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ABSTRACT 

 

Characterizing Groundwater Fluxes in Death Valley, California using InSAR 

 

By 

 

Robert Edward Thacker 

 

Groundwater is a fundamental resource for humans and represents a major volumetric 

phase of the terrestrial water cycle. Observations indicate that climate change is altering 

precipitation patterns globally and inducing an increase in the frequency and magnitude of extreme 

events. These extreme precipitation events may buffer water resources long-term in the face of 

increasing droughts by contributing significant recharge to aquifers. Nonetheless, uncertainties 

remain regarding the influence of local geological variability and the unpredictability of regional 

weather patterns on extreme precipitation induced groundwater recharge at the catchment scale. 

This complexity necessitates further exploration and requires both targeted testing and extended 

observational studies. This study applied interferometric synthetic aperture radar (InSAR) to 

characterize groundwater fluxes in the ungauged endorheic basin Death Valley, California, from 

December 2018 through December 2023. Over this period there was mean upward vertical 

displacement (uplift) of ~1.5 to 2 cm across the basin caused by recharge. T-mode principal 

component analysis was used to isolate dominant deformation signals coinciding with extreme 

precipitation events. This study demonstrates the applicability of InSAR as a viable tool to assess 
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groundwater fluxes in response to precipitation variability, furthering our understanding of 

terrestrial water cycling in a warming world. 
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1. BACKGROUND AND OBJECTIVES 
 

1.1  Groundwater and Climate 
 

Groundwater is a fundamental resource for humans and many ecosystems, providing a 

perennial source of high-quality freshwater and sustained baseflow during drought (Alley, 

2002). Recently, there has been great interest in understanding the importance of groundwater 

systems in the context of climate change (Loaiciga, 2003; Loaiciga and Roh, 2024). Climate 

change directly and indirectly impacts groundwater systems by influencing the spatiotemporal 

distribution of natural recharge (direct impacts) and influences the behavior of human 

extraction and land use-changes (indirect impacts) (Taylor et al.(a), 2013). Groundwater 

currently accounts for ~30% of the total freshwater used by humans (United Nations, 2022). 

However, demand is likely to increase as global population increases and climate change 

reduces the availability of other freshwater sources, inducing greater extraction of groundwater 

(Bierkens and Wada, 2019). Apart from sustaining human populations and natural ecosystems 

it has been observed that groundwater extraction may be the second leading contributing factor 

to global mean sea level rise (GMSLR), behind melting of glaciers and sea ice (Seo et al., 

2023). GMSLR in turn produces secondary impacts, such as increase in sea water intrusion, 

further compromising the available quantity and quality of freshwater resources (Loaiciga, 

2012). These conditions compel the need to characterize and understand the dynamics of 

groundwater systems across spatiotemporal scales and variable lithologies of global aquifers. 

The key information needed to assess these dynamics include enhanced conceptual models of 

hydrogeologic conditions and accurate measurements of groundwater recharge and discharge, 

henceforth referred to as groundwater fluxes.  
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 It is prudent to recognize the volumetric composition and interconnectivity of the 

hydrosphere when assessing groundwater fluxes. The Earth’s saline oceans cover ~71% of the 

planetary surface and hold ~97% of its water volume. The remaining ~3% of terrestrial water 

is ~1% saline groundwater and lakes, with the remaining 2% existing as freshwater; 96% of 

which is contained in ice sheets, glaciers, and snowpacks (Durack, 2015; Abbott et al., 2019). 

This results in a remaining volume of accessible freshwater of approximately 835,000 km3, 

which exists as groundwater (630,000 km3) and surface water (205,000 km3) (Abbott et al. 

2019). There is great uncertainty regarding our understanding of the rate of exchange and the 

physical conditions (diffuse vs. focused recharge) facilitating mass exchanges between surface 

water and groundwater, which means one must focus attention on the relative responses of 

these storage reservoirs to energetic perturbations at different spatial and temporal scales.  

The global hydrologic cycle is a complex system of energy and mass that operates at a 

wide range of spatiotemporal scales. This cycle is a continuous transfer of liquid, solid, and 

gaseous phase water through oceanic, atmospheric, cryogenic, and terrestrial reservoirs 

(Stocker et al., 2013). Global patterns of evaporation and precipitation (the engine) are 

controlled by the Earth’s energy balance (O’Gorman, 2012), and perturbations to this budget 

are increasingly discussed as increased greenhouse concentrations have induced warmer 

temperatures (Meinshausen et al, 2017). The relationship between temperature and the water 

cycle can loosely be explained by the Clausius-Clapeyron equation (see, e.g., Fermi, 1936), 

which states that water vapor holding capacity increases with air temperature. Thus, the 

generalized conceptual model in climatology and hydrology is that a warming climate will 

produce a net increase in atmospheric absolute humidity (Fischer, 2016). This effect has 

produced substantial observational evidence that extreme precipitation events are occurring 
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with increasing frequency and magnitude (Myhre et al., 2019). However, it is important to 

recognize that the definition of ‘extreme precipitation’ is non-standardized, which may affect 

conclusions concerning the relationship between warmer temperature and precipitation event 

magnitude (Pendergrass, 2018). In addition, there exists uncertainty in comparing 

observational data vs model estimates of atmospheric humidity (Simpson et al., 2023).  

There is a growing body of literature that explores the relationship between the 

frequency and magnitude of extreme precipitation events and its effects on groundwater 

recharge. For example, in semi-arid tropical East Africa, analysis of a 55-year record of in-situ 

groundwater level measurements and monthly rainfall suggests that groundwater recharge is 

highly dependent on anomalously intense seasonal rainfall (Taylor et al.(b), 2013). Many 

drought-prone, semi-arid regions are benefitting from the increased frequency of extreme 

precipitation events despite overall drier conditions, allowing communities to buffer water 

resource supplies and mitigate the negative effects of drought (Adloff, 2022). This type of 

work has enhanced the understanding of how groundwater may buffer water supplies in a 

warming world, prompting the IPCC 6th assessment report1 to conclude section 8.3.1.7.4 on 

groundwater with the following statement: “There is medium confidence that increased 

precipitation intensities, partly due to human influence, have enhanced groundwater recharge, 

most notably in the tropics.” Nonetheless, uncertainties remain regarding the influence of local 

geological variability and the unpredictability of regional weather patterns on ‘extreme’ 

precipitation induced groundwater recharge at the catchment scale (Cuthbert, 2019). This 

 
1 IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth 

Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. 

Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. 

Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge 

University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp. doi: 

https://doi.org/10.1017/9781009157896 

https://doi.org/10.1017/9781009157896
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complexity necessitates further exploration and requires both targeted testing and extended 

observational studies.  

The objectives of this work are to (1) explore the capacity of interferometric synthetic 

aperture radar (InSAR) to characterize groundwater fluxes in Death Valley, CA, and (2) relate 

these InSAR measurements to extreme precipitation events. Death Valley offers a unique 

natural laboratory as an endorheic basin (i.e., a basin without drainage to a sea or lake) to 

explore the effects of extreme precipitation events on observable signals of groundwater fluxes 

that are decoupled from anthropogenic distortion i.e. groundwater pumping.  

1.2  Measuring Groundwater Fluxes – Challenges and Opportunities 
 

It is useful to technically define the parameters that govern this process to accurately 

characterize groundwater fluxes in response to a warming world. The subsequent sections 

describe (1) the physical properties of aquifers and the measurable processes associated with 

groundwater fluxes, and (2) available measurement techniques and associated challenges.   

1.2.1 Aquifer Properties 
 

Groundwater flow is a thermodynamic process, and the forces acting upon groundwater 

include gravity, external pressure, and molecular attraction i.e. shearing resistance/viscosity 

(Fetter, 2001). Measurements of hydraulic head (ℎ) represent the total mechanical energy per 

unit weight of groundwater and is described by the following equation: 

                                                                 ℎ = 𝑧 + 
𝑃

𝜌𝑔
                                                          (1) 

where  𝑧,  𝑃,  ρ ,  𝑔 and denote respectively the elevation of the center of gravity of the fluid 

above a reference elevation, the fluid pressure, the density of water, and the acceleration of 
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gravity. Given that aquifers are a 3-dimensional diffusive media, the distribution of hydraulic 

head across an aquifer can be described using equipotential surfaces. The distribution of this 

network constitutes the hydraulic gradient. Aquifers are dynamic and respond to both external 

(recharge) and internal (discharge) fluxes which can be observed as changes in hydraulic head 

and storage (Castellazzi, 2016). Storage change (ΔS), is a key metric for quantifying 

groundwater fluxes and can be computed for a time-averaged scenario using the following 

equation: 

                                                 ∆𝑆̅̅̅̅ = �̅� − �̅� − �̅� − �̅�                                              (2) 

in which �̅�,  �̅�,  �̅�,  �̅�,  denote  respectively recharge entering the aquifer storage through 

natural (percolation) or artificial means, the discharge to adjacent aquifers, rivers, lakes, 

springs, wetlands, or ocean, the discharge fluxes of evapotranspiration, and the fluxes from 

groundwater pumping (Loaiciga, 2017). In many cases, at least one or all of these fluxes are 

difficult to estimate due to the complexities inherent to these processes. It is therefore not 

uncommon to estimate (ΔS) from measurements of hydraulic head change (Δh) at wells across 

a basin over a specified interval. Considering vertical heterogeneities, the following equation 

describes this relationship across aquifer layers for a specified period:  

                          ∆𝑆𝑡 =  ∑ 𝑆𝑐𝑘 ∗ ∆ℎ𝑡𝑘 ∗ 𝐴𝑘     (𝑘 = 1, 2, . . 𝐾); (𝑡 = 1, 2, . . 𝑁)𝐾
𝑘=1                    (3) 

in which  ∆ℎ𝑡𝑘,  𝐴𝑘,   𝑆𝑐𝑘 denote respectively the change in hydraulic head across the basin in 

the specified time interval within layer k, the plan-view area of layer k, and the storativity of 

layer k (Loaiciga, 2017). Storativity (𝑆𝑐) is a dimensionless value defined as the volume of 

water that is released from storage per unit surface area of the aquifer per unit decline in 

hydraulic head (Fetter, 2001).  
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For confined aquifer conditions this is defined as follows: 

                                                         𝑆𝑐 = 𝑏 (𝜌 𝑔(𝛼 + 𝑛 𝛽))                                           (4) 

where 𝑆𝑐,  b,   ρ,  𝑔,   α,  𝑛 ,  β, denote respectively the confined aquifer storativity, aquifer 

thickness, the density of water, the gravitational acceleration, the compressibility of aquifer 

sediments, the total porosity (volume of voids/total volume), and the compressibility water 

(Freeze and Cherry, 1979). These terms collectively constitute an additional coefficient known 

as specific storage (𝑆𝑠 =  𝜌𝑔(𝛼 + 𝑛𝛽)), which represents “the volume of water per unit volume 

of saturated aquifer that is stored or expelled from storage owing to compressibility of the 

mineral skeleton and the pore water per unit change in hydraulic head” (Fetter, 2001). This 

term is of particular interest when exploring methods to characterize groundwater fluxes. For 

unconfined aquifer conditions, (𝑆𝑐) is defined as: 

                                                    𝑆𝑐(𝑢𝑛𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑) = 𝑏 ∗ 𝑆𝑠 + 𝑆𝑦                                               (5) 

where only one additional parameter is introduced, 𝑆𝑦  which is the aquifer specific yield, 

defined as the ratio of the volume of water that drains from a volume of aquifer due to gravity 

(Fetter, 2001). 𝑆𝑦 , or drainage porosity, may also be referred to as unconfined storativity 

(Castellazzi, 2016). The distinction between confined and unconfined conditions is relevant to 

characterizing groundwater fluxes because values of 𝑆𝑐 can range from 5 x 10-5 to 5 x 10-3 for 

confined aquifers (Todd, 1980) and 0.1 to 0.3 for unconfined aquifers (Lohman, 1972). This 

implies that in confined aquifers, the storage change (ΔS) necessary to accommodate 

groundwater fluxes is constrained by the elastic properties of the aquifer and confining layer 

(aquitard) sediment and expansion of water (Ingebritsen et al., 2006). When confined systems 

are pumped or receive recharge, water is released or gained from storage via elastic 
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deformation (compression and expansion). Whereas in unconfined aquifers, storage change 

(ΔS) is governed by 𝑆𝑦, reflecting a broader volume of aquifer sediment participating in water 

storage and movement. In unconfined systems 𝑏 ∗ 𝑆𝑠 < 𝑆𝑦 and 𝑆𝑐 ≅ 𝑆𝑦 (Lohman, 1972). 

