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LOCAL WELL-POSEDNESS OF SKEW MEAN CURVATURE FLOW FOR

SMALL DATA IN d >4 DIMENSIONS
JIAXT HUANG AND DANIEL TATARU

ABSTRACT. The skew mean curvature flow is an evolution equation for d dimensional ma-
nifolds embedded in R%*2 (or more generally, in a Riemannian manifold). It can be viewed as
a Schrodinger analogue of the mean curvature flow, or alternatively as a quasilinear version
of the Schrodinger Map equation. In this article, we prove small data local well-posedness
in low-regularity Sobolev spaces for the skew mean curvature flow in dimension d > 4.

CONTENTS

(L.__Introductionl

[2.  The differentiated equations and the gauge choice)
[3.  Function spaces and notations|

[4.  Elliptic estimates|

E M MLh ] T - l

[6. Local energy decay and the linearized problem|

[7. Well-posedness in the good gauge|

8._The reconstruction of the flow]

[Acknowledgments|

[References

Date: June 5, 2024.
2010 Mathematics Subject Classification. Primary: 35Q55; Secondary: 53E10.
Key words and phrases. Skew mean curvature flow, local well-posedness, low regularity, small data.

16
21
37
41
48
o8
70
71

J. Huang was partially supported by China Postdoctoral Science Foundation Grant 2021M690223 and the
NSFC Grant No. 11771415, and was also sponsored by the China Scholarship Council (No. 201806340044)

for one year at University of California, Berkeley.

D. Tataru was supported by the NSF grant DMS-1800294 as well as by a Simons Investigator grant from

the Simons Foundation.



1. INTRODUCTION

The skew mean curvature flow (SMCF) is a nonlinear Schrédinger type flow modeling
the evolution of a d dimensional oriented manifold embedded into a fixed oriented d + 2
dimensional manifold. It can be seen as a Schrodinger analogue of the well studied mean
curvature flow. In this article, we consider the small data local well-posedness for the skew
mean curvature flow in high dimensions d > 4, for low regularity initial data.

1.1. The (SMCF) equations. Let ¥¢ be a d-dimensional oriented manifold, and (N2, gx/)
be a d + 2-dimensional oriented Riemannian manifold. Let I = [0,7] be an interval and
F :Ix %% — N be a one parameter family of immersions. This induces a time dependent
Riemannian structure on $¢. For each t € I, we denote the submanifold by ¥, = F(¢,Y), its
tangent bundle by T7%;, and its normal bundle by N, respectively. For an arbitrary vector
Z at F we denote by Z+ its orthogonal projection onto N¥;. The mean curvature H(F) of
> can be identified naturally with a section of the normal bundle N3;.

The normal bundle N¥; is a rank two vector bundle with a naturally induced complex
structure J(F') which simply rotates a vector in the normal space by 7/2 positively. Namely,
for any point y = F(t,z) € ¥; and any normal vector v € N,¥,, we define J(F)v € N,%, as
the unique vector with the same length so that

J(Fvly, w(Fi(er), Fi(es), - Fi(eq), v, J(F)v) > 0,

where w is the volume form of A" and {ey, - - , e4} is an oriented basis of ¥¢. The skew mean
curvature flow (SMCF) is defined by the initial value problem

{(@FV = J(F)H(F),

- F(,0) = F,

which evolves a codimension two submanifold along its binormal direction with a speed given
by its mean curvature.

The (SMCF') was derived both in physics and mathematics. The one-dimensional (SMCF)
in the Euclidean space R? is the well-known vortex filament equation (VFE)

Oy = Dgy X 0%,

where v is a time-dependent space curve, s is its arc-length parameter and x denotes the
cross product in R?. The (VFE) was first discovered by Da Rios [6] in 1906 in the study of
the free motion of a vortex filament.

The (SMCF) also arises in the study of asymptotic dynamics of vortices in the context
of superfluidity and superconductivity. For the Gross-Pitaevskii equation, which models the
wave function associated with a Bose-Einstein condensate, physics evidence indicates that
the vortices would evolve along the (SMCF). An incomplete verification was attempted by
T. Lin [20] for the vortex filaments in three space dimensions. For higher dimensions, Jerrard
[T4] proved this conjecture when the initial singular set is a codimension two sphere with
multiplicity one.

The other motivation is that the (SMCF) naturally arises in the study of the hydrody-
namical Euler equation. A singular vortex in a fluid is called a vortex membrane in higher
dimensions if it is supported on a codimension two subset. The law of locally induced motion
of a vortex membrane can be deduced from the Euler equation by applying the Biot-Savart

formula. Shashikanth [24] first investigated the motion of a vortex membrane in R* and
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showed that it is governed by the two dimensional (SMCF), while Khesin [18] then general-
ized this conclusion to any dimensional vortex membranes in Euclidean spaces.

From a mathematical standpoint, the (SMCF) equation is a canonical geometric flow for
codimension two submanifolds which can be viewed as the Schrodinger analogue of the well
studied mean curvature flow. In fact, the infinite-dimensional space of codimension two
immersions of a Riemannian manifold admits a generalized Marsden-Weinstein sympletic
structure, and hence the Hamiltonian flow of the volume functional on this space is verified
to be the (SMCF). Haller-Vizman [12] noted this fact where they studied the nonlinear
Grassmannians. For a detailed mathematical derivation of these equations we refer the
reader to the article [28] Section 2.1].

The study of higher dimensional (SMCF) is still at its infancy compared with its one-
dimensional case. For the 1-d case, we refer the reader to the survey article of Vega [29].
For the higher dimensional case, Song-Sun [28] proved the local existence of (SMCF) with
a smooth, compact oriented surface as the initial data in two dimensions, then Song [27]
generalized this result to compact oriented manifolds for all d > 2 and also proved a corre-
sponding uniqueness result. Recently, Li [19] considered the transversal small pertubations
of Euclidean planes under the (SMCF) and proved the global regularity for small initial data.
In addition, Song [26] also proved that the Gauss map of a d dimensional (SMCF) in R4+2
satisfies a Schrodinger Map type equation but relative to the varying metric. We remark
that in one space dimension this is exactly the classical Schrodinger Map type equation,
provided that one chooses suitable coordinates, i.e. the arclength parametrization.

As written above, the (SMCF) equations are independent of the choice of coordinates in
I x ¥; here we include the time interval I to emphasize that coordinates may be chosen
in a time dependent fashion. The manifold ¥ simply serves to provide a parametrization
for the moving manifold ¥;; it determines the topology of ¥;, but nothing else. Thus, the
(SMCF) system written in the form should be seen as a geometric evolution, with a
large gauge group, namely the group of time dependent changes of coordinates in I x ¥. In
particular, interpreting the equations as a nonlinear Schrédinger equation will require
a good gauge choice. This is further discussed in Section 2

In this article we will restrict ourselves to the case when X¢ = R? ie. where ¥; has a
trivial topology. We will further restrict to the case when AN'*2 is the Euclidean space R4+2.

Thus, the reader should visualize ¥; as an asymptotically flat codimension two submanifold
of R4+2,

1.2. Scaling and function spaces. To understand what are the natural thresholds for
local well-posedness, it is interesting to consider the scaling properties of the solutions. As
one might expect, a clean scaling law is obtained when ¢ = R? and N9*? = R%*2. Then
we have the following

Proposition 1.1 (Scale invariance for (SMCF)). Assume that F' is a solution of with
initial data F(0) = Fy. If A > 0 then F(t,x) := \"'F(\*t,\x) is a solution of with
initial data F(0) = A" Fy(\x).

Proof. Since the induced metric and Christoffel symbols of the immersion F are

gﬂtﬂ(t7x> - <aaﬁaa,3ﬁ1> - gaﬁ()‘zta )\x)7
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and
I75(tx) = AT 5(At, Ax).
Then by the relation H(F) = g*?(025F — I'} 30, F), we have
(D) =MOF ) (Nt Ax) = AT g™P (N, Ax)[(025F — T050,F)(N°t, Ax))]
=J 3" (02 F — T30, F)(t, x).
U

The above scaling would suggest the critical Sobolev space for our moving surfaces ¥; to
be H3+L, However, instead of working directly with the surfaces, it is far more convenient
to track the regularity at the level of the curvature H(Z,), which scales at the level of H3~?.

1.3. The main result. Our objective in this paper is to establish the local well-posedness of
skew mean curvature flow for small data at low regularity. A key observation is that providing
a rigorous description of fractional Sobolev spaces for functions (tensors) on a rough manifold
is a delicate matter, which a-priori requires both a good choice of coordinates on the manifold
and a good frame on the vector bundle (the normal bundle in our case). This is done in
the next section, where we fix the gauge and write the equation as a quasilinear Schrédinger
evolution in a good gauge. At this point, we content ourselves with a less precise formulation
of the main result:

Theorem 1.2 (Small data local well-posedness). Let s > g, d > 4. Then there exists g > 0
sufficiently small such that, for all initial data ¥ with metric ||0.(g0 — 1a)||lns < € and
mean curvature ||Hol|gsz,) < €0, the skew mean curvature flow for maps from R? to
the Buclidean space (R™2, gpai2) is locally well-posed on the time interval I = [0,1] in a
suitable gauge.

Remark 1.2.1. We remark on the necessity of having a smallness condition on both gy — I
and the mean curvature Hy. The combined efforts of E. De Giorgi [7], F. J. Almgren, Jr.
[1], and J. Simons [25] led to the following theorem (see Theorem 4,2, [3]):

“Ifu : R*' — R is an entire solution to the minimal surface equation and n < 8, then u
s an affine function.”

However, in 1969 E. Bombieri, De Giorgi, and E. Giusti [2] constructed entire non-affine
solutions to the minimal surface equation in RY. Hence the bound |[Ho||gs(sy) < € on the
mean curvature does not necessarily imply that the sub-manifold is almost flat.

Here we only prove the small data local well-posedness, which means that the initial
submanifold Y, should be a perturbation of Euclidean plane R?. Hence, the bound on metric
10:(90—14)|| s < € is also necessary in our main result, at least in very high dimension. This
condition on metric will insure the existence of global harmonic coordinates (see Proposition
B.2). Later, the mean curvature bound will also yield an estimate ||0;(go — Ia)|/ s+ < €0 in
harmonic coordinates.

Unlike any of the prior results, which prove only existence and uniqueness for smooth
data, here we consider rough data and provide a full, Hadamard style well-posedness result
based on a more modern, frequency envelope approach and using a paradifferential form for
both the full and the linearized equations. For an overview of these ideas we refer the reader

to the expository paper [I3]. While, for technical reasons, this result is limited to dimensions
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d > 4, we expect the same strategy to also work in lower dimension; the lower dimensional
case will be considered in forthcoming work.

The favourable gauge mentioned in the theorem, defined in the next section, will have two
components:

e The harmonic coordinates on the manifolds ;.
e The Coulomb gauge for the orthonormal frame on the normal bundle.

In the next section we reformulate the (SMCF) equations as a quasilinear Schrodinger evo-
lution for a good scalar complex variable v, which is exactly the mean curvature but repre-
sented in the good gauge. There we provide an alternate formulation of the above result, as
a well-posedness result for the 1) equation. In the final section of the paper we close the circle
and show that one can reconstruct the full (SMCF) flow starting from the good variable .

One may compare our gauge choices with the prior work in [28] and [27]. There the
tangential component of 9, F in is omitted, and the coordinates on the manifold >; are
simply those transported from the initial time. The difficulty with such a choice is that the
regularity of the map F' is no longer determined by the regularity of the second fundamental
form, and instead there is a loss of derivatives which may only be avoided if the initial data
is assumed to have extra regularity. This loss is what prevents a complete low regularity
theory in that approach.

Once our problem is rephrased as a nonlinear Schrodinger evolution, one may compare its
study with earlier results on general quasilinear Schrodinger evolutions. This story begins
with the classical work of Kenig-Ponce-Vega [15] [16], [17], where local well-posedness is estab-
lished for more regular and localized data. Lower regularity results in translation invariant
Sobolev spaces were later established by Marzuola-Metcalfe-Tataru [211, 22, 23]. The local
energy decay properties of the Schréodinger equation, as developed earlier in [4] [5, 8, 9] play a
key role in these results. While here we are using some of the ideas in the above papers, the
present problem is both more complex and exhibits additional structure. Because of this,
new ideas and more work are required in order to close the estimates required for both the
full problem and for its linearization.

1.4. An overview of the paper. Our first objective in this article will be to provide a self-
contained formulation of the (SMCF) flow, interpreted as a nonlinear Schrodinger equation
for a single independent variable. This independent variable, denoted by 1), represents
the trace of the second fundamental form on ¥;, in complex notation. In addition to the
independent variables, we will use several dependent variables, as follows:

e The Riemannian metric g on ;.

e The (complex) second fundamental form A for X;.

e The magnetic potential A, associated to the natural connection on the normal bundle
N3, and the corresponding temporal component 5.

e The advection vector field V', associated to the time dependence of our choice of
coordinates.

These additional variables will be viewed as uniquely determined by our independent
variable v, provided that a suitable gauge choice was made. The gauge choice involves two
steps:

(i) The choice of coordinates on Y;; here we use harmonic coordinates, with suitable

boundary conditions at infinity.
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(ii) The choice of the orthonormal frame on N¥;; here we use the Coulomb gauge, again
assuming flatness at infinity.

To begin this analysis, in the next section we describe the gauge choices, so that by the
end we obtain

(a) a nonlinear Schrédinger equation for 1, see (2.35)).
(b) An elliptic fixed time system (2.36]) for the dependent variables S = (g, A, V, A, B),
together with suitable compatibility conditions (constraints).

Setting the stage to solve these equations, in Section [3| we describe the function spaces
for both v and §. This is done at two levels, first at fixed time, which is useful in solving
the elliptic system , and then using in the space-time setting, which is needed in order
to solve the Schrodinger evolution. The fixed time spaces are classical Sobolev spaces, with
matched regularities for all the components. The space-time norms are the so called local
energy spaces, as developed in [21], 22 23].

Using these spaces, in Section {4 we consider the solvability of the elliptic system .
This is first considered and solved without reference to the constraint equations, but then
we prove that the constraints are indeed satisfied.

Finally, we turn our attention to the Schrodinger system , in several stages. In
Section [p| we establish several multilinear and nonlinear estimates in our space-time function
spaces. These are then used in Section [6] in order to prove local energy decay bounds first
for the linear paradifferential Schrodinger flow, and then for a full linear Schrodinger flow
associated to the linearization of our main evolution. The analysis is completed in Section [7]
where we use the linear Schrodinger bounds in order to (i) construct solutions for the full
nonlinear Schrédinger flow, and (ii) to prove the uniqueness and continuous dependence of
the solutions. The analysis here broadly follows the ideas introduced in [21], 22] 23], but a
number of improvements are needed which allow us to take better advantage of the structure
of the (SMCF) equations.

Last but not least, in the last section we prove that the full set of variables (g, A\, V, A, B)
suffice in order to uniquely reconstruct the defining function F' for the evolving surfaces >3,
as H"? manifolds. More precisely, with respect to the parametrization provided by our

loc
chosen gauge, F' has regularity

OF, O2F € C0,1; H).

2. THE DIFFERENTIATED EQUATIONS AND THE GAUGE CHOICE

The goal of this section is to introduce our main independent variable v, which represents
the trace of the second fundamental form in complex notation, as well as the following
auxiliary variables: the metric g, the second fundamental form A, the connection coefficients
A, B for the normal bundle as well as the advection vector field V. For ¢ we start with
and derive a nonlinear Schodinger type system , with coefficients depending on
S = (\h,V, A, B), where h = g—I;. Under suitable gauge conditions, the auxiliary variables
S are shown to satisfy an elliptic system , as well as a natural set of constraints. We
conclude the section with a gauge formulation of our main result, see Theorem [2.7]

We remark that H. Gomez ([I1, Chapter 4]) introduced the language of gauge fields
as an appropriate framework for presenting the structural properties of the surface and the

evolution equations of its geometric quantities, and showed that the complex mean curvature
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of the evolving surface satisfies a nonlinear Schrodinger-type equation. Here we will further
derive the self-contained modified Schrodinger system under harmonic coordinate conditions
and Coulomb gauge.

2.1. The Riemannian metric g. Let (X% g) be a d-dimensional oriented manifold and
let (R™2, grai2) be (d + 2)-dimensional Euclidean space. Let o, 3,7, -- € {1,2,--- ,d} and
k€ {1,2,---,d + 2}. Considering the immersion F' : ¥ — (R%*2 ggai2), we obtain the
induced metric g in 3,

(21) Jap = 8%F : &CBF
We denote the inverse of the matrix g5 by g%, i.e.

gaﬁ = (gab’)ila ga'yg%g = 65

Let V be the cannonical Levi-Civita connection in 3 associated with the induced metric g.

A direct computation shows that on the Riemannian manifold (X, g) we have the Christoffel
symbols

1 . 3
FZB = §gv (08900 + 0aYss — OvGap) = g aiﬁp O, F.
Hence, the Laplace-Beltrami operator A, can be written in the form
Agf = V2 =g (D2sf —T050,f)
= g*%[02f — g7 (024 F - 0,F)0, f),

for any twice differentiable function f : ¥ — R. The curvature tensor R on the Riemannian
manifold (X, g) is given by

R(0y,05)0, = (8al“g7 + Fg,yrgm — GBFZ,Y — F’;;Fgm)&,.
Hence, we have
(2.2) gaﬁ = &J;Y — 8/31“27 + Fggrgm - I‘ZWFgm.
By R(X,Y,Z, W)= (R(Z, W)Y, X) and R,pyc = R(0a, 03,05, 0,), we get

Ra,@’ya = <R(a’ya 80)8,8; aa> = <ngga,ua aoz> = gﬂaRg'ya’?
We will also use the Ricci curvature
Ricaﬁ = RZO’B = gg’yRﬂ’aoﬁ'

2.2. The second fundamental form. Let V be the Levi-Civita connection in (R¥2, ggas2)

and let h be the second fundamental form for ¥ as an embedded manifold. For any vector
fields u,v € T,X, the Gauss relation is

V.Fv = F.(V,w)+h(u,v).
Then we have
h,s =h(0,,05) = V,0sF — F.(V5,05)
=025 F + D0 FF0gF' — 7,0, F.
By Fi:z = 0, this gives the mean curvature H at F(z),

H = tryh = g*°hog = g% (023F — T30, F) = A F.
6



Hence, the F-equation in (|1.1)) is rewritten as
(OF)- = J(F)AF = J(F)g* (02,F — 7,0, F).

This equation is still independent of the choice of coordinates in ¥, which at this point are
allowed to fully depend on t.

2.3. The complex structure equations. Here we introduce a complex structure on the
normal bundle N¥;. This is achieved by choosing {v,1»} to be an orthonormal basis of
N3, such that

Jl/1 = U, JVQZ_Vl.

Such a choice is not unique; in making it we introduce a second component to our gauge
group, namely the group of sections of an SU(1) bundle over I x R

The vectors {F}, -+, Fy,v1, 15} form a frame at each point on the manifold (X, g), where
F, for a € {1,--- ,d} are defined as

F, =0,F.

