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Abstract
Learning from examples and adapting to new circumstances are fundamental attributes of human cognition. However, it is unclear what 
conditions allow for fast and successful learning, especially in nonhuman subjects. To determine how rapidly freely moving mice can 
learn a new discrimination criterion (DC), we design a two-alternative forced-choice visual discrimination paradigm in which the DCs 
governing the task can change between sessions. We find that experienced animals can learn a new DC after being exposed to only 
five training and three testing trials. The propensity for single session learning improves over time and is accurately predicted based 
on animal experience and criterion difficulty. After establishing the procedural learning of a paradigm, mice continuously improve 
their performance in new circumstances. Thus, mice learn to learn.

Keywords: animal cognition, associative learning, hybrid mice, reference memory, visual discrimination

Significance Statement

Humans excel at learning from examples and adapting to new circumstances, but conditions for efficient learning in nonhuman sub-
jects are unclear. In this study, we explore the adaptability of mice to new circumstances using a visual discrimination task. We find 
that mice can learn a new discrimination criterion (DC) within a single session, a capacity that enhances with experience and varies 
with DC difficulty. Furthermore, mice exhibit flexibility in learning strategy based on the physical conditions of the task. Our findings 
provide insights into the behavioral mechanisms that allow for fast learning, suggesting a framework for rule learning as part of a 
multilevel learning scheme. We hypothesize that this framework will be useful for deciphering the neuronal mechanisms of rapid 
discrimination learning requiring reference memory.
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Introduction
Solving a discrimination task for a reward involves associative 
operant learning (1). Through experience, we learn the relation-
ship between stimuli, actions, and results, aligning our actions 
with the desired outcomes. As we practice the task, certain as-
pects become easier and are eventually performed implicitly. 
Now consider a sudden change in some of the rules of a well- 
known task. The ability to adapt to new rules or learn from a small 
training set is a fundamental attribute of human cognition (2). 
However, it is not clear which behavioral patterns underlie adap-
tation, and what conditions allow fast and successful learning of 
new rules governing a well-known task.

In two-alternative forced-choice (2AFC) discrimination tasks, 
a discrimination criterion (DC) involves two stimulus–response 
associations. One way to learn a new DC governing a well-known 
discrimination task is to generalize from a known DC. Rodents, 
which provide a convenient model system for studying the 

neurobiological basis of behavior, can use generalization (3) and 
transfer (4, 5) to learn new rules. However, generalization cannot 
be used when a new DC is uncorrelated with previously learned 
DCs. A second option for successful performance when the DCs 
change is categorization, an established ability among rodents 
(6, 7). However, new criteria do not necessarily fall into previously 
acquainted categories. Third, higher levels of attention and ex-
perience may facilitate faster learning (8). Attending to details in-
creases the learning rate (9). Furthermore, because learning is 
never carried out on a completely blank slate, previous knowledge 
(i.e. experience) may facilitate the acquisition of new DCs via 
learning sets (10) and schemas (11, 12). Indeed, during repeated 
changes to the DCs of a well-known task, experience may facili-
tate learning.

Although advantageous, extensive experience is not necessary 
for learning. Fast and even one-shot learning (13) were previously 
demonstrated in laboratory rodents. During fear conditioning, a 
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stimulus is associated with a single exposure to an aversive ex-
perience, leading to avoidance learning (14, 15). Rodents also excel 
in spatial learning (16) and can learn from a few exposures (17, 18) 
or even from a single spatial experience (19–21). However, classic-
al learning and operant learning are associated with distinct neur-
onal mechanisms (22, 23). Furthermore, although rodents are 
capable of quick learning of naturalistic tasks, many operant 
learning tasks are conducted on naïve laboratory subjects (12) 
and take weeks to learn (6, 24–28). Thus, it is unknown how rapidly 
can rodents learn a new set of associations within a well-known 
setting and what is the specific contribution of experience.

Rule learning in a discrimination task with changing DCs can be 
divided into four distinct levels of learning. The first level is a type 
of procedural learning, in which the general task logic is acquired, 
e.g. learning that there are water ports. The second level involves 
learning that there is a pair of stimulus–response associations 
that together constitute a DC. The third level involves learning 
that a specific pair of stimuli is now associated with a specific 
pair of responses. The fourth level is “learning to learn,” i.e. learn-
ing that the DC governing the task can change between days, and 
being able to adapt more quickly.

Using a fully automated 2AFC paradigm, we find that every 
mouse learns a new visual DC in a single session. When single ses-
sion learning (SSL) occurs, mice perform the task successfully 
after being exposed to only three testing trials. Physically difficult 
DCs are less likely to result in SSL, and experienced mice are more 
likely to achieve SSL. SSL can be achieved for particularly difficult 
DCs if conditions for generalization from a previously learned DC 
are favorable. Thus, mice learn to learn.