Hydraulic head (ℎ) (eq.1) is directly measurable from a well or piezometer, whereas 

storativity (𝑆𝑐), specific storage (𝑆𝑠), and specific yield (𝑆𝑦) are usually derived by conducting 

aquifer pumping tests which utilize empirically derived mathematical relationships (e.g., 

Theis, 1935) that relate aquifer drawdown to aquifer properties in response to an applied stress 

(Loaiciga, 2009). However, storage changes (ΔS) within an aquifer can induce an additional 

observable phenomenon apart from changes in hydraulic head which relate to the specific 

storage (𝑆𝑠 ), and that is ground surface deformation. Local storage changes (ΔS) induce 

changes in aquifer pore pressure by increasing or decreasing vertical effective stress, causing 

expansion or reduction of pore volume, resulting ground surface deformation (Ingebritsen et 

al., 2006; Loaiciga, 2013; Galloway & Burbey, 2011). This deformation can be elastic or 

inelastic. Inelastic deformation, or land subsidence, occurs when a stress applied (usually 

induced by aquifer pumping) to aquifer sediments reduces the void or pore volume leading to 

a permanent loss of porosity and permeability. Elastic deformation is governed by the elastic 

properties of aquifer sediments and occurs when aquifer sediments temporarily compress or 

expand in response to the applied stress (Domenico and Schwartz, 1998). This process can be 

understood by applying the (1D) principle of effective stress first outlined by Terzaghi 

(Terzaghi, 1925) which is described by the following equation for cases of constant total stress: 

                                                 ∆𝜎𝑒 = −𝜌 𝑔 ∆ℎ                                                          (6) 
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in which ∆𝜎𝑒,  ρ,   𝑔 ,  Δh, denote respectively the vertical effective stress, the density of water, 

the acceleration of gravity, and the hydraulic head change. These variables collectively 

represent changes in interstitial fluid pressure ( ∆𝑃 = 𝜌 𝑔 ∆ℎ ). However, this commonly 

utilized framework is for ideal scenarios where it is assumed that an instantaneous vertical load 

is applied to the soil causing instantaneous increase in vertical total stress. It is important to 

reconcile the assumptions of this model with the properties of groundwater flow and test this 

model under various scenarios of groundwater flow and sediment properties (Loaiciga, 2013). 

For example, during groundwater pumping and potentially during recharge, the applied 

pressure incrementally increases or decreases gradually, creating a gradient of pressure 

towards steady state (Loaiciga, 2013). Another often overlooked detail is the evaluation of 

vertical effective stresses relative to unconfined or confined groundwater flow regimes 

previously discussed. There exists a need to evaluate these principles not only for specific 

pumping regimes or increases in vertical effective stress, but for decreased vertical effective 

stress induced by groundwater recharge. In addition, the compressibility of aquifer sediments 

is the fundamental control when relating surface displacement to changes in aquifer pore 

pressure. For comparison purposes, the following describes the range of compressibility of 

aquifer material (Freeze and Cherry, 1979): 
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Table 1. Range of compressibility ty corresponding to soil and rock. 

Material Compressibility (α) (
𝑚2

𝑁
)  

Clay 10−8 𝑡o 10−6 

Sand 10−9 𝑡o 10−7 

Gravel 10−10 𝑡o 10−8 

Jointed Rock 10−10 𝑡o 10−8 

Sound Rock 10−11 𝑡o 10−9 

 

The general paucity of detailed 3D conceptual models of the distribution of aquifer sediments 

inhibits the ability to accurately relate the groundwater fluxes to vertical ground movement. 

However, if the distribution of sediments within an aquifer is known to some degree, one might 

attribute the mechanisms of surface deformation, or lack thereof, to the compressible nature of 

the aquifer sediments. For example, the widely accepted conceptual model of land subsidence 

in the southern Central Valley of California, is attributed to a large clay layer known as the 

Corcoran clay. It is assumed that this layer regulates the inelastic compaction of the aquifer 

sediments in response to pumping (Lees et al. 2021). However, even if advanced conceptual 

models of aquifer sediments are absent, measurements of ground surface deformation can 

provide first-order, general insights on aquifer mechanics and seasonal behavior of 

groundwater fluxes (Galloway and Hoffmann, 2007). 

1.2.2 Measurement Techniques and Challenges 

  
The previous section describes aquifer properties and provides an understanding of how 

aquifers respond to groundwater fluxes. It should be noted that groundwater age (isotope 

analysis), chemical composition, and groundwater temperature may also provide insight into 
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the nature of groundwater fluxes but are not considered in this study (Jasechko, 2019). Having 

defined the technical parameters associated with groundwater fluxes, the subsequent sections 

outline the traditional and emerging measurement methods and associated challenges of 

quantifying groundwater fluxes. 

 The traditional method used to observe groundwater fluxes consists of directly 

measuring the hydraulic head (ℎ) (eq.1) within a well, which can be achieved using a suite of 

instruments that include electronic sounders, chalk tapes, pressure transducers, sonar 

equipment, or air pressure gauges (Taylor and Alley, 2001). In a management scenario, 

measurements of hydraulic head are compared across wells within a basin to infer the 

spatiotemporal variability of the potentiometric surface within an aquifer, which can be used 

to (1) determine safe yield or other sustainability metrics, (2) estimate total storage changes 

(3) provide calibration data for groundwater flow models, (4) manage land subsidence or 

undesirable surface deformation, (5) interpret groundwater-surface water interactions, (6) 

interpret groundwater quality data, (7) assess the effectiveness of groundwater recharge 

projects and variability of natural recharge, and (8) assess health of riparian habitat, among 

other key considerations (Wildermuth Environmental Inc., 2019). In addition to these regional 

applications, global analyses of available groundwater level data can be used to understand 

global dynamics of groundwater fluxes (Jasechko and Perrone, 2021). However, despite the 

effectiveness of these traditional methods of measuring groundwater fluxes, many basins lack 

a spatially coherent monitoring network of wells, introducing uncertainty to the analyses 

associated with these objectives. Recent studies have highlighted this, noting that despite the 

compilation and analysis of the most comprehensive global data set of groundwater level data 

to date, limitations of the global spatiotemporal coverage of these data exist, and inhibit 
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characterizations of groundwater fluxes in many regions (Jasechko et al., 2024). This limitation 

necessitates the exploration of additional tools to augment traditional methods, and thus 

enhance our ability to characterize groundwater fluxes from local, regional, and global scales 

in relation to a warming world. Two remote sensing techniques have emerged as viable 

approaches to achieve this: GRACE and InSAR. The subsequent section will outline the 

current state of science with regards to these technologies. 

