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Abstract. The skew mean curvature flow is an evolution equation for d dimensional ma-
nifolds embedded in Rd+2 (or more generally, in a Riemannian manifold). It can be viewed as
a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version
of the Schrödinger Map equation. In this article, we prove small data local well-posedness
in low-regularity Sobolev spaces for the skew mean curvature flow in dimension d ≥ 4.
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1. Introduction

The skew mean curvature flow (SMCF) is a nonlinear Schrödinger type flow modeling
the evolution of a d dimensional oriented manifold embedded into a fixed oriented d + 2
dimensional manifold. It can be seen as a Schrödinger analogue of the well studied mean
curvature flow. In this article, we consider the small data local well-posedness for the skew
mean curvature flow in high dimensions d ≥ 4, for low regularity initial data.

1.1. The (SMCF) equations. Let Σd be a d-dimensional oriented manifold, and (N d+2, gN )
be a d + 2-dimensional oriented Riemannian manifold. Let I = [0, T ] be an interval and
F : I × Σd → N be a one parameter family of immersions. This induces a time dependent
Riemannian structure on Σd. For each t ∈ I, we denote the submanifold by Σt = F (t,Σ), its
tangent bundle by TΣt, and its normal bundle by NΣt respectively. For an arbitrary vector
Z at F we denote by Z⊥ its orthogonal projection onto NΣt. The mean curvature H(F ) of
Σt can be identified naturally with a section of the normal bundle NΣt.

The normal bundle NΣt is a rank two vector bundle with a naturally induced complex
structure J(F ) which simply rotates a vector in the normal space by π/2 positively. Namely,
for any point y = F (t, x) ∈ Σt and any normal vector ν ∈ NyΣt, we define J(F )ν ∈ NyΣt as
the unique vector with the same length so that

J(F )ν⊥ν, ω(F∗(e1), F∗(e2), · · ·F∗(ed), ν, J(F )ν) > 0,

where ω is the volume form of N and {e1, · · · , ed} is an oriented basis of Σd. The skew mean
curvature flow (SMCF) is defined by the initial value problem

(1.1)

{
(∂tF )⊥ = J(F )H(F ),

F (·, 0) = F0,

which evolves a codimension two submanifold along its binormal direction with a speed given
by its mean curvature.

The (SMCF) was derived both in physics and mathematics. The one-dimensional (SMCF)
in the Euclidean space R3 is the well-known vortex filament equation (VFE)

∂tγ = ∂sγ × ∂2
sγ,

where γ is a time-dependent space curve, s is its arc-length parameter and × denotes the
cross product in R3. The (VFE) was first discovered by Da Rios [6] in 1906 in the study of
the free motion of a vortex filament.

The (SMCF) also arises in the study of asymptotic dynamics of vortices in the context
of superfluidity and superconductivity. For the Gross-Pitaevskii equation, which models the
wave function associated with a Bose-Einstein condensate, physics evidence indicates that
the vortices would evolve along the (SMCF). An incomplete verification was attempted by
T. Lin [20] for the vortex filaments in three space dimensions. For higher dimensions, Jerrard
[14] proved this conjecture when the initial singular set is a codimension two sphere with
multiplicity one.

The other motivation is that the (SMCF) naturally arises in the study of the hydrody-
namical Euler equation. A singular vortex in a fluid is called a vortex membrane in higher
dimensions if it is supported on a codimension two subset. The law of locally induced motion
of a vortex membrane can be deduced from the Euler equation by applying the Biot-Savart
formula. Shashikanth [24] first investigated the motion of a vortex membrane in R4 and
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showed that it is governed by the two dimensional (SMCF), while Khesin [18] then general-
ized this conclusion to any dimensional vortex membranes in Euclidean spaces.

From a mathematical standpoint, the (SMCF) equation is a canonical geometric flow for
codimension two submanifolds which can be viewed as the Schrödinger analogue of the well
studied mean curvature flow. In fact, the infinite-dimensional space of codimension two
immersions of a Riemannian manifold admits a generalized Marsden-Weinstein sympletic
structure, and hence the Hamiltonian flow of the volume functional on this space is verified
to be the (SMCF). Haller-Vizman [12] noted this fact where they studied the nonlinear
Grassmannians. For a detailed mathematical derivation of these equations we refer the
reader to the article [28, Section 2.1].

The study of higher dimensional (SMCF) is still at its infancy compared with its one-
dimensional case. For the 1-d case, we refer the reader to the survey article of Vega [29].
For the higher dimensional case, Song-Sun [28] proved the local existence of (SMCF) with
a smooth, compact oriented surface as the initial data in two dimensions, then Song [27]
generalized this result to compact oriented manifolds for all d ≥ 2 and also proved a corre-
sponding uniqueness result. Recently, Li [19] considered the transversal small pertubations
of Euclidean planes under the (SMCF) and proved the global regularity for small initial data.
In addition, Song [26] also proved that the Gauss map of a d dimensional (SMCF) in Rd+2

satisfies a Schrödinger Map type equation but relative to the varying metric. We remark
that in one space dimension this is exactly the classical Schrödinger Map type equation,
provided that one chooses suitable coordinates, i.e. the arclength parametrization.

As written above, the (SMCF) equations are independent of the choice of coordinates in
I × Σ; here we include the time interval I to emphasize that coordinates may be chosen
in a time dependent fashion. The manifold Σd simply serves to provide a parametrization
for the moving manifold Σt; it determines the topology of Σt, but nothing else. Thus, the
(SMCF) system written in the form (1.1) should be seen as a geometric evolution, with a
large gauge group, namely the group of time dependent changes of coordinates in I ×Σ. In
particular, interpreting the equations (1.1) as a nonlinear Schrödinger equation will require
a good gauge choice. This is further discussed in Section 2.

In this article we will restrict ourselves to the case when Σd = Rd, i.e. where Σt has a
trivial topology. We will further restrict to the case when N d+2 is the Euclidean space Rd+2.
Thus, the reader should visualize Σt as an asymptotically flat codimension two submanifold
of Rd+2.

1.2. Scaling and function spaces. To understand what are the natural thresholds for
local well-posedness, it is interesting to consider the scaling properties of the solutions. As
one might expect, a clean scaling law is obtained when Σd = Rd and N d+2 = Rd+2. Then
we have the following

Proposition 1.1 (Scale invariance for (SMCF)). Assume that F is a solution of (1.1) with
initial data F (0) = F0. If λ > 0 then F̃ (t, x) := λ−1F (λ2t, λx) is a solution of (1.1) with
initial data F̃ (0) = λ−1F0(λx).

Proof. Since the induced metric and Christoffel symbols of the immersion F̃ are

g̃αβ(t, x) = 〈∂αF̃ , ∂βF̃ 〉 = gαβ(λ2t, λx),
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and

Γ̃γαβ(t, x) = λΓγαβ(λ2t, λx).

Then by the relation H(F ) = gαβ(∂2
αβF − Γγαβ∂γF ), we have

(∂tF̃ )⊥ =λ(∂tF )⊥(λ2t, λx) = λJgαβ(λ2t, λx)[(∂2
αβF − Γγαβ∂γF )(λ2t, λx)]

=Jg̃αβ(∂2
αβF̃ − Γ̃γαβ∂γF̃ )(t, x).

�

The above scaling would suggest the critical Sobolev space for our moving surfaces Σt to

be Ḣ
d
2

+1. However, instead of working directly with the surfaces, it is far more convenient

to track the regularity at the level of the curvature H(Σt), which scales at the level of Ḣ
d
2
−1.

1.3. The main result. Our objective in this paper is to establish the local well-posedness of
skew mean curvature flow for small data at low regularity. A key observation is that providing
a rigorous description of fractional Sobolev spaces for functions (tensors) on a rough manifold
is a delicate matter, which a-priori requires both a good choice of coordinates on the manifold
and a good frame on the vector bundle (the normal bundle in our case). This is done in
the next section, where we fix the gauge and write the equation as a quasilinear Schrödinger
evolution in a good gauge. At this point, we content ourselves with a less precise formulation
of the main result:

Theorem 1.2 (Small data local well-posedness). Let s > d
2
, d ≥ 4. Then there exists ε0 > 0

sufficiently small such that, for all initial data Σ0 with metric ‖∂x(g0 − Id)‖Hs ≤ ε0 and
mean curvature ‖H0‖Hs(Σ0) ≤ ε0, the skew mean curvature flow (1.1) for maps from Rd to
the Euclidean space (Rd+2, gRd+2) is locally well-posed on the time interval I = [0, 1] in a
suitable gauge.

Remark 1.2.1. We remark on the necessity of having a smallness condition on both g0− Id
and the mean curvature H0. The combined efforts of E. De Giorgi [7], F. J. Almgren, Jr.
[1], and J. Simons [25] led to the following theorem (see Theorem 4,2, [3]):

“If u : Rn−1 → R is an entire solution to the minimal surface equation and n ≤ 8, then u
is an affine function.”
However, in 1969 E. Bombieri, De Giorgi, and E. Giusti [2] constructed entire non-affine
solutions to the minimal surface equation in R9. Hence the bound ‖H0‖Hs(Σ0) ≤ ε0 on the
mean curvature does not necessarily imply that the sub-manifold is almost flat.

Here we only prove the small data local well-posedness, which means that the initial
submanifold Σ0 should be a perturbation of Euclidean plane Rd. Hence, the bound on metric
‖∂x(g0−Id)‖Hs ≤ ε0 is also necessary in our main result, at least in very high dimension. This
condition on metric will insure the existence of global harmonic coordinates (see Proposition
8.2). Later, the mean curvature bound will also yield an estimate ‖∂x(g0 − Id)‖Hs+1 . ε0 in
harmonic coordinates.

Unlike any of the prior results, which prove only existence and uniqueness for smooth
data, here we consider rough data and provide a full, Hadamard style well-posedness result
based on a more modern, frequency envelope approach and using a paradifferential form for
both the full and the linearized equations. For an overview of these ideas we refer the reader
to the expository paper [13]. While, for technical reasons, this result is limited to dimensions
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d ≥ 4, we expect the same strategy to also work in lower dimension; the lower dimensional
case will be considered in forthcoming work.

The favourable gauge mentioned in the theorem, defined in the next section, will have two
components:

• The harmonic coordinates on the manifolds Σt.
• The Coulomb gauge for the orthonormal frame on the normal bundle.

In the next section we reformulate the (SMCF) equations as a quasilinear Schrödinger evo-
lution for a good scalar complex variable ψ, which is exactly the mean curvature but repre-
sented in the good gauge. There we provide an alternate formulation of the above result, as
a well-posedness result for the ψ equation. In the final section of the paper we close the circle
and show that one can reconstruct the full (SMCF) flow starting from the good variable ψ.

One may compare our gauge choices with the prior work in [28] and [27]. There the
tangential component of ∂tF in (1.1) is omitted, and the coordinates on the manifold Σt are
simply those transported from the initial time. The difficulty with such a choice is that the
regularity of the map F is no longer determined by the regularity of the second fundamental
form, and instead there is a loss of derivatives which may only be avoided if the initial data
is assumed to have extra regularity. This loss is what prevents a complete low regularity
theory in that approach.

Once our problem is rephrased as a nonlinear Schrödinger evolution, one may compare its
study with earlier results on general quasilinear Schrödinger evolutions. This story begins
with the classical work of Kenig-Ponce-Vega [15, 16, 17], where local well-posedness is estab-
lished for more regular and localized data. Lower regularity results in translation invariant
Sobolev spaces were later established by Marzuola-Metcalfe-Tataru [21, 22, 23]. The local
energy decay properties of the Schrödinger equation, as developed earlier in [4, 5, 8, 9] play a
key role in these results. While here we are using some of the ideas in the above papers, the
present problem is both more complex and exhibits additional structure. Because of this,
new ideas and more work are required in order to close the estimates required for both the
full problem and for its linearization.

1.4. An overview of the paper. Our first objective in this article will be to provide a self-
contained formulation of the (SMCF) flow, interpreted as a nonlinear Schrödinger equation
for a single independent variable. This independent variable, denoted by ψ, represents
the trace of the second fundamental form on Σt, in complex notation. In addition to the
independent variables, we will use several dependent variables, as follows:

• The Riemannian metric g on Σt.
• The (complex) second fundamental form λ for Σt.
• The magnetic potential A, associated to the natural connection on the normal bundle
NΣt, and the corresponding temporal component B.
• The advection vector field V , associated to the time dependence of our choice of

coordinates.

These additional variables will be viewed as uniquely determined by our independent
variable ψ, provided that a suitable gauge choice was made. The gauge choice involves two
steps:

(i) The choice of coordinates on Σt; here we use harmonic coordinates, with suitable
boundary conditions at infinity.

4



(ii) The choice of the orthonormal frame on NΣt; here we use the Coulomb gauge, again
assuming flatness at infinity.

To begin this analysis, in the next section we describe the gauge choices, so that by the
end we obtain

(a) a nonlinear Schrödinger equation for ψ, see (2.35).
(b) An elliptic fixed time system (2.36) for the dependent variables S = (g, λ, V, A,B),

together with suitable compatibility conditions (constraints).

Setting the stage to solve these equations, in Section 3 we describe the function spaces
for both ψ and S. This is done at two levels, first at fixed time, which is useful in solving
the elliptic system (2.36), and then using in the space-time setting, which is needed in order
to solve the Schrödinger evolution. The fixed time spaces are classical Sobolev spaces, with
matched regularities for all the components. The space-time norms are the so called local
energy spaces, as developed in [21, 22, 23].

Using these spaces, in Section 4 we consider the solvability of the elliptic system (2.36).
This is first considered and solved without reference to the constraint equations, but then
we prove that the constraints are indeed satisfied.

Finally, we turn our attention to the Schrödinger system (2.35), in several stages. In
Section 5 we establish several multilinear and nonlinear estimates in our space-time function
spaces. These are then used in Section 6 in order to prove local energy decay bounds first
for the linear paradifferential Schrödinger flow, and then for a full linear Schrödinger flow
associated to the linearization of our main evolution. The analysis is completed in Section 7,
where we use the linear Schrödinger bounds in order to (i) construct solutions for the full
nonlinear Schrödinger flow, and (ii) to prove the uniqueness and continuous dependence of
the solutions. The analysis here broadly follows the ideas introduced in [21, 22, 23], but a
number of improvements are needed which allow us to take better advantage of the structure
of the (SMCF) equations.

Last but not least, in the last section we prove that the full set of variables (g, λ, V, A,B)
suffice in order to uniquely reconstruct the defining function F for the evolving surfaces Σt,
as Hs+2

loc manifolds. More precisely, with respect to the parametrization provided by our
chosen gauge, F has regularity

∂tF, ∂
2
xF ∈ C[0, 1;Hs].