Results
All mice learn at least one new visual DC within a 
single session
We designed a fully automated 2AFC discrimination paradigm for 
freely moving mice in a T-maze (Fig. 1A). All subjects were hybrid 
mice (21) (first-generation offspring of FVB/NJ females and C57BL/ 
6J males; n = 6) that were pretrained (“shaped”) over several days 
(median [interquartile range, IQR]: 5 [4 5] days). To maximize 
learning rate and minimize frustration, every postshaping session 
was divided into blocks (Fig. 1B). Each block consisted of 5 training 
trials, followed by 10 testing trials. During training trials, the sub-
jects were presented with the same stimuli as during testing trials, 
but the correct choice was enforced by opening only one door at 
the T-junction (Fig. 1C). Mice received a water reward after every 
training trial and every successful testing trial.

During every session, a display of 100 green and blue LEDs 
(Fig. 1A, inset) was used to provide 2 distinct visual stimuli {A; B} 
for governing the task. Thus, a DC was composed of two stimu-
lus–response associations, an affinity between stimulus A and 
“go left” and an affinity between stimulus B and “go right.” Only 
one DC was employed during a given session, repeated across all 
blocks within that session. Every specific set of LEDs was included 
as a visual stimulus in only one DC. The physical properties of the 
two visual stimuli allowed characterizing every DC by an intracri-
terion distance in the range of [0, 1] and were smaller for more dif-
ficult DCs (Fig. 1D). For example, DC #1 consisted of {stimulus A: 
all green LEDs are on; stimulus B: all blue LEDs are on} and had 
an intracriterion distance of 0.07, indicating that the DC is rela-
tively difficult.

Sessions were denoted as successful if performance was con-
sistently above chance (0.5; P < 0.05, Binomial test). A DC was 

deemed successfully learned if a successful session was 
performed, while the task was governed by the DC. Using the 
6-DC pool (Fig. 1D), 6 mice were tested on 28 DCs, with every 
subject exposed to a median [range] of 5 [3, 6] DCs. All subjects 
achieved an SSL of at least 1 DC (2 [1, 3]; Table 1 and Fig. S1A). 
When exposed to a new DC, a median [IQR] of 90 [70 138] testing 
trials were carried out until a successful session was completed 
(Fig. S1B). For example, after pretraining (shaping) on DC #2, sub-
ject m3 performed the task successfully during the second and 
third testing sessions (Fig. 1E, left). The criterion was then changed 
to DC #4, which was learned in a single session. Subject m3 was 
tested on three new DCs and achieved SSL on two. Similar results 
were obtained for all subjects (Table 1 and Fig. S1). Thus, all mice 
learned a least one new visual DC within a single session.

During SSL, mice achieve high success rates from 
the first trials of the first block
To determine the learning dynamics of SSL, we classified sessions 
according to the learning process by characterizing the success 
rate as a function of block number. Each session was associated 
with either SSL (e.g. m4, DC #6; Figs. 1E, right, and 2A), multises-
sion learning (MSL; e.g. m4, DC #2; Figs. 1E, right, and 2B), or was 
unlabeled (e.g. m3, DC #2; Fig. 1E, left). By definition, a DC associ-
ated with MSL requires more than one session to learn. Since 
every mouse was pretrained on the first DC encountered by the 
subject, all first-DC sessions were unlabeled. Of the newly en-
countered DCs, 13/22 (59%) were SSL, 8/22 (36%; spanning 19 ses-
sions) were MSL, and in one case, the DC was not learned (1/22, 
5%; m5, DC #1; Fig. S1C and D). Thus, in 95% of the cases, mice 
learned a completely new DC within one to three sessions.

SSL success rates (0.7 [0.6 0.8]; n = 110 blocks) were higher than 
MSL success rates (0.6 [0.5 0.7]; n = 154; P < 0.001, U test; Fig. S1E). 
To quantify differences in the learning process, a linear model was 
fit to every SSL and MSL learning curve (Fig. 2A and B, dashed 
lines). During MSL, mice exhibited gradually increasing success 
rates (median slope: 0.015 improvement per block; n = 8 MSL 
DCs; P = 0.008, Wilcoxon’s test comparing to a zero-slope null; 
Fig. 2C, top left), indicating a learning process. MSL initial success 
rates were below chance (0.5; median: 0.42; P = 0.039; Fig. 2C, bot-
tom left). In contrast, SSL initial success rates were already above 
chance (0.69; n = 13; P = 0.003) and did not increase consistently 
over blocks (median slope: 0.005; P = 0.84; Fig. 2C, right). Thus, 
when SSL occurred, the trials experienced during the first block 
appeared to suffice for learning the new DC.

Linear models do not necessarily capture differences between 
learning curves. Instead of considering models that require 
more free parameters (e.g. sigmoid), we time-warped every curve 
to unity duration and averaged all learning curves of a given type 
(SSL or MSL; Fig. 2D). SSL and MSL success rates during the initial 
four tenths were higher for SSL sessions than for MSL sessions 
(geometric mean, P = 0.003, U test; Fig. 2D). These observations 
complement the linear model results, showing that during SSL, 
animals learn the new DC during the very first block.