If we differentiate the frame, we obtain a set of structure equations of the following type

OuFp = FlBFﬂ, + Kaplh + Taplo,
(23) (%Vl = —l‘f,’oyé}?7 + Aoey27

Ouvo = —T)F, — Ay,
where the tensors rqg, Top and the connection coefficients A, are defined by

Kap = 0aFp - 11, Tap:=0aFp 12, Ay=0un 1o
The mean curvature H can be expressed in term of k.5 and 7,3, i.e.
H = g“°(Kapv1 + Tapl2).
Next, we complexify the structure equations (2.3)) as follows. We define the complex vector
m and the complex second fundamental form tensor A,z to be
m = v; + 1V, Aag = Kag T 1Tas-

Then we define the complex scalar mean curvature 1 as the trace of the second fundamental
form,

(2.4) Y i=tr A = g\

Our objective for the rest of this section will be to interpret the (SMCF) equation as a
nonlinear Schrodinger evolution for ¢, by making suitable gauge choices.
We remark that the action of sections of the SU(1) bundle is given by

(2.5) v — e, N—= e\, m—ePm, A, — Ay — 0,0.

for a real valued function 6.
We use the convention for the inner product of two complex vectors, say a and b, as

d+2

(a,b) = a;b;,

j=1
7



where a; and b; are the complex components of a and b respectively. Then we get the
following relations for the complex vector m,

(m,m) = ni[* + [u]* =2, (m,m) = (m,m) = [n|* — [1n]* = 0.

From these relations we obtain

1 - 1 3 1 - 1 _
KapV1 + Tapls :§(>\a6 + /\aﬂ)ﬁ(m +m) + gO‘aB - /\aﬂ)Z(m —m)

1 _
:5(,\a5m + Aapm) = Re(Aapm).
Then the structure equations ([2.3)) are rewritten as
0 Fp = FlﬂFA, + Re(Aqpm),
(2.6 ’
oom = —=\F,,

where

0 = 0, +iA,.

2.4. The Gauss and Codazzi relations. The Gauss and Codazzi equations are derived
from the equality of second derivatives 0,03F,, = 030, F, for the tangent vectors on the
submanifold ¥ and for the normal vectors respectively. Here we use the Gauss and Co-
dazzi relations to derive the Riemannian curvature, the first compatibility condition and a
symmetry.

By the structure equations , we get

025 Fy =045, Fy + Re(Agym))

(2.7) =009, Fy + 1%, (T4, F, + Re(Aaom)) + Re(OaAgym + Agy (idam — ALF,))
=(0alG, + 5,17, — Re(Asy A0)) Fi + Re[(07 Ay + TG, Ao )10

Then in view of 0,03F, = 030, F, and equating the coefficients of the tangent vectors, we
obtain B B
0ul', + 15 10, — 0510, — Th TG, = Re(Ag, A7, — Aan AG).

v an
This gives the Riemannian curvature
(2.8) Royap = <R$a5Fm Fy) = (R(0a, 05) Fy, Fry) = Re()‘ﬁvj‘aa - )‘cw;\ﬁa)v

which is a complex formulation of the Gauss equation. Correspondingly we obtain the the
Ricci curvature

(2.9) R1075 = Re(Awgi/_J — )\704/_\%).
After equating the coefficients of the vector m in (2.7)), we obtain

8;4/\,37 + Fg,y)\ao = aBA)\a'y + Fg»\/)\ﬁcfa
By the definition of covariant derivatives, i.e.

VaAgy = OaAgy — Fgﬁ)‘ﬂ - Fg&v/\ﬁm
we obtain

A o o A o o
604 Aﬁry - PO&’YABO' - FQ,BAU’Y — 8,8 )\ow - FB’YAOCU - FOZBAU’Y'

This implies the complex formulation of the Codazzi equation, namely

(2.10) Vs = Vida,.
8



As a consequence of this equality, we obtain
Lemma 2.1. The second fundamental form X\ satisfies the Codazzi relations
(2.11) Vi) = VAL = VA7 )\ .
Proof. Here we prove the last equality. By Vg7 = 0 and (2.10]) we have
VAL =0 Videa = 7V Asa = V4 M.
The first equality can be proved similarly. 0]

Next, we use the relation J,0sm = 030,m in order to derive a compatibility condition
between the connection A in the normal bundle and the second fundamental form. Indeed,
from 0,0sm = 00, m we obtain the commutation relation

(2.12) 02,04 1m = i(0aAg — 95 Aa)m.
By we have
0L05m = — 9L (NJE,) = =045 4+ NTT, ) Fy — Ay Re(Aaym).
Then multiplying by m yields
2i(0aAp — 0sAa) =([—Aj Re(Aaym) + AL Re(Agym)], m)
= — Mday + Ay = 20 Im(A) Ag,).

This gives the compatibility condition for the curvature of A,

OaAp — 05As = Im(\) \g,).
Using covariant derivative, this can be written as
(2.13) Vodp — VA, =Im(A \s,),
which can be seen as the complex form of the Ricci equations.

We remark that, by equating the coefficients of the tangent vectors in (2.12)), we also
obtain

Ao o _ aA\o o
o, )\5 + )\ngm = 85 Ao + )\Zéfm,
and hence
Ao Ao
Va/\ﬁ = Vﬁ)\a,
which is the same as (2.11]).

Next, we state an elliptic system for the second fundamental form A, in terms of ¢, using

the Codazzi relations ([2.11).

Lemma 2.2 (Div-curl system for \). The second fundamental form X\ satisfies

A A
(2.14) Vel = ¥ =0
' VAN = V3
aff — 51/)‘
9



We remark that a-priori solutions A to the above system are not guaranteed to be sym-
metric, so we record this as a separate property:

(2.15) Aag = Aga-

Finally, we turn our attention to the connection A, for which we have the curvature
relations (2.13) together with the gauge group (2.5). In order to both fix the gauge and
obtain an elliptic system for A, we impose the Coulomb gauge condition

(2.16) VoA, =0.
Next, we derive the elliptic A-equations from the Ricci equations ([2.13)).

Lemma 2.3 (Elliptic equations for A). Under the Coulomb gauge condition, the connection
A solves

(2.17) V'V, A, = Re(\J¢) — Ang)Aa + V7 Im()\?\(w).
Proof. Applying V# to , by curvature and we obtain
VOV A4 = Ricas A° + VP Im(AfAaq).
Then the equation for A is obtained from (2.9). O

2.5. The elliptic equation for the metric ¢ in harmonic coordinates. Here we take
the next step towards fixing the gauge, by choosing to work in harmonic coordinates. Pre-

cisely, we will require the coordinate functions {z,,a = 1,--- ,d} to be globally Lipschitz
solutions of the elliptic equations
(2.18) Agzy = 0.

This determines the coordinates uniquely modulo time dependent affine transformations.
This remaining ambiguity will be removed later on by imposing suitable boundary conditions
at infinity. After this, the only remaining degrees of freedom in the choice of coordinates will
be given by time independent translations and rigid rotations. Thus, once a choice is made
at the initial time, the coordinates will be uniquely determined later on (see also Remark
2.5.1)).

Here we will interpret the above harmonic coordinate condition at fixed time as an elliptic
equation for the metric g (see e.g. [10], [30, P161]). The equations may be expressed
in terms of the Christoffel symbols I'; which must satisfy the condition

(2.19) 9T, =0, fory=1,--- d.
This implies
1 1
(220) gaﬂaagﬁ'y = 59045679&67 aaga'y = §ga,6’g’waagaﬁ'
Let
1 ag
(2.21) Lagy = 5(804957 + Os9ay — 019ap) = Gral g

Then we also have
gaﬁraﬂ,v = gaﬂgvargﬁ = O,
and

Rarpe = 08l'y0.0 = Osl'py.0 + Doa gy — Dganl ™,
10



This leads to an equation for the metric g:

Lemma 2.4 (Elliptic equations of g). In harmonic coordinates, the metric g satisfies
gaﬁac%ﬁgw = [_avgaﬂgﬁgao - ogaﬁaﬂgav + avgaﬁaogaﬂ]
+29* o0l — 2Re(Moth — Aar A2).
Proof. By the definition of Ricci curvature, and (2.19), we have
Ricye =¢°° Ravge = 97 (08T 100 — 0ol 870) + 9 Toanly — 9™ T g0,

:Qaﬂ(aﬁrw,a - aorﬁv,a) + gaﬂroa,yrgv
=1+ 1I1I.

We compute the first term /. By the definition of I'ys., in (2.21)), we have

(2.22)

v
YO

1
I :égaﬂ [aﬁ(aygooz + aag'ya - aag’yd) - aﬂ(aﬁg’ya + 879506 - aagﬁv)]

1 (07 1 (e}
= — —9*025070 + =9 (03,9ao + 020Gy — P20 Gap)

2 2
Since, by (2.20)) we have
g 6<a—359a0 - 5835904,8) = _879 ﬁ(aﬁgaa - iaagozﬁ)'
Then
1 Oéﬁ 2 ]‘ aﬁ 1 O‘B 1
I=— 59 aa/jg’ya + 5[_879 (aﬁgaa - §aogaﬁ) - aog (aﬁgav - §a'yga,6’>]
1 1
= - §gaﬁaiﬂg'ya + 5[_a’ygaﬁaﬁgaa - Ugaﬁaﬂgow + 8vgaﬁaaga/8]'

Hence,

: 1 o 1 ey o ey ey v
Rlc’ya = _59 /8824,89"/0 + 5[_879 Baﬂgaa — 0549 ﬁaﬁga'y + 8'ygaﬂaag B] +g BFO‘OA,I/Fﬁfy'

By (2.9) this concludes the proof of the Lemma. 0J

2.6. The motion of the frame {Fy,---,F;;m} under (SMCF). Here we derive the
equations of motion for the frame, assuming that the immersion F' satisfying ((1.1)).
We begin by rewriting the SMCF equations in the form

(2.23) OF = J(F)H(F) + V'F,,

where V7 is a vector field on the manifold ¥, which in general depends on the choice of
coordinates.
By the definition of m and A3, we get

J(F)H(F) = J(F)Re(ym) = Rei(vm) = —Im(ym).
Hence, the above F-equation (2.23)) is rewritten as

(2.24) O F = —Im(¢ym) + VTE,.
11



Then we use this to derive the equations of motion for the frame. Applying 0, to (2.24)),
by the structure equations (2.6) we obtain

O Fy = 0, F; = 0u[—Im(¢pm) + VVF,]
= — Im((0s + iAa) i + Y(Dn + iAa)m) + VI E, + V(I F, + Re(Ayin))
= — Im(93¢m — YALE)) + 0V F, + V(TS F, + Re(Aaym))
= — Im(92¢m) + Re(May V') + [Im(A)) + V,VF,
= — Im(0m — i, Vi) + [Im(yA]) + V,V]F,.
By the orthogonality relation m_LF,, = 0, this implies
(Oym, F,) = 0y(m, Fy) — (m, O, Fy)
= — (m, — Im(92Pm — ida, V1))

= (m, 5 (0% = AV )m)
= — (02 —id, V7).

In order to describe the normal component of the time derivative of m, we also need the
temporal component of the connection in the normal bundle. This is defined by

B = (01, 1).
We have
(Om)* = (0,(v1 +iw))" = Bvy — iBv) = —iB(vy +ivy) = —iBm.
Then we get
Om = —i(0p —iXV)F, — iBm,
which can be further rewritten as
OPm = —i(0M — iIXIV)F,.
Therefore, we obtain the following equations of motion for the frame
(2.25) {&Fa = — Im(0)vm — iXay V) + [Im(YA]) + Vo V] F,,
OPm = —i(0M — iIX V) F,,.

From this we obtain the evolution equation for the metric g. By the definition of the

induced metric g and ([2.25)), we have
atga,()’ - 6t<Foc7 Fﬁ> = <atFom Fﬁ> + <Fa7 8tFﬁ>
= (= Im(93m — Xy VM) + [Im(YA]) + Vo VIF,, Fg)
+ (Fo, = Im(5¢m — iXg,V7im) + [Im(Y X)) + VgV F,)
= gw(lm(z/zj\g) + VQV’Y) + gav(lm(?/)j\g) + vﬁv’y)
= 2Im(¢5\a5) -+ VaVﬁ + VBVQ,
which we record for later reference:

(2.26) Oigap = 2Im(YAap) + Va Vs + ViV,
12



Then we also obtain

(2.27) D,9°" = —2Im(ypA*?) — VoVP — VAV,
(2.28) Ol g = VaGy + VGl — VG,
where G, are defined by

- 1
(2.29) Gag = Im(w)\ag) + é(Va% + VﬁVa).

So far, the choice of V' has been unspecified; it depends on the choice of coordinates on our
manifold as the time varies. However, once the latter is fixed via the harmonic coordinate
condition ([2.19), we can also derive an elliptic equation for the advection field V:

Lemma 2.5 (Elliptic equation for the vector field V'). Under the harmonic coordinate con-
dition (2.19), the advection field V' solves

(2.30) VOVLV7 = =2V Im(A™") — Re(AJ) — Ao A*)V7 + 2(Im (A7) + VAV .

Proof. Applying 0; to go‘ﬁF%, by and we have
09T ) = = 2G°T) ;4 g*° (2VaG — V' Gap)
= — 2G5 4 2V Im(YA™) + AV + [V, VIV
Since
[V, VIV = RicI V7 = Re(A\l) — Ao A*7)VC.
By the harmonic coordinate condition , the above two equalities give the V-equations
(12.30)). O

Remark 2.5.1. Consider an arbitrary choice of coordinates (parametrization) {zy,--- , x4}
for the time evolving manifolds ¥; for ¢t € [0,7]. This yields a representation of ¥; as the
image of a map
F:R?x [0,7T] — R**2,
restricted to time ¢. If 3; moves along the (SMCF) flow ([2.23), then we have the relation
Ot(g“ﬁl“zﬂ) = (V equation).

Here we uniquely determine the evolution of the coordinates as the time varies by choosing
the advection vector field V', precisely so that it satisfies the V-equation (2.30). For this
choice we obtain 9;(g*’ Fzﬁ) = 0. This implies that g®°T"] 5 is conserved for any x € R4, and
thus the harmonic gauge condition is propagated in time.

2.7. Derivation of the modified Schrodinger system from SMCF. Here we derive
the main Schrodinger equation and the second compatibility condition. We consider the
commutation relation

(08, 04m = i(0, Ay — 0uB)m.

t Yo
In order, for the left-hand side, by (2.6) and (2.25) we have
OFOMm = — OF(LF,) = —0P ) - By = X - OF,
= — [0P A + AL(Im(¢AT) + V, V)| E, + AL Im (9 pm — iA,eVom),
13



and
9L0Pm = — 0 [(0M7y — AV F,]
= — 00N — iINJ V) F, — i(0M7 — iAJV )[4, F, + Re(Aaom)]
= — iV (07 —iAV)E, — (077 — iX]V) Re(Aaym).

Then by the above three equalities, equating the coefficients of the tangent vectors and the
normal vector m, we obtain the evolution equation for A

(2.31) OP A + AL(Im(YAT) + V, V) = iV (070 —iAJV7),

as well as the compatibility condition (curvature relation)

1 : o\ aAo o N
0y Ay — 0o B = 2—2()\2 Im(@f@/}m — iMe Vo) + i (0N — iAJV7) Re(Aaom), m)

1 - = 1 _
= §A;(a$¢ + iAo V) + 5(&“’% — AV ") Aao
1 o _

— g[xgy(afw + iAo V) 4+ AL — iAe V)]
= Re(AL0/0) — Im(XLA,,)V".
which we record for later reference:

(2.32) Oy Aq — 0B = Re(AL09) — Im(ALA,6) V7.

This in turn allows us to use the Coulomb gauge condition ({2.16]) in order to obtain an
elliptic equation for B:

Lemma 2.6 (Elliptic equation of B). The temporal connection coefficient B solves
(2.33) V'V,B = —V'[Re(X9,'¢) — Im(AJAo5) V7] + (2Im(p A7) + VAV + VIVP)G5A,.
Proof. Applying V¢ to yields

VIV, B =V19,A, — V' Re[A] (024 + iA5V")].

By the harmonic coordinates condition (2.19)), (2.27) and the Coulomb gauge condition (2.16))
the first term in the right hand side is written as

V0, A, =gV 0, A, = g7 (050,A,, — [7,0:A,) = 971030, A,
=0,(9795A,) — Big™ - DA,
=0, VA, + (2Im(p A7) + VPV + VIV 95A,
=(2Tm (A7) + VAV + VIV 95 A,.
We then obtain the B-equation. O
Next, we use to derive the main equation, i.e. the Schrodinger equation for . By

(2.10)), the right-hand side of (2.31)) is rewritten as
V30 —iAIVT) = V30M7p —iVIN VT —id VL V7.
Hence, we have

(0F = VIVIOAL + AL Im(YA]) + (ALV, VT = XV V) = iVaVA7e,
14



and then contracting this yields
i(0F = VIV 4+ VAIVA* Y = —iX] Im(ypA7).
This can be further written as
(0, +iB = VIV + (Vo +iAs)(V* + A% = —iA] Im (A7),

Hence, under the harmonic coordinates condition ([2.19) and the Coulomb gauge condition
(2.16) we obtain the main Schrodinger equation

0 + g*P 0,081 = iVIVIY — 204,V + (B + Ag A% — iV, A*) — iA] Im( A7)
= VIV = 20AV + (B + A A%)Y — iA] Im(ypA2).

In conclusion, under the Coulomb gauge condition V*A, = 0 and the harmonic coordinate
condition go‘ﬁFlﬁ = 0, by (]2.34D, (]2.14'), (]2.22'), (]2.3()[), (]2.17[) and 1' we obtain the
Schrodinger equation for the complex mean curvature

(2.35) {w”p + 906051 = i(V = 24), VY + (B + Ag A% = Vo A%)ip — iA] Im(yX7),

(2.34)

¥(0) = %o,

where the metric g, curvature tensor A, the advection field V', connection coefficients A and
B are determined at fixed time in an elliptic fashion via the following equations

(Vidsy — Viday =0, VN5 = Vi,
9" 02 p9s = [-0,9"" 05900 — 0,9 0 gory + 01905059"”]
+ 29" Toa i, = 2Re(Moth = AarA),
VoV, VY = — 2V, Im(pA?) — Re(ANlt) — Moo A7)V
+2(Im(Y A7) + VAV,
V'V, Aa = Re(¥A — AJAG Ay + V7 Im (A Aao),
V'V,B == V' [Re(A9:'¢) — Im(A]A5) V7]
+ (2Im(PA7) + VPVT 4+ VIVP) 95 A,

Fixing the remaining degrees of freedom (i.e. the affine group for the choice of the coordinates
as well as the time dependence of the SU(1) connection) we can assume that the following
conditions hold at infinity in an averaged sense:

Ao0) =0, g(oo) =14, V(o)=0, A(c0)=0, B(occ)=0

These are needed to insure the unique solvability of the above elliptic equations in a suitable
class of functions. For the metric g it will be useful to use the representation

g=1Ia+h

(2.36)

\

so that h vanishes at infinity.
Finally, we note that the above system ([2.35))-(]2.36| is accompanied by a large family of
compatibility conditions as follows:

(i) The trace relation (2.4)).
(ii) The Gauss equations (2.8) connecting the curvature R of g and A.