2. The differentiated equations and the gauge choice

The goal of this section is to introduce our main independent variable ψ, which represents
the trace of the second fundamental form in complex notation, as well as the following
auxiliary variables: the metric g, the second fundamental form λ, the connection coefficients
A,B for the normal bundle as well as the advection vector field V . For ψ we start with
(1.1) and derive a nonlinear Schödinger type system (2.35), with coefficients depending on
S = (λ, h, V,A,B), where h = g−Id. Under suitable gauge conditions, the auxiliary variables
S are shown to satisfy an elliptic system (2.36), as well as a natural set of constraints. We
conclude the section with a gauge formulation of our main result, see Theorem 2.7.

We remark that H. Gomez ([11, Chapter 4]) introduced the language of gauge fields
as an appropriate framework for presenting the structural properties of the surface and the
evolution equations of its geometric quantities, and showed that the complex mean curvature
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of the evolving surface satisfies a nonlinear Schrödinger-type equation. Here we will further
derive the self-contained modified Schrödinger system under harmonic coordinate conditions
and Coulomb gauge.

2.1. The Riemannian metric g. Let (Σd, g) be a d-dimensional oriented manifold and
let (Rd+2, gRd+2) be (d+ 2)-dimensional Euclidean space. Let α, β, γ, · · · ∈ {1, 2, · · · , d} and
k ∈ {1, 2, · · · , d + 2}. Considering the immersion F : Σ → (Rd+2, gRd+2), we obtain the
induced metric g in Σ,

(2.1) gαβ = ∂xαF · ∂xβF.

We denote the inverse of the matrix gαβ by gαβ, i.e.

gαβ := (gαβ)−1, gαγg
γβ = δβα.

Let ∇ be the cannonical Levi-Civita connection in Σ associated with the induced metric g.
A direct computation shows that on the Riemannian manifold (Σ, g) we have the Christoffel
symbols

Γγαβ =
1

2
gγσ(∂βgασ + ∂αgβσ − ∂σgαβ) = gγσ∂2

αβF · ∂σF.

Hence, the Laplace-Beltrami operator ∆g can be written in the form

∆gf = tr∇2f = gαβ(∂2
αβf − Γγαβ∂γf)

= gαβ[∂2
αβf − gγσ(∂2

αβF · ∂σF )∂γf ],

for any twice differentiable function f : Σ→ R. The curvature tensor R on the Riemannian
manifold (Σ, g) is given by

R(∂α, ∂β)∂γ = (∂αΓσβγ + ΓmβγΓ
σ
αm − ∂βΓσαγ − ΓmαγΓ

σ
βm)∂σ.

Hence, we have

Rσ
γαβ = ∂αΓσβγ − ∂βΓσαγ + ΓmβγΓ

σ
αm − ΓmαγΓ

σ
βm.(2.2)

By R(X, Y, Z,W ) = 〈R(Z,W )Y,X〉 and Rαβγσ = R(∂α, ∂β, ∂γ, ∂σ), we get

Rαβγσ = 〈R(∂γ, ∂σ)∂β, ∂α〉 = 〈Rµ
βγσ∂µ, ∂α〉 = gµαR

µ
βγσ,

We will also use the Ricci curvature

Ricαβ = Rσ
ασβ = gσγRγασβ.

2.2. The second fundamental form. Let ∇̄ be the Levi-Civita connection in (Rd+2, gRd+2)
and let h be the second fundamental form for Σ as an embedded manifold. For any vector
fields u, v ∈ T∗Σ, the Gauss relation is

∇̄uF∗v = F∗(∇uv) + h(u, v).

Then we have

hαβ =h(∂α, ∂β) = ∇̄∂α∂βF − F∗(∇∂α∂β)

=∂2
αβF + Γ̄kl∂αF

k∂βF
l − Γγαβ∂γF.

By Γ̄jkl = 0, this gives the mean curvature H at F (x),

H = trg h = gαβhαβ = gαβ(∂2
αβF − Γγαβ∂γF ) = ∆gF.
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Hence, the F -equation in (1.1) is rewritten as

(∂tF )⊥ = J(F )∆gF = J(F )gαβ(∂2
αβF − Γγαβ∂γF ).

This equation is still independent of the choice of coordinates in Σd, which at this point are
allowed to fully depend on t.

2.3. The complex structure equations. Here we introduce a complex structure on the
normal bundle NΣt. This is achieved by choosing {ν1, ν2} to be an orthonormal basis of
NΣt such that

Jν1 = ν2, Jν2 = −ν1.

Such a choice is not unique; in making it we introduce a second component to our gauge
group, namely the group of sections of an SU(1) bundle over I × Rd.

The vectors {F1, · · · , Fd, ν1, ν2} form a frame at each point on the manifold (Σ, g), where
Fα for α ∈ {1, · · · , d} are defined as

Fα = ∂αF.

If we differentiate the frame, we obtain a set of structure equations of the following type

(2.3)


∂αFβ = ΓγαβFγ + καβν1 + ταβν2,

∂αν1 = −κγαFγ + Aαν2,

∂αν2 = −τ γαFγ − Aαν1,

where the tensors καβ, ταβ and the connection coefficients Aα are defined by

καβ := ∂αFβ · ν1, ταβ := ∂αFβ · ν2, Aα = ∂αν1 · ν2.

The mean curvature H can be expressed in term of καβ and ταβ, i.e.

H = gαβ(καβν1 + ταβν2).

Next, we complexify the structure equations (2.3) as follows. We define the complex vector
m and the complex second fundamental form tensor λαβ to be

m = ν1 + iν2, λαβ = καβ + iταβ.

Then we define the complex scalar mean curvature ψ as the trace of the second fundamental
form,

(2.4) ψ := trλ = gαβλαβ.

Our objective for the rest of this section will be to interpret the (SMCF) equation as a
nonlinear Schrödinger evolution for ψ, by making suitable gauge choices.

We remark that the action of sections of the SU(1) bundle is given by

(2.5) ψ → eiθψ, λ→ eiθλ, m→ eiθm, Aα → Aα − ∂αθ.

for a real valued function θ.
We use the convention for the inner product of two complex vectors, say a and b, as

〈a, b〉 =
d+2∑
j=1

aj b̄j,
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where aj and bj are the complex components of a and b respectively. Then we get the
following relations for the complex vector m,

〈m,m〉 = |ν1|2 + |ν2|2 = 2, 〈m, m̄〉 = 〈m̄,m〉 = |ν1|2 − |ν2|2 = 0.

From these relations we obtain

καβν1 + ταβν2 =
1

2
(λαβ + λ̄αβ)

1

2
(m+ m̄) +

1

2i
(λαβ − λ̄αβ)

1

2i
(m− m̄)

=
1

2
(λαβm̄+ λ̄αβm) = Re(λαβm̄).

Then the structure equations (2.3) are rewritten as

(2.6)

{
∂αFβ = ΓγαβFγ + Re(λαβm̄),

∂Aαm = −λγαFγ,
where

∂Aα = ∂α + iAα.

2.4. The Gauss and Codazzi relations. The Gauss and Codazzi equations are derived
from the equality of second derivatives ∂α∂βFγ = ∂β∂αFγ for the tangent vectors on the
submanifold Σ and for the normal vectors respectively. Here we use the Gauss and Co-
dazzi relations to derive the Riemannian curvature, the first compatibility condition and a
symmetry.

By the structure equations (2.6), we get

(2.7)

∂2
αβFγ =∂α(ΓσβγFσ + Re(λβγm̄))

=∂αΓσβγFσ + Γσβγ(Γ
µ
ασFµ + Re(λασm̄)) + Re(∂αλβγm̄+ λβγ(iAαm̄− λ̄µαFµ))

=(∂αΓσβγ + ΓµβγΓ
σ
αµ − Re(λβγλ̄

σ
α))Fσ + Re[(∂Aα λβγ + Γσβγλασ)m̄].

Then in view of ∂α∂βFγ = ∂β∂αFγ and equating the coefficients of the tangent vectors, we
obtain

∂αΓσβγ + ΓµβγΓ
σ
αµ − ∂βΓσαγ − ΓµαγΓ

σ
βµ = Re(λβγλ̄

σ
α − λαγλ̄σβ).

This gives the Riemannian curvature

Rσγαβ = 〈Rµ
γαβFµ, Fσ〉 = 〈R(∂α, ∂β)Fγ, Fσ〉 = Re(λβγλ̄ασ − λαγλ̄βσ),(2.8)

which is a complex formulation of the Gauss equation. Correspondingly we obtain the the
Ricci curvature

(2.9) Ricγβ = Re(λγβψ̄ − λγαλ̄αβ).

After equating the coefficients of the vector m in (2.7), we obtain

∂Aα λβγ + Γσβγλασ = ∂Aβ λαγ + Γσαγλβσ,

By the definition of covariant derivatives, i.e.

∇αλβγ = ∂αλβγ − Γσαβλσγ − Γσαγλβσ,

we obtain
∂Aα λβγ − Γσαγλβσ − Γσαβλσγ = ∂Aβ λαγ − Γσβγλασ − Γσαβλσγ.

This implies the complex formulation of the Codazzi equation, namely

(2.10) ∇A
αλβγ = ∇A

β λαγ.
8



As a consequence of this equality, we obtain

Lemma 2.1. The second fundamental form λ satisfies the Codazzi relations

(2.11) ∇A
αλ

γ
β = ∇A

β λ
γ
α = ∇A,γλαβ.

Proof. Here we prove the last equality. By ∇βg
γσ = 0 and (2.10) we have

∇A
β λ

γ
α = gγσ∇A

β λσα = gγσ∇A
σλβα = ∇A,γλαβ.

The first equality can be proved similarly. �

Next, we use the relation ∂α∂βm = ∂β∂αm in order to derive a compatibility condition
between the connection A in the normal bundle and the second fundamental form. Indeed,
from ∂α∂βm = ∂β∂αm we obtain the commutation relation

(2.12) [∂Aα , ∂
A
β ]m = i(∂αAβ − ∂βAα)m.

By (2.6) we have

∂Aα ∂
A
βm =− ∂Aα (λγβFγ) = −(∂Aα λ

σ
β + λγβΓσαγ)Fσ − λ

γ
β Re(λαγm̄).

Then multiplying (2.12) by m yields

2i(∂αAβ − ∂βAα) =〈[−λγβ Re(λαγm̄) + λγα Re(λβγm̄)],m〉
=− λγβλ̄αγ + λγαλ̄βγ = 2i Im(λγαλ̄βγ).

This gives the compatibility condition for the curvature of A,

∂αAβ − ∂βAα = Im(λγαλ̄βγ).

Using covariant derivative, this can be written as

(2.13) ∇αAβ −∇βAα = Im(λγαλ̄βγ),

which can be seen as the complex form of the Ricci equations.

We remark that, by equating the coefficients of the tangent vectors in (2.12), we also
obtain

∂Aα λ
σ
β + λγβΓσαγ = ∂Aβ λ

σ
α + λγαΓσβγ,

and hence

∇A
αλ

σ
β = ∇A

β λ
σ
α,

which is the same as (2.11).
Next, we state an elliptic system for the second fundamental form λαβ in terms of ψ, using

the Codazzi relations (2.11).

Lemma 2.2 (Div-curl system for λ). The second fundamental form λ satisfies

(2.14)

{
∇A
αλβγ −∇A

β λαγ = 0,

∇A,αλαβ = ∇A
βψ.

9



We remark that a-priori solutions λ to the above system are not guaranteed to be sym-
metric, so we record this as a separate property:

(2.15) λαβ = λβα.

Finally, we turn our attention to the connection A, for which we have the curvature
relations (2.13) together with the gauge group (2.5). In order to both fix the gauge and
obtain an elliptic system for A, we impose the Coulomb gauge condition

(2.16) ∇αAα = 0.

Next, we derive the elliptic A-equations from the Ricci equations (2.13).

Lemma 2.3 (Elliptic equations for A). Under the Coulomb gauge condition, the connection
A solves

∇γ∇γAα = Re(λσαψ̄ − λγαλ̄σγ)Aσ +∇γ Im(λσγ λ̄ασ).(2.17)

Proof. Applying ∇β to (2.13), by curvature and (2.16) we obtain

∇β∇βAα = Ricαδ A
δ +∇β Im(λσβλ̄ασ).

Then the equation (2.17) for A is obtained from (2.9). �

2.5. The elliptic equation for the metric g in harmonic coordinates. Here we take
the next step towards fixing the gauge, by choosing to work in harmonic coordinates. Pre-
cisely, we will require the coordinate functions {xα, α = 1, · · · , d} to be globally Lipschitz
solutions of the elliptic equations

(2.18) ∆gxα = 0.

This determines the coordinates uniquely modulo time dependent affine transformations.
This remaining ambiguity will be removed later on by imposing suitable boundary conditions
at infinity. After this, the only remaining degrees of freedom in the choice of coordinates will
be given by time independent translations and rigid rotations. Thus, once a choice is made
at the initial time, the coordinates will be uniquely determined later on (see also Remark
2.5.1).

Here we will interpret the above harmonic coordinate condition at fixed time as an elliptic
equation for the metric g (see e.g. [10], [30, P161]). The equations (2.18) may be expressed
in terms of the Christoffel symbols Γ, which must satisfy the condition

(2.19) gαβΓγαβ = 0, for γ = 1, · · · , d.
This implies

(2.20) gαβ∂αgβγ =
1

2
gαβ∂γgαβ, ∂αg

αγ =
1

2
gαβg

γσ∂σg
αβ.

Let

(2.21) Γαβ,γ =
1

2
(∂αgβγ + ∂βgαγ − ∂γgαβ) = gγσΓσαβ.

Then we also have
gαβΓαβ,γ = gαβgγσΓσαβ = 0,

and
Rαγβσ = ∂βΓγσ,α − ∂σΓβγ,α + Γσα,νΓ

ν
βγ − Γβα,νΓ

ν
γσ.
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This leads to an equation for the metric g:

Lemma 2.4 (Elliptic equations of g). In harmonic coordinates, the metric g satisfies

(2.22)
gαβ∂2

αβgγσ = [−∂γgαβ∂βgασ − ∂σgαβ∂βgαγ + ∂γgαβ∂σg
αβ]

+ 2gαβΓσα,νΓ
ν
βγ − 2 Re(λγσψ̄ − λαγλ̄ασ).

Proof. By the definition of Ricci curvature, (2.2) and (2.19), we have

Ricγσ =gαβRαγβσ = gαβ(∂βΓγσ,α − ∂σΓβγ,α) + gαβΓσα,νΓ
ν
βγ − gαβΓβα,νΓ

ν
γσ

=gαβ(∂βΓγσ,α − ∂σΓβγ,α) + gαβΓσα,νΓ
ν
βγ

=I + II.

We compute the first term I. By the definition of Γαβ,γ in (2.21), we have

I =
1

2
gαβ[∂β(∂γgσα + ∂σgγα − ∂αgγσ)− ∂σ(∂βgγα + ∂γgβα − ∂αgβγ)]

=− 1

2
gαβ∂2

αβgγσ +
1

2
gαβ(∂2

βγgασ + ∂2
ασgβγ − ∂2

γσgαβ)

Since, by (2.20) we have

gαβ(∂2
γβgασ −

1

2
∂2
γσgαβ) = −∂γgαβ(∂βgασ −

1

2
∂σgαβ).