GRACE   

The Gravity Recovery and Climate Experiment (GRACE) mission was jointly 

launched in March 2002 by NASA and the German Aerospace Center (DLR) with the objective 

of monitoring spatiotemporal changes of Earth’s gravity field (Tapley, 2004). This initial 

mission was decommissioned in November 2017 and replaced by the GRACE Follow-On 

(GRACE-FO) mission which was launched in May 2018 (Chen et al, 2021). The GRACE 

system consists of twin satellites separated at a distance (along-track) of ~200 km orbiting 

Earth at an altitude of ~500 km and 89.5⁰ inclination. GRACE measures changes in Earth’s 

gravity field by tracking changes to inter-satellite range at micro-meter resolution (Chen et al., 

2018). This allows for the detection of ~1 cm in water thickness equivalent (WTE) distributed 

across an area equivalent to the altitude of the satellite pair and has resulted in the ability to 

monitor global total water storage (TWS) changes (Chen, 2018). The advantage of using 

gravimetric techniques to track hydrologic fluxes is that gravity anomalies are a direct 

measurement of mass change independent of aquifer lithology and represent a vertical 

integration of all water storage components (Li et al, 2019).  
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It is possible to isolate groundwater storage changes by using a water balance approach: 

                          ∆𝐺𝑊𝑆 = ∆𝑇𝑊𝑆 − (∆𝑆𝑊𝑆 + ∆𝑆𝑀𝑆 + ∆𝑆𝐼𝑆)                                  (7) 

where ∆𝐺𝑊𝑆 , ∆𝑇𝑊𝑆 , ∆𝑆𝑊𝑆, ∆𝑆𝑀𝑆 , and ∆𝑆𝐼𝑆 ,  denote respectively the change in 

groundwater storage,  the change in total water storage measured by GRACE, the change in 

surface water storage, the  change in soil moisture storage, and the change in snow and ice 

water storage (Castellazzi, 2016). Thus, the impediment to relating GRACE TWS to any one 

of these hydrologic reservoirs is the availability of data to estimate each component in the 

water balance, and as previously discussed, groundwater storage estimates are usually 

constrained by the availability of hydraulic head measured at wells (Ahamed et al., 2021). 

However, in dry regions such as Death Valley, California, there is likely to be less noise in 

(TWS) estimates introduced by SWS and SIS, allowing for greater certainty relating 

groundwater storage change to GRACE TWS. Another impediment using GRACE TWS data 

is that the maximum mass field resolution is ~400 km, which limits the interpretation of ∆𝑇𝑊𝑆 

to basins of an area of ~200,000 km2 (Scanlon et al., 2012). Nonetheless, GRACE TWS data 

provide a powerful tool for the calibration and interpretation of other data sources. For 

example, it has been demonstrated that GRACE TWS and InSAR data can be used in tandem 

to monitor hydrologic variation within the Tulare Basin, California (Vasco et al., 2021). This 

study attempts to leverage this potential and apply the interpretive power of GRACE in 

reconciling observations of precipitation variability and ground surface deformation in Death 

Valley. 
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InSAR 

 The history and use of synthetic aperture radar (SAR) interferometry is complex and 

extensive. SAR works by emitting and measuring the return of pulses of energy in the 

microwave spectrum (300 MHz to 300 GHz) to infer dielectric and physical characteristics of 

the Earth surface (Simons, 2015). The first interferometric synthetic aperture radar (InSAR) 

map was used to characterize strain and deformation of an Antarctic ice sheet (Goldstein et al., 

1993). Since then, InSAR has been used in a number of applications characterizing processes 

of deformation occurring on Earth’s surface (Smith, 2002). In hydrogeology, it has assisted 

with the characterization of lithostratigraphic boundaries and aquifer system heterogeneity, the 

estimation of hydromechanical properties, and the calibration of numerical flow models 

(Galloway and Hoffmann, 2007). The interferometric processing technique compares the 

phase difference between multiple synthetic aperture radar (SAR) images taken at different 

times to detect and measure minute changes in the Earth’s surface to millimeter-level precision 

(Ferretti et al., 2007). The relationship between this phase difference and topographic change 

can be described by the following equation: 

                                                   𝐻𝑡 =
−𝜆𝑅1𝑠𝑖𝑛𝜃

4𝜋𝐵𝑝
Δ𝜙                                                    (8) 

in which 𝐻𝑡,  λ,   𝑅1,   θ,  𝐵𝑝, Δϕ  denote respectively the topographic height, the wavelength 

of the radar signal, the radar-target distance, the satellite viewing angle, the perpendicular 

baseline, and the phase difference between 2 SAR acquisitions (Ferretti et al., 2007). Many 

studies have successfully used InSAR to relate groundwater pumping to land subsidence (see, 

e.g., Amelung et al., 1999; Riel et al., 2018; Smith et al., 2019), establish the relationship 

between local irrigation water demand and surface displacement (Levy et al, 2020), and 
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estimate groundwater recharge and flow regimes (Neely et al., 2021). While many studies 

focus on measuring the surface deformation in response to groundwater pumping �̅� (eq.2), this 

study attempts to contribute to the understanding of ground surface deformation in response to 

natural recharge �̅� (eq.2) in a setting devoid of groundwater pumping. The previous sections 

outline the reality that there is no proverbial silver bullet to accurately estimate groundwater 

fluxes at regional and global scales. However, given the exponential increase in the power and 

availability of computation and data, our understanding of groundwater fluxes will expand if 

these traditional and novel techniques are combined and used in a synergistic way. 