To understand how subjects can perform above chance from 
the first block in a new DC session, we considered two alterna-
tives. One possibility is that the mice already learn the new DC 
during the five training trials (Fig. 1B) at the beginning of the first 
block. Alternatively, one or more testing trials are required. We 
found that success rates during the first two (or more) testing tri-
als of a new SSL DC were consistently higher than the success 
rates of first trials in an MSL DC (P < 0.01 in all cases; n = 13 SSL 
and 8 MSL first-DC sessions; Fig. 2E). To estimate the number of 
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Fig. 1. All mice learn at least one new visual DC within a single session. A) The fully automated apparatus used to train freely moving mice on a 2AFC 
discrimination task. Successful trials are reinforced by water. Top: The display used to generate visual DCs, located at the far end of the central arm, 
consists of 10 alternating columns of green and blue LEDs. B) Session structure. Every session is composed of blocks, each consisting of 5 training trials, 
followed by 10 testing trials. C) A trial structure. During training trials, only the correct choice is available to the animal since only one door at the 
T-junction is open (D2 or D3). D) Six visual DCs are used to govern the task. On every session, only one DC is used. Bottom: The physical properties of two 
visual stimuli {A; B} are used to derive an intracriterion distance metric, quantifying DC difficulty. E) Success rate as a function of testing trial number for 
two example subjects, m3 and m4. Sessions are represented by distinct colors, and the success rate is averaged per block. A blue background highlights 
successful sessions (P < 0.05, binomial test comparing to chance level, 0.5).

Table 1. SSL in every experimental animal.

No. Animal ID Sex Straina Ageb (week) Weightb (g) Nonfirst DCsc SSL DCs

m1 mC41 Male Hybrid 26 39.4 4 1
m2 mA154 Female Hybrid 14 26.5 2 2
m3 mA350 Female Hybrid 13 15.7 3 2
m4 mA354 Female Hybrid 13 16.4 4 3
m5 mE177 Female Hybrid 21 22.4 5 3
m6 mE178 Female Hybrid 21 26.3 4 2
Total 22 13

aF1 offspring of an FVB/NJ female (JAX #001800) and a C57-derived male. 
bAt the beginning of training. 
cBefore being exposed to a new rule, every subject was shaped on one other DC.
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testing trials actually required for learning a new DC, 
we calculated the correlation between the success rate during 
the first few testing trials of the first new-DC block and the 
success rate during all other same-session blocks (Fig. 2F and G). 
There was no consistent correlation when a single first-block trial 
was considered (cc: 0.24; n = 21 sessions; P = 0.33, permutation 
test). However, when two or more first-block trials were consid-
ered, the correlation was high (range, [0.44, 0.58]; P < 0.05 in all 
cases, permutation tests; Fig. 2F and G). An exponential model 
provided a fit to the correlation as a function of the number of 
first-block trials (R2 = 0.8; n = 10; P = 0.003 F test; Fig. 2G), 
indicating that the correlation already converged for three testing 
trials (Fig. 2F). Thus, after the five training trials, the first three 
testing trials exhibited the same correlation as the entire first 
block with the session success rate, indicating that when the con-
ditions are appropriate, three testing trials suffice for learning a 
new DC.

SSL is predicted from experience and criterion 
difficulty
What physical and mental conditions are appropriate for SSL? To 
assess what determines SSL, we first examined how criterion 
identity affects success rates. Mice exhibited different success 
rates on different DCs (Fig. 3A). For instance, DC #6 (Fig. 1D) was 
associated with the highest success (median [IQR]: 0.8 [0.7 0.9]; 
n = 65 blocks; geometric mean of five comparisons, P = 0.00007, 
Kruskal–Wallis test; Fig. 3A). In contrast, DC #1 was associated 
with the lowest success rates (0.6 [0.5–0.7]; n = 67; P = 0.006; 
Fig. 3A). Thus, success rates depend on the specific criterion.

When a new session starts and the DC is replaced, mice are 
compelled to learn the new associations quickly to maximize 
the reward, requiring memorization of the outcomes of previous 
trials during the same session (reference memory (29–32)). 
However, other aspects of the task may be learned gradually 
over multiple sessions. We found that success rates correlated 
with the accumulated experience of the animal, quantified by 
the session ordinate (number of previous sessions; cc: 0.14; n =  
736 blocks; P < 0.001, permutation test; Fig. 3B). The correlation 
was not consistently different (P = 0.22, bootstrap test) when 
only the first sessions involving SSL and MSL were included (cc: 
0.21; n = 179 first-session blocks; P = 0.0043; Fig. 3B, inset). Thus, 
when mice are more experienced, performance is better when en-
countering a new DC.

Even if experience contributes to successful performance, DC 
difficulty may influence the success rate. However, it is not a priori 
clear what a mouse considers “difficult.” We quantified DC 
difficulty using the intracriterion distance metric based on the 
physical properties of the stimuli (Materials and Methods; 
Fig. 1D). Success rates correlated with intra-DC distance 
(cc: 0.12; n = 736 blocks; P = 0.002, permutation test; Fig. 3C). A 
higher correlation (P = 0.014, bootstrap test) was observed 
when only the first SSL and MSL sessions were considered 
(cc: 0.28; n = 179 blocks; P < 0.001; Fig. 3C, inset). Thus, success 
rates are correlated with intracriterion distance, especially when 
a new DC is encountered.