(iii) The symmetry property (2.15).

15



(iv) The Ricci equations ([2.13)) for the curvature of A.
v) The Coulomb gauge condition (2.16) for A.
(vi) The harmonic coordinates condition ([2.19) for g.
)
)

(vii) The time evolution (2.26)) for the metric g (2.26).
(viii) The time evolution (2.31]) for the second fundamental form A .
(ix) The time evolution (2.32) for A .
These conditions will all be shown to be satisfied for small solutions to the nonlinear elliptic
system ([2.35]).
Now we can restate here the small data local well-posedness result for the (SMCF) system
in Theorem in terms of the above system:

Theorem 2.7 (Small data local well-posedness in the good gauge). Let s > g, d>4. Then
there exists g > 0 sufficiently small such that, for all initial data 1y with

%ol s < €0,
the modified Schriodinger system ([2.35)), with (X, h,V, A, B) determined via the elliptic system
(2.36)), is locally well-posed in H*® on the time interval I = [0,1]. Moreover, the mean
curvature satisfies the bounds
(2.37) [©]lezxcs + [[(A, 1, VLA, Blles S llboll -

In addition, the auxiliary functions (X, h,V, A, B) satisfy the constraints (2.4)), (2.8)), (2.15)),
B13), (16) and [19), and the time evolutions (2.26), [231) and (232).

Here the solution v satisfies in particular the expected bounds

”w”C[O,l;HS] ,S ”wOHHS

The spaces [2X* and £°, defined in the next section, contain a more complete description
of the full set of variables ¥, \, h, V, A, B, which includes both Sobolev regularity and local
energy bounds.

In the above theorem, by well-posedness we mean a full Hadamard-type well-posedness,
including the following properties:

i) Existence of solutions ¢ € C[0, 1; H?], with the additional regularity properties (2.37).
ii) Uniqueness in the same class.
iii) Continuous dependence of solutions with respect to the initial data in the strong H*
topology.
iv) Weak Lipschitz dependence of solutions with respect to the initial data in the weaker
L? topology.
v) Energy bounds and propagation of higher regularity.

3. FUNCTION SPACES AND NOTATIONS

The goal of this section is to define the function spaces where we aim to solve the (SMCF)
system in the good gauge, given by . Both the spaces and the notation presented in
this section are similar to those introduced in [21], 22, 23]. All the function spaces described
below will be used with respect to harmonic coordinates determined by our gauge choices
described in the previous section. We neither attempt nor need to transfer these spaces to

other coordinate frames.
16



For a function u(t,x) or u(z), let & = Fu denote the Fourier transform in the spatial
variable z. Fix a smooth radial function ¢ : R? — [0, 1] supported in [—2,2] and equal to 1
in [—1,1], and for any i € Z, let

pi(x) = p(x/2) — p(x/271).
We then have the spatial Littlewood-Paley decomposition,

S RD)-1 Y sD)-1

where P; localizes to frequency 2! for i € Z, i.e,

F(Pu) = @i(§)u(§),
and
So(D) =Y _P(D), Si(D)=P(D), fori>0.

i<0

For simplicity of notation, we set
J )

uj = Sju, U<j = ZSiu, Us; = ZSiu, for 7 > 0.

=

=0

For each j € N, let Q; denote a partition of R? into cubes of side length 27, and let {xq}
denote an associated partition of unity. For a translation-invariant Sobolev-type space U,
set l;’ U to be the Banach space with associated norm

fully = 3 Inull
QeQ;

with the obvious modification for p = oco.

Next we define the [?°X?® and [2N* spaces, which will be used for the primary variable v,
respectively for the source term in the Schrodinger equation for . Following [211 22 23],
we first define the X-norm as

1
|ul|x = sup sup 2 2||u||L2L2([0,1]><Q)-
leN QeQ;

Here and throughout, LPL? represents L} L. To measure the source term, we use an atomic

space N satisfying X = N*. A function a is an atom in N if thereisa j > 0 and a Q € 9,
such that a is supported in [0, 1] x @ and

i

lallL2o.ux@) S 272

Then we define N as linear combinations of the form
f= chak, Z ck] < 00, ay atom,
k k

with norm

1 flln = inf{z lex| - f = chak, ar atoms}.
% k

For solutions which are localized to frequency 27 with j > 0, we will work in the space

X; =2":X NL®L2,
17



with norm A
A
Jullx; = 22[lullx + [Jullz L2,
One way to assemble the X; norms is via the X* space
lullfes =D 2% Sjul %,
Jj=0

But we will also add the [? spatial summation on the 27 scale to X;, in order to obtain the
space (% X; with norm
1
lullx, = (D lxqullk,)'".
QeQ;
We then define the space [P X* by
2 2j 2
[ullixs = 22 ]S||Sju||l§.’xj~
Jj=0
For the solutions of Schrodinger equation in (2.35)), we will be working primarily in 2X*,
which is defined by
[ullexs = llullexs + 10wl L2ms-2.
We note that the second component, introduced here for the first time, serves the purpose

of providing better bounds at low frequencies 7 < 0.
We analogously define

N; =2:N + L'L?,
which has norm

Ifllv, = inf  (Ifally + 1 fallzize),
f=22f1+f2
and

1B = 32118, £ [,

Jj=>0
Here we shall be working primarily with [2N*.
We also note that for any j € N, we have

sup 272 ||ull 22 oaixg) < [ullx,
Qe

hence
el € 272ulls s

This bound will come in handy at several places later on.
For the elliptic system (2.36]), at a fixed time we define the H® norm,

AR Vi A, B) s = ([ Ml[as + (1D ser + [[[ DIV ][ s + | DI Al s + ([ D] B

In addition to the fixed time norms, for the study of the Schrodinger equation for ¢ we
will also need to bound time dependent norms £° and £ for the elliptic system ([2.36)), in
terms of similar norms for . For simplicity of notation, we define

lullzee = D17 Soullppoe 2 + D 2% Sjullfe o o

§>0

Hs—1.

18



Then the Z°* spaces are defined by
lullzoe = lullzoc + DI Bt gz

For the A\, V, A and B-equations in (2.36), we will be working primarily in Z%*, Zs*+!,
Z'5+1 and ZY*, respectively.

On the other hand, for the metric component h = g — I; we need to introduce some
additional structure which is associated to spatial scales larger than the frequency. Precisely,
to measure the portion of h which is localized to frequency 27, j € Z, we decompose P;jh as
an atomic summation of components h;; associated to spatial scales 2! with [ > |j|, where
h;, still localizes to frequency 27, i.e.,

Pih = hj.
>

Then we define the Yj-norm by

1Phlly; =~ nf > 27 Bl oo 2

ih=221> 15 Mt >0

Assembling together the dyadic pieces in an [ Besov fashion, we obtain the Y ¢ space with
norm given by

-
[hl[3es = D 22T Pihlf3,.

J<Z

Then for h-equation in ([2.35]), we will be working primarily in Y**2, whose norm is defined

by
|A]lys+2 = ||h]

yers VO s =IAlL g s s + [hllgrese,

2

where the space Y* = Y16 n Zls, Collecting all the components defined above, for the
elliptic system ([2.36)), we define the £ norm as

1O bV, A, Bl = [MLgoe + [bllyess + [Viznens + Al + Bl
and the £° norm as

(A, h, V. A, B)|

Es — ||(/\7 h’v V,A, B)

gs + |0 b, V, A, B)|| 2945—2.

Since we often use Littlewood-Paley decompositions, the next lemma is a convenient tool
to see that our function spaces are invariant under the action of some standard classes of
multipliers:

Lemma 3.1. For any Schwartz function f € S, multiplier m(D) with ||F~(m(§))||z: < oo,
and translation-invariant Sobolev-type space U, we have

Im(D) fllo S IF (m(E) ol £

We will also need the following Bernstein-type inequality:
19



Lemma 3.2 (Bernstein-type inequality). For any j,k € Z with j+k >0, 1 <r < 0o and
1 <qg<p< oo, we have

1_1
(3.1) 1B fllire S 2"l P)||Pkf||l;m,

~

o d
(3.2) @) Feollgzrs S I fcollgpmre, forp> ——.

Proof. We begin with the Bernstein-type inequality (3.1)). Using the properies of the Fourier
transform, Py f is rewritten as

Bof = (F o) (@ —y)Pufly)dy =2 | K22 —y))Sef(y)dy,

RY Ré
where K(z) = F'p(z). Then

1Pl = 20 Ixe(o) | KA = )Pl

QeQ;
<23 ao) | K =)Ll — ) Pl )yl
QeQ; Rd
+ 2kd||K(2kx)1>M(2kx) * Pkf“l;.m
— [+ 1I,
where d(Q,Q) = inf{|lz —y| : € Q,y € Q} and M is a large constant. Since j + k > 0, for

any fixed () € Q; there are only finite many Qe Q; such that d(Q, Q) <27%M. Then from
Young’s inequality and 14 1/p = 1/q+ 1/q we can bound I by

ISy Y IK@ )P 50" S 2PN Pf g
QREQ;) d(Q,Q)<2+*M,QcQ;
On the other hand, since |K (z)] < (x)™ for any large N, for I we have
IT S 2MEM)12%2 V100 (252) || 11 || Sk f
S MY P fllis o,
which can be absorbed by the term on the left. These imply the bound .
Next, we prove the estimate . The left hand side of is decomposed as

IGoh 5 Feollymps S 3 Ixale) [ @)% ol = y)dyle s

l;fLP

QEQo
<Y Ixe(@) / ()™ fao( — y)dy [P o
QeQy ly|<1
+ Y lxale) [ W) Y xofeole — iyl
Qe lyl>1 Qe
=17 +1I3.

Then by (3.1) we bound I; by

I S [f<ollmpoere < Nl f<ollizroore-
20



On the other hand, by Hélder’s inequality and (3.1)), we bound I by

BE Y (S el [ 0 g fale — v)lp)

(e, €0 |
<S> OO / Xo W)@ Pdyllxa f<ollb )"
QeQp WE lvl>1

< <ollip i / (5 DPdy)

SHfSO”l}JLOOL?y
which gives the bound (3.2), and thus completes the proof of the lemma. 0

Finally, we define the frequency envelopes as in [21}, 22] 23] which will be used in multilinear
estimates. Consider a Sobolev-type space U for which we have

oo
lallZy = ISkl
k=0

A frequency envelope for a function u € U is a positive [*-sequence, {a;}, with
1Sjullv < a;.
We shall only permit slowly varying frequency envelopes. Thus, we require ag ~ ||ul|y and
a; <2007 Mg, k>0,0<6<s—d/2

The constant 6 only depends on s and the dimension d. Such frequency envelopes always
exist. For example, one may choose

(3.3) a; = 27 [Jully + max 277 H] Sy .

4. ELLIPTIC ESTIMATES

Here we consider the solvability of the elliptic system ([2.36)), together with the constraints
(2.4), (2.8), (2.15)), (2.13), (2.19) and (2.16)). We will do this in two steps. First we prove that

this system is solvable in Sobolev spaces at fixed time. Then we prove space-time bounds
in local energy spaces; the latter will be needed in the study of the Schrédinger evolution

[@-35).
For simplicity of notations, we define the set of elliptic variables by
S = ()\7 h? V? A? B)?

Later when we compare two solutions for (2.36]), we will denote the differences of two solutions
or the linearized variable by

08 = (0N, 6h, 0V, 6A,6B).

Our fixed time result is as follows:

Theorem 4.1. a) Assume that ¢ is small in H® for s > d/2 and d > 4. Then the elliptic
system (12.36) admits a unique small solution S = (A, h,V, A, B) in H*, with

(4.1) 1S]l32s < [[¥]
21
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In addition this solution has a smooth dependence on v in H® and satisfies the constraints

29, €3, €0, B1), E19) and €19).
b) Let iy and (A, h,V, A, B) = S(¢) be as above. Then for the linearization of the solution

map above we also have the bound:

(4.2) IDS(60) |l S Nollge, o € (d/2—3,5].

Moreover, assume that p, and sy are admissible frequency envelopes for v € H?, § € H?
respectively. Then we have

(4.3) 1SkSlae < Br + s1[|0S || 2o
c) We also have a similar bound for the Hessian of the solution map,

(4.4) D28 (019, 6290) 3o < N3] e | 028 | 11z
with 0,01,09 € (d/2 —3,8],01 + 09 =0 + 5.

Remark 4.1.1. Here we solve the elliptic system in the function space H?® for s > d/2,
which is more suitable for the nonlinear estimates of y-equation. Nevertheless, this system
can be solved in a similar fashion for the full range of indices s above scaling, namely
s > d/2 — 1. However, in the additional range d/2 — 1 < s < d/2 one needs to replace the
above solution space H® with a slightly larger one,

IS

7 = [IAl

ws + [Pl g + [|DWV ] e + [D]A[ o + [|D] B[ o1,

where o = 25 — d/2. Then the elliptic system (2.36) admits a unique small solution S in H*
with [|Slz. < [l

Proof of Theorem[{.1]. a) The proof is based on a perturbative argument. We rewrite the

system ([2.36)) in the form

HS.

(aa)\aﬂ = 8,8¢ + Hl)\a
Dudsy — Oshay = Hon,
(45) Ag’YU = Hg7
AV = Hy,
AA, = Hy,
(AB = Hy,

d . :
where A = >"%_| 92 and the nonlinear source terms are given by

Hiy =iAg) — h" 0 g + Lapo A,
Hyy = —iAgAgy + iA5Aay + Daro NG — Doy 0 A7,
Hy == 0825976 — 0,9 5900 — 059°° DsGary + 0190500 g™’
+ 20T o 1%, — 2Re(Myoth — Aay A2),
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Hy = — VOVLVT + AVT — 2V, Im(9 A7) — Re(Alt) — AaoA2)V7
+ 2(Im (A7) + VAV,
Hpy=—V'V, A, + AAg + Re(¥A] — MG A + VT Im(AT Aos),
Hp =—N'V,B+ AB — V" Re[X (0 + iAs5V7)]
+ (2Im(Y A7) + VAV + VIV 95 A,.

In order to prove the existence of solutions to (4.5) at a fixed time for small ¢ € H®, we
construct solutions to (4.5)) iteratively. We define the sets of elliptic variables

S — (AM) B Y 40 By
at each step, based on the scheme
raaA((lnB—H) _ aﬁw + Hg),
n+1 n n
80‘)‘(67+ = aﬂ)‘gwﬂ) = HQ(A)v
n+1) __ n)
Agﬁ/o’ ) - H‘é 9
AV — g
AN = ),
AB"Y = g

with the trivial initialization
S© =1(0,0,0,0,0), ¢©@ =nr" 41,
where HY, HY, 1 HEY, HYY and HY are defined as Hyy, Hsy, H,, Hy, Hy and Hp
with
S=8m",
We will inductively show that
182 < Cll4)]

with a large universal constant C'. This trivially holds for our initialization. Then using a
standard Littlewood-Paley decomposition, Bernstein’s inequality and the smallness of our
data 1) € H*® in order to estimate the source terms Hl(’;), Hgf), Hén), H‘(/n) , Hl(f) and Hj(gn),
we obtain

Hs,

1S D s < Nl + 18 Beo(1+ 1S lle)™ S [

From the iterative scheme (4.6) and ¢ € H?® small, we can repeat the same analysis for
successive differences in order to obtain a small Lipschitz constant,

|STH) — SM || < ||S™ — S|
Hence the elliptic system ([2.36]) admits a small solution

S = lim 8™ ¢ H°.

n—00

HS.

HS.

The uniqueness and the Lipschitz dependence of the solution on 1 are easily obtained by
similar elliptic estimates.
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Next, we prove the solution satisfies the constraints (2.4)), (2.15), (2.13)), (2.16)), (2.19) and
(2.8). To get started, let us summarize the compatibility conditions we need to verify:

V=0""Xag; Mg =Nsa;  Vads— VA, =Im(A\)\5); VYA, =0;
9 Taps =0;  Ricys = Re(Math — Aad%);  Rogas = Re(AypAoa — Madas).
We need to show that these constraints are satisfied for solutions to the elliptic system ([2.36]).
We can disregard the B and V' equations, which are unneeded here.
To shorten the notations, we define
Cl = ¢ - gaﬂ)‘aﬁa Ca%ﬂ = )\aﬁ - Aﬁaa
035 = vaAg — V5Aa - Im()\aw/_\wﬁ), C4 = VQAQ, 055 = gaﬂrag’(;,

C%5 = Ricys — Re(Aypth — Ao X%),  CF Rovas — Re(Myshoa — Mados)-

v oyaB

Here C? and C? are antisymmetric, C% is symmetric and C7 inherits all the linear symmetries
of the curvature tensor.
Our goal is to show that all these functions vanish. We will prove this by showing that

they solve a coupled linear homogeneous elliptic system of the form

ViCh = vAeCiy,

AAC? = A+ 9)(CP+ CO+ CT) + (N + M) C?,

A,C? = RC? + V(C®A) + V(AVC? + VAC?),

A,C* = V(COA) + RC? + V*(\C?),

A,C? = RC® + V(C') + A\VC? + VAC?,

1
S, = 5(V505 + Vo C3),
V‘SCZ’YQE + VJC’%&B + VWC'ngB - O,
V"CZ = Vanﬂ — VgCSa + V(AC + \C?).

yapB

Here the covariant Laplace operators Ay, respectively Ag‘ are symmetric and coercive in H*.
We consider these equations as a system in the space

(CY,C%,C3,C*,C°,C% CT) e H' x H' x H' x H' x H' x L? x L*

using H' bounds for the Laplace operator in the second to fifth equations, and interpreting
the last two equations as an elliptic div-curl system in L2, with an H~! source term. Since
the coefficients are all small, the right hand side terms are perturbative and 0 is the unique
solution for this system. The details are left for the reader, as they only involve Sobolev
embeddings and Holder’s inequality.

To complete the argument, we now successively derive the equations in the above system.
In the computations below, it is convenient to introduce several auxiliary notations. The
curvature of the connection A acting on complex valued functions is denoted by

F.3 = 0,43 — 0sA,

so that we have

(VA Vil = iF o).
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We also set

OZWOZIB = RU"Wﬁ - R07a57 RU"/OC,B = Re(/\Wﬁj‘aa - )"Va/\aﬁ)a
respectively
% = Ric,s —Ricys,  Ricys = Re(Agth — Mad%), R = g7 Ricy,

and

Cly=Fog—Fog,  Fog:=Im(As, \y).

[}

The equation for C'. This equation has the exact form
Al _ TAa2
V5O = V5O,
This is obtained by ([2.14]) directly.

The equation for C?. The full system for C? has the form
(4.7) AJC2 =(A+¢)(CP+ CO+ CT) + (N + \y)C2.
By A-equation ([2.14]) we have
VATV N =[VA, VEIAs + VAV

= RiCap Mg + Roapp)™ +iC3 N5 + i Im(ANua) N5 + VLV
Then we use C%, C” and C? to give

A2 _ 6 6 7 o 7 o

Ag CO&B —Cau)\uﬁ - Cﬁu)\lua + Caaﬁp)\ B— CO'/BO&;L)\ #
+iCE N5 —iC25 N o +iCo 50 + C* (N + ).