Then

I =− 1

2
gαβ∂2

αβgγσ +
1

2
[−∂γgαβ(∂βgασ −

1

2
∂σgαβ)− ∂σgαβ(∂βgαγ −

1

2
∂γgαβ)]

=− 1

2
gαβ∂2

αβgγσ +
1

2
[−∂γgαβ∂βgασ − ∂σgαβ∂βgαγ + ∂γgαβ∂σg

αβ].

Hence,

Ricγσ = −1

2
gαβ∂2

αβgγσ +
1

2
[−∂γgαβ∂βgασ − ∂σgαβ∂βgαγ + ∂γgαβ∂σg

αβ] + gαβΓσα,νΓ
ν
βγ.

By (2.9) this concludes the proof of the Lemma. �

2.6. The motion of the frame {F1, · · · , Fd,m} under (SMCF). Here we derive the
equations of motion for the frame, assuming that the immersion F satisfying (1.1).

We begin by rewriting the SMCF equations in the form

(2.23) ∂tF = J(F )H(F ) + V γFγ,

where V γ is a vector field on the manifold Σ, which in general depends on the choice of
coordinates.

By the definition of m and λαβ, we get

J(F )H(F ) = J(F ) Re(ψm̄) = Re i(ψm̄) = − Im(ψm̄).

Hence, the above F -equation (2.23) is rewritten as

(2.24) ∂tF = − Im(ψm̄) + V γFγ.
11



Then we use this to derive the equations of motion for the frame. Applying ∂α to (2.24),
by the structure equations (2.6) we obtain

∂tFα = ∂αFt = ∂α[− Im(ψm̄) + V γFγ]

=− Im((∂α + iAα)ψm̄+ ψ(∂α + iAα)m̄) + ∂αV
γFγ + V γ(ΓσαγFσ + Re(λαγm̄))

=− Im(∂Aαψm̄− ψλ̄γαFγ) + ∂αV
γFγ + V γ(ΓσαγFσ + Re(λαγm̄))

=− Im(∂Aαψm̄) + Re(λαγV
γm̄) + [Im(ψλ̄γα) +∇αV

γ]Fγ

=− Im(∂Aαψm̄− iλαγV γm̄) + [Im(ψλ̄γα) +∇αV
γ]Fγ.

By the orthogonality relation m⊥Fα = 0, this implies

〈∂tm,Fα〉 = ∂t〈m,Fα〉 − 〈m, ∂tFα〉
= − 〈m,− Im(∂Aαψm̄− iλαγV γm̄)〉

= 〈m, i
2

(∂Aαψ − iλαγV γ)m〉

= − i(∂Aαψ − iλαγV γ).

In order to describe the normal component of the time derivative of m, we also need the
temporal component of the connection in the normal bundle. This is defined by

B = 〈∂tν1, ν2〉.
We have

(∂tm)⊥ = (∂t(ν1 + iν2))⊥ = Bν2 − iBν1 = −iB(ν1 + iν2) = −iBm.
Then we get

∂tm = −i(∂A,αψ − iλαγV γ)Fα − iBm,
which can be further rewritten as

∂Bt m = −i(∂A,αψ − iλαγV γ)Fα.

Therefore, we obtain the following equations of motion for the frame

(2.25)

{
∂tFα = − Im(∂Aαψm̄− iλαγV γm̄) + [Im(ψλ̄γα) +∇αV

γ]Fγ,

∂Bt m = −i(∂A,αψ − iλαγV γ)Fα.

From this we obtain the evolution equation for the metric g. By the definition of the
induced metric g (2.1) and (2.25), we have

∂tgαβ = ∂t〈Fα, Fβ〉 = 〈∂tFα, Fβ〉+ 〈Fα, ∂tFβ〉
= 〈− Im(∂Aαψm̄− iλαγV γm̄) + [Im(ψλ̄γα) +∇αV

γ]Fγ, Fβ〉
+ 〈Fα,− Im(∂Aβ ψm̄− iλβγV γm̄) + [Im(ψλ̄γβ) +∇βV

γ]Fγ〉
= gγβ(Im(ψλ̄γα) +∇αV

γ) + gαγ(Im(ψλ̄γβ) +∇βV
γ)

= 2 Im(ψλ̄αβ) +∇αVβ +∇βVα,

which we record for later reference:

(2.26) ∂tgαβ = 2 Im(ψλ̄αβ) +∇αVβ +∇βVα.
12



Then we also obtain

∂tg
αβ = −2 Im(ψλ̄αβ)−∇αV β −∇βV α,(2.27)

∂tΓ
γ
αβ = ∇αG

γ
β +∇βG

γ
α −∇γGαβ,(2.28)

where Gαβ are defined by

(2.29) Gαβ = Im(ψλ̄αβ) +
1

2
(∇αVβ +∇βVα).

So far, the choice of V has been unspecified; it depends on the choice of coordinates on our
manifold as the time varies. However, once the latter is fixed via the harmonic coordinate
condition (2.19), we can also derive an elliptic equation for the advection field V :

Lemma 2.5 (Elliptic equation for the vector field V ). Under the harmonic coordinate con-
dition (2.19), the advection field V solves

(2.30) ∇α∇αV
γ = −2∇α Im(ψλ̄αγ)− Re(λγσψ̄ − λασλ̄αγ)V σ + 2(Im(ψλ̄αβ) +∇αV β)Γγαβ.

Proof. Applying ∂t to gαβΓγγβ, by (2.27) and (2.28) we have

∂t(g
αβΓγαβ) =− 2GαβΓγαβ + gαβ(2∇αG

γ
β −∇

γGαβ)

=− 2GαβΓγαβ + 2∇α Im(ψλ̄αγ) + ∆gV
γ + [∇α,∇γ]V α.

Since

[∇α,∇γ]V α = Ricγσ V
σ = Re(λγσψ̄ − λασλ̄αγ)V σ.

By the harmonic coordinate condition (2.19), the above two equalities give the V -equations
(2.30). �

Remark 2.5.1. Consider an arbitrary choice of coordinates (parametrization) {x1, · · · , xd}
for the time evolving manifolds Σt for t ∈ [0, T ]. This yields a representation of Σt as the
image of a map

F : Rd × [0, T ]→ Rd+2,

restricted to time t. If Σt moves along the (SMCF) flow (2.23), then we have the relation

∂t(g
αβΓγαβ) = (V equation).

Here we uniquely determine the evolution of the coordinates as the time varies by choosing
the advection vector field V , precisely so that it satisfies the V -equation (2.30). For this
choice we obtain ∂t(g

αβΓγαβ) = 0. This implies that gαβΓγαβ is conserved for any x ∈ Rd, and
thus the harmonic gauge condition is propagated in time.

2.7. Derivation of the modified Schrödinger system from SMCF. Here we derive
the main Schrödinger equation and the second compatibility condition. We consider the
commutation relation

[∂Bt , ∂
A
α ]m = i(∂tAα − ∂αB)m.

In order, for the left-hand side, by (2.6) and (2.25) we have

∂Bt ∂
A
αm =− ∂Bt (λγαFγ) = −∂Bt λγα · Fγ − λγα · ∂tFγ

=− [∂Bt λ
σ
α + λγα(Im(ψλ̄σγ) +∇γV

σ)]Fσ + λγα Im(∂Aγ ψm̄− iλγσV σm̄),
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and

∂Aα ∂
B
t m =− i∂Aα [(∂A,σψ − iλσγV γ)Fσ]

=− i∂Aα (∂A,σψ − iλσγV γ)Fσ − i(∂A,σψ − iλσγV γ)[ΓµασFµ + Re(λασm̄)]

=− i∇A
α (∂A,σψ − iλσγV γ)Fσ − i(∂A,σψ − iλσγV γ) Re(λαγm̄).

Then by the above three equalities, equating the coefficients of the tangent vectors and the
normal vector m, we obtain the evolution equation for λ

(2.31) ∂Bt λ
σ
α + λγα(Im(ψλ̄σγ) +∇γV

σ) = i∇A
α (∂A,σψ − iλσγV γ),

as well as the compatibility condition (curvature relation)

∂tAα − ∂αB =
1

2i
〈λγα Im(∂Aγ ψm̄− iλγσV σm̄) + i(∂A,σψ − iλσγV γ) Re(λασm̄), m̄〉

=
1

2
λγα(∂̄Aγ ψ̄ + iλ̄γσV

σ) +
1

2
(∂A,σψ − iλσγV γ)λ̄ασ

=
1

2
[λγα(∂̄Aγ ψ̄ + iλ̄γσV

σ) + λ̄γα(∂Aγ ψ − iλγσV σ)]

= Re(λγα∂̄
A
γ ψ̄)− Im(λγαλ̄γσ)V σ,

which we record for later reference:

(2.32) ∂tAα − ∂αB = Re(λγα∂̄
A
γ ψ̄)− Im(λγαλ̄γσ)V σ.

This in turn allows us to use the Coulomb gauge condition (2.16) in order to obtain an
elliptic equation for B:

Lemma 2.6 (Elliptic equation of B). The temporal connection coefficient B solves

(2.33) ∇γ∇γB = −∇γ[Re(λσγ ∂̄
A
σ ψ̄)− Im(λσγ λ̄σβ)V β] + (2 Im(ψλ̄βγ) +∇βV γ +∇γV β)∂βAγ.

Proof. Applying ∇α to (2.32) yields

∇γ∇γB = ∇γ∂tAγ −∇γ Re[λσγ(∂̄Aσ ψ̄ + iλ̄σβV
β)].

By the harmonic coordinates condition (2.19), (2.27) and the Coulomb gauge condition (2.16)
the first term in the right hand side is written as

∇γ∂tAγ =gβγ∇β∂tAγ = gβγ(∂β∂tAγ − Γσβγ∂tAσ) = gβγ∂β∂tAγ

=∂t(g
βγ∂βAγ)− ∂tgβγ · ∂βAγ

=∂t∇γAγ + (2 Im(ψλ̄βγ) +∇βV γ +∇γV β)∂βAγ

=(2 Im(ψλ̄βγ) +∇βV γ +∇γV β)∂βAγ.

We then obtain the B-equation. �

Next, we use (2.31) to derive the main equation, i.e. the Schrödinger equation for ψ. By
(2.10), the right-hand side of (2.31) is rewritten as

∇A
α (∂A,σψ − iλσγV γ) = ∇A

α∂
A,σψ − i∇A

γ λ
σ
αV

γ − iλσγ∇αV
γ.

Hence, we have

(∂Bt − V γ∇A
γ )λσα + λγα Im(ψλ̄σγ) + (λγα∇γV

σ − λσγ∇αV
γ) = i∇A

α∇A,σψ,
14



and then contracting this yields

i(∂Bt − V γ∇A
γ )ψ +∇A

α∇A,αψ = −iλγσ Im(ψλ̄σγ).

This can be further written as

i(∂t + iB − V γ∇A
γ )ψ + (∇α + iAα)(∇α + iAα)ψ = −iλγσ Im(ψλ̄σγ).

Hence, under the harmonic coordinates condition (2.19) and the Coulomb gauge condition
(2.16) we obtain the main Schrödinger equation

(2.34)
i∂tψ + gαβ∂α∂βψ = iV γ∇A

γ ψ − 2iAα∇αψ + (B + AαA
α − i∇αA

α)ψ − iλγσ Im(ψλ̄σγ)

= iV γ∇A
γ ψ − 2iAα∇αψ + (B + AαA

α)ψ − iλγσ Im(ψλ̄σγ).

In conclusion, under the Coulomb gauge condition∇αAα = 0 and the harmonic coordinate
condition gαβΓγαβ = 0, by (2.34), (2.14), (2.22), (2.30), (2.17) and (2.33), we obtain the
Schrödinger equation for the complex mean curvature ψ

(2.35)

{
i∂tψ + gαβ∂α∂βψ = i(V − 2A)α∇αψ + (B + AαA

α − VαAα)ψ − iλγσ Im(ψλ̄σγ),

ψ(0) = ψ0,

where the metric g, curvature tensor λ, the advection field V , connection coefficients A and
B are determined at fixed time in an elliptic fashion via the following equations

(2.36)



∇A
αλβγ −∇A

β λαγ = 0, ∇A,αλαβ = ∇A
βψ,

gαβ∂2
αβgγσ = [−∂γgαβ∂βgασ − ∂σgαβ∂βgαγ + ∂γgαβ∂σg

αβ]

+ 2gαβΓσα,νΓ
ν
βγ − 2 Re(λγσψ̄ − λαγλ̄ασ),

∇α∇αV
γ = − 2∇α Im(ψλ̄αγ)− Re(λγσψ̄ − λασλ̄αγ)V σ

+ 2(Im(ψλ̄αβ) +∇αV β)Γγαβ,

∇γ∇γAα = Re(ψλ̄σα − λβαλ̄σβ)Aσ +∇γ Im(λσγ λ̄ασ),

∇γ∇γB =−∇γ[Re(λσγ ∂̄
A
σ ψ̄)− Im(λσγ λ̄σβ)V β]

+ (2 Im(ψλ̄βγ) +∇βV γ +∇γV β)∂βAγ.

Fixing the remaining degrees of freedom (i.e. the affine group for the choice of the coordinates
as well as the time dependence of the SU(1) connection) we can assume that the following
conditions hold at infinity in an averaged sense:

λ(∞) = 0, g(∞) = Id, V (∞) = 0, A(∞) = 0, B(∞) = 0

These are needed to insure the unique solvability of the above elliptic equations in a suitable
class of functions. For the metric g it will be useful to use the representation

g = Id + h

so that h vanishes at infinity.
Finally, we note that the above system (2.35)-(2.36) is accompanied by a large family of

compatibility conditions as follows:

(i) The trace relation (2.4).
(ii) The Gauss equations (2.8) connecting the curvature R of g and λ.
(iii) The symmetry property (2.15).
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(iv) The Ricci equations (2.13) for the curvature of A.
(v) The Coulomb gauge condition (2.16) for A.

(vi) The harmonic coordinates condition (2.19) for g.
(vii) The time evolution (2.26) for the metric g (2.26).

(viii) The time evolution (2.31) for the second fundamental form λ .
(ix) The time evolution (2.32) for A .

These conditions will all be shown to be satisfied for small solutions to the nonlinear elliptic
system (2.35).

Now we can restate here the small data local well-posedness result for the (SMCF) system
in Theorem 1.2 in terms of the above system:

Theorem 2.7 (Small data local well-posedness in the good gauge). Let s > d
2
, d ≥ 4. Then

there exists ε0 > 0 sufficiently small such that, for all initial data ψ0 with

‖ψ0‖Hs ≤ ε0,

the modified Schrödinger system (2.35), with (λ, h, V,A,B) determined via the elliptic system
(2.36), is locally well-posed in Hs on the time interval I = [0, 1]. Moreover, the mean
curvature satisfies the bounds

(2.37) ‖ψ‖l2Xs + ‖(λ, h, V,A,B)‖Es . ‖ψ0‖Hs .