Another possible route to successful performance is general-
ization from a previously learned DC. If mice generalize, a higher 
similarity between consecutively presented DCs may yield better 
performance, whereas grossly distinct DCs may induce confusion. 
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We quantified the similarity between every 2 DCs using the inter-
criterion distance metric, which is near 0 when DCs are very simi-
lar and near 1 when DCs are very different from one another. 
In first-session blocks, the success rate was anticorrelated with in-
tercriterion distance (cc: −0.16; n = 190 first-session blocks; 
P = 0.03, permutation test; Fig. 3D). Similar results (P = 0.48, boot-
strap test) were obtained when only MSL and SSL first-session 
blocks were considered (cc: −0.17; P = 0.023; n = 179, i.e. without 
the 11 blocks of the never-learned DC #1 in m5; Fig. 3D, inset). 
Thus, when the new DC is more similar to the previously learned 
DC, success during the first session is already higher.

Based on the foregoing, success level depends on several inter-
correlated features (Fig. S2B), including session ordinate (Fig. 3B), 
DC difficulty (Fig. 3C), intercriterion similarity (Fig. 3D), and the 
success during the initial testing trials (Fig. 2E–G). First, we 
used correlation analysis to disambiguate the features. When 
considering the first three features, the partial rank correlation 
coefficient (pcc) was consistently distinct from zero for the ses-
sion ordinate (pcc: 0.25; n = 179 first-session blocks during MSL 
and SSL; P < 0.001, permutation test; Fig. 3E) and for intracriteri-
on distance (pcc: 0.32; P < 0.001), but not for intercriterion dis-
tance (pcc: −0.02; P = 0.77). Similar results were obtained when 
success in the first three first-block trials was used as a fourth 
feature (Fig. S2C).

Second, to determine the total variability of the success rate ex-
plained by the three features, we used cross-validated support 
vector regression. Over a third of the variability in block success 

rate was explained (R2 = 0.34 [0.33 0.35]; 179 blocks; median 
[IQR] of n = 20 independent 10-fold cross-validated models; 
Fig. 3F, Full model). By excluding one feature at a time, we found 
that the session ordinate made the dominant contribution to 
success rate (R2 = 0.16; P < 0.001, U test corrected for multiple 
comparisons; Fig. 3F, Reduced models). Intracriterion distance 
also made a consistent contribution (R2 = 0.33; P < 0.001), whereas 
intercriterion distance did not (R2 = 0.34, P = 0.06). Similar results 
were observed when success in the first three first-block trials 
was included (Fig. S2D). Thus, the most important single feature 
for determining the success rate during the first session of a 
new DC is the accumulated experience.

Knowing that success rate during the first session of a newly 
encountered DC depends on the accumulated experience and 
DC difficulty, we assessed what determines SSL. We used cross- 
validated binary classification (support vector machines) to pre-
dict whether a given first session block is SSL or MSL (n = 179 
blocks). The prediction of SSL from animal experience and physic-
al DC properties was perfect (100% accuracy; Fig. 3G, Full model). 
By again excluding one feature at a time, we found that prediction 
depended on session ordinate (experience; 83% [83 84%]; 
P < 0.001, U test; Fig. 3G, Reduced models) and on intracriterion 
distance (DC difficulty; 97% [97 97%]; P < 0.001). Prediction did 
not depend on intercriterion distance (P = 1). A priori, it is possible 
that if the animal randomly guesses the correct response in the 
first testing trials, SSL is more likely to be achieved. However, we 
found that when success in the first three first-block trials was 
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considered, similar results were obtained, with the session ordin-
ate making the dominant contribution in all cases (Fig. S2E and F). 
Thus, knowing how experienced an animal is and what the phys-
ical properties of a new DC are allows for predicting whether SSL 
will occur.

When conditions are favorable, mice can 
generalize from similar yet easier DCs
The negligible reduction in variability explained by intercriterion 
similarity during SSL and MSL sessions (Figs. 3F and S2D) suggests 
that mouse strategy was not based on generalization or categor-
ization according to the previously learned DC. However, minim-
izing the usage of generalization may be specific to the set of 
arbitrary DCs (Fig. 1D), for which median [IQR] intercriterion dis-
tances were 0.65 [0.53 0.77] (n = 11 transitions; Fig. 3D). To deter-
mine whether mice employ a different strategy when 
consecutive DCs are similar, we tested two of the subjects on a 
set of five new nonarbitrary DCs (m5 and m6; Fig. 4). The first 
new DC was the easiest (highest intracriterion distance), followed 
by gradually more difficult DCs (Fig. 4A). The intercriterion dis-
tance between every pair of consecutively presented DCs was 
fixed at 0.04. To minimize the direct effect of the most recently 
learned arbitrary DCs, animals were kept away from the appar-
atus for 7 days before being presented with the first new DC, 
and no pretraining (shaping) sessions were conducted. After 
reaching stable performance on the first new DC (#7), every other 
DC was presented for one session only. None of the mice managed 
to learn the first DC during the first session. However, despite the 
increasing difficulty, both mice achieved SSL for DCs #8–10 
(Fig. 4B). For instance, intracriterion distances of DC #9 and DC 
#10 were 0.2 and 0.12 (Fig. 4A), more difficult than DCs #2–6 that 
were associated with SSL (range: [0.29, 0.6]; Fig. 1D). 
Nevertheless, SSL was readily achieved for DCs #8–10. Even the 

most difficult DC (#11; intracriterion distance, 0.04) was associ-
ated with SSL in one of the two subjects (m6; Fig. 4B). Thus, 
when intercriterion similarity is high, SSL can be achieved even 
for difficult DCs.