Hence, the C%-equation (4.7) follows.

The equation for C3. This has the form
NGy = V5(C8A%) = Va(C8A") + RpagsC>7° + Ricas O — Ricgs C*°
+ VT Im(\7(VACZ, — VAC2,) + VAN,C2,).

a~of

(4.8)

To prove this, it is convenient to separate the left hand side into two terms,
NGO, = ([Ag, ValAs — [Ay, Va]Aa) + (ValgAs — VA A, — AgFog) =T + 11
For the commutator we use the Bianchi identities to compute
I =[VoV,, VA3 —[V'V,, VA,
= V7 (Ryaps A’ — RopasA) + (Roaps — Ropas)VIA? + R 05V Ag — R7 5,5V Ay
= V7 Rpaos A’ + 2Rpa0s V7 A® + Ricys VP Ag — Ricgs VO A,
= (Vs Ricas —VaRps) A’ + RparsF7 + Ricas(Fs + Vg A%) — Ricgs(F° + V4, A%)
= V3(Ricas A°) — Va(Ricgs A°) + RpansF7° + Ricas F*5 — Ricgs F.,.
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On the other hand for the second term we use the A equation in (2.36|) to write
IT = V,[Rics, A%] — V[Ricao A7
+ VoV Im(Aye A7) — VgV Im (Ao A%,) — Vo V7 Im(Aa0A%)
i:[[1 -+ I[Q

The first term I, combines directly with the first two terms in /. For the second we commute

Iy = RapsF} + RangsF), — RpoosFo, — Rpyas )+
+ V7 (VaIm(MeA%) — Vs Im(AeA%,) — V, Im(AagA%))
= — RiCa(; F&B + RiCﬁg F&a - Rﬁams:ﬁw&
+ V' Im(A [ (VACZ, — V4C2,) + VIA3C2%,).

a~of

Summing up the expressions for I and I we obtain (4.§)).

The equation for C*. This has the form
1 1 - _
(4.9) A,CH = — V"(CﬁUAV) — §[V°‘, V“/]Cia — §V7V°‘ Im((]ﬁv)\aa +A7C%00).
To prove it we commute A, with V¢
AVYA, = V[V, VA, + [V,, VYV A, + VA /A,

1 N -
= — V" (Ricus A) + 5[V7, VIF g + V¥ (Ricas A7) + VV'E,,

In the last term we can symmetrize in « and -, and the desired equation (4.9)) follows.

The equation for C°. Here we compute
(4.10) AgC'g = — [V, V5]C% — Re(V(Clep) — QXQUVQC% +V5(A\*7C2)).
We can rewrite the g equation (2.22)) as
—~ 1
Ricas = Ricep —FE(VQOE + V/BCZ)

which by contraction yields 5
R=R+V*C>,
To get to A,C?, by the above two equalities we write

L AGCE = V¥ (Ricqs — Ricas) — 5[V*, V5103 — SVs(R ~ R)
= (V*Ras — %VBR) - %[VO‘, Vs]CS = (V*Rap — %vﬂé).
The first term drops by twice contracted Bianchi,
9" (Vo Rupua + Vi Rgypua + VaRiua) =0,
and the last one is quadratic in A and yields C' and C? terms,
(V*Rap — %vﬁé) = Re(%vg(cﬂzﬁ) — AOVICE, + %vg(wcga)).

This completes the derivation of (4.10)).
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The equation for C°. This has the form
1
(4.11) Cs, = §(V7(J’§ +V,C2).

Indeed, by the g-equation in ([2.36) and its proof, we recover the Ricci curvature

yo~v*

_ - 1
Re(Moth — Ao A®) = Ricy, —5(870(? + &,C;r’) +Tv P
This implies the relation (4.11]) immediately. O

The equation for C*. By the second Bianchi identities of Riemannian curvature and the
following equality

V(; Re()\%gj\ga — )\,yaj\ag) + VU Re()\(;gj\w — Aga;\yﬁ) + V,y Re()\gﬂj\ga — )\gaj\(gg) = 0,
we have the counterpart of the second Bianchi identities
V(;CZ,Y&B + VUC’?(Saﬁ + V’chaaﬂ = O,

which combine with the algebraic symmetries of the same tensor to yield an elliptic system
for C7. Precisely, using the above relation we have

VOO 5= VaCls — V5CS, + VAC! +AC?),

which combined with the previous one yields the desired elliptic system, with C°® viewed as
a source term. 0

yoB

b) Assume that S and s; are admissible frequency envelopes for S € H? and S € H?,
respectively. In view of the bound (4.1)) and of the smallness of ||| gs, it suffices to prove
the difference or linearized estimate

(4.12) 1Sk0S ||1e S 15600 e + (Bel||| s + k[0S |37 ) (1 + ||2]

If this is true, then the bound follows. Thus, by the definition of frequency envelope
, and the smallness of ¢y € H*, the bound with operator § = Id and 0 = s
also implies the bound .

As an intermediate step in the proof of , we collect in the next Lemma several bilinear
estimates. The proof of this Lemma is standard by Littlewood-Paley decompositions and
Bernstein inequality.

Hs)N

Lemma 4.2. Let d/2 -3 < o0 < s, d> 3, then we have
IVS(hh) e S VSRl [V Al s + IV A s | VR o,
16 e S oMo [V Al e + A2 |V OR| 10
IV6(AR) 1101 S IVSAl s [ Vhlls + IV All e[ V5] 1o

Now we turn our attention to the proof of (4.12)). Here we first prove the estimates for
dA. By A-equations in (4.5) it suffices to consider the following form

OabAas = 0300 + GAY + ASt) + SKVA + hVSA + VShA + VA,
OabAgy — O30Aay = OAN + ASX + VShA + VASA.
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By the relation
(4.13) AE) = €PN s +1€2 (AT —eXT) - €,
we obtain
1Sk0M 210 SISk 1o + ||| D] Sk[6AN 4 ) + A(GA + 0¢) + SAVA + hV A
+ VOhA + VhoN || o
SISk0Y e + 8k /|S e + skl[0S -

Next we provide the estimate for JA; the other estimates can be proved similarly. By
A-equation in (4.5) and Lemma [4.2] it suffices to consider the following form

ASA =5hV?A + hV2SA + VShV A+ VhVIA + VShVhA + (Vh)*5 A
+ SANA + Vh) + N2(6A + VEh) + VASA + AVI.

Using Littlewood-Paley trichotomy and Bernstein inequality, we bound all the nonlinear-
ities except VAOA and AV by

|1D|*Sk(0RVZA + hV25 A + VShV A + VhVIA + VShVRhA + (Vh)?*6A)|| o
+ 1|D|7 Sk (GANA + VR) 4+ N2(§A + V6h))|| o
SklISls + skll6S |3 ) (1 + (S|
For the remainder terms, we can also bound their low-frequency part by
D] So(VASA + AVEA) |12 < 1S0(VAIA + AVON) [ 11 S Bol| Al
and bound their high-frequency part Sy for k£ > 0 by

).

Hs,

11D Si(VASA 4+ AVON || 0 < 8kl| M| s + 5k ||| 220 -
This completes the proof of (4.2)).
c¢) Using the similar argument to b), we have
1D?S (819, 6ot) e S 1018 1o (1028 [la0s (1 + (0[] 724) ™
and
D28 (019, 6200) 1o < 11618 19451028 e (1 + [l )™

Then by the smallness of ¢ € H*, (4.2) and interpolation, the above two bounds imply

I1D*S (614, 629) e < 10190l s |62 12
This completes the proof of (4.4)). O

Next we establish bounds for the above solutions in space-time local energy spaces:

Theorem 4.3. a) Assume that v is small in I*X® for s > d/2, d > 4. Then the solution
(A, h, A, V, B) for the elliptic system (2.36]) given by Theorem belongs to £° and satisfies
the bounds

(4.14) ISlles < 1ol

with Lipschitz dependence on the initial data in these topologies. Moreover, assume that py
is an admissible frequency envelope for 1 € 1?X*, we have the frequency envelope version

(4.15) | Sk

e S P
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b) In addition, for the linearization of the elliptic system (2.36]) we have the bounds
(4.16) 108 le= < 109 ]lex-
foro e (d/2—1,s].
Proof of Theorem[{.3 For the elliptic system (4.5)), we will prove the bound for differences
0S
N
(4.17) 168 le= < N9¢llex- + H55||sff||5|!ss(1 +[Sller)

If this is true, by a continuity argument the bounds (4.14)) and - follow.
Assume that 5p and s, are admissible frequency envelopes for 6§ € €7 and S € &°,
respectively. We can separate the bound (4.17)) into two parts, namely

1038 | 2ro2 S 160 llexr (1 + [l sro-2)

respectively

(4.18) 15408 |l S pr + (Bal|Sles + 51 ]16S]|e7)( e) "

Here one can think of the first bound as a fixed time bound for the linearization of the
elliptic system ([2.36)), square integrated in time. As such, this is a direct consequence of
the bound with argument 0;01 and regularity index o — 2, and the bound with
01 = 04,09 = 0,00 =5 — 2,00 = 0 in Theorem So it remains to prove .

If the bound ([4.18) holds, then by the bound (4.3)) with 6 = 8;,0 = s — 2 and with
d = Id,o = s, the bound (4.15|) follows.

As an intermediate step in the proof of , we collect in the next Lemma several
bilinear estimates and equivalent relations.

Lemma 4.4 (Bilinear estimates). Let s > d/2, 0 < o <'s, d > 4, assume that h € Y*, then
we have

(4.19) ke < IAllyelAlly-,
(4.20) [ARl[z00 S (M |zo ([ ]l s,
(4.21) 1(AR) | 210 S [ Allzee [ o]l

As consequences of these bounds, for h*? = g®% — §°% h,s = gap — Sap, \*P = go"yx\g, /\g =
9N\, Ve = gV and A* = g*P Ag, assume that ||hags|ly-+1 < 1, we have
[hapllyrst & [[B% ] yos,
XNl z0.0 = [|AG]|z0 & [ Aagllzow
Vallzrer = [[V]z10,
[Aallzrr = [|A%|Z10
Proof of Lemmal[{.4]. We do this in several steps:

Proof of the bound (| - First, we consider the Y-norm estimates. For the high-low
interaction, for any decomposition P; h = Zl>| i g, we have

1Y~ (hiahp)lly, D027 (hahaei)lproere S 27 Mgl poe rellhsl oo roe-

12131 1213l 1213l
29



Taking the infimum over the decomposition of fzj yields

1D (hahep)lly; S 1By, 1Al e,

24¥]

which is acceptable. Similarly, for the low-high interaction, we have

I (Pejhhi)ll gorose S20E7007 5000 0802 DR | e o] Py,

12131 k<j

SHVBHLWHU—l HPthyd/Z—ka,s,

which is acceptable.
Next, for the high-high interaction, when j < 0 we rewrite it as

Z P;(P;,hP;,h) + ZPPhPh

J<j<-j —Ji<n

Then we bound the first term by

2(4/271=0) Z P Plilpjlh)HY]

1<j1<—3
SN PR Py Bl e
J
I<ji<—3
2 S PRl poege | Publ, oo
I<ji<—3

2|V heollig oo 12l Vsollz oo 2 + 2647|210 |1 B| 0.

We bound the second term by

2(d/2-1-0)j Z (P h Py h)|ly, S Z 200 Mﬂl”(Pythhh)Hll LeLt

—J<i1 —J<n

N Z Z(dﬂs)ﬂjlHleh”l?leL?||leh||l§1LooL2
—i<j1

2| Rl 10| Bl 1.
When j > 0, we have

277\ Py(Py, hPy by,

Jj1>J
< Z o(o—1+d/2)j+j1 ||(ijLleh)j||l} [ooLl
1
J1>J
< Z 2 =1+d/2G=0)| P; h|| 1.0 || Py, 1| 1.s,
J1>J

which is acceptable.
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Secondly, we consider the Z1“*l-norm estimates. For the low-frequency part, we have
IV (hh)<ollizroe 2 SIVA<ollizreepellhi<oll oo + Y Il(hihs)<ollizpoe e
§>0
Slihllzrollbllzs.

For the high frequency part, by Littlewood-Paley dichotomy, we have
23| ()l

S27 | Bglliz oo 12 byl oo + 27 Iyl pooroe 1Byl + D 274 D7 )| (i) 2o 1
=)
Sl e IRl oo + [Pll 7o sl s + D 270020 DNy o o | oo 2,
2]

which is acceptable. This completes the proof of (4.19)).

Proof of the bound (4.20). First we consider the Z%®?-norm estimates. For the low-
frequency part we have

1(hN)<olliz ooz SliP<ollpooros | A<ollizroore + Y 2972 || Ayl poo r2 || 2 oo 2
0 0 J
7>0
S|z

)\HZO,U.

For the high-frequency part, by the Littlewood-Paley dichotomy, we have

27| (M)jllizzoe e S Y 277 N oo 2 s 2o 2 + 277 1A 2o 2 | o 21
I<j
+ ) 27002 By | A oo 2,

I>j

which implies

Q27N (0N e )2 < Bl [N 75

>0
This completes the proof of (4.20)).

Proof of the bound (4.21)). For the low-frequency part, by Bernstein’s inequality we have

IV (Ah)<olliproere SIV(A<oh<o)llzrors + D IV(Ajhy)<olliproere
7>0
SIVA<ollizroor2[Vh<ollzoorz + [V A<ol| o2 || Vh<ol| 2o 2
+ 329204 oo ol oo 12
7>0
SIA[ zrol[R][ z1.s
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For the high-frequency part, by Littlewood-Paley dichotomy we bound the high-low and
low-high interactions by

27M)| Sk (Arhak + Ackhi) 2 oo 2

S27 (| Arlliz oo 2 1Al e poe + | A<l oo oo 1B lli2 oo 12)
SIAkllzee Al 2 + [[All e 1kl 20,

which is acceptable. We bound the high-high interaction by

278> "11Sk(Ajhy) iz pere

>k
SN 22 A2 e
>k
<Y 2otkmigle k2 4, lizzeerellhjll o2,
>k
which is also acceptable. Hence, we conclude the proof of the bound (4.21])). O

We now turn our attention to the proof of (4.18)).

Step 1. Proof of the elliptic estimates for \ equations. By the A-equations and Proposition
[4.4] it suffices to consider the following simplified form of the equations:

OabAas = O501) + SAY + AS1h + SV + AVEA + VShA + VASA,
OabAgy — Og0Aay = OAN + ASX + VShA + VASA.

By the relation (4.13)) we have for any k£ > 0

1SkOA|| 200 S |SKRY|| 0.0 + || Sk| DI AW + ) + A(6 + )
+ ORVA + hVOA + VEhA + Vho]|| zo
S D+ 35|S]es + 58|08 || e

In order to bound the low frequency part k = 0, we use the relation

(4.22) F(t) = £(0) + / 0. f (5)ds.

Then we have

[fllizreeze SOz + 0| 22
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Using this idea, by Sobolev embeddings we have
1S00A iz o2 S 1SRV zoe 2 + 1So| DI A(W + A) + A(% + 6A)
+ 0hAV A + hVIX + VShA + Vhi ] ngLooLz
< [1S00% |20
+ [|So| DI MOA(W + X) + A(5¢ + S\) + SAVA
+ hVOA + VIhA + VhOA](0)]| 2
+ [|So| D' O[S A( + A) + A(6¢ + 6A) + AV A
+ hVOA + VI + VhOA]|| 212
< po + Sol|S
The high frequency part is obtained by a standard Littlewood-Paley decomposition and
Bernstein inequality. This gives the elliptic estimate for the d \-equation.

Step 2. Proof of the elliptic estimates for V., A and B equations. By the V, A, B-equations
and Proposition [4.4] it suffices to consider the following form

AV = hV?V + VAVV + VAVAV + N (A +V + Vh) + AV,

AA = hV?A+ VAV A+ VAVhA + N2 (A+ Vh) + V(A\?),

AB = hV?B + V(AVA + (V + A)A?) + N2V A + VA(AVA + (V + A)N\?)
+VVVA+ VhVVA.

The proofs of the three elliptic estimates for the above equations are similar, so we only
prove the elliptic estimate for the linearization of A-equation in detail, i.e.

ASA =5hV?A + hV?6A +V6hV A + VhVSA + VShVhA + (Vh)?0A
+ SANA + Vh) + A2(§A + VEh) + VASA + AVIN.
We bound all the nonlinearities except VAJA and AVIA by
1|D|2Sk(0hV? A + hV?6 A + V6hV A + VhVSA + VShVhA + (Vh)?5A) || 21001
+||D] 28K (BANA + Vh) + N2(SA + VSh)) || gros
S GllSlles + sklldSle) (1 + [[Slle)™,

for o € (d/2 — 1,s]. All terms are estimated in a similar fashion, so we only bound the first
term JhV2A.
For the low-frequency part we use the relation (4.22) to bound the second term 6hV?A by

val(fshVQA)SOH%Loom
S IVTHORV?A) 0(0)]] 22 + [V 0 (6hV2A) <o 212
< N(6hV2A)<0(0) || p2ascarey + [|0(6hV A) <ol 2 p2asare)
S Rl zea|Allzen + IV OOR p2 o1 || Al| 151 + [|6R]| 1,042 | VOLA| L2y
< |16hz10+2 [ All g1 s
A minor modification of this argument also yields

IV (6RVZA)<olliprere S 50llS
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For the high-frequency part, by Littlewood-Paley dichotomy and Bernstein’s inequality (3.1),
we have

2771 DI7H(6hV2A)jlliz oo 2
S 20 ((I0h<; V2 Ayl ooz + 158 V2 Ay lizpore + Y100V Arllizoer2)

I>j
S N6h ] poore 2 Ay lliz o2 + > 204 SRy |2 o 12 | VY AL | oo 12
1<j
+ ) 2V 5y | oo 2 | Al oo 2

I>j

SsilldSller + 518

Es-

Finally, we bound the last two terms VAdA and AVAA. For low-frequency part, using
d > 4 we have

D7 (VAGN) <olliz oc 12
S IDITHVAIN) <0(0) [ 22 + [ID] 7' 0:(VASN) <ol| 22
S (VAN <0(0)[| 1 + (|0:(VASA) <[ 211
S 110A]Izow [ Al zo.s-
We also obtain
D171 (VAN <ollizroere < SollS
For the high-frequency part, we have
JA (VAN |10 S 5518

£

g+ + 5;(|05]| e
We can also bound the term AV similarly. This gives the elliptic estimate for d A-equation.

Step 3. Proof of the elliptic estimate for h-equation. By h-equation in (4.5) and Proposi-
tion [4.4] it suffices to consider a more general equation of the form

ASh = 6hN?h + hV?6h + V6hVh + 6hNhVh + hVhVSh + S AN.