1.3  Objectives and Study Area 

Geologic Setting 

Death Valley National Park is located in eastern California within the western edge of 

the Basin and Range tectonic province of the western United States. The Basin and Range 

province is the result of crustal extension that has occurred over the span of tens to millions of 

years (Glazner et al., 2022). This crustal extension results in normal faulting of the low 

permeability early to middle Proterozoic crystalline and late Proterozoic siliciclastic basement 

rocks (Hunt and Mabley, 1966) (Figure 1c). The edges of these tilted blocks form the ridges 

of the Cottonwood and Panamint Mountains which bound Death Valley to the west, and the 

Amargosa, Funeral, and Black Mountains to the east (Figure 1b). The valley, or trough, is 

classified as a pull-apart (extensional) basin that was formed by a large bend in a NW-SE 

trending strike-slip fault (Figure 1c). This fault action has created the lowest elevation point in 

North America, Badwater Basin, which lies at an elevation of -282 ft below mean sea level 

(Glazner et al., 2022). This strike-slip system also acts as a major barrier to groundwater flow 

along the Black and Amargosa Mountains, inhibiting regional groundwater flow from entering 
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the valley (Bedinger and Harrill, 2012). In addition to these major fault systems, Death Valley 

has a complex network of smaller faulting which includes thrust faults, normal faults, and 

chaos faulting (Bedinger and Harrell, 2012). The Death Valley trough is composed of Tertiary 

to Quaternary salt and clay intermixed with coarser grained sands and gravels and ranges in 

depth from 4,000 ft near Artists Drive to 9,000 ft at Badwater Basin (Hunt and Mabley, 1966). 

The edges of the trough consist of coarse grain sand and gravel alluvial fan deposits. The 

normal faulting creates a geometry whereby the unconsolidated valley sediments near the 

interface of the Black Mountains are deeper with smaller alluvial fans. On the western side of 

the valley at the Panamint Mountain interface, the alluvial fans are spread widely and 

collectively form a desert feature called ‘bajada’ that gently slopes east. (Figure 1d). The bajada 

to the west and the smaller alluvial fans to the east are likely conduits of groundwater recharge 

during storm events (Belcher et al., 2017). The composition at the surface of Death Valley 

varies from sand dunes to clay and mud. The surface of Badwater Basin is a salt flat, or salt 

pan composed of halite with a thickness of ~3-5 feet.  

Hydrologic Conditions 

 Death Valley is bisected by the ephemeral Amargosa River. A number of springs in the 

Valley along fault zones produce perennial flow and are sourced from the regional groundwater 

flow system.  During the Pleistocene many of the basins within the Basin and Range province 

were inundated with water, forming extensive lake networks. Death Valley experienced 

periodic inundation throughout these glacial periods for ~1 million years (Hunt et al., 1966). 

Pluvial Lake Manley is the most recent incarnation of these ancient lakes with the most recent 

high stand of the lake occurring ~150,000 years ago during the Tahoe Glaciation. It is estimated 

that during this high stand, Lake Manley extended 100 miles and had a depth of 600 ft (Glazner 
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and Sylvester, 2022). Given the elevation of Death Valley, these periods represent regional 

hydrologic base-level fluctuations. As an endoreic or closed basin, Death Valley can be 

conceptualized as a “bathtub without a drain” (Glazner and Sylvester, 2022), and receives 

inflow from the regional system of surface water and groundwater. During inundation, the only 

way for water to leave the system is through evapotranspiration �̅� (eq.2). Understanding the 

mechanisms controlling groundwater fluxes in Death Valley represents an opportunity to 

understand terrestrial water cycling at a regional scale and evaluate base-level responses to 

extreme precipitation events. These dynamics are playing out in real time, with recent storms 

inducing a return of Lake Manley, albeit at a much smaller scale2. The relative contributions 

of upwelling groundwater from local and regional sources vs. surface water to the formation 

of Lake Manley is unknown. Thus, exploring techniques to characterize the contribution of 

groundwater fluxes to these base-level changes may provide a better understanding of 

groundwater recharge dynamics in arid regions in a warming world. This exploratory study 

aims to evaluate climatological trends and compare this with variation in total water storage 

(TWS) data from GRACE and surface displacement measurements derived from InSAR to 

infer the impact of extreme precipitation on groundwater fluxes. 

 

 
2 https://www.nps.gov/deva/learn/news/water-levels-are-lower-in-lake-manly.htm 

https://www.nps.gov/deva/learn/news/water-levels-are-lower-in-lake-manly.htm
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Figure 1: Hydrogeologic setting of Death Valley. (a) Badwater Basin from Dantes View. Note 

the heterogeneity on the surface of the sediments and salt pan. Photo credit: Andrew Mace, 

2009; (b) generalized geologic map of Death Valley adapted from Bedinger and Harrell, 2012. 

(c) The Death Valley trough is the result of extensional forces resulting from regional normal 

and strike-slip faulting. The base figure was adapted from the U.S. National Park Service3. (d) 

Conceptual cross-section diagram of the unconsolidated valley fill from A to A’. 

 
3 https://www.nps.gov/deva/learn/nature/faults.htm 
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2. DATA AND METHODS 
 

2.1  Climatological  
 

Daily precipitation (inch) and maximum and minimum temperature (F⁰) data were 

downloaded and compiled from the National Oceanic and Atmospheric Administration 

(NOAA) National Centers for Environmental Information database4 for the period 4/26/1961 

to 12/10/2023. The daily measurements were recorded at the Death Valley National Park 

Furnace Creek GHCND station (network ID: GHCND:USC00042319). There were 2 time 

periods evaluated for this study 1961-2023 and 2003 to 2023. To characterize long-term 

climatological trends, the period 1961-2023 was segmented into a 30-year baseline period from 

1961-1991 and a subsequent comparison period from 1991-2023. The availability of GRACE 

TWS data beginning in 2003 informed the decision to assess the period 2003-2023 separately. 

Given the arid conditions of Death Valley and the occurrence of extreme daily precipitation 

events, a temporal interval of daily and monthly measurements was selected for this analysis. 

