inclusion of all the pub-
lished JGI fungal and algal genomes into the CAZy fam-
ily architecture to ease genome comparison amongst these
genomes. Annotation of CAZymes from fungal and al-
gal sequences is considered a new frontier exploration el-
ement for novel enzyme discoveries. In the updated version
of the CUPP-webserver, the new features include options
for direct genome comparison from a user query to the
CUPP groups in the pre-annotated database which, in ad-
dition to 44,544 other strains, now includes 1418 published
fungal/algal genomes (see Supplementary material for ref-
erences to each JGI genome) from the JGI MycoCosm (12)
and JGI PhycoCosm (13). This inclusion thus enables users
to browse the JGI genomes with the user-friendly interface
for the advanced querying, searching, filtering and retrieval
of the CUPP annotated CAZy database. In this way, the up-
dated CUPP-webserver gives access to visualizations of pro-
tein structure, domains, sequence alignments and summary
charts for CUPP groups and queries on the database. The
CUPP-webserver will be maintained for minimum 5 years
with the newest version of the models available.

MATERIALS AND METHODS
Expansion of CAZy families

The protein accessions were obtained from the CAZy.org
database (1) on November 2022 and sequences of the CAZy
accessions were downloaded from NCBI nr db version 63
(14). All proteins which have a known molecular function
or crystal structure listed in CAZy.org were treated as seeds
along with a single member of each unknown group of the
previous CUPP database (11). Each family was processed
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individually on our DTU High Performance Cluster in par-
allel in the following steps: 1) The seed proteins were trun-
cated individually to their catalytic domains by dbCAN
(6) using HMMER3 (15) and each domain retrieved up
to 5000 proteins from the NCBI nr database using Dia-
mond BLAST (16) with default setting. Additionally, the
expansion was also done on the combined list of protein
of the JGI genomes, i.e. all proteins from all published
genomes imported from JGI MycoCosm and PhycoCosm
resources, were added. Secondly, additional CAZymes were
predicted in the published JGI genomes using the former
CUPP library to highlight additional CAZymes. These ad-
ditional CAZymes are in https://cupp.info/ marked as ‘My-
coCosm+’ or ‘PhycoCosm+’, if they indeed become a mem-
ber of the CUPP group after the all-vs-all clustering. This
expansion included the retrieval of more than ten million
possible CAZymes of which about 3,842,628 made it into
one of the 21,930 CUPP groups.

For the annotation benchmark analysis, the family and
EC annotations for CUPP were performed using the new
CUPP-webserver including only hits with a significance
above the default significance score of 5. The eggNOG
5.0 annotations were performed on the online webserver
with default settings (9). The dbCAN annotations were per-
formed using the online webserver (6) using default settings.
The sensitivity is defined as the fraction of the true positives
(CAZy families or EC numbers) found by each program.
The precision is calculated per protein as the number of true
positives divided by the total positives (i.e. the sum of true
and false positives) for the particular protein. The sensitiv-
ity and precision results are presented as the average for the
query proteins assessed.

The catalytic domains of each protein were identified us-
ing dbCAN with a less strict e-value (e-value < 0.001) if
they originated from www.CAZy.org whereas sequences re-
trieved by BLAST from NCBI required a more strict e-
value, namely an e-value <10~ to be accepted. The col-
lection of catalytic domains was reduced by CDHIT (17)
(setting the clustering threshold to 90% identity) to remove
nearly identical proteins. Redundant sequences retrieved by
BLAST from NCBI, were not included into the CUPP-
webserver (https://cupp.info/). The collection of represen-
tative domains was subjected to all-vs-all CUPP clustering
(10) to identify sequence-motif within subbranches of each
family, hence placing the JGI genome proteins in distinct
subbranches of the family. Motif groups without any official
CAZy family member (according to www.CAZy.org) were
moved from the library as the expansion was performed to
capture the diversity within the groups, not to expand the
families beyond the outer boundaries of the families. The
motif groups with all their associated annotations includ-
ing Signalp 6.0 (18), Pfam domains (4), Uniprot links (19),
MycoCosm links (12), PhycoCosm links (13), dbCAN do-
mains (6) and more were uploaded to the https://cupp.info/
webserver for user interaction.

RESULTS
Systematic genome comparison including JGI genomes

The new CUPP.info webserver allows any user to submit a
genome or any list of proteins up to 32MB in a file for free.


https://cupp.info/
https://cupp.info/
https://cupp.info/
http://www.CAZy.org
https://cupp.info/
http://www.CAZy.org
https://cupp.info/
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Figure 1. A tour through the webserver and the associated pre-annotations. (A) Submission of user sequences. (B) Filtering of user sequences for example
by CAZy family GH30 and GH43. (C) Comparison of the user defined protein to the CUPP groups shared with the proteins of the JGI sequenced
Trichoderma asperelloides. (D) The overview of the five GH30 hits found in the JGI sequenced Trichoderma with links on the accession to the JGI website

for a much more elaborate documentation of the protein.