The proof of the Z'°*2 bound is similar to the estimates for V, A, B equations in Step
2, hence we only bound of the Y#?~1-%9+2_norm. We prove that the following frequency
envelope version holds:

1S;0hllyarer-sose S (55118

~

).

es + 55]|6S][go)(1 + ||S

Es

Case 1. The contribution of 6AX. By the Littlewood-Paley dichotomy, it suffices to
consider the high-low, low-high and high-high cases for any j € Z

Y. B(BOARN), Y B(BOAPN). ) Pi(BARN).
I<j+0(1) 1<j+0(1) I>j+0(1)

Case 1(a). The contribution of high-low and low-high interaction. The two cases are

proved similarly, so we only consider the worst case, namely the low-high interaction. When
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J <0, by the definition of the Y;-norm we have

QAPTEWATE Y P (RON- P))ly, 29270 Y I (POA - Pid) i oo

~Y

1<j 1<j

9(d—3-0); Z||B(5/\||l\21ILOOL2 ||Pj)\||l‘2”L00L2

1<j
< 2(d_3_35)j|||D|65)\§0||13L<><>L2|||D|5)‘SO||18L°°L2
< 2(d—3—35)j§O

When j > 0, we further divide the low-high interaction into
S P(RON-PA) = Y Pi(BoA-PA) + > Pi(RoA- PN,
1<j —j<i<j I<—j

For the first term, by Bernstein’s inequality we have

2 IATE N T PPN PNy, S 27 ) IPSA - PAllieer

—j<i<y —j<i<j
<27 3 2 P2 | Mg

—j<I<j

S 5illoS ]

For the second term we have

20IAT N T PPN - PNy, S 270 ) 2 PO PyA, poere

I<—j I<—j
S 2(7~ 17 Z 2(9/2~ I)ZHPZ(S/\”ZQ L°°L2||P)‘||l2 Lo L2
I<—j
S IDIPA<olligroe 122 || PiAi2 oo 12
S silloSllee

Case 1(b). The contribution of high-high interactions. When j < 0, we divide this into

Y Pi(PoX-PA) = > Pi(RoX-PX) + Y P(RoA- P).

I>j —j>l>j I>—j

Then we bound the first term by
2UPTIIIATE N T Pi(PON- Py,

—j>l>5
2(1=3=0) Z HPI(D"PZ)‘Hl‘lﬂLooLl
—j>l>5
S 297372 2 oAsollpreorPsollzroors + Y 6Nz I Nl Lo r2)
0>0>j5 —j>1>0

< 9(d=3-20)jg
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Using the Y; norm we can also bound the second term by

UETINATEY T RPN - Pid)lly, S 207700 Y 2 B|(BoN - PNl e

I>—j o
I>—j

< 2(d72745)j§0

Finally, when j > 0, using again the Y; norm we have

27 AT PPN Bi))ly, S 272N 2 (A - M)l e

>3 >3
<Y 2t dRENGTOQO D 5N 2 e 2| Ml 120 12
J1>J
< =

~

Case 2. The contribution of 6hV?h, hV?6h and VShVh. It suffices to prove that
|A™ES;(0hV2h + V?6h - b + NV ShVR) ||y a2-1-s042 < 5,|S|les + 55168 ||e--
For the high-low interactions, it suffices to consider the worst case V2P;0h - P<;h. For any
decomposition P;0h = ZlZIJI 0hj;, we have
IATEY (V26hjuPeh)lly, S 27V |(V26hyu Pejh) | oo
125l 1251

S 28Ryl poe 2l Pejbl Lo oo

1214

Taking the infimum over the decomposition of P;h yields
IATH(V2PiohP<;h)lly; S N|Pyohlly; || P<jhll oo ro,

which is acceptable. The low-high interactions is similar and omitted.
For the high-high interaction, it suffices to estimate ), ; P;(FVOhPVh). By Bernstein’s
inequality we have

D(d/2=1-0)i "+ 42+ || A1 > P{(PNShPVh)ly,

1>

<9(d=3-8)j"+(o+d/2)j ZHP VPZ(ShPthMlll,‘LOOLl

>3 ’
SO DTN T PGl ooz | PV A2, 112

>3 J
52(d—3—26)j’(Hv(shSOHZ(Q)LWLZ||Vh§0||lgLooL2 + Z leHV(Sthll?Loom||Vhl||ll2LooL2)

1>0
+ Y 2l DG Gy |12 ||V oo 2

1>5,5>0
52(d_3_26)j_ 30 ||S

SS
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Case 3. The contribution of 6hNVhVh and hVhVh. Tt suffices to prove that
|ATLS;(SAV RV h + hNVAVSh) ||y aje-1-s0+2 S 5|S]
For the low-frequency part, By Bernstein’s inequality and d > 4 we have
[ATH SRV AV ) <o|lyar2-1-5.0+2
SIORVAVR) <ol oo 11

Sloh<oll oo [(VAVR) <olliroe s + D N6kl 1o 12 [ (VAV R); 12 100 12

7>0

2
£s-

SSollS|
For the high-frequency part, by Bernstein’s inequality we also have

2| AT (A RV A, Iy, < 27| (ShVAVR) g2 S 5518

2
Es-

~

2
Es-

Thus this completes the proof of Y#?=1-8:5%2 hound. O

5. MULTILINEAR AND NONLINEAR ESTIMATES

This section contains our main multilinear estimates which are needed for the analysis of
the Schrodinger equation in (2.35). We begin with the following low-high bilinear estimates
of VhV1.

Lemma 5.1. Let s > %, d > 2 and k € N. Suppose that Va(z) S ()™, h € Y7+ and
WP € 12X5. Then for —s < o < s we have

(5.1) [Vhar - Vipg|lieye S min{]|Allye2||vnllizxs, |Pllys2 |Yrllixe }
(5.2) 1h<kVaV i |liene S min{||hllyoz||[Yrllizxs, [[Allys+z |Yellzxe }-
In addition, if —s < 0 < s — 1 then we have

(5.3) 1h<i VUi llizne S [[hllves2 || ve]lzxs

Proof. a) The estimates (5.1) and (5.3)). The proof of second bound (j5.3) is similar to the
first, so we only prove the first bound in detail. By duality, it suffices to estimate

for any z; := Spz € [f Xy with |[24]|2x, < 1. For I; and any decomposition Pjh = 3, ; s,
by duality and Bernstein inequality, we have

LSy sup (Vhj Vi, z)

J ~
l2|]| szHliXkSI

Y sup VAl peo o IVl zoze |2kl 22

. <1
iz I+l x, =

SO 2 VRl oo oo 1l x,

>3]
52(g+1)j+m Z 2l7|j|th7[Hll1L°°L2HwkHX’V'
1>l
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Then taking the infimum over the decomposition of P;jh and incorporating the summation
over j yield

> 27 1 Sllhllyarssare el xe,

i<k
for any € > 0. If —s < 0 < d/2, we also have
ZQUkIj SZde/QHPthkaHXU + Z2(d/2+efa)(jfk)2(a+2)jHpjh”yj b || xcs

i<k <0 >0
Slibllye+2||vnllx

Thus the bound (5.1)) follows.
Estimate (5.2]). By duality, it suffices to bound

11y = (PihVaViy, z), j <k, j €L,
for any 2, € [ Xy with [|z;|2x, < 1. For any decomposition Pjh = > s i by [Val(z) S

(z)~!, we consider the two cases |z| > 2//2 and |z| < 2//2 respectively and then obtain

[IJ ,S Z sup < )711§21/2( )V"(ﬂk, Zk -+ Z sup hj’l<$> 1 >2z/2( )Vwk, Zk>
1>l szHﬂxkq 1>)5) 1212 x, <1
=ITj + I

The first term is bounded by

ISy sup (lgllyzoo o V9rlligs, 22l 2l 2.2

/2
l>|j| ||ZkH12Xk<1

SO 2P gl o o e .

124l
<2H/2H31/2 3™ 90 o [l e 2 [0 x
dv]

The second term is bounded by
I 27 sup hjally po o | V&l 22222 l1pe 1222

1> ”Z’“”%ngl
S 2P Ryl poopoe 10l x,
>3]
S2U2HOVEN U g g o g2 |k x, -
>

Then we obtain

D 2L S 2R Bblly; ) 2Ry ) e xe

J<k Jj<0 J>0
S min|llyeallnlexe [bllyess [ ioxe )
Thus the bound (5.2)) follows. O

We next prove the remaining bilinear estimates and trilinear estimates.
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Proposition 5.2 (Nonlinear estimates). a) Let s > ¢ and d > 3, assume that py, and s, are
admissible frequency envelopes for 1 € 1?°X°, S € £° respectively. Then we have

(5.4) Sk (BY) 2w S sell¥lliexs + pell Bll 21,
5.5) 19k(A) 2w S sil|All s | lizxes + pillAll 5,
5.6) 1S (A iz S sill M50,

b) Assume that py, and 3 are admissible frequency envelopes for ¢ € X7, S € E7 respec-
tively. Then for —s < o < s we have

(5.7) 156V (hz-a V) lizne S min{Sp||ohli2xs, Pel[ k]| 21042},
(5.8) 19k (Azk—a V) |lr2ne S min{Sp[[¢]lizxs, Drl|All 21041},

and for —s < o < s — 0 we have

(5.9) 1B e S mingSull e, il Bl
(5.10) 15420 e S min{&llAll e [, el Al .
(5.11) 156 iz S 8ullAIZo.

If —s<o<s—1, then
(5.12) 19k (Ack—a V) [lr2ne S prllAll 71041

Proof. We first prove (5.7) and (5.8)). These two bounds are proved similarly, here we only
prove the first bound in detail. For the high-low case, by (3.1)) we have

> 1SV (s V) llene S > 28y 212 Vs 2 e 1

jo<k+C 71=k+0(1),j2<k+C
S D 2R k| e |0l roer2
J2<k+C ’
Smin{ 5|9 ||i2xs, Dr|| Rl 21542}

For the high-high case, when o + d/2 + 1 > § we have

> 186V (s, V) lliene

j1=742+0(1),j1>k
S Y 2R G (T e
J1=742+0(1),j1>k
< Z 2(ot14d/2)(k—jn)+(o+2+d/2)j1 ||
J1=42+0(1),51 >k
S min{8y|[¢ ||z xs, Bul|B]| 2142},
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and when o 4+ d/2 +1 < § we have
> 1ISkV(hy, Vi) lene

J1=j2+0(1),j1>k
< 2 : (o +1+d/2-20)k+ (204 |
Y

J1=j2+0(1),j1>k

S min{3x ([P lexs, Prllhl[ 21542},

Next, we prove the bounds (5.4)-(5.6) and ([5.9)-(5.11)). These bounds can be estimated
similarly, we only prove (5.4)) and (5.9) in detail. Indeed, by duality we have

1Se(BY)lliene S 27(1S(BY) | 22

Then using Littlewood-Paley dichotomy to divide this into low-high, high-low and high-high
cases. For the low-high case, by Sobolev embedding we have

2% S (Bartbn) || 22 SN Bkl pooroo27¥ |0kl r2r2 S Bl Bl 21

If —s <o <s—§ we also have

20k||Sk(B<k:'¢k:)||L2L2 51[—3,%)(0) Z Q(d/2+25—0)(l—k)||VBZ||L°0Ha,12(d/2+26)k”wk||L2L2

inllzzz2 ||, || o2

0<i<k
+ gy g(0) Y IV Bill oo 1 2%kl 22
o<i<k
51[—575)(0) Z 2(d/2+2§_0)(l_k)26(k_l)§k2(d/2+2§)kH¢kHL2L2
0<i<k
+1[g,575](0) Z 22005, 27% |y || 22
0<i<k
SSellYllizx

The high-low case can be estimated similarly. For the high-high case, by Sobolev embedding
when o +d/2 > 0 we have

2ak||Sk(Blwl) ||L2L2 SJ Z 2(a+d/2+5)(k—l)2(0+d/2+5)l ||Bl ||L°OL2 ||'l/)l ||L2L2
1>k

Smin{ 3| ||i2xs, Prl| Bl 210 }

and when o 4+ d/2 < 0 we have

2718k (B | pere S 2P| Byl oo 2 | 212
>k

S min{Sg[[¢ [l xs, pel| Bl 21+ 3,

These imply the bound ({5.4) and (5.9)).
Finally, we prove the bound (5.12)). If ¢ > d/2— 1+, by duality and Sobolev embedding,

we have

2H| A, Vel ore S 242 VW A oo 122 V¥ il p2rz S pill All 1o
<k
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If o <d/2—1+0, we have
20k|‘A<kvwkHL2L2 S Z 2(d/27170+5)(lfk)HVAIHLOOHU2(d/2+6)kHwkHL2L2

0<i<k

5pk||A||Z1,a+l .
Then the bound (5.12)) follows. Hence this completes the proof of the lemma. O
We shall also require the following bounds on commutators.

Proposition 5.3 (Commutator bounds). Let s > %,d > 2. Let m(D) be a multiplier with
symbol m € SY. Assume h € Y2, A € ZT! and +, € I12X®, frequency localized at
frequency 2%. If —s < o < s we have

(5.13) IV[S<k—sh, m(D)|Vipllizye S min{[|llyeeel[tellxs, [|hllyrllzxe},
(5.14) 1Sk, Ack-a] Vi llizne S min{ || Al 7o 90 llizxo, [|All z0.01 [ €k li2x: -

Proof. First we estimate ((5.13). In [2I, Proposition 3.2], it was shown that
V[S<r-19,m(D)|VSytp = L(VS<y-ag, VSi¥),

where L is a translation invariant operator satisfying

L(f,g)(x) = /f(x +y)g(z + 2)m(y + 2)dydz, m € L'

Given this representation, as we are working in translation-invariant spaces, by (5.1)) the

bound ({5.13)) follows.
Next, for the bound ([5.14)). Since

1
[Sk, Ack] Vb = / /2kdgb(2ky)2kyVA<k(x — sy)Q_kVIZJ[k_37k+3] (x — y)dyds,
0

By translation-invariance and the similar argument to (5.9)), the bound (5.14)) follows. This
completes the proof of the lemma. O

6. LOCAL ENERGY DECAY AND THE LINEARIZED PROBLEM

In this section, we consider a linear Schrodinger equation

6.1 100 + 0ag™ Opth + 21 A%0gtp = F,

| ¥(0) = Yo,
and, under suitable assumptions on the coefficients, we prove that the solution satisfies
suitable energy and local energy bounds.

6.1. The linear paradifferential Schrodinger flow. As an intermediate step, here we
prove energy and local energy bounds for a frequency localized linear paradifferential Schrodinger
equation

(6.2) 10 + 0922, 05tbn) + 2iA%,_10aths = fr.

We begin with the energy estimates, which are fairly standard:
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Lemma 6.1 (Energy-type estimate). Let d > 2, 1y solves the equation (6.2)) with initial

data ¢y,(0) in the time interval [0,1]. For a fized s > 4, assume that A € ZY*T1 oy, € 21Xy,

fir € N and fo, € L'L?, where fi, = fir + for. Then we have

(6.3) ‘Wk”%g%g Slok(0)172 + NAl Zzess 10l i, + el | furll v,
+ ¥kl oo 2| forll L1 2

Proof. By , we have
1d
§£|Wk”%2 =Re(Yr, 0r)
=Re(ty, iaagii_ﬁwk —2A2%,_,0a¥r —ifk)
— — Re@utn,ig2_ D) ~Re [ A% 0l de — Relt,if)
Rd

=Re /d Oa ALy 4lthkdz — Re(thy, i fi),
R

and notice that for each ¢ € [0, 1] we have by duality and Sobolev embedding

1
k()12 Sl (0)]2 + / / 1Al Pt + [, el

+ [l poo 2 || forll pr e
S (0172 + [[Al 7 [ox] %,
+ [l [ frell v 4 9kl oo 2] forll 2
We take the supremum over t on the left hand side and the conclusion follows. 0]

Next, we prove the main result of this section, namely the local energy estimates for
solutions to (|6.2)):

Proposition 6.2 (Local energy decay). Let d > 3, assume that the coefficients g®° =
58 + he8 and A~ in (6.2) satisfy

(6.4) [Bllyssz, [[Allzrem <1

for some s > %l. Let ¢y be a solution to (6.2]) which is localized at frequency 2%. Then the
following estimate holds:

(6.5) [klliz xS Wokllzz + Il felliz v,

Proof. The proof is closely related to that given in [21, 22]. However, here we are able to
relax the assumptions both on the metric ¢ and on the magnetic potential A. In the latter
case, unlike in [21, 22], we treat the magnetic term 2iA%, ,0,1; as a part of the linear
equation, which allows us to avoid bilinear estimates for this term and use only the bound
for A in Z1s*

As an intermediate step in the proof, we will establish a local energy decay bound in a
cube Q € Q; with 0 <[ < k:

2l e raoyxg) S 1kl Zoore + I fillv ¥l x,

+ 27"+ Al zres + (|1
42
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The proof of this bound is based on a positive commutator argument using a well chosen
multiplier M. This will be first-order differential operator with smooth coefficients which
are localized at frequency < 1. Precisely, we will use a multiplier M which is a sef-adjoint
differential operator having the form

(6.7) i28 M = a®(2)0y + 0na®(2)

with uniform bounds on a and its derivatives.
Before proving (6.5]), we need the following lemma which is used to dismiss the (g — I)
contribution to the commutator (9,993, M)|.

Lemma 6.3. Let s > g and d > 3, assume that h € Y*2, A € Z"5t! and o € Xy, let M
be as (6.7). Then we have

1
(6.8) / (01205, Mt bi)ds < |1h]

vzl x,

1
(©.9) | ety v Mun)ds < 1Al oo o,
0

Proof of Lemmal6.5 By and directly computations, we get
[0.h*P 05, M| = 27¥[V(hVa + aVR)V + VhVZ?a + hV3a).
Then it suffices to estimate

1 1
ok / ((h<xVa + aVhep) Vg, Vb )dt +27F / (VhapV2a + hapy V3a)hy, ) dt
0 0

The first integral is estimated by (5.1) and (5.2]). Using Sobolev embedding, the second
integral is bounded by

1
2’“/ (Vhek + ha)ton, vr)dt S IV harllim2 | Wkll72 2 S IVl o e llvell -
0
Hence, the bound follows.
For the second bound , by (6.7) and integration by parts we rewrite the following

term as

d
Re(A®0at,i Y (agds + Ogap)i)
B=1

d
=Re Z/ [i@a(&Aaaﬁagw) — i&&aA“ag(?ﬁw — i@A“@aagﬁﬁw - iiZAaagaiﬁiﬂ
=1 R
+ Z'ag(AaaoﬂZagw) - i@ng‘aazZagw — iAaaiﬁzﬁagw dx

~ / (V) AYVda.
Rd
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Then we bound the left-hand side of by

1 1
/ Re(A%, duthe Miby)ds <27 / / V) Akt Vil dads
0 0 R

SIVA|zns ¥l 212
This implies the bound , and hence completes the proof of the lemma. 0

Returning to the proof of , for the self-adjoint multiplier M we compute

%wk, Mup) =2Re(riby, Maby)

=2Rei0a(925_40p0%) — 242 4 0athi — ifi, M)
=i([~0ag%h 105, MUy, V) + 2Re(=2A4%;_ 0athy, — i fr, M)
We then use the multiplier M as in [21] 22] so that the following three properties hold:
(1) Boundedness on frequency 2* localized functions,
[Moullzz S flullzz-
(2) Boundedness in X,
[Mullx S lJullx-
(3) Positive commutator,

i{[~0agZi—s0p, Mlu,u) 2 27 lulT (o 1xq) = O + [Allys) Jullpx,
If these three properties hold for u = 1, then by (6.9) and (6.4) the bound follows.
We first do this when the Fourier transform of the solution 1)y, is restricted to a small angle

(6.10) suppty, C {[¢] S &}

Without loss of generality due to translation invariance, @ = {|z;| <2':j=1,...,d}, and
we set m to be a smooth, bounded, increasing function such that m’(s) = ©?(s) where ¢ is
a Schwartz function locahzed at frequenaes 1, and ¢ ~ 1 for |s| < 1. We rescale m and
set my(s) = m(27s). Then, we fix

M= ! (ml(ml)al + 01y (1))

The properties (1) and (2) are 1mmediate due to the frequency localization of u = 1, and
m; as well as the boundedness of m;. By it suffices to consider the property (3) for the
operator

—A = —0.9%_405 + 0ahZ_405.
This yields
i2F[—A, M) = —2720,0*(2721) 01 + O(1),
and hence

280, My, i) = 27l p(27 1) 01|72 2 + O([ ¢l 7212)
Utilizing our assumption (6.10)), it follows that

2@ ) n e S A=A Mk, ) + 27 O([¢n 1 7212)
14



which yields (3) when combined with (6.8).
We proceed to reduce the problem to the case when (6.10) holds. We let {6;(w)}9_, be a
partition of unity,

Y Oiw) =1, wes,
J

where 6;(w) is supported in a small angle about the j-th coordinate axis. Then, we can set
iﬁkJ = @k,jwk where

Fouu=0(>) Y @@

€1 S
We see that

(0, + 3a93§_435)¢k,j + 20A%,_1O0atrj
=0 fr — OalOnj, 9% _]0s0r — 2i[On s ALy, 4] Ontr.