In addition, the auxiliary functions (λ, h, V,A,B) satisfy the constraints (2.4), (2.8), (2.15),
(2.13), (2.16) and (2.19), and the time evolutions (2.26), (2.31) and (2.32).

Here the solution ψ satisfies in particular the expected bounds

‖ψ‖C[0,1;Hs] . ‖ψ0‖Hs .

The spaces l2Xs and Es, defined in the next section, contain a more complete description
of the full set of variables ψ, λ, h, V, A,B, which includes both Sobolev regularity and local
energy bounds.

In the above theorem, by well-posedness we mean a full Hadamard-type well-posedness,
including the following properties:

i) Existence of solutions ψ ∈ C[0, 1;Hs], with the additional regularity properties (2.37).
ii) Uniqueness in the same class.

iii) Continuous dependence of solutions with respect to the initial data in the strong Hs

topology.
iv) Weak Lipschitz dependence of solutions with respect to the initial data in the weaker

L2 topology.
v) Energy bounds and propagation of higher regularity.

3. Function spaces and notations

The goal of this section is to define the function spaces where we aim to solve the (SMCF)
system in the good gauge, given by (2.35). Both the spaces and the notation presented in
this section are similar to those introduced in [21, 22, 23]. All the function spaces described
below will be used with respect to harmonic coordinates determined by our gauge choices
described in the previous section. We neither attempt nor need to transfer these spaces to
other coordinate frames.
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For a function u(t, x) or u(x), let û = Fu denote the Fourier transform in the spatial
variable x. Fix a smooth radial function ϕ : Rd → [0, 1] supported in [−2, 2] and equal to 1
in [−1, 1], and for any i ∈ Z, let

ϕi(x) := ϕ(x/2i)− ϕ(x/2i−1).

We then have the spatial Littlewood-Paley decomposition,
∞∑

i=−∞

Pi(D) = 1,
∞∑
i=0

Si(D) = 1,

where Pi localizes to frequency 2i for i ∈ Z, i.e,

F(Piu) = ϕi(ξ)û(ξ),

and
S0(D) =

∑
i≤0

Pi(D), Si(D) = Pi(D), for i > 0.

For simplicity of notation, we set

uj = Sju, u≤j =

j∑
i=0

Siu, u≥j =
∞∑
i=j

Siu, for j ≥ 0.

For each j ∈ N, let Qj denote a partition of Rd into cubes of side length 2j, and let {χQ}
denote an associated partition of unity. For a translation-invariant Sobolev-type space U ,
set lpjU to be the Banach space with associated norm

‖u‖p
lpjU

=
∑
Q∈Qj

‖χQu‖pU

with the obvious modification for p =∞.
Next we define the l2Xs and l2N s spaces, which will be used for the primary variable ψ,

respectively for the source term in the Schrödinger equation for ψ. Following [21, 22, 23],
we first define the X-norm as

‖u‖X = sup
l∈N

sup
Q∈Ql

2−
l
2‖u‖L2L2([0,1]×Q).

Here and throughout, LpLq represents LptL
q
x. To measure the source term, we use an atomic

space N satisfying X = N∗. A function a is an atom in N if there is a j ≥ 0 and a Q ∈ Qj
such that a is supported in [0, 1]×Q and

‖a‖L2([0,1]×Q) . 2−
j
2 .

Then we define N as linear combinations of the form

f =
∑
k

ckak,
∑
k

|ck| <∞, ak atom,

with norm
‖f‖N = inf

{∑
k

|ck| : f =
∑
k

ckak, ak atoms
}
.

For solutions which are localized to frequency 2j with j ≥ 0, we will work in the space

Xj = 2−
j
2X ∩ L∞L2,
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with norm

‖u‖Xj = 2
j
2‖u‖X + ‖u‖L∞L2 .

One way to assemble the Xj norms is via the Xs space

‖u‖2
Xs =

∑
j≥0

22js‖Sju‖2
Xj
.

But we will also add the lp spatial summation on the 2j scale to Xj, in order to obtain the
space lpjXj with norm

‖u‖lpjXj = (
∑
Q∈Qj

‖χQu‖pXj)
1/p.

We then define the space lpXs by

‖u‖2
lpXs =

∑
j≥0

22js‖Sju‖2
lpjXj

.

For the solutions of Schrödinger equation in (2.35), we will be working primarily in l2Xs,
which is defined by

‖u‖l2Xs = ‖u‖l2Xs + ‖∂tu‖L2Hs−2 .

We note that the second component, introduced here for the first time, serves the purpose
of providing better bounds at low frequencies j ≤ 0.

We analogously define

Nj = 2
j
2N + L1L2,

which has norm

‖f‖Nj = inf
f=2

j
2 f1+f2

(
‖f1‖N + ‖f2‖L1L2

)
,

and

‖f‖2
lpNs =

∑
j≥0

22js‖Sjf‖2
lpjNj

.

Here we shall be working primarily with l2N s.
We also note that for any j ∈ N, we have

sup
Q∈Qj

2−
j
2‖u‖L2L2([0,1]×Q) ≤ ‖u‖X ,

hence

‖u‖N . 2j/2‖u‖l1jL2L2 .

This bound will come in handy at several places later on.
For the elliptic system (2.36), at a fixed time we define the Hs norm,

‖(λ, h, V,A,B)‖Hs = ‖λ‖Hs + ‖|D|h‖Hs+1 + ‖|D|V ‖Hs + ‖|D|A‖Hs + ‖|D|B‖Hs−1 .

In addition to the fixed time norms, for the study of the Schrödinger equation for ψ we
will also need to bound time dependent norms Es and Es for the elliptic system (2.36), in
terms of similar norms for ψ. For simplicity of notation, we define

‖u‖Zσ,s = ‖|D|σS0u‖2
l20L
∞L2 +

∑
j>0

22sj‖Sju‖2
l2jL
∞L2 .
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Then the Zσ,s spaces are defined by

‖u‖Zσ,s = ‖u‖Zσ,s + ‖|D|σ∂tu‖L2Hs−σ−2 .

For the λ, V , A and B-equations in (2.36), we will be working primarily in Z0,s, Z1,s+1,
Z1,s+1 and Z1,s, respectively.

On the other hand, for the metric component h = g − Id we need to introduce some
additional structure which is associated to spatial scales larger than the frequency. Precisely,
to measure the portion of h which is localized to frequency 2j, j ∈ Z, we decompose Pjh as
an atomic summation of components hj,l associated to spatial scales 2l with l ≥ |j|, where
hj,l still localizes to frequency 2j, i.e.,

Pjh =
∑
l≥|j|

hj,l.

Then we define the Yj-norm by

‖Pjh‖Yj = inf
Pjh=

∑
l≥|j| hj,l

∑
l≥|j|

2l−|j|‖hj,l‖l1l L∞L2 .

Assembling together the dyadic pieces in an l2 Besov fashion, we obtain the Y σ,s space with
norm given by

‖h‖2
Y σ,s =

∑
j≤Z

22(σj−+sj+)‖Pjh‖2
Yj
.

Then for h-equation in (2.35), we will be working primarily in Ys+2, whose norm is defined
by

‖h‖Ys+2 = ‖h‖Y s+2 + ‖∇∂th‖L2Hs−1 =‖h‖
Y
d
2−1−δ,s+2 + ‖h‖Z1,s+2 ,

where the space Y s = Y
d
2
−1−δ,s ∩ Z1,s. Collecting all the components defined above, for the

elliptic system (2.36), we define the Es norm as

‖(λ, h, V,A,B)‖Es = ‖λ‖Z0,s + ‖h‖Y s+2 + ‖V ‖Z1,s+1 + ‖A‖Z1,s+1 + ‖B‖Z1,s ,

and the Es norm as

‖(λ, h, V,A,B)‖Es = ‖(λ, h, V,A,B)‖Es + ‖∂t(λ, h, V,A,B)‖L2Hs−2 .

Since we often use Littlewood-Paley decompositions, the next lemma is a convenient tool
to see that our function spaces are invariant under the action of some standard classes of
multipliers:

Lemma 3.1. For any Schwartz function f ∈ S, multiplier m(D) with ‖F−1(m(ξ))‖L1 <∞,
and translation-invariant Sobolev-type space U , we have

‖m(D)f‖U . ‖F−1(m(ξ))‖L1‖f‖U .

We will also need the following Bernstein-type inequality:
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Lemma 3.2 (Bernstein-type inequality). For any j, k ∈ Z with j + k ≥ 0, 1 ≤ r < ∞ and
1 ≤ q ≤ p ≤ ∞, we have

‖Pkf‖lrjLp . 2kd( 1
q
− 1
p

)‖Pkf‖lrjLq ,(3.1)

‖〈x〉α−d ∗ f≤0‖lp0L∞L2 . ‖f≤0‖l10L∞L2 , for p >
d

d− α
.(3.2)

Proof. We begin with the Bernstein-type inequality (3.1). Using the properies of the Fourier
transform, Pkf is rewritten as

Pkf =

∫
Rd

(F−1ϕk)(x− y)Pkf(y)dy = 2kd
∫
Rd
K(2k(x− y))Skf(y)dy,

where K(x) = F−1ϕ(x). Then

‖Pkf‖lrjLp = 2kd(
∑
Q∈Qj

‖χQ(x)

∫
Rd
K(2k(x− y))Pkf(y)dy‖rLp)1/r

≤ 2kd(
∑
Q∈Qj

‖χQ(x)

∫
Rd
K(2k(x− y))1<M(2k(x− y))Pkf(y)dy‖rLp)1/r

+ 2kd‖K(2kx)1>M(2kx) ∗ Pkf‖lrjLp
:= I + II,

where d(Q, Q̃) = inf{|x− y| : x ∈ Q, y ∈ Q̃} and M is a large constant. Since j + k ≥ 0, for
any fixed Q ∈ Qj there are only finite many Q̃ ∈ Qj such that d(Q, Q̃) ≤ 2−kM . Then from
Young’s inequality and 1 + 1/p = 1/q + 1/q̃ we can bound I by

I . 2kd(
∑
Q∈Qj

∑
d(Q,Q̃)≤2−kM,Q̃∈Qj

‖K(2kx)‖rLq̃‖χQ̃Pkf‖
r
Lq)

1/r . 2kd( 1
q
− 1
p

)‖Pkf‖lrjLq .

On the other hand, since |K(x)| . 〈x〉−N for any large N , for II we have

II . 2k(d−N)‖|2kx|−N1>M(2kx)‖L1‖Skf‖lrjLp

. M−N+d‖Pkf‖lrjLq ,

which can be absorbed by the term on the left. These imply the bound (3.1).

Next, we prove the estimate (3.2). The left hand side of (3.2) is decomposed as

‖〈x〉α−d ∗ f≤0‖plp0L∞L2 .
∑
Q∈Q0

‖χQ(x)

∫
〈y〉α−df≤0(x− y)dy‖pL∞L∞

.
∑
Q∈Q0

‖χQ(x)

∫
|y|≤1

〈y〉α−df≤0(x− y)dy‖pL∞L∞

+
∑
Q∈Q0

‖χQ(x)

∫
|y|>1

〈y〉α−d
∑
Q̃∈Q0

χQ̃f≤0(x− y)dy‖pL∞L∞

=Ip1 + Ip2 .

Then by (3.1) we bound I1 by

I1 . ‖f≤0‖lp0L∞L∞ . ‖f≤0‖lp0L∞L2 .
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On the other hand, by Hölder’s inequality and (3.1), we bound I2 by

I2 .
∑
Q̃∈Q0

(
∑
Q∈Q0

‖χQ(x)

∫
|y|>1

〈y〉α−dχQ̃f≤0(x− y)dy‖pL∞L∞)1/p

.
∑
Q̃∈Q0

(
∑
Q∈Q0

∫
|y|>1

χQ〈y〉(α−d)pdy‖χQ̃f≤0‖pL∞Lq)
1/p

.‖f≤0‖l10L∞Lq(
∫
〈y〉(α−d)pdy)1/p

.‖f≤0‖l10L∞L2 ,

which gives the bound (3.2), and thus completes the proof of the lemma. �

Finally, we define the frequency envelopes as in [21, 22, 23] which will be used in multilinear
estimates. Consider a Sobolev-type space U for which we have

‖u‖2
U =

∞∑
k=0

‖Sku‖2
U .

A frequency envelope for a function u ∈ U is a positive l2-sequence, {aj}, with

‖Sju‖U ≤ aj.

We shall only permit slowly varying frequency envelopes. Thus, we require a0 ≈ ‖u‖U and

aj ≤ 2δ|j−k|ak, j, k ≥ 0, 0 < δ � s− d/2.
The constant δ only depends on s and the dimension d. Such frequency envelopes always
exist. For example, one may choose

(3.3) aj = 2−δj‖u‖U + max
k

2−δ|j−k|‖Sku‖U .

4. Elliptic estimates

Here we consider the solvability of the elliptic system (2.36), together with the constraints
(2.4), (2.8), (2.15), (2.13), (2.19) and (2.16). We will do this in two steps. First we prove that
this system is solvable in Sobolev spaces at fixed time. Then we prove space-time bounds
in local energy spaces; the latter will be needed in the study of the Schrödinger evolution
(2.35).

For simplicity of notations, we define the set of elliptic variables by

S = (λ, h, V,A,B),

Later when we compare two solutions for (2.36), we will denote the differences of two solutions
or the linearized variable by

δS = (δλ, δh, δV, δA, δB).

Our fixed time result is as follows:

Theorem 4.1. a) Assume that ψ is small in Hs for s > d/2 and d ≥ 4. Then the elliptic
system (2.36) admits a unique small solution S = (λ, h, V,A,B) in Hs, with

(4.1) ‖S‖Hs . ‖ψ‖Hs .
21



In addition this solution has a smooth dependence on ψ in Hs and satisfies the constraints
(2.4), (2.8), (2.15), (2.13), (2.19) and (2.16).

b) Let ψ and (λ, h, V,A,B) = S(ψ) be as above. Then for the linearization of the solution
map above we also have the bound:

(4.2) ‖DS(δψ)‖Hσ . ‖δψ‖Hσ , σ ∈ (d/2− 3, s].

Moreover, assume that p̃k and sk are admissible frequency envelopes for ψ ∈ Hσ, S ∈ Hs

respectively. Then we have

(4.3) ‖SkS‖Hσ . p̃k + sk‖δS‖Hσ .

c) We also have a similar bound for the Hessian of the solution map,

(4.4) ‖D2S(δ1ψ, δ2ψ)‖Hσ . ‖δ1ψ‖Hσ1‖δ2ψ‖Hσ2 ,

with σ, σ1, σ2 ∈ (d/2− 3, s], σ1 + σ2 = σ + s.