The set of new DCs #7–11 was presented in the same order to both 
mice. However, success rates during DCs #8–10 were not consistent-
ly lower than during the last session of DC #7 (n = 19, n = 17, and 
n = 17 blocks; P = 1, P = 0.86, and P = 0.85, Kruskal–Wallis test; 
Fig. 4C). In contrast, success rates during DC #11 were lower than 
during DC #10 (P = 0.02), although the intercriterion distance be-
tween DC #10 and DC #11 was identical to the distance between 
every other pair of consecutively presented DCs. Success rates 
were correlated with intracriterion distance (cc: 0.42; n = 83 blocks; 
P < 0.001, permutation test; black dashed line in Fig. 4D). However, 
the distances between the points representing DCs #7–10 and the 
linear fit to the arbitrary DCs (Fig. 4D, purple line) were higher 
than for DCs #1–6 (n = 19, n = 17, n = 17, and n = 14 blocks; 
P = 0.013, P = 0.0013, P = 0.0013, and P = 0.0004, U test; Fig. 4D). In 
contrast, DC #11 did not deviate from the line (n = 14 blocks; P = 1), 
suggesting that under the conditions of the task, DC #11 was close 
to the “just noticeable difference” of visual discrimination. 
Regardless, the success rates of DCs #7–10 are higher than expected 
given the difficulty of the DCs and the pattern established by the ar-
bitrary DCs (Fig. 3), indicating a strategy shift.

The higher than expected success rates of DCs #8–10 may be 
explained by generalization from similar yet easier DCs—or by 
categorizing the new samples according to some overarching cri-
terion, e.g. above/below the horizon. Since all intercriterion dis-
tances were identical (0.04), success rates could not be directly 
correlated with intercriterion distances (Fig. 4E). The distances 
of DCs #8–11 from the linear fit to the arbitrary DCs were not con-
sistently different than for DCs #1–6 (P = 0.6, P = 0.62, P = 0.11, and 
P = 0.056, U test; Fig. 4E). Thus, SSL of particularly difficult DCs can 
be facilitated by generalization from similar yet easier DCs. 
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Indeed, success rates during SSL sessions with low intercriterion 
distances (DCs #7–11; 0.85 [0.7–0.9]; n = 67 blocks) were consistent-
ly higher than for high intercriterion distances (DCs #1–6; 0.7 [0.6 
0.8], n = 112; P = 0.0002, U test). In sum, when conditions for gener-
alization are more favorable, mice perform SSL with a higher suc-
cess rate.

Discussion
We tested the ability of mice to learn new DCs that span a range of 
difficulties and quantified the requisite conditions. After acquir-
ing the basic paradigm, subjects gradually improve their perform-
ance on a new visual DC, and eventually learn a new DC within a 
single session. Remarkably, all animals achieve SSL of at least one 
DC. When SSL occurs, mice successfully perform the task after 
being exposed to five training and three testing trials. SSL is 
achieved when mice are experienced, when the DC is relatively 
easy, or when consecutive DCs are similar.

Learning a DC
We defined a DC using a pair of stimulus–response associations. 
In a 2AFC paradigm, the subject can achieve perfect success with-
out learning both associations. When only a single association is 
learned, solving the task still requires discrimination between the 
two stimuli. Thus, there are three possibilities for learning 
the DC: learn both associations; learn one association; or learn 
the other association. Yet in all three cases, the discrimination 
between the two stimuli must be achieved.

Framework for rule learning as part of multilevel 
learning
Rule learning in a discrimination task with changing DCs can be 
divided into four distinct levels of learning. The first is a type of 
procedural learning, in which the general task logic is acquired. 
In the present 2AFC paradigm, the logic involved learning that cer-
tain running directions are permitted, that doors open and close, 
that water is available at two specific locations, and so on. The log-
ic is learned during the shaping period (in the days prior to the first 
testing session), is independent of the existence of any specific DC, 
and remains relevant for all DCs.

The second level involves learning that there is a stimulus– 
response contingency (e.g. stimuli {A; B} are associated with 
{go left; go right} responses). Here, the second level involved learning 
that during testing trials, water is available only if specific stimulus– 
response contingencies are met. The first two levels of learning 
generate the long-term memory component of standard successive 
conditional discrimination tasks (24). When shaping is conducted 
prior to training on a specific stimulus–response contingency, the 
two levels may be separated (6, 33). Then, performance is tested 
on the second level.