By applying M, suitably adapted to the correct coordinate axis, to 1 ; and summing
over j, we obtain

25|, H%QLQ([O,I]XQ)

d 1
< s + 30 / (— O i, My, )ds
j=1"0

d
Y / ([Or, 0ng_D310n + [Or g 2% JOuthn, My, )ds
j=1

+ 27+ Al + lhllysr) [0l x,
S el + el llellx, + @7F + 1Al + hlys2) 1905,

The commutator is done via (5.13)) and ([5.14]). Then follows.

Next we use the bound (/6.6) to complete the proof of Proposition . Taking the supre-
mum in over () € Q; and over [, we obtain

2k||wk’|§( rgHzpkH%oop + || frell v |kl x| forll oz |90k Lo 12
+ (27 + (| Al g + [|Bllyes2) [0l x,

SIlzeore + el 1ellx, + Nl foellZo e
+ (27 + Al zres + Rllyes) 1ellf x, -

Combined with (6.3), we get

el SNEROZ2 + LAkl + [Lf2xl2 12

(6.11) X
+ (2 ko | Al| z1.5+1 + |’h”Ys+2)H¢kl|12§Xk'

We now finish the proof by incorporating the summation over cubes. We let {x¢} denote

a partition via functions which are localized to frequencies < 1 which are associated to cubes
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Q of scale M2*. We also assume that |Vixgo| < (28M)~, 1 = 1,2. Thus,
(i0h + 0ag2y_40)XWx + 21A%_10uxq¥u
=xofx + 00927108, XQln + 20A%,_40aXq - Uk
Applying (6.3)) to xotx, we obtain
> Il
Q
SO Ixaun(O)lIF: + [ Allz1ee Y lIxovll,
Q Q

+ Q_lIxafillZ )2 lxovnllz, )
Q Q

+ Z” [8069%74867 XQltk + 21A2),_40axq - ¢k||2LlL2~

Q

But by (6.4]) we have

> VoV xQlUullii: £ Ve Vxg - ¢r + 9V (Vg - )72
(6.12) N N . ;

S+ [[All 7o) M2 [IxQUel o2,
Q
and also
(6.13) D lI2iA%_sBaxo - illiaze S L+ 1Az )M Y " lIxQsllFe 2
Q Q

For M sufficiently large, we can bootstrap the commutator terms, and, after a straightforward
transition to cubes of scale 2¥ rather than M2¥, we observe that

(6.14) 0nllE e 2 SR O)IZ2 + [Allzess [l x, + I il [Pl x, -
We now apply (6.11)) to xotx, and then by (6.12) and (6.13) we see that
> lxevell, SIsO)72 + X lIxafilli, + M 72D lIxotxlk,
Q Q Q

+(27F + ||n|

verz + Al ze) D lIxovely, -
Q

For M > 1, we have
MY ull x, SIoROZ2 + 1 fillfon, + @7 + [hllysrz + Az 9]l x, -

By (6.4), for k sufficiently large (depending on M), we may absorb the last terms in the
right-hand side into the left, i.e

okl x, < Nk(O)1Z2 + 1 fll7on, -

On the other hand, for the remaining bounded range of k, we have

[Vl S 19l z2,
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and then (/6.14]) and ( . gives
Hwkuzgxk SRz + ANz lnllEx, + 1 felliz v 1xlli2 x,
SIew(O)172 + el v,
which finishes the proof of . U

6.2. The full linear problem. Here we use the bounds for the paradifferential equation in
the previous subsection in order to prove similar bounds for the full equation (6.1)):

Proposition 6.4 (Well-posedness). Let s > g, d>3 and h = g— I; € Y2, assume that
the metric g, and the magnetic potential A satisfy

Hh| Ys+2, HAHst+1 < 1.

Then the equation (6.1)) is well-posed for initial data vy € H? with —s < o < s, and we have
the estimate

(6.15) [llexe S 1Yollae + | Fllizne
Moreover, for 0 < o < s we have the estimate
(6.16) [¥lliexe S M[Yollae + | Flli2nonrpzae—2.

Proof. The well-posedness follows in a standard fashion from a similar energy estimate for
the adjoint equation. Since the adjoint equation has a similar form, with similar bounds on
the coefficients, such an estimate follows directly from (6.15)). Thus, we now focus on the

proof of the bound (6.15). For v solving (6.1]), we see that 1)y solves
10y, + 8agz§—485¢k‘ +21A%,_ 00 = Fy + Hy,
¢k(0) = ¢0k7
where
Skaocg>k 408% — [Sk, O a9<k 40800 — 2d[ Sk, AZ),_4]0ut)
- QZSk-[ 2]{7480['1/}]{;].
If we apply Proposition to each of these equations, we see that
[Ullfexe S Norllzre + 1 Fllfene + [ Hll o
We claim that

leﬂkllmw (7]

Indeed, the bound for the terms in Hj, follows from , 5.13), (5.14]), . respectively.

Then by the above two bounds, we obtain the est1mate (6.15]).

Finally, by the ¥-equation (6.1} - for time derivative bound it suffices to consider the form
o) = A+ V(hVy) + AVY + F.

Then by the standard Littlewood-Paley dichotomy and Bernstein’s inequality, for 0 < o < s
we have the following estimates

10| L2mo—2 S [0l oo + ([ Fl| L2po-2,
a7

yor2 + || Al zusn )Y xo, for —s <o <s.




This, combined with (6.15]), yields the bound ([6.16]), and then completes the proof of the
Lemma. 0

6.3. The linearized problem. Here we consider the linearized equation:

0,0 + 0,g*P 050 + 21A%0, ¥ = F + G,
(6.17) {Z t goopm T

U (0) = Wy,
where

G ==V (GVY) — 2iA%0,1,
and we prove the following.

Proposition 6.5. Let s > g, 0<o<s—1,d>3 and h=g—I; € Y2 assume that ¥
is a solution of (6.17)), the metric g and A satisfy

1%

verz, [|A][z1a <L
Then we have the estimate
(6.18) W llexe S Wollme + | Fllienanreme-2 + ([|Gllyere + [[All z1040) ][0 [li2x.
Proof. For ¥ solving , we see that U, solves
10, Wy, + Oag™h 405V + 2iA%, 102V, = Fy + Gy, + Hy,
{\I’k(o) = Yoy,
where
G = —=Sk(V(GVY) — 21A%0.9),
Hy = — Si0a9%% 105V — [Sk, 0ag™h_105]0 — 2i[Sy, A%, 4]0,¥
— 2iS[AL, ,0aTy).
The proof of is similar to that of . Here it suffices to prove

D NGKIEre S NG1 w2 l$llxe + 1ANZ s [[9] e
k
1G22 S ([G]lyrez + [[All z1oe) [ ]2 x--
Indeed, the bound for the terms in Gy, follows from (5.7)), (5.3), (5.8) and (5.12)). The second

bound follows from a standard Littlewood-Paley decomposition and Bernstein’s inequality.
This completes the proof of the Lemma. 0

7. WELL-POSEDNESS IN THE GOOD GAUGE

In this section we use the elliptic results in Section[d], the multilinear estimates in Section 5]
and the linear local energy decay bounds in Section [6] in order to prove the good gauge

formulation of our main result, namely Theorem
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7.1. The iteration scheme: uniform bounds. Here we seek to construct solutions to
(2.35)) iteratively, based on the scheme

(10, + Dug ™0, 1) 4 2i( A _ %v@)a)aaw(”“) _ pl),
¥(0) = v,

with the trivial initialization

(7.1)

where the nonlinearities are
(7.2) F® :aag(n)aﬁ . 3ﬁw(n) + (B(") + Ag”)A(")O‘ _ V(n)aA((xn))w(n) _ z')\f,”)'V Im(w(”)/_\g")”),

and 8™ = (A p™ Y AM B®)Y are the solutions of elliptic equations (2.36) with
b =y,

We assume that 1) is small in H®. Due to the above trivial initialization, we also induc-
tively assume that

[ lizx < Clthol

Hs,
where C' is a big constant.

Applying the elliptic estimate to with ¢ = 1™ at each step, we obtain
IS™les S 1™ lexs < 4ol
Applying at each step the local energy bound with ¢ = s we obtain the estimate
[ exs Slollas + 1F ysnpz -
Slivollas + 18" [le= (1 + 8™ le=) 19 |12 x»
Sltdollzzs + (Clitdollz=)* (1 + Cllol o).
Here the nonlinear terms in F(™ are estimated using , , , and with

o = s. Since 1) is small in H?®, the above bound gives

(7.3) 19D [lzxs < Clltol

which closes our induction.

Hs»,

Hs,

7.2. The iteration scheme: weak convergence. Here we prove that our iteration scheme
converges in the weaker H*~! topology. We denote the differences by

(nt1) — op(nt1) _ ()
v ¥ (CaN
sSn+l) — (A("“), gt phtl)  gln+l), B(n+1)) — S+l _ gn)

Then from ([7.1)) we obtain the system
Z'atqj(nﬂ) +9 (g(n)aﬁaﬂqj(nﬂ)) + Qi(A(”)a _ lv(n)a)a gtl) — p) _ pn=1) 4 (n)
(6% 2 « )
D0, ) = 0,
where the nonlinearities G™ have the form

1
G = = 0(G0u™) — 2 A — S50,
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By (4.16]) we obtain
185 lges S 190 oo,

Applying (6.18) with o = s — 1 for the (1) equation we have
IO+ [zt SIF® = FO | yomsnpzpe-s + (167 [yssr + |07, A™) 1706) [0 |2 x

Then by (5.1)), (5.7), (5.9), (5.10) and (5.11)) with 0 = s — 1 we bound the right hand side

above by

[T ax a1 SOl [ (T, 68 | pxs-1wge—1 < [T |axcar.

Hs

This implies that our iterations ¢ converge in [2X*~! to some function ¢. Furthermore,

by the uniform bound ([7.3)) it follows that
(7.4) [ ]lizxs S llebol

Interpolating, it follows that (™ converges to 1 in I>X°*~¢ for all € > 0. This allows us
to conclude that the auxiliary functions S™ associated to ¥ converge to the functions
S associated to 1, and also to pass to the limit and conclude that v solves the (SMCF)
equation . Thus we have established the existence part of our main theorem.

HS.

7.3. Uniqueness via weak Lipschitz dependence. Consider the difference of two solu-
tions

(\11,58) = (Qp(l) — ¢(2)7S(1) _ 5(2)).

The ¥ solves an equation of this form
1
10,V + 9,gMP 00 4 2i( AV — §v<l>a)aaqf =FY _F® 1 g,

0(0,2) =y (x) — v (@),

where the nonlinearity G is
G = — 0,(GOs?) — 2i(A~ — %va)aaw@).

By , we have
(7.5) (R P —
Applying with ¢ = s — 1 to the ¥ equation, we obtain the estimate

1€ flizxs1 S 1ol + [ EY = F@|eys-sarzps—s + ([|Gllystr + |V, A)||z1)

< ol + OI” 46 ) 12, 68) o1 et
Then, by the above bound , we further have
1€l S [Wollarss + Nl (5", w67

Since the initial data ((]1) and w(()Q) are sufficiently small, we obtain

(7.6) [Wllexs S ([ Woll -

P 2 xs

Hs \IJ ||l2X571

This gives the weak Lipschitz dependence, as well as the uniqueness of solutions for ([2.35)).
50



7.4. Frequency envelope bounds. Here we prove a stronger frequency envelope version
of estimate ((7.4)).

Proposition 7.1. Let ¢ € I?°X® be a small data solution to (2.35), which satisfies (7.4)). Let
{por} be an admissible frequency envelope for the initial data 1o € H®. Then {pox} is also
frequency envelope for 1 in 12X,

Proof. Let p, and s be the admissible frequency envelopes for solution (1, S) € I*?X* x £°.
Applying Sy to the Schrodinger equation (2.35)), we obtain the paradifferential equation

1
_V)ik%aa?ﬂk = Fy + Jg,

(10, 4 0ug®y_405) 0k + 2i(A — 5

¢(07 ‘T) = ¢0($)7
where

| 1
Ji = Skaag>k 48B¢ [Slm ag<k 485MJ - QZ[Sk:; (A - §V)<k—4]aa¢

~2SH(A — SV Outi],

and S = (A, h,V, A, B) is the solution to the elliptic system (12.36]). We estimate v, = Si)
using Proposition [6.4] By Proposition [5.2] Lemma and Lemma [5.3] we obtain

[ lliexs < pok + prllSlles + skll¥lliexs < pox + (P + sk) || [lizx-
Then by (4.15)), the definition of frequency envelope (3.3 and ([7.4)), this implies
pr S pok + el lliexs

By the smallness of ¢ € [2X?, this further gives p, < pox, and concludes the proof. O

7.5. Continuous dependence on the initial data. Here we show that the map vy —
(¥, S) is continuous from H* into I*X* x £€°. By (@.16), it suffices to prove 1y — 1 is
continuous from H* to [?X?.

Suppose that wén) — 1)y in H*. Denote by pn), respectively po, the frequency envelopes
associated to ¢(()"), respectively 1), given by . If w(()") — 1)p in H* then pg,z) — pog in 2.
Then for each € > 0 we can find some N, so that

HpggNe 2 < e, for all n.
By Proposition [7.1] we obtain that
(7.7) ||¢>NE exs < e, for all n.

To compare w(”) with ¢ we use ) for low frequencies and for the high frequencies,
") = ]| o §||S<Ne(¢(n) — P lexs + 19580 exs + 15559 e
2% [ Sen (V1) = )21 + 2€
N (6" = o)1 + 2

Letting n — oo we obtain
lim supl|$) — xS e

n—00
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Letting € — 0 we obtain
lim [[yp™ — 1| pxs = 0,
n—0

which completes the desired result.

7.6. Higher regularity. Here we prove that the solution (¢, S) satisfies the bound
(7.8) (0, S)lexexer S Wollue, o =5,

whenever the right hand side is finite.
Differentiating the original Schrédinger equation yields
(10; + 00g™P05)Vth + 2i(A — %)aaavw = —00(Vg*P0s1)) — 2iVA*O ) + VF,
where F is defined as in ([7.2)) without superscript (n). Using Proposition we obtain
IV llexs S 1VWollas + [[(Vih, V) iexsxes (4, S)lizxsxes (1 + (4, S) lizxsxes) ™
For elliptic equations, by we obtain
IVSlle: S 1V liex-.
Hence, by and the smallness of vy in H®, these imply
1(VY), V) [lizxsxes < ([Vebolla
Inductively, we can obtain the system for (V", V"S). This leads to
1V, VS lexsxes S [1ollasen + [ llexstnllbllizxs (1 + [¢llexs) ™,
which shows that
1, S)llizxcssnxgesn S Mol mesn + |9llxen [Pl (1 + (|9 ]liex-) ™,
and hence gives the bound by the smallness of v in [>X5.

7.7. The time evolution of ()\, g, A). As part of our derivation of the (SMCF) equatlons

- ) for the mean curvature ¢ in the good gauge, coupled with the elhptlc system 1
we have seen that the time evolution of (), g, A) is described by the equations ([2.31]

and (2.32). However, our proof of the well-posedness result for the Schrodlnger evolutlon
(2.35) does not apriori guarantee that (2.31), (2.26) and (2.32)) hold. Here we rectify this

omission:

Lemma 7.2. Assume that ¢ € C[0,T; H®] solves the SMCF equation (2.35) coupled with
the elliptic system (2.36)). Then the relations (2.26)), (2.31)) and (2.32)) hold.

Proof We recall that, by Theorem [4.1] the solution S =(\h,V, A, B) in ‘H* for the system
satisfies the fixed time constraints 2.4), 2.9), -15), . 13|) (2.19) and ( - On

the other hand, in terms of the time evolutlon at this point we only have the equation (2
for the mean curvature ¢). We will show that this implies (2.26)), (2.31)) and (2.32)).
To shorten the notations, we define the tensors

Tctﬁ = atgaﬁ — 21m(7,/15\a3) — Va‘/b - vﬁvon
T27 = (0F — VIV — iVAVATS + A Im(A2) + Aey VIV = ATV, V7,
T2 = A — 0u B — Re(AL0MD) + Im(A2 N, ) V.
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We need to show that T = 0, T? = 0, T% = 0. To do this, we will show that (T, T2, T3)
solve a linear homogeneous coupled elliptic system of the form
(AT =V (ITY) + NPT + \T?,
VATET = \T3 4 A\VT* + T'V )\,
VAT — VT2 = AT® + A\VT' + T'V )\,
VT3 =T'VA,
| VoTj — VTS = XT2.

Considering this system for (7,72, 73) € H' x L* x L?, the smallness condition on the
coefficients (A, h,V, A, B) € S insures that this system has the unique solution (7%, 72, 7T%) =
0. It remains to derive the system for (T, T2 T3).

The equation for T'. This has the form

AJTY s = TyRic + Ty Ric’ s + 21" Roypy — V(T Tya) — Va (T T 5)
— 2Re(gop T 0 + Tyg N0 + AapT27 — nggﬂg — Tt X’Xg — XMT;").

op o

(7.9)

We start with the first term in 7", and compute the expression A;0;g,s. We have

Agatgaﬁ = guy(auvuatga/ﬁ - Fiavuatgﬁﬁ - FZﬁvuatgaé)
= [at(gwauaugaﬁ) - atgwauaugaﬁ] + [—9“”F§a5u5t965 - gwrgﬁauatg&x
— 9" 0000958 — 9" 0T 0501950 — 9" (D0 Vo 0rigss + 05V 01gs0)]
=1+ 11.