Once a query has been submitted, here exemplified by the
genome of Penicillium sclerotigenum (20) (Figure 1A), the
delineation and annotation will commence. After about 9
s of annotation (e.g. for a genome containing about 9000
proteins), a summary page will appear in which the results
can be filtered, in this example limited to CAZy family
GH30 and GH43 (Figure 1B).

In case the user wants to compare the current GH30 an-
notations of e.g. the Trichoderma asperelloides JGI genome
(21) this can be seamlessly done by selecting the portal name
‘Triaspl’ using the ‘Compare to pre-annotated CUPP db’
filters which will show shared CUPP groups between the
genomes, in this case GH30:10.1 (Figure 1C). Alternatively,
all JGI MycoCosm proteins combined (12) or a specific tax-
onomic class can be selected within the webserver interface.
In this example, the user can also opt to use the ‘Browse
Genomes’-tab to go directly to the JGI genome of 7. as-

perelloides from the left control panel. The 7. asperelloides
genome has five GH30 hits, and one of the genes ‘TRI-
ASP1.401341" belonging to group GH30:10.1 could, for ex-
ample, be selected for experimental characterization as the
JGI predicted genes moreover have transcriptomics support
(Figure 1D). To inspect the transcriptomics result of indi-
vidual genes, proteins originating from JGI have a hyperlink
to a summary page which links to a ‘Genome browser’ page
that displays the predicted gene splicing, including which re-
gions have RNA support (Figure 1D).

Hence, in the protein specific site in the JGI website under
‘To Genome Browser’, the current protein (GeneCatalog)
can be seen together with several other alternative predic-
tions of the gene splicing, which is essential to have correct,
for the protein to function naturally (Figure 2).

As the RNA coverage supports the exon/intron splicing,
it is possible to infer whether a particular gene, in this case
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Table 1.
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Comparison between the dbCAN webserver, the eggNOG webserver for both family and functional annotation of CAZymes and the updated
CUPP-webserver using the recommended significance cut-off at 5. The column ‘CAZy - All characterized’ encompasses all 10784 characterized proteins
in the CAZy database used for the training, whereas the ‘CAZy - Newly characterized’ designate 199 characterized CAZymes that were added after the
training ended

CAZy — all characterized CAZy — newly characterized

CUPP eggeNOG dbCAN CUPP eggNOG dbCAN
Family sensitivity 99.9% 50.7% 98.1% 100.0% 46.0% 97.4%
Family precision 99.6% 94.8% 99.9% 99.7% 94.1% 99.7%
EC sensitivity 84.0% 59.7% 93.0% 54.6% 40.9% 58.7%
EC precision 95.1% 88.9% 76.3% 93.3% 89.2% 79.2%
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Figure 2. An example of the many descriptive pages for each JGI protein, here it is the ‘Genome Browse’ subpage. The blue bar induces the two exons of
the final transcript from which the protein is based. In the pink RNA coverage graph, a drop to zero signal can be observed in the intron region between the
two exons. The bars belong show predicted transcripts based on alternative gene prediction tools showing that a region toward to N-terminus is sometimes

not considered part of the protein.

a gene such as the one selected in Figure 2, is more likely to
work after heterologous gene expression.

To further improve the enzyme selection, all NCBI Gen-
bank accessions were mapped to Uniprot ID to link to the
specific Uniprot accession page including the predicted Al-
phaFold structures, Go annotations and InterPro annota-
tions and more (19).

Pre-annotations of JGI genomes and browse options

The proteins in the CUPP database can be displayed
in various ways including a ‘Summary visualization’
as a bar-plot which could compare GH30 occurrence
in the 21 genomes in MycoCosm of Trichoderma spp.
(Figure 3A).
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Figure 3. Examples of visualization options provided by the new CUPP-webserver interface. (A) The bar-plot of the 21 JGI genomes belonging to Tricho-
derma with predicted GH30 enzymes in the pre-annotated CUPP db shown by clicking on ‘Summary visualization’. (B) The five GH30 of Trichoderma
asperelloides displayed with their domain modularity including predicted signal peptide, shown by clicking ‘Domain visualization’. (C) The short-cut to
inspect a JGI genome, named ‘Browse genomes’ in the left control panel. (D) A short-cut to inspect a particular EC number across all families.