The third level involves learning a specific new DC in a well- 
known setting and is only rarely assessed in animal studies (but 
see Refs. (4, 11, 12)). Successful performance may be achieved by 
generalization or transfer from a similar rule (4, 5), by applying a 
familiar rule to a new set of stimuli (categorization (6, 34, 35)), or 
by associative learning of the new contingencies (the present 
work). By definition, learning a new DC during a single session re-
quires reference memory (29–32). If a new DC is not introduced, 
the third level cannot be assessed.

The fourth level, learning that the DCs of the task can change 
between sessions, is a long-term memory component that im-
proves with experience and is independent of the first two levels 

of learning. When the DC is fixed over many sessions, the subject 
may still improve between sessions. However, the ability of learn-
ing to learn a new DC can be assessed only when the DCs change. 
In the present work, we focused on the third and fourth levels.

Tasks that involve generalization (3, 34, 36), transfer (4, 5), or 
categorization (6, 34, 35) involve the first two levels but do not 
require associative learning. The finding that in experienced 
mice, a new DC can be learned by the end of the first three test-
ing trials indicates that mice can learn to discriminate from 
a small number of samples, emphasizing the importance of ref-
erence memory when conditions in a familiar environment 
change. Previous work showed that rodents can learn from a 
few samples in various settings including the Morris water 
maze (19, 20), fear conditioning (14, 15), or labyrinth navigation 
(17). Yet in all the aforementioned studies, only two levels of 
learning (procedural and stimulus–response contingency) were 
tested. In the radial arm maze (29), the specific set of arms baited 
during the session allows to also test the third level (reference 
memory). However, the rule governing the task remains un-
changed. Thus, though previously addressed (10, 12, 37), under-
standing of the process of learning to learn in animal subjects is 
still limited.

The finding that experience is crucial for SSL becomes clear 
considering the multilevel learning framework suggested here. 
The learning-to-learn process (fourth level) implies that a more 
experienced animal is more flexible to changes in the environ-
ment and more likely to learn a new DC quickly. Nevertheless, 
learning a DC during SSL is by definition limited to a single session. 
Thus, learning a specific new DC (the third level) is a process 
distinct from all processes that depend on long-term memory. 
The fact that easier DCs are more likely to be learned suggests a 
dissociation between the third and fourth levels, supporting the 
multilevel framework.

Generalization and categorization
Other cognitive processes may be utilized when two consecutive 
DCs are similar. Learning a new DC when the conditions 
for generalization are favorable is not independent of the past. 
Previous work found that rats can use transfer learning to 
perform a difficult discrimination task (4). Rodents also excel 
in categorization (6, 38, 39). In both cases, the animal generalizes 
from previously learned DCs and can solve the task without 
learning new associations, as in the fourth level of learning sug-
gested above. Indeed, when intercriterion distances were lower, 
success rates were higher. Furthermore, SSL was achieved even 
for difficult new DCs, suggesting that mice did not necessarily 
learn the new DC, which would have required associative 
learning and reference memory. Instead, the animals may 
have categorized the stimuli comprising the new DC using 
previously acquired knowledge.

Flexibility across learning organisms and systems
Cognitive flexibility (40, 41) is the capacity to alternate between 
two distinct concepts based on the context. A related concept, 
behavioral flexibility (42), refers to the modification of behavior 
in reaction to shifts in environmental circumstances. With hu-
mans, the Wisconsin Card Sorting Test (WCST (43, 44)) and the in-
tradimensional/extradimensional test (ID/ED (45)) have been used 
to assess flexibility. The WCST has also been used to study cogni-
tive flexibility in primates (46–48), while ID/ED testing can be used 
with rodents (49). Complementing the neuropsychological 
tests for flexibility, the computer science field of meta-learning 
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(50–53) involves algorithms that learn from diverse tasks and 
leverage accumulated experience to rapidly adapt to new tasks. 
The mouse paradigm we employed requires capability for cogni-
tive flexibility, akin to the WCST and ID/ED tasks, while allowing 
responses that capitalize on the natural spatial exploration 
tendency of mice. We suggest that the present paradigm could 
be used to test models of cognitive impairment in rodents.

Limitations
A couple of limitations should be noted. First, while intracriterion 
distances spanned the entire range of possible values, intercriteri-
on distances were sampled only for high (>0.4) or very low (0.04) 
values. When encountering intermediate intercriterion distances, 
mice may exhibit yet a third strategy, or perhaps change their strat-
egy dynamically according to the relation between intra- and inter-
criterion distances. Second, no fixed mathematical transformation 
couples the two stimuli that formed a DC, and every visual stimulus 
was used in only one DC. Our choice to employ new stimuli in every 
DC while keeping the responses fixed resulted from practical consid-
erations. Specifically, the two-arm maze provides two diametrically 
opposing natural responses, whereas swapping stimulus–response 
associations involves reversal learning—which we wanted to avoid. 
Other possible implementations could involve changing only one 
stimulus in a DC, swapping the associations between the two stimuli 
and responses that constitute a DC, or associating new responses 
with familiar stimuli.