Remark 4.1.1. Here we solve the elliptic system (2.36) in the function spaceHs for s > d/2,
which is more suitable for the nonlinear estimates of ψ-equation. Nevertheless, this system
can be solved in a similar fashion for the full range of indices s above scaling, namely
s > d/2 − 1. However, in the additional range d/2 − 1 < s ≤ d/2 one needs to replace the
above solution space Hs with a slightly larger one,

‖S‖H̃s = ‖λ‖Hs + ‖|D|h‖Hσ+1 + ‖|D|V ‖Hσ + ‖|D|A‖Hσ + ‖|D|B‖Hσ−1 ,

where σ = 2s− d/2. Then the elliptic system (2.36) admits a unique small solution S in H̃s

with ‖S‖H̃s . ‖ψ‖Hs .

Proof of Theorem 4.1. a) The proof is based on a perturbative argument. We rewrite the
system (2.36) in the form

(4.5)



∂αλαβ = ∂βψ +H1λ,

∂αλβγ − ∂βλαγ = H2λ,

∆gγσ = Hg,

∆V γ = HV ,

∆Aα = HA,

∆B = HB,

where ∆ =
∑d

α=1 ∂
2
α and the nonlinear source terms are given by

H1λ = iAβψ − hαµ∂µλαβ + Γαβ,σλ
ασ,

H2λ = −iAαλβγ + iAβλαγ + Γαγ,σλ
σ
β − Γβγ,σλ

σ
α,

Hg =− hαβ∂2
αβgγσ − ∂γgαβ∂βgασ − ∂σgαβ∂βgαγ + ∂γgαβ∂σg

αβ

+ 2gαβΓσα,νΓ
ν
βγ − 2 Re(λγσψ̄ − λαγλ̄ασ),
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HV =−∇α∇αV
γ + ∆V γ − 2∇α Im(ψλ̄αγ)− Re(λγσψ̄ − λασλ̄αγ)V σ

+ 2(Im(ψλ̄αβ) +∇αV β)Γγαβ,

HA = −∇γ∇γAα + ∆Aα + Re(ψλ̄σα − λβαλ̄σβ)Aσ +∇γ Im(λσγ λ̄ασ),

HB =−∇γ∇γB + ∆B −∇γ Re[λσγ(∂̄Aσ ψ̄ + iλ̄σβV
β)]

+ (2 Im(ψλ̄βγ) +∇βV γ +∇γV β)∂βAγ.

In order to prove the existence of solutions to (4.5) at a fixed time for small ψ ∈ Hs, we
construct solutions to (4.5) iteratively. We define the sets of elliptic variables

S(n) = (λ(n), h(n), V (n), A(n), B(n)),

at each step, based on the scheme

(4.6)



∂αλ
(n+1)
αβ = ∂βψ +H

(n)
1λ ,

∂αλ
(n+1)
βγ − ∂βλ(n+1)

αγ = H
(n)
2λ ,

∆g(n+1)
γσ = H(n)

g ,

∆V (n+1)γ = H
(n)
V ,

∆A(n+1)
α = H

(n)
A ,

∆B(n+1) = H
(n)
B ,

with the trivial initialization

S(0) = (0, 0, 0, 0, 0), g(0) = h(0) + Id,

where H
(n)
1λ , H

(n)
2λ , H

(n)
g , H

(n)
V , H

(n)
A and H

(n)
B are defined as H1λ, H2λ, Hg, HV , HA and HB

with

S = S(n).

We will inductively show that

‖S(n)‖Hs ≤ C‖ψ‖Hs ,

with a large universal constant C. This trivially holds for our initialization. Then using a
standard Littlewood-Paley decomposition, Bernstein’s inequality and the smallness of our

data ψ ∈ Hs in order to estimate the source terms H
(n)
1λ , H

(n)
2λ , H

(n)
g , H

(n)
V , H

(n)
A and H

(n)
B ,

we obtain

‖S(n+1)‖Hs . ‖ψ‖Hs + ‖S(n)‖2
Hs(1 + ‖S(n)‖Hs)N . ‖ψ‖Hs .

From the iterative scheme (4.6) and ψ ∈ Hs small, we can repeat the same analysis for
successive differences in order to obtain a small Lipschitz constant,

‖S(n+1) − S(n)‖Hs � ‖S(n) − S(n−1)‖Hs .

Hence the elliptic system (2.36) admits a small solution

S = lim
n→∞

S(n) ∈ Hs.

The uniqueness and the Lipschitz dependence of the solution on ψ are easily obtained by
similar elliptic estimates.
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Next, we prove the solution satisfies the constraints (2.4), (2.15), (2.13), (2.16), (2.19) and
(2.8). To get started, let us summarize the compatibility conditions we need to verify:

ψ = gαβλαβ; λαβ = λβα; ∇αAβ −∇βAα = Im(λ γ
α λ̄γβ); ∇αAα = 0;

gαβΓαβ,δ = 0; Ricγβ = Re(λγβψ̄ − λγαλ̄αβ); Rσγαβ = Re(λγβλ̄σα − λγαλ̄σβ).

We need to show that these constraints are satisfied for solutions to the elliptic system (2.36).
We can disregard the B and V equations, which are unneeded here.

To shorten the notations, we define

C1 = ψ − gαβλαβ, C2
αβ = λαβ − λβα,

C3
αβ = ∇αAβ −∇βAα − Im(λαγλ̄

γ
β), C4 = ∇αAα, C5

δ = gαβΓαβ,δ,

C6
γβ = Ricγβ −Re(λγβψ̄ − λγαλ̄αβ), C7

σγαβ = Rσγαβ − Re(λγβλ̄σα − λγαλ̄σβ).

Here C2 and C3 are antisymmetric, C6 is symmetric and C7 inherits all the linear symmetries
of the curvature tensor.

Our goal is to show that all these functions vanish. We will prove this by showing that
they solve a coupled linear homogeneous elliptic system of the form

∇A
βC

1 = ∇A,αC2
αβ,

∆A
g C

2 = (λ+ ψ)(C3 + C6 + C7) + (λ2 + λψ)C2,

∆gC
3 = RC3 +∇(C6A) +∇(λ∇C2 +∇λC2),

∆gC
4 = ∇(C6A) +RC3 +∇2(λC2),

∆gC
5 = RC5 +∇(C1ψ) + λ∇C2 +∇λC2,

C6
γσ =

1

2
(∇γC

5
σ +∇σC

5
γ),

∇δC
7
σγαβ +∇σC

7
γδαβ +∇γC

7
δσαβ = 0,

∇σC7
σγαβ = ∇αC

6
γβ −∇βC

6
γα +∇(λC1 + λC2).

Here the covariant Laplace operators ∆g, respectively ∆A
g are symmetric and coercive in Ḣ1.

We consider these equations as a system in the space

(C1, C2, C3, C4, C5, C6, C7) ∈ Ḣ1 × Ḣ1 × Ḣ1 × Ḣ1 × Ḣ1 × L2 × L2

using Ḣ1 bounds for the Laplace operator in the second to fifth equations, and interpreting
the last two equations as an elliptic div-curl system in L2, with an Ḣ−1 source term. Since
the coefficients are all small, the right hand side terms are perturbative and 0 is the unique
solution for this system. The details are left for the reader, as they only involve Sobolev
embeddings and Hölder’s inequality.

To complete the argument, we now successively derive the equations in the above system.
In the computations below, it is convenient to introduce several auxiliary notations. The
curvature of the connection A acting on complex valued functions is denoted by

Fαβ = ∂αAβ − ∂βAα
so that we have

[∇A
α ,∇A

β ]ψ = iFαβψ.
24



We also set

C7
σγαβ = Rσγαβ − R̃σγαβ, R̃σγαβ := Re(λγβλ̄σα − λγαλ̄σβ),

respectively

C6
γβ = Ricγβ − R̃icγβ, R̃icγβ := Re(λγβψ̄ − λγαλ̄αβ), R̃ := gγβ R̃icγβ,

and

C3
αβ = Fαβ − F̃αβ, F̃αβ := Im(λαγλ̄

γ
β).

The equation for C1. This equation has the exact form

∇A
βC

1 = ∇A,αC2
αβ.

This is obtained by (2.14) directly. �

The equation for C2. The full system for C2 has the form

(4.7) ∆A
g C

2
αβ =(λ+ ψ)(C3 + C6 + C7) + (λ2 + λψ)C2.

By λ-equation (2.14) we have

∇A,γ∇A
γ λαβ =[∇A,γ,∇A

α ]λγβ +∇A
α∇A

βψ

= Ricαµ λ
µ
β +Rσαβµλ

σµ + iC3
γαλ

γ
β + i Im(λγ

µλ̄µα)λγβ +∇A
α∇A

βψ.

Then we use C6, C7 and C3 to give

∆A
g C

2
αβ =C6

αµλ
µ
β − C6

βµλ
µ
α + C7

σαβµλ
σµ − C7

σβαµλ
σµ

+ iC3
γαλ

γ
β − iC3

γβλ
γ
α + iC3

αβψ + C2(λ2 + λψ).

Hence, the C2-equation (4.7) follows. �

The equation for C3. This has the form

(4.8)
∆gC

3
αβ = ∇β(C6

αδA
δ)−∇α(C6

βδA
δ) +RβασδC

3,σδ + Ricαδ C
3,δβ − Ricβδ C

3,δα

+∇γ Im(λ σ
γ (∇A

αC
2
σβ −∇A

βC
2
σα) +∇A

γ λ
σ
βC̄

2
ασ).

To prove this, it is convenient to separate the left hand side into two terms,

∆gC
3
αβ = ([∆g,∇α]Aβ − [∆g,∇β]Aα) + (∇α∆gAβ −∇β∆gAα −∆gF̃αβ) := I + II.

For the commutator we use the Bianchi identities to compute

I = [∇σ∇σ,∇α]Aβ − [∇σ∇σ,∇β]Aα

= ∇σ(RσαβδA
δ −RσβαδA

δ) + (Rσαβδ −Rσβαδ)∇σAδ +Rσ
ασδ∇δAβ −Rσ

βσδ∇δAα

= ∇σRβασδA
δ + 2Rβασδ∇σAδ + Ricαδ∇δAβ − Ricβδ∇δAα

= (∇β Ricαδ −∇αRβδ)A
δ +RβασδF

σδ + Ricαδ(F
δ
β +∇βA

δ)− Ricβδ(F
δ
α +∇αA

δ)

= ∇β(Ricαδ A
δ)−∇α(Ricβδ A

δ) +RβασδF
σδ + Ricαδ Fδ

β − Ricβδ Fδ
α.
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On the other hand for the second term we use the A equation in (2.36) to write

II = ∇α[R̃icβσ A
σ]−∇β[R̃icασ A

σ]

+∇α∇γ Im(λγσλ̄
σ
β)−∇β∇γ Im(λγσλ̄

σ
α)−∇γ∇γ Im(λασλ̄

σ
β)

:=II1 + II2.

The first term II1 combines directly with the first two terms in I. For the second we commute

II2 = RαγγδF̃
δ
β +RαγβδF̃

δ
γ −RβγγδF̃

δ
α −RβγαδF̃

δ
γ+

+∇γ(∇α Im(λγσλ̄
σ
β)−∇β Im(λγσλ̄

σ
α)−∇γ Im(λασλ̄

σ
β))

= − Ricαδ F̃δ
β + Ricβδ F̃δ

α −RβασδF̃
σδ

+∇γ Im(λ σ
γ (∇A

αC
2
σβ −∇A

βC
2
σα) +∇A

γ λ
σ
βC̄

2
ασ).

Summing up the expressions for I and II we obtain (4.8). �

The equation for C4. This has the form

(4.9) ∆gC
4 =−∇σ(C6

µσA
γ)− 1

2
[∇α,∇γ]C3

γα −
1

2
∇γ∇α Im(C2

σγλ̄
σ
α + λ σ

γ C̄
2
ασ).

To prove it we commute ∆g with ∇α

∆g∇αAα = ∇σ[∇σ,∇α]Aα + [∇σ,∇α]∇σAα +∇α∆gAα

= −∇σ(Ricµσ A
µ) +

1

2
[∇σ,∇α]Fσα +∇α(R̃icασ A

σ) +∇α∇γF̃αγ

In the last term we can symmetrize in α and γ, and the desired equation (4.9) follows. �

The equation for C5. Here we compute

(4.10) ∆gC
5
β =− [∇α,∇β]C5

α − Re(∇β(C1ψ̄)− 2λ̄ασ∇A
αC

2
σβ +∇β(λασC2

σα)).

We can rewrite the g equation (2.22) as

Ricαβ = R̃icαβ +
1

2
(∇αC

5
β +∇βC

5
α)

which by contraction yields
R = R̃ +∇αC5

α.

To get to ∆gC
5, by the above two equalities we write

1

2
∆gC

5
β = ∇α(Ricαβ − R̃icαβ)− 1

2
[∇α,∇β]C5

α −
1

2
∇β(R− R̃)

= (∇αRαβ −
1

2
∇βR)− 1

2
[∇α,∇β]C5

α − (∇αR̃αβ −
1

2
∇βR̃).

The first term drops by twice contracted Bianchi,

gµνgγα(∇γRνβµα +∇νRβγµα +∇βRγνµα) = 0,

and the last one is quadratic in λ and yields C1 and C2 terms,

(∇αR̃αβ −
1

2
∇βR̃) = Re(

1

2
∇β(C1ψ̄)− λ̄ασ∇A

αC
2
σβ +

1

2
∇β(λασC2

σα)).

This completes the derivation of (4.10). �
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The equation for C6. This has the form

(4.11) C6
γσ =

1

2
(∇γC

5
σ +∇σC

5
γ).

Indeed, by the g-equation in (2.36) and its proof, we recover the Ricci curvature

Re(λγσψ̄ − λγαλ̄ασ) = Ricγσ−
1

2
(∂γC

5
σ + ∂σC

5
γ) + ΓνγσC

5
ν .

This implies the relation (4.11) immediately. �

The equation for C7. By the second Bianchi identities of Riemannian curvature and the
following equality

∇δ Re(λγβλ̄σα − λγαλ̄σβ) +∇σ Re(λδβλ̄γα − λδαλ̄γβ) +∇γ Re(λσβλ̄δα − λσαλ̄δβ) = 0,

we have the counterpart of the second Bianchi identities

∇δC
7
σγαβ +∇σC

7
γδαβ +∇γC

7
δσαβ = 0,

which combine with the algebraic symmetries of the same tensor to yield an elliptic system
for C7. Precisely, using the above relation we have

∇σC7
σγαβ = ∇αC

6
γβ −∇βC

6
γα +∇(λC1 + λC2),

which combined with the previous one yields the desired elliptic system, with C6 viewed as
a source term. �

b) Assume that s̃k and sk are admissible frequency envelopes for δS ∈ Hσ and S ∈ Hs,
respectively. In view of the bound (4.1) and of the smallness of ‖ψ‖Hs , it suffices to prove
the difference or linearized estimate

(4.12) ‖SkδS‖Hσ . ‖Skδψ‖Hσ + (s̃k‖ψ‖Hs + sk‖δS‖Hσ)(1 + ‖ψ‖Hs)N .