We then use covariant derivatives to write 11 as

IT=— guyria(2vuat966 + 17501905 + Fgﬁ&t%é)
— 9T 5(2V0, 50 + T950i 900 + T0a0190s)
— 9" 01000958 — 9" 0,10 50,950
= —2¢"T9, V., 01958 — 29" 105V, 0,050
— 0959" (OuL 0 + T7aT0y) — 0igsag™ (OuTys + Tigly,)

— 28tgg(ggWI’ianﬁ.

For I, by the g equation (2.22)) we have

I = 0[=0a9""0ugvs — 039" OpGva + 009" 03gyuw)
+ 200" T T8 5) — 819" 9,0, o) — 20; Ricag

= Il + ]2 + 13.
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The expression [, is written as

1 1
]1 = - aaatguyrp,u,ﬁ - aﬂatg'wjrm/,a - §aﬁatg'wjaaguu + §aaatg'uyaﬂguu
— 009" 0,090 — 089" 0,01 Gva + 0ag"” 05019,
=— (Va0ig" — QFgaatgéy)Fuuﬁ — (Vs0g" — 2%@95”%:/@

+ 5Vl Ds — V(049" Dug)
- ag””(vuﬁtg,,g + Ffwatglsﬂ) - aﬂgw(vuatgua + Ffwatgéa + anatgué)
+ 009" (V 0t g + ngatg;w)
= Va0ig" (T + Tusp) + Vg™ (—Tiva + Tpaw) = V0u0:905009™ — V ,.0,900059™
+20,g" (T2, Tsug + T%,Dsva) + 09" (—T2,0595 + T'%,0095)
+ 019" (=939109” Tsoow + Oabyuog” Tss.)
— 09530a9" T, — 01950059" T,
For I, we first compute
QQWat(F;m,&Fiﬁ) :gwjrgﬁ(vuatgad + Va0i9u5 — V5Oigua) + 49WF5V/3FZM@906
+ " T2 (V095 + V 0igus — V50igus) + 20:97° 0" T piasUupo
By the above computations, we collect the V0;g terms from Iy, Is and 11
Va0ig" (=Tyvs + Tupo) + V0ig" (—Thva + Thaw) = V0u0:005009" — V40190039
+ gwriﬁ(vuatgaé + Va0i9us — Vs0iGua) + gwria(vpatgﬁa + V501945 — V5019,8)
— 29" T, V., 0955 — 29" T05V 0150
where the terms containing V0,g,, and V0,9, vanish, i.e.
Vu0i9u(—0ag" — ¢"°T5, — 6°'T5,) + V,uBigua(—pg" — g"°T55 — g"°T55) = 0,
and the terms with VJ,¢g" were rewritten as
— Va0 g"' T3 — V0 g"' T
== V(09" Twp) = V(09" Vo) + 019" (Valw g + Vel a)
We collect the d;g terms from I and I1 into
20,9" (T2, Tou,s + T Lova) — 01955009 T, — 0195009" T,
+ 8tg“”(21“m’5fiﬁ — 0,0v905)
— atgggg“”(aﬂfia +T9 17 ) — 8tg(;ag“”(8uff,ﬁ + FZBFiU).

po vo

(7.10)

Adding the 0,g terms together with the third term in ([7.10)) we obtain
019" (Valwp + Valwa + 200, Dsvs + 2% Dsva + 2L a6 5 — 0,0,9a)

:28159#”}%&“51,.
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Finally, using the harmonic coordinate condition g’“’Ffw = 0, the terms containing the 0;¢s4
expression are written as

— 01958009" T, = 0950059" 10, — 019559™ (0T + T0uT00) — 019509 (0,105 + T5T0,)
= 8tg(;5Ricéa + 8tg(;aRic§ﬁ.
Hence, the expression A;0;g.5 is written as
Agatgocﬁ = - Va(atguyruu,ﬁ) - vﬁ(atguyruu,a) + atg(SBRicéa + atgéaRiCSB

(7.11) e
+ 28tg“VRwﬁ,, — Q@t Ricaﬁ .

For the last term —20, ﬁ\i/caﬂ, using the expression 7% we have

—20; Ricas = — 2Re(gos T20 + T2A + Mg T2 — 9o T2ONS — TE AN — Xoo T57)

opto
(31) +2Im(VAVE) + VIVATYAag — VIVIUAG = VEVIYA)
(Isp) — 2Ricg, VoV = 2Ricay V5V — 2V, Ricag V7
(I33) —2Re(¥Aary) Im(@bj\g) + 2Re(XapA??) Im (A, ).

Next, we compute
I1T:= — A,(2Im(¥Aap) + Vo Vs + V5Va)
= —2VIV, Im(¥Aap) + [Ay, ValVs — [Ay, V] Ve — VoA Vs — VAV,
= —2V°V, Im(¥A,5) — Vs Rice, V7 — V, Ricg, V7 — 2V, Ricys V7
— RiCay VWi — Ricgy V'V + 2Ra0ps(VIV + VOV7) = VA, Vs — VA,V
Using the V-equation ([2.30) we write the last two terms as
— VoA Vs = VAV,
=2V, V, Im(1)AF) + 2V 5V, Im(¢A7) 4 Vo Rices V7 + Vg Ricea V7
+ Ricys VoV + Ricoa V4V + Va(0.9" T s) + V(0.9 T )

where 0,g*¥ denotes the expression
@;/W = Oy g™ — THH.
We then add I3; together with V2 Im(wA) in I1T to get
I3 — 2VV, Im(¥Aap) + 2V Ve Im(¥A3) 4 2V V, Im (A7)
= — 2Ricgs Im(YAY) + 2Racss Im(1pA%°) + 2 Re(AZ1)) Im (A, Af).
The last term and I35 can be further written as
2Re(AJY) Im( Ay, Nf) + I3

=2Ru0ps Im(YA7°) — 2 Ricyes Im(A)).
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Hence, given the expressions of I3 and 11, we obtain
Is+ 111
= — 2Re(gosT2% + T A0 + Aag T2 — Gou T2 Ny — T AING — Moo T57)
— Ric"[;% - Ric"a(@; - 2Ra0553/t§‘;; + Va((igj‘/”ruy,ﬁ) + Vﬂ(afté_“/l’rw,a),
which combined with yields the T'-equation ([7.9)).

The equation for T?. This has the form
(verzs =ig™ YTy —iNTE + g7 N (=V o Tjs + %nggﬁ)
(7.12) - Tl’“ﬁféﬂz + LX) + TV,
VAT — V4T =5 9 [=Ne(Vo T, + Y, Th, — V. T,,)
\ + Mi(VT,, + VT, — V. T5,)] — iTING + iTHNY.
We compute the divergence of T2 in first. Applying V4 to T2, we have
vAT2e =[VA 0F — VIV, + [0F — VIV, VAT 4+ VAT (9F — VIV
+ VAL Im(YA])) — iVAVEVATY
+ VIYVIVT — VAN VOV + AV VL,V = AIAV.
Three of the terms on the right-hand side are written as
(VA% 07 = VIV — VA7 A, VOV + AV, V, V7
=97 (V30X — 0,V 3A%) + g™’ (VB — 9, Ag) NS — 019" V4]
+ AV, VT = 2VA7N VOV — VIV, VN — iV, F7A°
== 0" " (VA Aag + ThgA7) — 005, A + XV, V, V7
— (0, Ag — Vs B)N? —iV,FI\? — 2VA9\, VOV — VI[V* V, ]\

(07

We can further use T to rewrite the last two terms on the first line above as

— LAY + AV VY7
= — 9,97 T 03 sA — §7°0,(0ngps — %a(;gaﬁ)w + ATV, VO
=97 X (019,515 — DaOrgps + %&satgaﬂ) + ATV, YV
=7 A\ (=V 40,955 + %vgatgaﬁ) + AV, VO

1
:AMV(V/LTLVU . 5V(fj—vl,ul/)
+ A [=2V, Im(¥A) + V7 Im(YAag) — [Va, V7IV3]
and the following term as

—i(0yAg — VB)N —iV,FYIN] = —iAT5 — i\ Re(A\jVA9).
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Similarly, we compute the second commutator by
[0F — VIV, VAN + VIV =0,07" Vi + igT TS + iy Re(ATV )
+ VAP(VIVI 4+ VIV,

Hence, using 7% and the V equation (2.30)) we reorganize the expression of VA*T27 and
obtain

VT2 =igm T2 —iNT) + g7 A (=V Ty + %V(;T;ﬂ)
— 09 (VHAS + Tl A7) 4+ A2V Im(¢AF) + V7 Im(¢Aap)]
— iN Re(AJVAY) + 8,7V i + it Re(A V)
— VAT (AL Im(¢A)) + VA (AL Tm (A7)
— iRic?5 VA — V F7%) — 2F°°V )
+ VAP(VIVI 4+ VIVY) = 2VA7N,, VOV
— 207V Tm(A) + AJD,9°PT .
Using T2* and the V-equation (2.30]), we have
AP [=2V 4 Im(1pAG) + V7 Im(1hAas)] — iAP Re(A]VA4))
+ iy Re(AVAY) + VAN Im(YAT)) — iRic?s VA — V F7%) — 2F7*V iy
+ 227V Im(ypA]) — VA7 (AL Im(1hA2))
=2V Im(YA77) — 2V A7 X5 Im (A7)
Combining these two expressions, we obtain
VACT2T —igT Ty —iXT§ + g7 AP (=VaTjs + %vaT;B)
— TY (VAL + Thphy) + TV + VAT

Next we compute the curl of T? in (7.12). By T? we have
VAT = V4T
=[V2,0F =V VNG — [V5,07 = VIVAAL + MV Im (A7) — ALV 5 Im (A7)
—i[V2, VAV + AV V, V7 = NI VV, V7
— A [Va, Vg V7 = VXV VT + VATV V7.
We use T and T° to rewrite six of the terms on the right-hand side as
(V3,08 = VIVIAG = (V5,07 — VIVIIN, + AJVaV, V7 = NIV, V7
— VI V3V + VIV VY
_% 97 [=Ns(VaT,, + YV, To, — Vo To,) + Ma(VT,, + VYV, 15, — V,T5,)]
— TG + TN,
— MgV Im(PA7) + MeV g Im(ypA7) + Iy + I,
57



where I; and Iy are
Iy :=M5(= YV Im($A7) + V7 Im (Y Aa,)) — Mo (=V, Im(AG) + V7 Im(¥Ag,.))
— i Re(ALVA)AG + i Re(AJ VA1) AL,
I ::%Ag(Ram + RY 5+ Ryos) V' — %AZ(Rﬁm + Rfs + Rigs)V°
— V7 Ranos Ay — V' RangsA? + VIR 0500, + V7 Rgyas A7
Then we use Bianchi identities and compatibility conditions to compute I; and I by
I = i[V3, V5V
and
Iy =V ' Rgy050% + VI Rgyas A7 = AJ[Va, V|V

Hence, we obtain

1
2,0’ No (o
VAT — ViT: =59 =XV T, + Y, Ty, — VST,

+ Mi(VT,, + VT, — V. T5,)] — iTING +iTHNY.

This completes the derivation of ([7.12]). O
The equation for T°. This has the form

{vaTg = —T"%9, A,

VoI — VeTy = Im(T% Mg + N T25).
Applying V® to T2, we then use the Coulomb condition V*A, = 0 and the B-equation
(2.33) to get
VT3 =V20; Ay — AyB — V* Re(A VA +iAI N, V7)
=g 050, A + 019703 A, — TV A, = —THP0, Ag.

The curl of T? is obtained by (2.13)) directly. |

8. THE RECONSTRUCTION OF THE FLOW

In this last section we close the circle of ideas in this paper, and prove that one can start
from the good gauge solution given by Theorem [2.7, and reconstruct the flow at the level
of d-dimensional embedded submanifolds. For completeness, we provide here another, more
complete statement of our main theorem:

Theorem 8.1 (Small data local well-posedness). Let s > g, d > 4. Consider the skew mean
curvature flow for maps F from R® to the Euclidean space (R¥*? grat2) with initial
data ¥o which, in some coordinates, has a metric gy satisfying ||0:(go — Ia)||lms < € and
mean curvature ||Hol| s sy < €o-
If €9 > 0 1s sufficiently small, then there exists a unique solution
F R x[0,1] = (R gras2)
58




which, when represented in harmonic coordinates, has regqularity
O*F, O,F € C([0,1]; H*(R%)).
and induced metric and mean curvature
dpg € C([0,1]; H*H(R), H € C([0,1]; H*(RY)).
In addition the mean curvature satisfies the bounds
[¥llezxs + [[(A, 1, VL A, Blles S lthol

where Y and X are expressed using the Coulomb gauge in the normal bundle N3;.

HS.

We complement the theorem with the following remarks:

Remark 8.1.1. Here uniqueness should be interpreted in two steps:
(i) If s > %l + 1 then we have a direct uniqueness statement for solutions F' which in
some coordinate system are continuous with values in H**2.
(ii) For smaller s, then our solutions can be identified as the unique limits of smooth
solutions expressed in harmonic coordinates.

Remark 8.1.2. The only role of the smallness condition on the metric is to exclude large
nonflat minimal surfaces; the topology we use there is less essential as long as some critical
norm of F' is made small. This guarantees that (i) we can find harmonic coordinates on
the surface ¥ and a Coulomb frame in the normal bundle and (ii) in harmonic coordinates
and the Coulomb gauge the surface is uniquely (and smoothly) determined by the mean
curvature 1 up to rigid rotations.

We do this in several steps:

8.1. The starting point. Our evolution begins at time ¢ = 0, where we need to represent
the initial submanifold as parametrized with global harmonic coordinates, represented via
the map F' : R¢ — R%2, and to construct a Coulomb frame in the normal bundle, leading to
the complex mean curvature function . This is the goal of this subsection, which is carried
out in Proposition [8.2]

Once this is done, we have the frame F,, in the tangent space and the frame m in the
normal bundle. In turn, as described in Section [, these generate the metric g, the second
fundamental form A with trace 1 and the connection A, all at the initial time ¢ = 0.

Moving forward in time, Theorem provides us with the time evolution of ¢ via the
Schodinger flow , as well as the functions (A, g, V, A, B) satisfying the elliptic system
together with the constraints (2.4), (2.8), (2.17), (2.13), (2.16) and and the
time evolutions , and (2.32)). The objective of the rest of this section is then
to use these functions in order to reconstruct the map F which describes the manifold F' at
later times.

We now return to the question of constructing the harmonic coordinates at the initial
time. In order to state the following proposition, we define some notations. Let F': R? —
(R%*2 grat2) be an immersion with induced metric g(z). For any change of coordinate

=z + ¢(x), we denote

F(y) = F(x(y)), )
and its induced metric gos(y) = (9, F, 0y, F). We also denote its Christoffel symbol as I'

and h(y) = §(y) — L.
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Proposition 8.2. Letd > 3, s > %, and F : (RZ, g) — (R¥2, grat2) be an immersion with
induced metric g = I+ h. Assume that Vh(z) and mean curvature H are small in H*(dz),
namely

HathHs S €0, HHHHS S €0-

Then there exists a unique change of coordinates y = x+ ¢(x) with lim,_,o ¢(x) =0 and V¢

uniformly small, such that the new coordinates {yi,--- ,ya} are global harmonic coordinates,
namely,
gaﬁ(y)FlB(y) =0, foranyy e R
Moreover,
(8.1) IV?6(@) |2 (a) S IV A(@) || 122(a0),
and, in the new coordinates {y1, -+ ,ya},
(8.2) 10yl s ayy S 110whll s aa) -
In addition, for the mean curvature we have equivalent norms,
(8.3) 1| 2ay) < IH s (o)
and the bound for complex scalar mean curvature 1 in the Coulomb gauge
(8.4) el S o

Proof. Step 1: Derwation of the ¢-equations.
We make the following change of coordinates such that the {yi,---,y4} is a global har-
monic coordinate
R? — R? — R+2
y — x — Fz(y)) = F(y)
where z + ¢(x) = y with lim,_,« ¢(x) = 0 and V¢ small.
To determine the function ¢, we perform a few computations. For any vector f =
(f1, -+, fa), we denote

oh ... 9k
af 8:)31 8xd
Or Now ... o
ox1 Oxyg
Then we have
dr  0¢pdxr
Jdy  Ox dy d
This implies that
ox ¢
—=1;——+C
gy~ 11 g T
where the matrix C(z) is a higher order term which satisfies
o¢ o9

_ 2 _
Cla) = (50 —C@)3E,
or, equivalently, it is given by

Cw) = (321 - 90
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We denote

Since F(y) = F(z(y)), then we have
OF OF OF dx, OF Oz,

(8.5) Gorp (y) :<8ya’ 8y5> B <8xu e O, 0y5>
:g;w(l')((sg - aaqbu + Cua)(ég - aﬁqbl/ + C,/,B)
and
~Q l/a o a V(Sa
(8.6) 50 (y) =g T2 — g (5 4 0,00) (60 + Dubs).

Oz, Oz,
We also have
agaﬁ(y) _ agab’(y) axm

8.7 - - 82 - aan v 0 « ’Coz )
(87) Y~ 0, Oy, 98 Ooy O — Jew Ty v+ 0y9as + Kapy
where the higher order terms K. are defined as

5 Oz, Ox
Koy = = 9u 0oy 0uPs + 9Wavcﬂa8_yg — G P50 + gwa_yz@v%
Oz Oz, Ox
+ 0v9arPh + 0v9u Ph=— + O, (g () 7 F 2] P
Y B YIH ayﬁ [ © ( )aya 8yﬁ o

The relation §*°T 45, = 0 combined with and (8.7) implies that

0 =g""(6y, + 8m¢a)(55 + O0n®p) [ - guﬁa§7¢u - gvva§a¢u + Oagyp + Kypa
1 1 1 1
+ §g,uﬂac2vy¢u + igauaé'ygbu - §a’yga,8 - §Kjaﬁ,"/} .

This gives the elliptic equations of ¢,
(88) A¢’Y :NOILY (ga ¢)7

with the boundary condition lim,_, ¢(z) = 0, where the nonlinearities Non, (g, ¢) are given
by
1

Non,(g,9) := — h,,Ap, — haﬁgwaiﬁﬁﬁu + gaﬁ(raﬁﬁ + Kypa — §IC0<5N)

+ ™" (57,0008 + Onaly, + OndaOn®p) [ — 9us0as b — 9100500

1 1 1
+ §gﬂﬂa§w¢ﬂ + 59(11/8%—\/@51/ + FO&/J’,’Y + ’C’Y/&a - §K:0457’Y:| :

Step 2: Solve the ¢-equations (8.8). By the contraction principle, the existence and
uniqueness of solution of (8.8) and the bound ({8.1]) are obtained by the following Lemma.