A neural hypothesis for rule learning
Due to high reproductive rate, genetic control, and well- 
established tasks for a plethora of behaviors, mice have emerged 
as a robust model for studying various neuronal mechanisms (54– 
58). Head-fixed and freely moving mice allow combining behavior-
al and neuronal recordings (24, 26) and manipulations (57–60). 
Extensive correlative evidence links neuronal activity with learn-
ing, perception, and discrimination (61–63). Indeed, neuronal 
mechanisms underlying operant learning are often studied using 
rodents performing a sensory discrimination task (26, 63–67). The 
mechanisms that underlie learning in a multirule environment 
have been studied from theoretical and empirical perspectives 
(68, 69). However, learning across multiple sessions limits the in-
terpretational power yielded by many rodent learning tasks be-
cause in many cases, the same neuronal population cannot be 
guaranteed to be followed over long durations. Thus, we expect 
that SSL will facilitate studying the neurophysiological basis of 
learning by increasing the overlap between the recorded neuronal 
activity and the act of learning.

The cellular-network mechanisms underlying the process of 
rapid discrimination learning requiring the use of reference mem-
ory are presently unknown. We hypothesize that the framework 
of multilevel learning will be useful for deciphering these mecha-
nisms. Moreover, the mechanisms that underlie the enhance-
ment of learning capabilities are unknown. We hypothesize that 
the timescale of synaptic transmission, the precision of synaptic 
transmission, the signal-to-noise ratio in neuronal information 
processing, and plasticity timescales are all modified as a subject 
becomes a better learner.

Materials and methods
Experimental animals
A total of six adult hybrid mice were used in this study, one male 
and five females (Table 1). Hybrid mice were used since compared 

to the progenitors, hybrids exhibit reduced anxiety-like behavior, 
improved learning, and enhanced running behavior (21). Four of 
the mice (m1–m4) were hybrid and double transgenic, the F1 gener-
ation of an FVB/NJ female (JAX #001800, The Jackson Labs) and a 
male offspring of an Ai32 female (JAX #012569) and a CaMKII-Cre 
male (JAX #005359). The other two mice (m5 and m6) were offspring 
of an FVB/NJ female and a PV-Cre male (JAX #008069). In two sub-
jects (m1 and m4), electrophysiological recordings and optical ma-
nipulations were carried out during some sessions. The results of 
electrophysiological recordings and optogenetic manipulations 
are not included in the present report. All behavioral results were 
observed at the subject level (Table 1 and Fig. S1) and no differences 
were observed between implanted and un-implanted subjects. 
After separation from the parents, animals were housed in groups 
of same-litter siblings until participation in experiments. Animals 
were held on a reverse dark/light cycle (dark phase, from 8 AM to 
8 PM). All animal handling procedures were in accordance with 
Directive 2010/63/EU of the European Parliament, complied with 
Israeli Animal Welfare Law (1994), and were approved by the Tel 
Aviv University Institutional Animal Care and Use Committee 
(IACUC #01-16-051 and #01-21-061).

Water deprivation
Mice were trained on a 2AFC task in which the DCs governing dis-
crimination behavior could change between different sessions. 
Every session was conducted on a different day. At the beginning 
of the training period, animals were housed one per cage and 
placed on a water-restriction schedule that guaranteed at least 
40 mL/kg of water every day, corresponding to 1 mL for a 25-g 
mouse. Training was carried out 5 days a week, and animals re-
ceived free water on the sixth day. Reward volume differed be-
tween mice and sessions, ranging 4–20 µL. The exact volume 
was determined by the experimenter before each session based 
on familiarity with the specific animal. In all sessions, the reward 
was larger by 20–50% during testing compared with training trials.

Apparatus
The apparatus was a circular T-maze equipped with 5 motorized 
doors, 5 photosensors, 2 solenoid-driven reward ports, and a 
100-LED visual stimulation matrix (Fig. 1A). All sensors and actua-
tors were controlled by a microcontroller (Arduino Mega) via 
custom designed electronic circuitry. The home box (L × W × H: 
20 × 30 × 10 cm) was located at the beginning of the central arm 
(75 × 8 × 3 cm) and connected to the end of the two lateral arms 
(100 × 6 × 3 cm). Each passageway between the home box and 
one of the arms was blocked by a transparent polycarbonate 
door. Two additional doors were located at the sides of the 
T-junction at the end of the central arm, blocking passage to the 
lateral arms. Every door was operated by a small motor (DC 6V 
30RPM Gear Motor, Uxcell) and was equipped with two limit 
switches (D2F-01L2, Omron). There were five photosensors 
(S51-PA-2-A00-NK, Datasensor). Water rewards were given by sol-
enoids (003-0137-900, Parker), and each water port was connected 
to a different solenoid via flexible (Tygon) tubing. The visual 
stimulation matrix was constructed of 10 × 10 LEDs in alternating 
columns of blue (470 nm, Cree) and green (527 nm, Cree) diodes.