If this is true, then the bound (4.2) follows. Thus, by the definition of frequency envelope
(3.3), (4.2) and the smallness of ψ ∈ Hs, the bound (4.12) with operator δ = Id and σ = s
also implies the bound (4.3).

As an intermediate step in the proof of (4.2), we collect in the next Lemma several bilinear
estimates. The proof of this Lemma is standard by Littlewood-Paley decompositions and
Bernstein inequality.

Lemma 4.2. Let d/2− 3 < σ ≤ s, d ≥ 3, then we have

‖∇δ(h̃h)‖Hσ . ‖∇δh̃‖Hσ‖∇h‖Hs + ‖∇h̃‖Hs‖∇δh‖Hσ ,

‖δ(λh)‖Hσ . ‖δλ‖Hσ‖∇h‖Hs + ‖λ‖Hs‖∇δh‖Hσ ,

‖∇δ(Ah)‖Hσ−1 . ‖∇δA‖Hσ−1‖∇h‖Hs + ‖∇A‖Hs‖∇δh‖Hσ .

Now we turn our attention to the proof of (4.12). Here we first prove the estimates for
δλ. By λ-equations in (4.5) it suffices to consider the following form

∂αδλαβ = ∂βδψ + δAψ + Aδψ + δh∇λ+ h∇δλ+∇δhλ+∇hδλ,
∂αδλβγ − ∂βδλαγ = δAλ+ Aδλ+∇δhλ+∇hδλ.
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By the relation

(4.13) λ̂(ξ) = |ξ|−2(λ̂ · ξ)ξ + |ξ|−2(λ̂ξ> − ξλ̂>) · ξ,
we obtain

‖Skδλ‖Hσ .‖Skδψ‖Hσ + ‖|D|−1Sk[δA(λ+ ψ) + A(δλ+ δψ) + δh∇λ+ h∇δλ
+∇δhλ+∇hδλ]‖Hσ

.‖Skδψ‖Hσ + s̃k‖S‖Hs + sk‖δS‖Hσ .
Next we provide the estimate for δA; the other estimates can be proved similarly. By

A-equation in (4.5) and Lemma 4.2, it suffices to consider the following form

∆δA =δh∇2A+ h∇2δA+∇δh∇A+∇h∇δA+∇δh∇hA+ (∇h)2δA

+ δλλ(A+∇h) + λ2(δA+∇δh) +∇λδλ+ λ∇δλ.
Using Littlewood-Paley trichotomy and Bernstein inequality, we bound all the nonlinear-

ities except ∇λδλ and λ∇δλ by

‖|D|−1Sk(δh∇2A+ h∇2δA+∇δh∇A+∇h∇δA+∇δh∇hA+ (∇h)2δA)‖Hσ

+ ‖|D|−1Sk(δλλ(A+∇h) + λ2(δA+∇δh))‖Hσ

.(s̃k‖S‖Hs + sk‖δS‖Hσ)(1 + ‖S‖Hs).
For the remainder terms, we can also bound their low-frequency part by

‖|D|−1S0(∇λδλ+ λ∇δλ)‖L2 . ‖S0(∇λδλ+ λ∇δλ)‖L1 . s̃0‖λ‖Hs ,

and bound their high-frequency part Sk for k > 0 by

‖|D|−1Sk(∇λδλ+ λ∇δλ)‖Hσ . s̃k‖λ‖Hs + sk‖δλ‖Hσ .

This completes the proof of (4.2).

c) Using the similar argument to b), we have

‖D2S(δ1ψ, δ2ψ)‖Hσ . ‖δ1S‖Hσ‖δ2S‖Hs(1 + ‖ψ‖Hs)N ,

and
‖D2S(δ1ψ, δ2ψ)‖Hσ . ‖δ1S‖Hs‖δ2S‖Hσ(1 + ‖ψ‖Hs)N .

Then by the smallness of ψ ∈ Hs, (4.2) and interpolation, the above two bounds imply

‖D2S(δ1ψ, δ2ψ)‖Hσ . ‖δ1ψ‖Hσ1‖δ2ψ‖Hσ2 .

This completes the proof of (4.4). �

Next we establish bounds for the above solutions in space-time local energy spaces:

Theorem 4.3. a) Assume that ψ is small in l2Xs for s > d/2, d ≥ 4. Then the solution
(λ, h,A, V,B) for the elliptic system (2.36) given by Theorem 4.1 belongs to Es and satisfies
the bounds

(4.14) ‖S‖Es . ‖ψ‖l2Xs ,

with Lipschitz dependence on the initial data in these topologies. Moreover, assume that pk
is an admissible frequency envelope for ψ ∈ l2Xs, we have the frequency envelope version

(4.15) ‖Sk‖Es . pk.
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b) In addition, for the linearization of the elliptic system (2.36) we have the bounds

(4.16) ‖δS‖Eσ . ‖δψ‖l2Xσ ,

for σ ∈ (d/2− 1, s].

Proof of Theorem 4.3. For the elliptic system (4.5), we will prove the bound for differences
δS
(4.17) ‖δS‖Eσ . ‖δψ‖l2Xσ + ‖δS‖Eσ‖S‖Es

(
1 + ‖S‖Es

)N
.

If this is true, by a continuity argument the bounds (4.14) and (4.16) follow.
Assume that s̃k and sk are admissible frequency envelopes for δS ∈ Eσ and S ∈ Es,

respectively. We can separate the bound (4.17) into two parts, namely

‖∂tδS‖L2Hσ−2 . ‖δψ‖l2Xσ(1 + ‖∂tψ‖L2Hs−2)

respectively

(4.18) ‖SkδS‖Eσ . pk + (s̃k‖S‖Es + sk‖δS‖Eσ)
(
1 + ‖S‖Es

)N
.

Here one can think of the first bound as a fixed time bound for the linearization of the
elliptic system (2.36), square integrated in time. As such, this is a direct consequence of
the bound (4.2) with argument ∂tδψ and regularity index σ − 2, and the bound (4.4) with
δ1 = ∂t, δ2 = δ, σ1 = s− 2, σ2 = σ in Theorem 4.1. So it remains to prove (4.18).

If the bound (4.18) holds, then by the bound (4.3) with δ = ∂t, σ = s− 2 and (4.18) with
δ = Id, σ = s, the bound (4.15) follows.

As an intermediate step in the proof of (4.18), we collect in the next Lemma several
bilinear estimates and equivalent relations.

Lemma 4.4 (Bilinear estimates). Let s > d/2, 0 < σ ≤ s, d ≥ 4, assume that h ∈ Ys, then
we have

‖h̃h‖Y σ . ‖h̃‖Yσ‖h‖Ys ,(4.19)

‖λh‖Z0,σ . ‖λ‖Z0,σ‖h‖Ys ,(4.20)

‖(Ah)‖Z1,σ . ‖A‖Z1,σ‖h‖Ys .(4.21)

As consequences of these bounds, for hαβ = gαβ − δαβ, hαβ = gαβ − δαβ, λαβ = gαγλβγ , λ
β
γ =

gβνλγν, V α = gαβVβ and Aα = gαβAβ, assume that ‖hαβ‖Yσ+1 � 1, we have

‖hαβ‖Yσ+1 ≈ ‖hαβ‖Yσ+1 ,

‖λαβ‖Z0,σ ≈ ‖λβα‖Z0,σ ≈ ‖λαβ‖Z0,σ ,

‖Vα‖Z1,σ ≈ ‖V α‖Z1,σ ,

‖Aα‖Z1,σ ≈ ‖Aα‖Z1,σ .

Proof of Lemma 4.4. We do this in several steps:

Proof of the bound (4.19). First, we consider the Y -norm estimates. For the high-low

interaction, for any decomposition Pjh̃ =
∑

l≥|j| h̃j,l, we have

‖
∑
l≥|j|

(h̃j,lh≤j)‖Yj .
∑
l≥|j|

2l−|j|‖(h̃j,lh≤j)‖l1l L∞L2 .
∑
l≥|j|

2l−|j|‖h̃j,l‖l1l L∞L2‖h≤j‖L∞L∞ .
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Taking the infimum over the decomposition of h̃j yields

‖
∑
l≥|j|

(h̃j,lh≤j)‖Yj . ‖Pjh̃‖Yj‖h‖Z1,s ,

which is acceptable. Similarly, for the low-high interaction, we have

‖
∑
l≥|j|

(P≤jh̃hj,l)‖
Y
d
2−1−δ,σ .2( d

2
−1−δ)j−+σj+

∑
k≤j

2dk/2‖Pkh̃‖L∞L2‖Pjh‖Yj

.‖∇h̃‖L∞Hσ−1‖Pjh‖Y d/2−1−δ,s ,

which is acceptable.
Next, for the high-high interaction, when j < 0 we rewrite it as∑

j<j1<−j

Pj(Pj1h̃Pj1h) +
∑
−j≤j1

Pj(Pj1h̃Pj1h).

Then we bound the first term by

2(d/2−1−δ)j‖
∑

j<j1<−j

Pj(Pj1h̃Pj1h)‖Yj

.2(d−1−δ)j
∑

j<j1<−j

‖Pj1h̃Pj1h‖l1|j|L∞L1

.2(d−1−δ)j
∑

j<j1<−j

‖Pj1h̃‖l2|j|L∞L2‖Pj1h‖l2|j|L∞L2

.2(d−3−2δ)j‖∇h̃≤0‖l20L∞L2‖∇h≤0‖l20L∞L2 + 2(d−1−δ)j‖h̃‖Z1,0‖h‖Z1,0 .

We bound the second term by

2(d/2−1−δ)j‖
∑
−j≤j1

Pj(Pj1hPj1h)‖Yj .
∑
−j≤j1

2(d−δ)j+j1‖(Pj1h̃Pj1h)‖l1j1L∞L1

.
∑
−j≤j1

2(d−δ)j+j1‖Pj1h̃‖l2j1L∞L2‖Pj1h‖l2j1L∞L2

.2(d−δ)j‖h̃‖Z1,0‖h‖Z1,1 .

When j ≥ 0, we have

2σj‖
∑
j1>j

Pj(Pj1h̃Pj1h)‖Yj

.
∑
j1>j

2(σ−1+d/2)j+j1‖(Pj1h̃Pj1h)j‖l1j1L∞L1

.
∑
j1>j

2(σ−1+d/2)(j−j1)‖Pj1h̃‖Z1,σ‖Pj1h‖Z1,s ,

which is acceptable.
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Secondly, we consider the Z1,σ+1-norm estimates. For the low-frequency part, we have

‖∇(h̃h)≤0‖l20L∞L2 .‖∇h̃≤0‖l20L∞L2‖h≤0‖L∞L∞ +
∑
j>0

‖(h̃jhj)≤0‖l20L∞L1

.‖h̃‖Z1,0‖h‖Z1,s .

For the high frequency part, by Littlewood-Paley dichotomy, we have

2σj‖(h̃h)j‖l2jL∞L2

.2σj‖h̃j‖l2jL∞L2‖h≤j‖L∞L∞ + 2σj‖h̃≤j‖L∞L∞‖hj‖l2jL∞L2 +
∑
l≥j

2(σ+d/2)j‖(h̃lhl)j‖l2jL∞L1

.‖h̃j‖Z1,σ‖∇h‖L∞Hs−1 + ‖h̃‖Z1,σ‖hj‖Z1,s +
∑
l≥j

2σ(j−l)2(σ+d/2)l‖h̃l‖l2l L∞L2‖hl‖L∞L2 ,

which is acceptable. This completes the proof of (4.19).

Proof of the bound (4.20). First we consider the Zδ,σ-norm estimates. For the low-
frequency part we have

‖(hλ)≤0‖l20L∞L2 .‖h≤0‖L∞L∞‖λ≤0‖l20L∞L2 +
∑
j>0

2dj/2‖hj‖L∞L2‖λj‖l2jL∞L2

.‖h‖Z1,s‖λ‖Z0,σ .

For the high-frequency part, by the Littlewood-Paley dichotomy, we have

2σj‖(λh)j‖l2jL∞L2 .
∑
l<j

2σj+dl/2‖λl‖L∞L2‖hj‖l2jL∞L2 + 2σj‖λj‖l2jL∞L2‖h‖Z1,s

+
∑
l>j

2σ(j−l)2(σ+d/2)l‖hl‖l2l L∞L2‖λl‖L∞L2 ,

which implies

(
∑
j>0

22σj‖(hλ)j‖2
l2jL
∞L2)

1/2 . ‖h‖Z1,s‖λ‖Zδ,σ .

This completes the proof of (4.20).

Proof of the bound (4.21). For the low-frequency part, by Bernstein’s inequality we have

‖∇(Ah)≤0‖l20L∞L2 .‖∇(A≤0h≤0)‖l20L∞L2 +
∑
j>0

‖∇(Ajhj)≤0‖l20L∞L2

.‖∇A≤0‖l20L∞L2‖∇h≤0‖L∞L2 + ‖∇A≤0‖L∞L2‖∇h≤0‖l20L∞L2

+
∑
j>0

2dj/2‖Aj‖l2jL∞L2‖hj‖L∞L2

.‖A‖Z1,0‖h‖Z1,s .
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For the high-frequency part, by Littlewood-Paley dichotomy we bound the high-low and
low-high interactions by

2σk‖Sk(Akh<k + A<khk)‖l2kL∞L2

.2σk(‖Ak‖l2kL∞L2‖h<k‖L∞L∞ + ‖A<k‖L∞L∞‖hk‖l2kL∞L2)

.‖Ak‖Z1,σ‖h‖Z1,s + ‖A‖Z1,σ‖hk‖Z1,s ,

which is acceptable. We bound the high-high interaction by

2σk
∑
j>k

‖Sk(Ajhj)‖l2kL∞L2

.
∑
j>k

2(σ+d/2)k‖Ajhj‖l2kL∞L1

.
∑
j>k

2σ(k−j)2(σ+d/2)j‖Aj‖l2jL∞L2‖hj‖L∞L2 ,

which is also acceptable. Hence, we conclude the proof of the bound (4.21). �

We now turn our attention to the proof of (4.18).

Step 1. Proof of the elliptic estimates for λ equations. By the λ-equations and Proposition
4.4, it suffices to consider the following simplified form of the equations:

∂αδλαβ = ∂βδψ + δAψ + Aδψ + δh∇λ+ h∇δλ+∇δhλ+∇hδλ,
∂αδλβγ − ∂βδλαγ = δAλ+ Aδλ+∇δhλ+∇hδλ.

By the relation (4.13) we have for any k > 0

‖Skδλ‖Z0,σ . ‖SkRδψ‖Z0,σ + ‖Sk|D|−1[δA(ψ + λ) + A(δψ + δλ)

+ δh∇λ+ h∇δλ+∇δhλ+∇hδλ]‖Z0,σ

. p̃k + s̃k‖S‖Es + sk‖δS‖Eσ .

In order to bound the low frequency part k = 0, we use the relation

(4.22) f(t) = f(0) +

∫ t

0

∂sf(s)ds.