Lemma 8.3. Let g be as in Proposition . Then the map ¢ — Non,(g,¢) is Lipschitz
from

Hs+2 —|—H2 S H*

with Lipschitz constant € for | V29| gs < €.
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Proof of Lemma[8.3. In order to prove Lemma [8.3] we consider the following simplified lin-
earization for Non, (g, ¢) as a function of ¢:

T(g,¢,®) =h(1+ h)V*® + g(Vh + 6K)
(8.9) + g(V® + V¢V ) [gV?¢ + Vh + K]
+ g(Vo+ VoVe) [gV? P + 6K]
where @ is the linearized variable associated to ¢, K has the form
K :=gV?*¢P + gVC(1 + P) + VRP(1 + P) + V]g(1 + P)*|P,
and 0KC is
6K :=gV2*®P + gV2¢pdP + gVSC(1 + P) + gVCIP + Vh6P(1 + P)
+ V[gdP(1 + P)|P + Vig(1 + P)*|§P.
Here C and 0C satisfy
C=VoVp+CVep, 0C=VopVP+ICVp+CVD,

and P and 6P are
P=Vo+C, 0P=Vd+iC.
Then for the equation we have estimates as follows:

Lemma 8.4 (Elliptic estimates for (8.9)). Let d > 3 and s > d/2. Assume that |Vh| g <€
and ||V2¢|| s <€, then for the linearized expression we have the following estimate

(8.10) T (g, &, ®)||zrs SN VA| s + €| V2R s

Proof of Lemmal[8.4 First, we bound C, 6C, P and 6P. By Sobolev embeddings, using also
the smallness condition ||V2¢|/xs < €, we have

IVCllas S IVl + IVClae [V Slli= < € + €l VC|

Hs$,
and

IV6C s SIVZ0| 1= V2@ s + | VOC|| 12| V2 | 1= + || VC]|

SelV2® s + el VOC] = + [IVC] - V@

V29|

Hs Hs Hs

HS.

These imply

(8.11) IVCllas S €2, [|VOC||lms S el V2P| s
Similarly we have
(8.12) IVPlus S, |VOP|us S|V i

By Sobolev embedding we bound 0/ by
16K s S+ VR ) V2@ 1 VP11 + V2 1 [ VP 11
+ ||VC| s (1 + [|[VP||s) + ||VC|| 1= || VOP|
+ VA s [[VOP 15 (1 + VP 22+ )?
+ (14 ||Vh] VOP| us||VP gs(1+ [|[VP|
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This combined with (8.11)) and (8.12)) implies

(8.13) 16K || s < €| V2P| gs.
Similarly, we also have
(8.14) K|z < €.
Now by Sobolev embedding we bound 7T (g, ¢, ®) by
T ez SV e (L4 VAl ) (L + (V2@ 1r2) + (1 + [Vl 7o) 0K 72+
+ (14 [|[VR|| g) V2P| s (1 + || V|| +)
N+ IV ) V2Ol as + VAl s + 1Kl ]
+ (L4 VA ) V20 s (1 + V2] ) [(1 + [|[VR) ) | V2P| s + (0K 125
By the assumptions, and , this gives
1T (g: &, @)lms SVl s + € VAR 1.
We conclude the proof of the lemma. O
We continue to prove Lemma . With small Lipschitz constant € for ||V2¢|gs < ¢, by
(8.10) we have
INon, (g.6) - < [Vhllus + ¢
and
INon,(g,¢) — Non,(9,9) |+ < €| V*(¢ — &) | =
These give the Lipschitz continuity, completing the proof of Lemma [8.3 0]

Step 3: Prove the bound (8.2)). First we prove the following bound
(8.15) 10, ) (y (@)l =2y S 110:11
By (8.5)), it suffices to bound

11+ P)0:lg(1 + P) e SHalg (X + P)* |l (1 + IV Pl 125)

Hs(dz)-

SN0ugllms (1 + VP 1:)?
SU0egllms + 0Pl ) (1 + €)* S|Pl -

This gives the bound (8.15)).

In order to complete the proof, we also need the following lemma:

Lemma 8.5. Let the change of coordinates x + ¢(x) = y be as in Proposition . Define
the linear operator T as T(f)(y) = f(z(y)) for any function f € L?(dx). Then we have

(8.16) ITH W ey S (@)@, o €0, [s]+1].

Given this lemma, the bound ({8.2)) is obtained by (8.15)) and (8.16|) with o = s, and the

proof of Proposition [8.2|is concluded. It remains to prove the Lemma.
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Proof of Lemmal[8.5 Let k be an integer k € [0, [s] + 1], where [s] is the integer part of s.
By the change of coordinates = + ¢(z) = y, we have

Ox 0
"T =[] f(z) =~ [(1 Ff(x).
AT = 55010 = [(1+ P @)

It suffices to consider the following forms
> OLfoLP .. QP14+ P,

1<i<k—1, I+l +-+li=k,
>1, h>21>1

By Sobolev embedding, we bound each terms by
105 fORP - 0P (L + P)* |2y SN0 P -+ G P(L+P) "/ det(I + 000) |l 2aa)
SNOLFORP - O Pll2 (L + VP ) |1 + V|| e
SIF e IV P s (L4 VAl ae) 7 (1 + [V 172)?

SNl

Then we have
k—1
1OST ()W)l 22y S D €N @) ey S I1F @) rr -
i=0
This implies

1T W mvay) S f (@)l x(awy,  for any & € [0, [s] +1].

Thus the bound ({8.16]) is obtained if ¢ € [0,[s] + 1] is an integer. The similar bound for
noninteger o follows by interpolation. 0

Step 4: Prove the bound (8.3). We first prove that the 8§ayﬁ}~7 € H? is also small under
the above change of coordinates as follows.
Proposition 8.6. Let d >3, s > %, and F : (R%, g) — (R*™2, gga+2) be an immersion as in
Theorem . Under the change of coordinates y = x + ¢(z) as in Proposition we also
have

(8.17) |02

Yalyp

F|

Hs(dy) S ¢

Once the bound (8.17)) holds, by (8.2)) and Sobolev embedding we obtain the bound (8.3)).
Here we turn our attention to the proof of Proposition and complete the proof of Propo-
sition [R.21

Proof of Proposition 8.6 Here we first prove that 9>F is also small in H*. Precisely, by the
smallness of d,g and Sobolev embedding, we have
e SN T0gllms + l9°T05(0, F — 0, F(00))]
SN0:h s (1 + (|02 P]| 7o) (1 + (|07 F|
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Then we can bound 9?F by

10°F|

1 =||RAF| ns + 6ol 07 F|

e S NAF || < g 02, F|

« Hs
SIAGF s+ 1l9™° 1005 Fll 1+ + 0| 0 F ||+
SIE e + (1 + 02 F |-
Seo(1+ |0°F || +),
which implies
(8.18) 10%F || s < eo.

Next, we turn to prove the bound (8.17). By the change of coordinates, we have the
representation 92 I as

Yayp
. ox 0x, Ox 0 Ox
2 F = F- ) =9 F2 12 F—1
P = OOl 5 ) = O g B O By

Since g%; is a function depending on = and has the form g—gy” = I;+ P(x), we write this as
02, F =02, F(Is+P)* + 0,F0,(Is+ P) - (Is + P)
=02 F(I4+ P)? + 0,F0,P - (I + P).
As a vector depends on z, by Sobolev embedding, (8.18) and (8.12]) we have
1095, 4 F) ()]

Yal¥yp

1:(ds) SN0, F |l m+(1 + 10, P)

:560.

we) + L+ N0 F ) 10:P s (1 + 1|0: P 1)

Then by Lemma 8.5, the bound (8.17) follows. O

Step 5: Prove the bound . Finally, we construct the initial data 1)y in the harmonic
coordinates and Coulomb gauge. To obtain the Coulomb gauge, we choose U constant
uniformly transversal to T%; such a v exists because, by Sobolev embeddings, 0, F has a
small variation in L*°. Projecting 7 on the normal bundle N, and normalizing we obtain
some 1, with the same regularity as OF. Then we choose 5 in Ny perpendicular to 7.
We obtain the orthonormal frame (71, 75) in N¥3, which again has the same regularity and
bounds as 0,F. Then we rotate the frame to get a Coulomb frame (v4,14), i.e. where
the Coulomb gauge condition is satisfied. Projecting the mean curvature H on the
Coulomb frame as in Section we obtain the complex mean curvature ¢ € H®.

In order to get the bound for v, we recall that the second fundamental form A satisfies

Mo = (025F) - v + (2 F) - 1.

We easily have

A2z S N0*F 2 < eo.
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Then it suffices to bound the H*® norm of \. If s € N, we have

| > l0M(925F —T14F,) - 0" g

ve{vi,va}ini+na=s

S D (Ve A VadsF - vl

ve{vi,va}
SIVe + A)Vads F| 2
SIO*F (1 + [V AII)-
If s ¢ N, let %—i—é:%vvealsohave
[RY(FS > D[t (0" (925 F — ToFy) - 0"2v) |12

ve{vi,va}nit+na=[s|—1
5 Z |||D|1+S_[S] ((Va: + A>[S]_lvaaﬁF ) V) ”L2
ve{vy,va}
S Y (DT, + A0 v
ve{v,vo}
+ (Ve + AV ,05F - | D)1y 12)
SIDI (v, + AV ,05 F |1
H (Ve + APV0sF e Y DIy

ve{vi,va}

=1 + I.

We bound the first term by
I S |07 F || (

L) Seo(1 + [[VA]5).

—k_l_((f_[s]), then we have

For the second term, we choose integer k = [4!] and =

I (Ve + AV Va0 F s S (0802

ve{vi,va}

SN F g (1 4 [V AL+ | Al + [ M)

Therefore, by the elliptic estimates of the div-curl system - - ) for A we obtain

IMas S o1+ VAN + 1 ALas + M) S eo(X+ M) B S e+ eol A5

By continuity method, this implies the bound

1A

Hs 5 60

which combined with the smallness of 0,9 € H® also gives the bound (8.4)) for .
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8.2. The moving frame. Once we have the initial data 1y which is small in H*, Theo-
rem yields the good gauge local solution v, along with the associated derived variables
(A, h,V, A, B). But this does not yet give us the actual maps F'.

Here we undertake the task of reconstructing the frame (F,,m). For this we use the
system consisting of and , viewed as a linear ode. We recall these equations here:

T o
(s e
respectively
(8.20) {&Fa = —Im(0m — id, V) + [Im(yY X)) + V,V]F,,
OPm = —i(0 — iV F,,

where (¢, A\, g, V, A, B) is the unique solution of ([2.35))-(2.36]) with initial data 1y small.
We start with the frame at time ¢t = 0, which already is known to solve (8.19)), and has
the following properties:

(i) Orthogonality, F, L m, (m,m) = 2, (m,m) = 0 and consistency with the metric

Jap = (Fa, F,3>'
(i) Integrability, OgF, = OnF}.
(iii) Consistency with the second fundamental form and the connection A:

OaFp - m = Ayp, (Ogm,m) = —2iA,.

Next we extend this frame to times ¢ > 0 by simultaneously solving the pair of equations
(8.19) and ({8.20]). To avoid some technical difficulties, we first do this for regular solutions,
i.e. s > d/2+ 2, and then pass to the limit to obtain the frame for rough solutions.

8.2.1. The frame associated to smooth solutions. The system consisting of (8.19) and (8.20))
is overdetermined, and the necessary and sufficient condition for existence of solutions is
provided by Frobenius’ theorem. We now verify these compatibility conditions in two steps:

a) Compatibility conditions for the system (8.19) at fixed time. Here, by C25 = 0, C3
and C7, =0 we have

O (TG, Fs + Re(Agym)) — 95(T%, Fy + Re(Aaym)) = Cr.0sF7 =0,

afuv

and
Ou(iAgm + NGF,) — Og(iAam + N F,) = iCogm

as needed.

b) Between the system and (8.20). By and we have
O (iAgm + Ao F,) — 0o (iBm + i(07p — iXJV)F,) = iTaom + T2 F,
and
s~ Im (0 pm — iAoy, VM) + [Im(yA]) + V V”] L = O Fy + Re(Agamm)]

(8.21)
= — Re[(9oaT5" 4+ XGT,0)m] — T T o F. (aﬁ o+ 015, — 0,T5,)F°.
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The first equality is obtained directly. For the second equality (8.21]), by (8.19) and (8.20))
we compute this by

LHS(B2T) = — Re[(goaT2" + A5Th)m] + Va(Im(th,n) + Vo Vy) F
+Im(ViYAes — VIAas)F7 — Roasy VIF7 — 01, F,
By T" and the notation G.g (2.29) we compute the last term by

0TSy = — (T — 967 )W o Fy — S[05(Thy + 2G|

1 1
— 5[8Q(T§U + 2G50)]F<’ + é[ag(Tga + 2Gpa) | F

= — TV T F (aﬁ o+ 0aTh, — 05T5,)F°
+[=V;s Im(wa(,) — Im(Vars,) + Im(VipAs,)
1 1 1
— §(VQVB + nga)va — §[V5, VU]Va — §[Va, VU]Vg]F

Then by Bianchi identities and ({2.8]), we collect the terms above containing V' and have

1 ~
5[V, ValVo = [V, Vo Vo = [Va, Vo V) = Roap, V7

1
:é(Rﬁcwv — Rgoay — Raopy — QRUOJBW)VV =0.

From the above expressions the equality (8.21)) follows.

Once the compatibility conditions in Frobenius’ theorem are verified, we obtain the frame
(F,,m) for t € [0,1]. For this we can easily obtain the regularity

0.(F,,m) € L*H*"?, Oi(F,,m) € L°H*t".

Finally, we show that the properties (i)-(iii) above also extend to all ¢ € [0, 1]. The properties
(ii) and (iii) follow directly from the equations (8.19) and (8.20) once the orthogonality
conditions in (i) are verified. For (i) we denote

gOO = <m7m>7 gaO = <Fa7m>> gaﬁ = <Fa7 F,B)
Then by (8.20) and T, = 0, we have

atgao = - (3A¢ + Z)\a'yv )(QOO - 2) - i(aA’(’iﬂ + Z‘j‘i‘yv’y)(gaa - gao)

l\DIN l\DI&

(aAw + iAoy V) (0, m) + (Im(YA)) + Vo V)G + i Bdao,

O(Joo — 2) = 2Im(0M*Y — iAIV7)Gao,

Oy(m,m) = —iB(m,m) — z(aA Y —iNTV V") G0,

0i(gap — Gap) =(Im(PAY) + VaV7) (g5, — Gsy) + MWL) + V5V ) (ay — Gar)
+Im(95980 — iXarV 7 Gg0) + I (959U Fa0 — iAgy V" Gao)-

Viewed as a linear system of ode’s in time, these equations allow us to propagate (i) in time.
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8.2.2. The frame associated to rough solutions. Here we use our approximation of rough
solutions with smooth solutions for the 1 equation in order to construct the frame in the
rough case. Precisely, given a small initial data ¢y € H*, there exists a sequence {tg,} €
H**2 such that ||to, — %o|/zs — 0. By Theorem the Schrodinger system ([2.35)) coupled
with admits solutions 1, with ,,(0) = 1, and

Hwn‘ Hst2 S HwOn‘ Hs+2, Hwn - 7ﬂHHg S HwOn - wOHHS — 0.

A-priori, we do not know whether the initial data 1, is associated to a frame at the
initial time. Hence we first use to construct the frame (F(gn), m™) associated with 1,
at t = 0. At some point zo, we choose F\" (xo) and m™ (xo) so that they are orthogonal,
and (m™,m™) = 2, (m™,m™) = 0 and (F"”, F{") = g0} hold. With this initial data,
we view as a linear ode with continuous coefﬁ(nents As above, the necessary and

sufficient condition for solvability, as provided by Frobenius’ theorem, is a consequence of
the relations C? = 0, C® = 0 and C” = 0, which are in turn a consequence of Theorem .

The above construction determines the frame (Fa(n), m™) up to symmetries (rigid rotations

and translations). Hence, the frame (Fc(yn),m(”)) at t = 0 is uniquely determined by the
condition

lim (FM™, m™)(z,0) = lim (F,,m)(z,0).
T—00

Tr—00
In this construction, the properties (i () (iii) above also extend to all . The properties (ii) and
(iii) follow directly from equation (8 once the orthogonality conditions in (i) are verified.

For (i) we use (8.19) to compute

. N 1 _ 1+ . < _ -
9agpo = T} 30:0 + _)\a,8<ma m) + §>\aﬁ(goo —2) + Ao(98y — Gpy) + 1 AaGpo,
O0a(Joo —2) = =2 Re()\'yg,yo)

Oa{m,m) = —2iA,(m,m) — 2 Re NG,
aa (gﬂ’y - gﬂ’y) - Fgﬁ’(gcf’y - go’y) + ng(gaﬁ - ga,@) + Re(j‘ﬁagfyo + S\'yagﬁO)'

By ode uniqueness and the choice of the initial data, the desired properties for the frame are
propagated spatially.

Once we have the frames (Fé"),m(”)) at t = 0, we can invoke the smooth case analysis
above, using and ¥, € H*+? to extend the frame (F{”, m™) to ¢ > 0 with initial data
(F, m™)(z,0).

In order to obtain a limiting frame (F,,m) we study the properties of the regular frames
(F{, m™) in three steps:

a) Uniform bounds. By (8.19 m 2.37 and Sobolev embeddings we have
10 F5 s ST E™ 4+ X m | s
SHwnHHs(IFa(OO)I + [m(o0)| + 1|0 (FL, m ™)l r-)

and
105 ™ || e S| AT m!

Slleon]

a(00 )|+|m( )|+ 110 (ELY,m™)|
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Then, by the smallness of ¥, € H®, we obtain
10: (£, m ™) s S Nlbn s

b) Sobolev and uniform convergence at t = 0. Using an argument similar to that in a), by

(8.19) and Theorem b) we have
18 (F = Foym™ —m)|[ s Sllvhon = tollas + [l

By the smallness of 1, this implies the H® convergence. The uniform convergence at ¢t = 0
also follows by Sobolev embeddings.

Hs Hs-

8z(Fa(") — Fa,m(”) —m)|

c) a.e. convergence for t > 0. Here we use (8.20) as an ode in time. The coefficients

converge in L? for a.e. x, so the frames (Fo(,n), m™) will also converge uniformly in time for
a.e. x. This can be rectified to uniform convergence in view of the uniform Sobolev bounds
in (i). This yields the desired limiting frames (F,,m).

By (8.19) we also have
10:(F® — ED m® — )| pee s < 1ok — Wil e s S o — all

This shows that the limiting frame satisfies both equations (8.20) and (8.19)), as well the as
the uniform bounds in (a).

HS.

8.3. The moving manifold ;. Here we propagate the full map F' by simply integrating

, i.e.
F(t) = F(0) + /Ot —Im(ym) + V' F.,ds.
Then by , we have
0. F(t) = 0,F(0) + /0 - Im(9hm — iday V) + [Im(¢A]) + V, V] F,ds,
which is consistent with above definition of F,.

8.4. The (SMCF) equation for F. Here we establish that F' solves (1.1)). Using the

relation Aog = 02 F - m we have
—Im(¢m) = — Im(g*P 24 F - (1 +ivn) (11 — i)
:(AQF . Vl)Vg — (AgF . Z/Q)Vl
=J(AF) = JH(F).
This implies that the F solves ((1.1)).
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