Discrimination task
On a given session, a single DC, including two associations, was 
used (Fig. 1D). The allocation of DCs to sessions was pseudo- 
random. Stimulus A was associated with leftward runs, and 
stimulus B was associated with rightward runs. The allocation 
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of stimuli A and B to trials was pseudo-random. There were two 
types of sessions, “shaping” (pretraining) and “learning.” Shaping 
sessions included only “training” trials. Initially, each mouse 
was acquainted with the task in a series of shaping sessions (me-
dian [range]: 5 [4, 10] sessions). Mice had to reach a criterion of 50 
trials per session before commencing learning sessions. On each 
session, mice were free to perform the task until losing interest. 
Loss of interest was identified by behavior that included prolonged 
periods of rest and attempts to climb the walls of the home box. 
Learning sessions were divided into blocks (Fig. 1B), and every 
block included 5 training trials and 10 “testing” trials.

A single testing trial proceeded as follows: (i) Stimulus: Once the 
animal entered the home box and passed the photosensors, the 
entrance doors (D4 and D5) closed, and the exit door to the central 
arm (D1) opened (Fig. 1A). At the same time, a stimulus A or B was 
given, remaining available to the animal until a lateral photosen-
sor was passed during the response. (ii) Run: Once the animal left 
the home box and passed the central arm photosensor, the two 
lateral doors (D2 and D3) at the T-junction opened, and the exit 
door (D1) closed. During the Run, the stimulus was continuously 
available. (iii) Response: The animal chose a direction at the 
T-junction and went through one of the two open doors. Once 
the animal passed the lateral arm photosensor, the stimulus 
turned off and the lateral doors closed, preventing the animal 
from changing the choice. (iv) Reward: A liquid reward was avail-
able at the corresponding water port if the animal made a correct 
choice. The animal could not go back to the T-junction, but was 
free to consume the reward and return to the home box through 
the open home box door (D4 or D5).

During training trials, only the corresponding door (D2 or D3) at 
the T-junction opened. Because the animal could not make an in-
correct response, a reward was given during every training trial.

Quantification of criterion difficulty and 
intercriterion similarity
To place arbitrary DCs on a continuous scale, a symmetric intra-
criterion distance metric was introduced. Each stimulus was rep-
resented as a 100-element binary 2D array, with each element 
taking the value of 0 or 1 indicating whether the corresponding 
LED was off or on. The chromatic component (LED color) was 
ignored. To derive the metric, every DC was characterized by three 
physical attributes that quantified the difference between the 
stimuli A and B. (i) The correlation distance (cd): one minus the 
maximal value of the 2D cross-correlation coefficient between A 
and B. (ii) The Euclidean distance (ed): the scaled distance between 
the optimal match that yields the correlation distance. (iii) The lu-
minance distance (ld): the scaled difference in luminance between 
A and B. All distances (cd, ed, and ld) are nonnegative scalars lim-
ited to the [0, 1] range. The distance metric was then the magni-
tude of the 3D vector, defined as

dintra = dAB =

��������������������������������������

cd(A,B)2 + ed(A,B)2 + ld(A,B)2

3
.



The metric ranges [0, 1], taking the value of 0 when the two 
stimuli are identical (an impossibly difficult DC) and 1 when 
stimuli are maximally distinct (a very easy DC).

The same physical attributes that characterize each DC were 
used to measure the difference between distinct DCs (e.g. 
Fig. 4D). The intercriterion distance is a symmetric measure of 
the difference between the physical properties of the same- 
laterality stimuli of the two DCs. Thus, for a pair of DCs {A; B} 
and {A′; B′}, the intercriterion distance is the average of the 

intracriterion distances for two “mixed” DCs: {A; A′} and {B; B′}. 
The resulting metric is

dinter = (dAA′ + dBB′ )/2.

The metric takes the value of 0 when the two DCs are identical 
and 1 when the DCs are maximally distinct. DC difficulty and in-
tercriterion difficulty were calculated based on the physical prop-
erties of the stimuli themselves. Dynamic aspects, including 
viewing angle, distance, and retinal image, were ignored.

Comparison of rank correlations
To determine whether there is a difference between two rank cor-
relation coefficients (cc1 and cc2), we bootstrapped (resampling 
with replacement) the two datasets (n = 1,000 iterations) and cal-
culated cc′1 and cc′2 for each iteration. We then calculated the dif-
ference between the pairs of cc′1 and cc′2 and quantified the 
probability (two-tailed) that the difference differs from zero.

Statistical analyses
In all statistical tests used in this study, a significance threshold of 
α = 0.05 was used. All descriptive statistics (n, median, IQR, range, 
mean, SD, and SEM) can be found in the text, figures, and figure 
legends. All analyses were conducted in MATLAB (MathWorks). 
Nonparametric statistical tests were used throughout. Differences 
between the medians of two groups were examined using Mann– 
Whitney U test (two-tailed). Differences between the medians of 
three or more groups were tested with Kruskal–Wallis nonparamet-
ric analysis of variance and corrected for multiple comparisons us-
ing Tukey’s procedure. Wilcoxon’s signed-rank test was employed 
to determine whether a group median was distinct from zero (two- 
tailed). To estimate whether a given fraction was smaller or larger 
than expected by chance, an exact binomial test was used. A per-
mutation test (70) was used to estimate the significance of rank cor-
relation coefficients (cc and pcc).
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