The cumulative difference from the mean of the analysis period was computed using the 

following equation to compare and evaluate the occurrence and magnitude of relative wet and 

dry periods: 

                                                       𝐶𝐷𝐹𝑀 = ∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1                                                     (9) 

where 𝑃𝑖 denotes the daily precipitation for the nth day and  �̅� represents the average daily 

precipitation value for the period 1961 to 2023 and 2003 to 2023. Positive sloping segments 

of the CDFM curve indicate wet periods, or periods with above average precipitation and 

 
4 https://www.ncei.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00042319/detail 

https://www.ncei.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00042319/detail
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negative sloping segments are indicative of dry periods with below average precipitation. A 

frequency analysis was conducted for ‘wet days’, or days with measured precipitation to 

identify the <90th, 90th, 95th, 97th, 98th, and 99th percentile daily events to evaluate the frequency 

and magnitude of daily precipitation events from 1961-2023. Exceedance probabilities for 

daily precipitation amounts were computed for the baseline and comparison periods to evaluate 

the variability and magnitude of daily events over time. This approach is commonly used in 

flood frequency analysis to calculate recurrence intervals of a particular peak flow discharge. 

Exceedance probabilities were computed using the following formula for plotting positions: 

                                         𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
100∗𝑟𝑎𝑛𝑘

𝑛+1
                                  (10) 

in which 𝑛 denotes the number of data values, and 𝑟𝑎𝑛𝑘 represents the position of a data value 

when the sample of values is sorted in decreasing order (i.e., rank = 1 represents the largest 

sample value). Daily average surface temperature anomalies relative to daily temperature 

normals (average temperature for a specific day across the baseline period) for the baseline 

period 1961-1991 were computed to assess the variability of average daily temperatures over 

the period (1961-2023). 

2.2  GRACE and InSAR 
 

GRACE 

Terrestrial water equivalent thickness data computed with the Center for Space 

Research at University of Texas at Austin RL06.2 mascon solutions (Save et al., 2016) were 

acquired from the JPL GRACE-FO Data Analysis tool5 for the mascon with spatial coverage 

 
5 https://grace.jpl.nasa.gov/data/data-analysis-tool/ 

https://grace.jpl.nasa.gov/data/data-analysis-tool/
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over Death Valley over the period 2003 to 2023. The CSR RL06.2 solutions represent a 

monthly time series of mass anomalies. The mascons have an average width of ~120 km and 

have a spatial resolution of 0.5 x 0.5 degrees.  

InSAR 

Synthetic aperture radar (SAR) data from the Sentinel-1 program run by the European 

Space Agency (ESA) was acquired from the NASA Earth Data, Alaska Satellite Facility 

Distributed Active Archive Center (ASF DAAC) using the vertex data tool6. Sentinel-1 data 

was used because the data products are `designed for analysis of surface deformation using 

InSAR, and offer global coverage (Sentinel-1 ESA, 2012). The small baseline subset (SBAS) 

InSAR time series approach was selected for this analysis because SBAS allows for the 

minimization of decorrelation effects caused by atmospheric disturbances and 

surface/topographic variation (Berardino et al., 2002). The selection of spatial and temporal 

thresholds, i.e. perpendicular and temporal baselines, ensure that surface deformation estimates 

are accurate and reliable. Selecting SAR acquisition pairs with small spatial separation and 

appropriate temporal intervals associated with the process of interest (aquifer deformation) 

ensures the quality and accuracy of the interferometric phase signal (Ferretti et al., 2007). 

A reference SAR acquisition was selected with geographic coverage over Death Valley 

and was used to construct a small baseline subset (SBAS) time series of SAR acquisitions 

within the extent of interest, forming a network of potential SAR pairs to be used in the InSAR 

analysis. A perpendicular baseline of 220 meters and a temporal baseline of 24 days was 

selected for the period December 30, 2018, to December 10, 2023, resulting in 705 SAR pairs 

 
6 https://search.asf.alaska.edu/#/ 

https://search.asf.alaska.edu/#/
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across 222 scenes and 3 SAR frames (113,114, and 115). While the initial SBAS time series 

included the period from 2014-2018, the density of SAR scenes did not meet the perpendicular 

and temporal baseline criteria and were thus excluded from analysis. In addition, the period of 

analysis from 2018-2023 corresponds to a prolonged dry period within Death Valley 

punctuated by pulses of extreme precipitation, providing ideal requisite conditions to observe 

recharge induced deformation.   Figure 2 depicts the SBAS time series used in this study. Note 

that the density of the SBAS network decreases after December 23, 2021, due to instrument 

electronics failure on the Sentinel-1B satellite7.  

 

Figure 2: Small baseline subset (SBAS) time-series (interferogram network) and average 

spatial coherence of SAR pairs for the period December 30, 2018 through December 10, 2023 

over Death Valley. Each point (yellow dot) represents a Sentinel-1 SAR acquisition. The blue 

lines represent the potential SAR ‘pair’ within the specified temporal and perpendicular 

baselines that are used to compute interferogram data stacks. In addition, the blue lines are 

weighted by average spatial coherence. The SBAS time series over Death Valley has high 

average spatial coherence (>0.8) across SAR scenes, indicating that phase differences 

correspond to ground surface deformation over the period of analysis.  

 

 
7https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-

1/Mission_ends_for_Copernicus_Sentinel-1B_satellite 

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Mission_ends_for_Copernicus_Sentinel-1B_satellite
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Mission_ends_for_Copernicus_Sentinel-1B_satellite
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 Phase-unwrapped interferogram stacks (SAR pairs) were generated using the ASF’s HyP3 

SAR processing algorithm8. A 20x4 look and adaptive phase filter of 0.6 were selected to 

reduce computational load during time-series analysis and enhance noise reduction. The 20x4 

look denotes the pixel density and was selected for noise reduction. The adaptive phase filter 

reduces phase noise in the wrapped and unwrapped interferograms. A water mask was applied 

to minimize error during phase unwrapping of the interferograms given the potential for 

standing water within areas of Death Valley during the period of analysis. In addition to the 

interferogram stacks, a DEM and look vectors were produced as auxiliary products.  