Then we have

‖f‖l20L∞L2 . ‖f(0)‖L2 + ‖∂tf‖L2L2 .
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Using this idea, by Sobolev embeddings we have

‖S0δλ‖l20L∞L2 . ‖S0Rδψ‖l20L∞L2 + ‖S0|D|−1[δA(ψ + λ) + A(δψ + δλ)

+ δh∇λ+ h∇δλ+∇δhλ+∇hδλ]‖l20L∞L2

. ‖S0δψ‖Z0,σ

+ ‖S0|D|−1[δA(ψ + λ) + A(δψ + δλ) + δh∇λ
+ h∇δλ+∇δhλ+∇hδλ](0)‖L2

+ ‖S0|D|−1∂t[δA(ψ + λ) + A(δψ + δλ) + δh∇λ
+ h∇δλ+∇δhλ+∇hδλ]‖L2L2

. p̃0 + s̃0‖S‖Es .
The high frequency part is obtained by a standard Littlewood-Paley decomposition and
Bernstein inequality. This gives the elliptic estimate for the δλ-equation.

Step 2. Proof of the elliptic estimates for V , A and B equations. By the V,A,B-equations
and Proposition 4.4, it suffices to consider the following form

∆V = h∇2V +∇h∇V +∇h∇hV + λ2(A+ V +∇h) + λ∇λ,
∆A = h∇2A+∇h∇A+∇h∇hA+ λ2(A+∇h) +∇(λ2),

∆B = h∇2B +∇(λ∇λ+ (V + A)λ2) + λ2∇A+∇h(λ∇λ+ (V + A)λ2)

+∇V∇A+∇hV∇A.
The proofs of the three elliptic estimates for the above equations are similar, so we only
prove the elliptic estimate for the linearization of A-equation in detail, i.e.

∆δA =δh∇2A+ h∇2δA+∇δh∇A+∇h∇δA+∇δh∇hA+ (∇h)2δA

+ δλλ(A+∇h) + λ2(δA+∇δh) +∇λδλ+ λ∇δλ.
We bound all the nonlinearities except ∇λδλ and λ∇δλ by

‖|D|−2Sk(δh∇2A+ h∇2δA+∇δh∇A+∇h∇δA+∇δh∇hA+ (∇h)2δA)‖Z1,σ+1

+ ‖|D|−2Sk(δλλ(A+∇h) + λ2(δA+∇δh))‖Z1,σ+1

. (s̃k‖S‖Es + sk‖δS‖Eσ)(1 + ‖S‖Es)N ,
for σ ∈ (d/2− 1, s]. All terms are estimated in a similar fashion, so we only bound the first
term δh∇2A.

For the low-frequency part we use the relation (4.22) to bound the second term δh∇2A by

‖∇−1(δh∇2A)≤0‖l20L∞L2

. ‖∇−1(δh∇2A)≤0(0)‖L2 + ‖∇−1∂t(δh∇2A)≤0‖L2L2

. ‖(δh∇2A)≤0(0)‖L2d/(d+2) + ‖∂t(δh∇2A)≤0‖L2L2d/(d+2)

. ‖δh‖Z1,1‖A‖Z1,1 + ‖∇∂tδh‖L2Hσ−1‖A‖Z1,s+1 + ‖δh‖Z1,σ+2‖∇∂tA‖L2Hs−3

. ‖δh‖Z1,σ+2‖A‖Z1,s+1 .

A minor modification of this argument also yields

‖∇−1(δh∇2A)≤0‖l20L∞L2 . s̃0‖S‖Es .
33



For the high-frequency part, by Littlewood-Paley dichotomy and Bernstein’s inequality (3.1),
we have

2σj‖|D|−1(δh∇2A)j‖l2jL∞L2

. 2(σ−1)j(‖δh<j∇2Aj‖l2jL∞L2 + ‖δhj∇2A<j‖l2jL∞L2 +
∑
l>j

‖δhl∇2Al‖l2jL∞L2)

. ‖δh‖L∞L∞2(σ+1)j‖Aj‖l2jL∞L2 +
∑
l<j

2(l−j)+σj‖δhj‖l2jL∞L2‖∇d/2+1Al‖L∞L2

+
∑
l>j

2(σ−1)j2(d/2+2)l‖δhl‖L∞L2‖Al‖l2l L∞L2

.sj‖δS‖Eσ + s̃j‖S‖Es .

Finally, we bound the last two terms ∇λδλ and λ∇δλ. For low-frequency part, using
d ≥ 4 we have

‖|D|−1(∇λδλ)≤0‖l20L∞L2

. ‖|D|−1(∇λδλ)≤0(0)‖L2 + ‖|D|−1∂t(∇λδλ)≤0‖L2L2

. ‖(∇λδλ)≤0(0)‖L1 + ‖∂t(∇λδλ)≤0‖L2L1

. ‖δλ‖Z0,σ‖λ‖Z0,s .

We also obtain

‖|D|−1(∇λδλ)≤0‖l20L∞L2 . s̃0‖S‖Es .
For the high-frequency part, we have

‖∆−1(∇λδλ)j‖Z1,σ+1 . s̃j‖S‖Es + sj‖δS‖Eσ .

We can also bound the term λ∇δλ similarly. This gives the elliptic estimate for δA-equation.

Step 3. Proof of the elliptic estimate for h-equation. By h-equation in (4.5) and Proposi-
tion 4.4, it suffices to consider a more general equation of the form

∆δh = δh∇2h+ h∇2δh+∇δh∇h+ δh∇h∇h+ h∇h∇δh+ δλλ.

The proof of the Z1,σ+2 bound is similar to the estimates for V,A,B equations in Step
2, hence we only bound of the Y d/2−1−δ,σ+2-norm. We prove that the following frequency
envelope version holds:

‖Sjδh‖Y d/2−1−δ,σ+2 . (s̃j‖S‖Es + sj‖δS‖Eσ)(1 + ‖S‖Es)N .

Case 1. The contribution of δλλ. By the Littlewood-Paley dichotomy, it suffices to
consider the high-low, low-high and high-high cases for any j ∈ Z∑

l<j+O(1)

Pj(PjδλPlλ),
∑

l<j+O(1)

Pj(PlδλPjλ),
∑

l>j+O(1)

Pj(PlδλPlλ).

Case 1(a). The contribution of high-low and low-high interaction. The two cases are
proved similarly, so we only consider the worst case, namely the low-high interaction. When
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j ≤ 0, by the definition of the Yj-norm we have

2(d/2−1−δ)j‖∆−1
∑
l<j

Pj(Plδλ · Pjλ)‖Yj . 2(d/2−3−δ)j
∑
l<j

‖(Plδλ · Pjλ)‖l1|l|L∞L2

. 2(d−3−δ)j
∑
l<j

‖Plδλ‖l2|l|L∞L2‖Pjλ‖l2|l|L∞L2

. 2(d−3−3δ)j‖|D|δδλ≤0‖l20L∞L2‖|D|δλ≤0‖l20L∞L2

. 2(d−3−3δ)j s̃0‖S‖Es .

When j > 0, we further divide the low-high interaction into∑
l<j

Pj(Plδλ · Pjλ) =
∑
−j≤l<j

Pj(Plδλ · Pjλ) +
∑
l<−j

Pj(Plδλ · Pjλ).

For the first term, by Bernstein’s inequality we have

2(σ+2)j‖∆−1
∑
−j≤l<j

Pj(Plδλ · Pjλ)‖Yj . 2σj
∑
−j≤l≤j

‖Plδλ · Pjλ‖l1jL∞L2

. 2σj
∑
−j≤l≤j

2dl/2‖Plδλ‖l2jL∞L2‖Pjλ‖l2jL∞L2

. sj‖δS‖Eσ .

For the second term we have

2(σ+2)j‖∆−1
∑
l<−j

Pj(Plδλ · Pjλ)‖Yj . 2σj
∑
l<−j

2|l|−j‖Plδλ · Pjλ‖l1|l|L∞L2

. 2(σ−1)j
∑
l<−j

2(d/2−1)l‖Plδλ‖l2|l|L∞L2‖Pjλ‖l2|l|L∞L2

. ‖|D|δδλ≤0‖l20L∞L22(σ−1)j‖Pjλ‖l2jL∞L2

. sj‖δS‖Eσ .

Case 1(b). The contribution of high-high interactions. When j < 0, we divide this into∑
l>j

Pj(Plδλ · Plλ) =
∑
−j≥l>j

Pj(Plδλ · Plλ) +
∑
l>−j

Pj(Plδλ · Plλ).

Then we bound the first term by

2(d/2−1−δ)j‖∆−1
∑
−j≥l>j

Pj(Plδλ · Plλ)‖Yj

. 2(d−3−δ)j
∑
−j≥l>j

‖Plδλ · Plλ‖l1|j|L∞L1

. 2(d−3−2δ)j(
∑

0≥l>j

2δl‖δλ≤0‖l20L∞L2‖λ≤0‖l20L∞L2 +
∑
−j≥l>0

‖δλl‖l2l L∞L2‖λl‖l2l L∞L2)

. 2(d−3−2δ)j s̃0‖S‖Es .
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Using the Yj norm we can also bound the second term by

2(d/2−1−δ)j‖∆−1
∑
l>−j

Pj(Plδλ · Plλ)‖Yj . 2(d−3−δ)j
∑
l>−j

2l−|j|‖(Plδλ · Plλ)‖l1l L∞L1

. 2(d−2−δ)j
∑
l>−j

2l‖Plδλ‖l2l L∞L2‖Plλ‖l2l L∞L2

. 2(d−2−4δ)j s̃0‖S‖Es .
Finally, when j > 0, using again the Yj norm we have

2(σ+2)j‖∆−1
∑
l>j

Pj(Plδλ · Plλ)‖Yj . 2(σ+d/2)j
∑
l>j

2l−j‖(δλl · λl)j‖l1l L∞L1

.
∑
j1>j

2(σ+d/2−1)(j−l)2(σ+d/2)l‖δλl‖l2l L∞L2‖λl‖l2l L∞L2

. s̃j‖S‖Es .

Case 2. The contribution of δh∇2h, h∇2δh and ∇δh∇h. It suffices to prove that

‖∆−1Sj(δh∇2h+∇2δh · h+∇δh∇h)‖Y d/2−1−δ,σ+2 . s̃j‖S‖Es + sj‖δS‖Eσ .
For the high-low interactions, it suffices to consider the worst case ∇2Pjδh ·P≤jh. For any

decomposition Pjδh =
∑

l≥|j| δhj,l, we have

‖∆−1
∑
l≥|j|

(∇2δhj,lP≤jh)‖Yj .
∑
l≥|j|

2l−|j|−2j‖(∇2δhj,lP≤jh)‖l1l L∞L2

.
∑
l≥|j|

2l−|j|‖δhj,l‖l1l L∞L2‖P≤jh‖L∞L∞

Taking the infimum over the decomposition of Pjh yields

‖∆−1(∇2PjδhP≤jh)‖Yj . ‖Pjδh‖Yj‖P≤jh‖L∞L∞ ,
which is acceptable. The low-high interactions is similar and omitted.

For the high-high interaction, it suffices to estimate
∑

l>j Pj(Pl∇δhPl∇h). By Bernstein’s
inequality we have

2(d/2−1−δ)j−+(σ+2)j+‖∆−1
∑
l>j

Pj(Pl∇δhPl∇h)‖Yj

.2(d−3−δ)j−+(σ+d/2)j+
∑
l>j

‖Pj(∇PlδhPl∇h)‖l1|j|L∞L1

.2(d−3−δ)j−+(σ+d/2)j+
∑
l>j

‖Pl∇δh‖l2|j|L∞L2‖Pl∇h‖l2|j|L∞L2

.2(d−3−2δ)j−(‖∇δh≤0‖l20L∞L2‖∇h≤0‖l20L∞L2 +
∑
l>0

2dl‖∇δhl‖l2l L∞L2‖∇hl‖l2l L∞L2)

+
∑

l>j,j>0

2(σ−d/2)(j−l)2(σ+d/2)l‖∇δhl‖l2l L∞L2‖∇hl‖l2l L∞L2

.2(d−3−2δ)j− s̃0‖S‖Es + s̃j‖S‖Es .
36



Case 3. The contribution of δh∇h∇h and h∇h∇δh. It suffices to prove that

‖∆−1Sj(δh∇h∇h+ h∇h∇δh)‖Y d/2−1−δ,σ+2 . s̃j‖S‖2
Es .

For the low-frequency part, By Bernstein’s inequality and d ≥ 4 we have

‖∆−1(δh∇h∇h)≤0‖Y d/2−1−δ,σ+2

.‖(δh∇h∇h)≤0‖l10L∞L1

.‖δh≤0‖L∞L∞‖(∇h∇h)≤0‖l10L∞L1 +
∑
j>0

‖δhj‖l20L∞L2‖(∇h∇h)j‖l20L∞L2

.s̃0‖S‖2
Es .

For the high-frequency part, by Bernstein’s inequality we also have

2(σ+2)j‖∆−1(δh∇h∇h)j‖Yj . 2σj‖(δh∇h∇h)j‖l1jL∞L2 . s̃j‖S‖2
Es .

Thus this completes the proof of Y d/2−1−δ,σ+2 bound. �

5. Multilinear and nonlinear estimates

This section contains our main multilinear estimates which are needed for the analysis of
the Schrödinger equation in (2.35). We begin with the following low-high bilinear estimates
of ∇h∇ψ.

Lemma 5.1. Let s > d
2
, d ≥ 2 and k ∈ N. Suppose that ∇a(x) . 〈x〉−1, h ∈ Yσ+2 and

ψk ∈ l2Xs. Then for −s ≤ σ ≤ s we have

‖∇h≤k · ∇ψk‖l2Nσ . min{‖h‖Yσ+2‖ψk‖l2Xs , ‖h‖Ys+2‖ψk‖l2Xσ},(5.1)

‖h≤k∇a∇ψk‖l2Nσ . min{‖h‖Yσ+2‖ψk‖l2Xs , ‖h‖Ys+2‖ψk‖l2Xσ}.(5.2)

In addition, if −s ≤ σ ≤ s− 1 then we have

‖h≤k∇2ψk‖l2Nσ . ‖h‖Yσ+2‖ψk‖l2Xs .(5.3)

Proof. a) The estimates (5.1) and (5.3). The proof of second bound (5.3) is similar to the
first, so we only prove the first bound in detail. By duality, it suffices to estimate

Ij := 〈∇Pjh∇ψk, zk〉, j ≤ k, j ∈ Z, k ∈ N,

for any zk := Skz ∈ l2kXk with ‖zk‖l2kXk ≤ 1. For Ij and any decomposition Pjh =
∑

l≥|j| hj,l,
by duality and Bernstein inequality, we have

Ij .
∑
l≥|j|

sup
‖zk‖l2

k
Xk
≤1

〈∇hj,l∇ψk, zk〉

.
∑
l≥|j|

sup
‖zk‖l2

k
Xk
≤1

‖∇hj,l‖l1l L∞L∞‖∇ψk‖l∞l L2L2‖zk‖l∞l L2L2

.
∑
l≥|j|

2l‖∇hj,l‖l1l L∞L∞‖ψk‖Xk

.2( d
2

+1)j+|j|
∑
l≥|j|

2l−|j|‖hj,l‖l1l L∞L2‖ψk‖Xk .
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Then taking the infimum over the decomposition of Pjh and incorporating the summation
over j yield ∑

j≤k

2σkIj .‖h‖Yd/2+2+ε‖ψk‖Xσ ,

for any ε > 0. If −s ≤ σ ≤ d/2, we also have∑
j≤k

2σkIj .
∑
j≤0

2dj/2‖Pjh‖Yj‖ψk‖Xσ +
∑
j>0

2(d/2+ε−σ)(j−k)2(σ+2)j‖Pjh‖Yj‖ψk‖Xs

.‖h‖Yσ+2‖ψk‖Xs .