By clicking on the ‘Domain visualization’ tab, the do-
main of each protein can be inspected to see possible sec-
ondary domains and signal peptides (SP), here shown for
GH30 protein in 7. asperelloides (Figure 3B). To ease the
accessibility to the genomes, a new browse panel has been
implemented which allows quick inspection of particular
genomes under the ‘Browse genomes’ tab in the left con-
trol panel (Figure 3C); an alternative option is to ‘Browse
by EC numbers’ (Figure 3D).

Stand-alone improvements

The former Python implementation of the CUPP annota-
tion algorithm did not allow the multi-threading required
for optimal maneuvering and speedy data processing. This
was problematic as the library files occupied 16 GB RAM
during any run. With the new implementation, the RAM
usage is reduced to a fourth while allowing efficient multi-

threading. The annotation speed for an average genomic
protein is now <1 ms using only one core.

DISCUSSION
Annotation comparison and benchmarking

The overall family annotation performance of the CUPP al-
gorithm is considered highly satisfactory with nearly max-
imum sensitivity and precision using CUPP for full collec-
tion of both the characterized proteins included and those
not included in the training (called newly characterized)
(Table 1). The family annotation by dbCAN is also high,
only missing a few percent (Table 1). For the EC numbers,
the annotation by CUPP shows a lower sensitivity than db-
CAN, but - more importantly - a better precision. The on-
line webserver for EC annotation by eggNOG performed
with lower sensitivity and precision for both the protein col-
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Table2. Comparison of CUPP CAZy family annotation versus the CAZy family annotations of dbCAN and eggNOG. The true CAZy family annotations
and the genomic proteins were obtained from MycoCosm. The selected genomes include: Aaosphaeria arxii CBS 175.79 belonging to Ascomycota, class
Dothideomycetes (Aaoarl) (22), Acremonium sp. TS7 belonging to Ascomycota, class Sordariomycetes (AcreTS7_1) (23), Abortiporus biennis CIRM-BRFM
1778 belonging to phylum Basidiomycota (Abobiel) (24), Anaeromyces sp. S4 belonging to phylum Chytridiomycota (Anaspl) (25,26), and Absidia repens

NRRL1336 belonging to phylum Mucoromycota (Absrepl) (26)

MycoCosm Genomic True CAZy family sensitivity CAZy family precision

Genus Proteins CAZy CUPP eggNOG dbCAN CUPP eggNOG dbCAN
Aaosphaeria 14,203 585 98.9% 30.7% 95.7% 99.7% 99.9% 99.5%
Acremonium 9964 429 97.9% 37.9% 93.8% 99.7% 99.8% 99.5%
Abortiporus 11,767 372 97.7% 36.6% 94.1% 99.8% 99.9% 99.7%
Anaeromyces 12,832 503 94.9% 25.7% 91.6% 98.3% 99.8% 99.8%
Absidia 14,919 297 97.5% 41.2% 91.9% 99.3% 99.9% 99.7%
Total 63,685 2186 97.4% 33.7% 93.6% 99.4% 99.9% 99.6%

lection for which CUPP was trained and for the collection
of newly added characterized CAZy enzymes (Table 1).

When comparing the annotation performance of CUPP
on a set of representative genomes using genomic proteins
from MycoCosm (Table 2), the sensitivity of the CUPP out-
performs dbCAN and eggNOG (Table 2). The precision of
eggNOG was only slightly below that of CUPP, however,
the sensitivity of eggNOG was far below that of CUPP,
whereas dbCAN was far better than eggNOG, but still be-
low CUPP (Table 2). The high granularity of the CUPP
groupings thus ensures that only a very limited number of
incorrect EC assignments occur, with a minor negative ef-
fect on sensitivity (Table 1).

Sensitivity and precision for CAZy family annotation is
likely better when the query sequences are the founding
members or central members of the sequence space of the
CAZy families, as evident from the 98-99.9% performance
results of CUPP and dbCAN (Table 1). However, when
CAZy family annotation is carried out on a full genome,
some of the query sequences are likely near the outermost
boundary of the CAZy family sequence space, thus causing
the sensitivity to be lower (Table 2) than the CAZy family
annotation of the characterized enzymes (Table 1).

DATA AVAILABILITY

The data underlying this article are available in the article
and in its online supplementary material. The webserver
is freely available: https://cupp.info. The entry page pro-
vides easy access to the annotation of existing genomes as
well as a submission page for user-defined queries. For of-
fline usage, the new implementation of the CUPP program
can be downloaded from https://cupp.info/downloads as a
Python script directly functional on Windows, Linux and
MacOS operating systems with documentation provided in
the readme file.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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