Small Baseline (SBAS) InSAR Time Series Analysis 

InSAR time-series analysis and generation of average velocity estimates were 

performed using the ASF OpenSAR Lab run through JupyterHub and the University of Miami 

(SBAS) InSAR time series analysis workflow and software MintPy (Yunjun et al., 2019). This 

methodology uses weighted least squares inversion and is optimized for the generation of 

surface displacement time series. The workflow consists of the following steps: 

(1) Load stack of phase unwrapped interferograms: 

Unwrapped interferogram stacks, DEM’s, azimuth angle maps, and incidence angle maps 

were directly loaded from the ASF HyP3 project folder. Interferogram stacks were subset 

and aligned to maximum extent of the area of interest – Death Valley. 

(2) Coherence based network modification: 

Interferograms with low percentage of high coherence pixels due to unwrapping errors 

 
8 https://hyp3-docs.asf.alaska.edu/guides/insar_product_guide/ 

https://hyp3-docs.asf.alaska.edu/guides/insar_product_guide/
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are identified and excluded. This coherence filter is critical to ensuring final velocity 

estimates and surface deformation represent areas of high coherence. 

(3) Selection of reference point: 

A random pixel was randomly selected with the following criteria to ensure a stable 

reference point to compare phase differences of the interferograms. The point was selected 

based on the following criteria: coherence > 0.85; minimal streaks caused by atmospheric 

turbulence; and elevation matching the designated area of interest. 

(4) Network Inversion: 

The network of differential unwrapped interferograms is inverted to estimate the 

unwrapped phase with respect to reference acquisition date of 12/30/2018. A temporal 

coherence mask (0.7) is generated to isolate pixels with reliable time series estimates. The 

water mask filters out pixels identified within standing water. A time series is generated 

representing distance change from radar to target. 

(5) Tropospheric propagation delay correction: 

Tropospheric delay is caused by variability in atmospheric moisture and can introduce error 

in the displacement measurements. This was corrected by incorporating atmospheric re-

analysis data of geopotential, temperature, specific humidity, and pressure from the 

ECMWF ERA5 global atmospheric model are used to estimate hydrostatic and wet delay 

of the radar pulses to the target.  
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(6) Topographic residual DEM correction: 

This correction was applied to correct topographic residuals resulting from errors in the 

DEM’s used to generate the time series of interferograms. This involves estimating the 

topographic phase error from the time series of interferograms and adjusting the 

interferometric phase for each pixel to account for this error. This increases the accuracy 

of the final displacement estimates. 

(7) Calculation of residual phase time series: 

The root mean square (RMS) of the residual phase for each SAR acquisition date is 

calculated relative to a reference date with the minimum RMS value. This process refines 

the InSAR analysis by removing spatial errors and outliers, improving interpretability of 

the displacement measurements. The reference date selected was 12/1/2020 with 

RMS=0.0032.  

(8) Average velocity estimation: 

Ground deformation caused by many geophysical processes can generally be approximated 

as linear (Simons, 2015) and therefore the average velocity (rate of change of 

displacement) is estimated as the slope of the best fitting line to the displacement time 

series for each pixel. 

Error Analysis 

Uncertainty was evaluated by assessing the quality of the inversion of the interferogram stack 

and the accuracy of separating ground displacement from other components of the InSAR data. 

The following describes the methodology used to assess signal vs. noise in the analysis. 
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(1) Inversion quality: 

The primary sources of noise during time series inversion are decorrelation, phase 

unwrapping and the inconsistency of triplets of interferograms. A triplet of interferograms 

is the process of evaluating phase among 3 separate SAR acquisitions to compare 

inconsistencies related to decorrelation, phase unwrapping errors, and atmospheric delays. 

The temporal average of spatial coherence and temporal coherence (threshold=0.7) of the 

entire interferogram stack was computed to identify erroneous pixels after time series 

inversion.  

(2) Velocity error analysis: 

The error long-term average velocity estimate from 2018-2023 was computed as a 

goodness of fit parameter. 

The final output of the MintPy time series analysis consisted of temporal coherence, average 

spatial coherence, average velocity, and phase wrapped and unwrapped displacement 

GEOTIFF files which represent the relative displacement to the initial date in the series 

12/30/2018. A total of 222 displacement TIFF files were compiled and used in the subsequent 

PCA deformation time series analysis. 

2.3  Time Mode (T-Mode) Principal Component Analysis (TPCA) 

Principal component analysis (PCA) is a statistical method that simplifies complex, 

high-dimensional data while retaining trends and patterns (Tabachnick et al., 2001). PCA was 

selected as the method of time-series analysis of the displacement GEOTIFF files for this study 

because it is well suited for exploratory analyses of spatial and temporal patterns of 

deformation without prior understanding of system dynamics (Chaussard, 2014). Principal 
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components (PC), also commonly referred to as empirical orthogonal functions, represent 

linear transformations of a set of correlated variables into a smaller set of uncorrelated 

(orthogonal) variables that captures most of the variability inherent in the untransformed data. 

T-mode PCA was selected for this analysis because it is ideal for evaluating time series data 

where the interest is understanding how patterns evolve over time across different locations, 

as opposed to S-mode which is useful for understanding relationships between variables 

(Richman, 1986). The 222 relative displacement GEOTIFF files produced from step 10 of the 

MintPy workflow were processed into a single data array (X(m,n) matrix) consisting of 222 

columns (time) representing a time step (SAR acquisition) and 748,904 rows, representing 

displacement values for each pixel in the area of interest. The T-PCA analysis was performed 

using the python machine learning library scikit-learn. To handle missing data from each 

displacement GEOTIFF, a mean imputation function was computed prior to the T-PCA 

analysis. The conceptual diagram of this workflow is described by Figure 3. A column chart 

(scree plot) representing the percentage of variance explained by the first 10 principal 

components was evaluated and the first 4 (PC) were selected for further analysis using the ‘rule 

of thumb’ method (North et al., 1982). Time series of eigenvectors or coefficients (loadings) 

were generated for these top 4 (PC). The eigenvector time series represent how the data’s 

projection onto the principal component changes over time. In addition to eigenvector time 

series, PC score maps were generated which are a spatial representation of the scores of a 

particular principal component for an area averaged over time. The PC score maps are useful 

because they show areas with similar behavior over time according to the specific PC.  
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Figure 3: T-mode PCA analysis workflow for InSAR data. Figure from (Chaussard et al., 

2014). 

 

3. RESULTS 

Average daily temperature of Death Valley has increased ~2 degrees Fahrenheit from 

the baseline period to the comparison period. (Figure 4a). This observation aligns with the 

generalized conceptual model of an average increase in global mean surface temperature. From 

1961 to 1991 (base period) there were 10,454 days without recorded precipitation and 503 days 
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with recorded precipitation from a sample of n=10,957 days for that period; 95.7% of days had 

no precipitation and 4.3% recorded precipitation. From 1991 to 2023 (comparison period) there 

were 11,435 days without recorded precipitation and 519 days with recorded precipitation from 

a sample of n=11,954 days implying 95.7% of days had no precipitation and 4.3% recorded 

precipitation. There was no change in the relative number of dry vs. wet days across the two 

periods. The following table describes the number of daily events in a frequency percentile for 

each analysis period (Figure 4b): 

Table 2. The number of daily events in a frequency percentile for each analysis period.  

Percentiles of Daily 
Precipitation Events 

Number of Days in Baseline 
Period 

(1961-1991) 

Number of Days in Comparison 
Period 

(1991-2023) 

99th 3 8 

98th 7 3 

97th 5 4 

95th 8 14 

90th 25 26 

 

Figure 4c indicates that the magnitude of extreme events has increased from the comparison 

period to the base period. However, events with <2.5% exceedance probability remained the 

same across both periods.  
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Figure 4: Death Valley: (a) Land surface daily temperature anomalies for the period (1961-

2023). The anomalies are computed relative to the baseline period of 1961-1991 and indicate 

a general trend toward higher temperatures. (b) daily precipitation frequency percentiles and 

cumulative difference from long-term mean CDFM (1961-2023) (c) exceedance probabilities 

of daily precipitation events across the baseline and comparison period.  
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Figure 5: Mean line of sight velocity (LOS) of Death Valley from December 30, 2018 to 

December 10, 2023. 

Death Valley experienced a prolonged dry period from 2015 to 2023 as indicated by the CDFM 

corroborated with GRACE water equivalent thickness (cm) punctuated by wet months in 2018, 

2021, 2022 and 2023 (Figure 6a). The InSAR time series analysis indicates that the land surface 

elevation in many parts of Death Valley experienced an average vertical displacement (uplift) 

of ~1.5 to 2 cm (Figure 5). The most pronounced uplift occurred in Badwater Basin with ~3 

cm of vertical displacement recorded. This uplift coincides with the wet months beginning in 

2018. 

Badwater Basin 

Reference pixel 

selected in step 3 of 

SBAS time series 

analysis 
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Figure 6: (a) CDFM, GRACE water equivalent thickness, and monthly precipitation; (b) 

mean-displacement in Death Valley, CDFM and monthly precipitation from 2003-2023; (c) 

mean surface displacement and filtered mean surface displacement vs. monthly precipitation. 
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Figure 7: Explained variance of the first 10 principal components from the T-PCA analysis. 

 

The results of the T-PCA analysis indicate that PC1 is consistent with the mean displacement 

in Death Valley. It is likely that the signal portrayed by the PC1 eigenvector relates to the 

physical process of vertical displacement resulting from precipitation. The three consecutive 

months of precipitation at the beginning of the TPCA analysis period (2018-2023) are likely 

contributing to the uplift. This is corroborated by the sharp increase in water equivalent 

thickness in 2018 (Figure 6a). The PC2 eigenvector represents the dominant mode 

corresponding to deformation responses to specific months of high precipitation. Across the 4 

PC eigenvectors there is an increase in amplitude corresponding to the high precipitation 

months in 2021, 2022, and 2023. In addition, there is a consistent strong signal of explained 

variance across PC1, PC2, PC3, and PC4 in Badwater Basin.  
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Figure 8: Results of TPCA analysis and corresponding eigenvector time series and PC score 

maps for PC1, PC2, PC3, and PC4. 

 

Badwater Basin 
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4. DISCUSSION 

Uplift has occurred in Death Valley over the period 2018-2023. It is likely that a 

combination of consecutive months of above average precipitation in 2018 and 3 anomalous 

daily events (98th and 99th percentile) contributed to enhanced groundwater recharge, inducing 

upward vertical surface deformation. The bajada and alluvial fans on either side of Death 

Valley likely act as conduits for focused intense groundwater recharge. While these focused 

pulses of recharge are a likely contributing factor to increased poroelastic pressure in the 

compressible sediments at depth (clay formations), it is uncertain to what degree these deeper 

processes contribute to observed uplift. Death Valley is the regional base level, and these 

pulsed events may be contributing to pressure differentials across the regional groundwater 

flow system. The pressure differentials may cause groundwater to upwell and induce a 

decrease in vertical effective stress resulting in uplift. Another likely contributing factor to 

vertical surface deformation is the expansion of the halite of the salt pan from wetting. This 

would explain the enhanced uplift localized in Badwater Basin, but is likely not contributing 

to average upward vertical displacement across the valley due to the heterogenous distribution 

and composition of surficial sediments. Analysis of land surface mineral composition using 

electromagnetic resistivity or SAR data could be used to evaluate the potential spatial 

correlation between surface composition of the land surface and patterns of deformation.  

The results of this study provide a quantitative link between surface displacement and 

recharge. A more robust analysis incorporating other data sources recorded at extended 

temporal intervals is needed to allow for definitive statements relating groundwater fluxes to 

extreme precipitation events.    
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5. CONCLUSIONS 
 

Spatiotemporal and cross-correlation analysis of deformation patterns using gridded 

precipitation data could be explored to determine the potential lag between precipitation and 

deformation data, which would expand upon the results of this study. A more concise 

understanding of the effect of long-term fluctuations of extreme precipitation events on 

groundwater fluxes requires a more in-depth precipitation frequency analysis quantifying the 

probability distribution functions of precipitation magnitude and frequency over the period of 

analysis. The results of this study could contribute to calibration efforts and be tested against 

aquifer properties estimated by the Death Valley Regional Groundwater Flow System 

Transient Model (DVRFS) produced by the USGS.  

This work provides a novel case study that will contribute to the understanding of 

groundwater fluxes in a warming world and provides a benchmark for future efforts to 

understand the effects of precipitation variability on groundwater recharge in arid 

environments. 
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