Thus the bound (5.1) follows.
Estimate (5.2). By duality, it suffices to bound

IIj = 〈Pjh∇a∇ψk, zk〉, j ≤ k, j ∈ Z,
for any zk ∈ l2kXk with ‖zk‖l2kXk ≤ 1. For any decomposition Pjh =

∑
l≥|j| hj,l, by |∇a|(x) .

〈x〉−1, we consider the two cases |x| ≥ 2j/2 and |x| < 2j/2 respectively and then obtain

IIj .
∑
l≥|j|

sup
‖zk‖l2

k
Xk
≤1

〈hj,l〈x〉−11≤2l/2(x)∇ψk, zk〉+
∑
l≥|j|

sup
‖zk‖l2

k
Xk
≤1

〈hj,l〈x〉−11>2l/2(x)∇ψk, zk〉

=IIj1 + IIj2.

The first term is bounded by

IIj1 .
∑
l≥|j|

sup
‖zk‖l2

k
Xk
≤1

‖hj,l‖l1l L∞L∞‖∇ψk‖l∞l/2L2L2‖zk‖l∞
l/2
L2L2

.
∑
l≥|j|

2l/2‖hj,l‖l1l L∞L∞‖ψk‖Xk

.2dj/2+|j|/2
∑
l≥|j|

2l−|j|‖hj,l‖l1l L∞L2‖ψk‖Xk

The second term is bounded by

IIj2 .
∑
l≥|j|

2−l/2 sup
‖zk‖l2

k
Xk
≤1

‖hj,l‖l1l L∞L∞‖∇ψk‖l∞l L2L2‖zk‖l∞l L2L2

.
∑
l≥|j|

2l/2‖hj,l‖l1l L∞L∞‖ψk‖Xk

.2dj/2+|j|/2
∑
l≥|j|

2l−|j|‖hj,l‖l1l L∞L2‖ψk‖Xk .

Then we obtain∑
j≤k

2σkIIj .(
∑
j≤0

2(d−1)j/2‖Pjh‖Yj +
∑
j>0

2(d+1)j/2‖hj‖Yj)‖ψk‖Xσ

.min{‖h‖Yσ+2‖ψk‖l2Xs , ‖h‖Ys+2‖ψk‖l2Xσ}.

Thus the bound (5.2) follows. �

We next prove the remaining bilinear estimates and trilinear estimates.
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Proposition 5.2 (Nonlinear estimates). a) Let s > d
2

and d ≥ 3, assume that pk and sk are
admissible frequency envelopes for ψ ∈ l2Xs, S ∈ Es respectively. Then we have

‖Sk(Bψ)‖l2Ns . sk‖ψ‖l2Xs + pk‖B‖Z1,s ,(5.4)

‖Sk(A2ψ)‖l2Ns . sk‖A‖Z1,s‖ψ‖l2Xs + pk‖A‖2
Z1,s ,(5.5)

‖Sk(λ3)‖l2Ns . sk‖λ‖2
Z0,s .(5.6)

b) Assume that p̃k and s̃k are admissible frequency envelopes for ψ ∈ l2Xσ, S ∈ Eσ respec-
tively. Then for −s ≤ σ ≤ s we have

‖Sk∇(h≥k−4∇ψ)‖l2Nσ . min{s̃k‖ψ‖l2Xs , p̃k‖h‖Z1,s+2},(5.7)

‖Sk(A≥k−4∇ψ)‖l2Nσ . min{s̃k‖ψ‖l2Xs , p̃k‖A‖Z1,s+1},(5.8)

and for −s ≤ σ ≤ s− δ we have

‖Sk(Bψ)‖l2Nσ . min{s̃k‖ψ‖l2Xs , p̃k‖B‖Z1,s},(5.9)

‖Sk(A2ψ)‖l2Nσ . min{s̃k‖A‖Z1,s‖ψ‖l2Xs , p̃k‖A‖2
Z1,s},(5.10)

‖Sk(λ3)‖l2Nσ . s̃k‖λ‖2
Z0,s .(5.11)

If −s ≤ σ ≤ s− 1, then

‖Sk(A<k−4∇ψ)‖l2Nσ . pk‖A‖Z1,σ+1 .(5.12)

Proof. We first prove (5.7) and (5.8). These two bounds are proved similarly, here we only
prove the first bound in detail. For the high-low case, by (3.1) we have∑

j2≤k+C

‖Sk∇(hj1∇ψj2)‖l2Nσ .
∑

j1=k+O(1),j2≤k+C

2(σ+1)k‖hj1‖l2kL2L2‖∇ψj2‖l2kL∞L∞

.
∑

j2≤k+C

2σk+(d/2+1)j2‖∇hk‖L2L2‖ψj2‖l2j2L∞L2

.min{s̃k‖ψ‖l2Xs , p̃k‖h‖Z1,s+2}.

For the high-high case, when σ + d/2 + 1 > δ we have∑
j1=j2+O(1),j1>k

‖Sk∇(hj1∇ψj2)‖l2Nσ

.
∑

j1=j2+O(1),j1>k

2(σ+1)k+dk/2‖Sk(hj1∇ψj2)‖L2L1

.
∑

j1=j2+O(1),j1>k

2(σ+1+d/2)(k−j1)+(σ+2+d/2)j1‖hj1‖L2L2‖ψj2‖L∞L2

.min{s̃k‖ψ‖l2Xs , p̃k‖h‖Z1,s+2},
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and when σ + d/2 + 1 ≤ δ we have∑
j1=j2+O(1),j1>k

‖Sk∇(hj1∇ψj2)‖l2Nσ

.
∑

j1=j2+O(1),j1>k

2(σ+1+d/2−2δ)k+(2δ+1)j1‖hj1‖L2L2‖ψj2‖L∞L2

.min{s̃k‖ψ‖l2Xs , p̃k‖h‖Z1,s+2},

Next, we prove the bounds (5.4)-(5.6) and (5.9)-(5.11). These bounds can be estimated
similarly, we only prove (5.4) and (5.9) in detail. Indeed, by duality we have

‖Sk(Bψ)‖l2Nσ . 2σk‖Sk(Bψ)‖L2L2 .

Then using Littlewood-Paley dichotomy to divide this into low-high, high-low and high-high
cases. For the low-high case, by Sobolev embedding we have

2σk‖Sk(B<kψk)‖L2L2 .‖B<k‖L∞L∞2σk‖ψk‖L2L2 . p̃k‖B‖Z1,s .

If −s ≤ σ ≤ s− δ we also have

2σk‖Sk(B<kψk)‖L2L2 .1[−s, d
2

)(σ)
∑

0≤l<k

2(d/2+2δ−σ)(l−k)‖∇Bl‖L∞Hσ−12(d/2+2δ)k‖ψk‖L2L2

+ 1[ d
2
,s−δ](σ)

∑
0≤l<k

‖∇Bl‖L∞Hσ−12σk‖ψk‖L2L2

.1[−s, d
2

)(σ)
∑

0≤l<k

2(d/2+2δ−σ)(l−k)2δ(k−l)s̃k2
(d/2+2δ)k‖ψk‖L2L2

+ 1[ d
2
,s−δ](σ)

∑
0≤l<k

2δ(k−l)s̃k2
σk‖ψk‖L2L2

.s̃k‖ψ‖l2Xs .

The high-low case can be estimated similarly. For the high-high case, by Sobolev embedding
when σ + d/2 ≥ 0 we have

2σk‖Sk(Blψl)‖L2L2 .
∑
l>k

2(σ+d/2+δ)(k−l)2(σ+d/2+δ)l‖Bl‖L∞L2‖ψl‖L2L2

.min{s̃k‖ψ‖l2Xs , p̃k‖B‖Z1,s},

and when σ + d/2 < 0 we have

2σk‖Sk(Blψl)‖L2L2 .
∑
l>k

2(σ+d/2)k‖Bl‖L∞L2‖ψl‖L2L2

.min{s̃k‖ψ‖l2Xs , p̃k‖B‖Z1,s},

These imply the bound (5.4) and (5.9).
Finally, we prove the bound (5.12). If σ > d/2−1+ δ, by duality and Sobolev embedding,

we have

2σk‖A<k∇ψk‖L2L2 .
∑
l≤k

2(d/2−1)l‖∇Al‖L∞L22(σ+1)k‖ψk‖L2L2 . pk‖A‖Z1,σ+1 .
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If σ ≤ d/2− 1 + δ, we have

2σk‖A<k∇ψk‖L2L2 .
∑

0≤l<k

2(d/2−1−σ+δ)(l−k)‖∇Al‖L∞Hσ2(d/2+δ)k‖ψk‖L2L2

.pk‖A‖Z1,σ+1 .

Then the bound (5.12) follows. Hence this completes the proof of the lemma. �

We shall also require the following bounds on commutators.

Proposition 5.3 (Commutator bounds). Let s > d
2
, d ≥ 2. Let m(D) be a multiplier with

symbol m ∈ S0. Assume h ∈ Ys+2, A ∈ Z1,s+1 and ψk ∈ l2Xs, frequency localized at
frequency 2k. If −s ≤ σ ≤ s we have

‖∇[S<k−4h,m(D)]∇ψk‖l2Nσ . min{‖h‖Yσ+2‖ψk‖l2Xs , ‖h‖Ys+2‖ψk‖l2Xσ},(5.13)

‖[Sk, A<k−4]∇ψk‖l2Nσ . min{‖A‖Z1,s+1‖ψk‖l2Xσ , ‖A‖Z1,σ+1‖ψk‖l2Xs}.(5.14)

Proof. First we estimate (5.13). In [21, Proposition 3.2], it was shown that

∇[S<k−4g,m(D)]∇Skψ = L(∇S<k−4g,∇Skψ),

where L is a translation invariant operator satisfying

L(f, g)(x) =

∫
f(x+ y)g(x+ z)m̃(y + z)dydz, m̃ ∈ L1.

Given this representation, as we are working in translation-invariant spaces, by (5.1) the
bound (5.13) follows.

Next, for the bound (5.14). Since

[Sk, A<k]∇ψ =

∫ 1

0

∫
2kdϕ̌(2ky)2ky∇A<k(x− sy)2−k∇ψ[k−3,k+3](x− y)dyds,

By translation-invariance and the similar argument to (5.9), the bound (5.14) follows. This
completes the proof of the lemma. �

6. Local energy decay and the linearized problem

In this section, we consider a linear Schrödinger equation

(6.1)

{
i∂tψ + ∂αg

αβ∂βψ + 2iAα∂αψ = F,

ψ(0) = ψ0,

and, under suitable assumptions on the coefficients, we prove that the solution satisfies
suitable energy and local energy bounds.

6.1. The linear paradifferential Schrödinger flow. As an intermediate step, here we
prove energy and local energy bounds for a frequency localized linear paradifferential Schrödinger
equation

(6.2) i∂tψk + ∂α(gαβ<k−4∂βψk) + 2iAα<k−4∂αψk = fk.

We begin with the energy estimates, which are fairly standard:
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Lemma 6.1 (Energy-type estimate). Let d ≥ 2, ψk solves the equation (6.2) with initial
data ψk(0) in the time interval [0, 1]. For a fixed s > d

2
, assume that A ∈ Z1,s+1, ψk ∈ l2kXk,

f1k ∈ N and f2k ∈ L1L2, where fk = f1k + f2k. Then we have

(6.3)
‖ψk‖2

L∞t L
2
x
.‖ψk(0)‖2

L2 + ‖A‖Z1,s+1‖ψk‖2
Xk

+ ‖ψk‖Xk‖f1k‖Nk
+ ‖ψk‖L∞L2‖f2k‖L1L2 .

Proof. By (6.2), we have

1

2

d

dt
‖ψk‖2

L2 = Re〈ψk, ∂tψk〉

= Re〈ψk, i∂αgαβ<k−4∂βψk − 2Aα<k−4∂αψk − ifk〉

=− Re〈∂αψk, igαβ<k−4∂βψk〉 − Re

∫
Rd
Aα<k−4∂α|ψk|2dx− Re〈ψk, ifk〉

= Re

∫
Rd
∂αA

α
<k−4|ψk|2dx− Re〈ψk, ifk〉,

and notice that for each t ∈ [0, 1] we have by duality and Sobolev embedding

‖ψk(t)‖2
L2 .‖ψk(0)‖2

L2 +

∫ 1

0

∫
Rd
|∂αAα<k−4||ψk|2dxdt+ ‖ψk‖Xk‖f1k‖Nk

+ ‖ψk‖L∞L2‖f2k‖L1L2

.‖ψk(0)‖2
L2 + ‖A‖Z1,s+1‖ψk‖2

Xk

+ ‖ψk‖Xk‖f1k‖Nk + ‖ψk‖L∞L2‖f2k‖L1L2

We take the supremum over t on the left hand side and the conclusion follows. �

Next, we prove the main result of this section, namely the local energy estimates for
solutions to (6.2):

Proposition 6.2 (Local energy decay). Let d ≥ 3, assume that the coefficients gαβ =
δαβ + hαβ and Aα in (6.2) satisfy

(6.4) ‖h‖Ys+2 , ‖A‖Z1,s+1 � 1

for some s > d
2
. Let ψk be a solution to (6.2) which is localized at frequency 2k. Then the

following estimate holds:

(6.5) ‖ψk‖l2kXk . ‖ψ0k‖L2 + ‖fk‖l2kNk
Proof. The proof is closely related to that given in [21, 22]. However, here we are able to
relax the assumptions both on the metric g and on the magnetic potential A. In the latter
case, unlike in [21, 22], we treat the magnetic term 2iAα<k−4∂αψk as a part of the linear
equation, which allows us to avoid bilinear estimates for this term and use only the bound
for A in Z1,s+1.

As an intermediate step in the proof, we will establish a local energy decay bound in a
cube Q ∈ Ql with 0 ≤ l ≤ k:

(6.6)
2k−l‖ψk‖2

L2L2([0,1]×Q) . ‖ψk‖2
L∞L2 + ‖fk‖Nk‖ψk‖Xk

+ (2−k + ‖A‖Z1,s+1 + ‖h‖Ys+2)‖ψk‖2
l2kXk

.
42



The proof of this bound is based on a positive commutator argument using a well chosen
multiplier M. This will be first-order differential operator with smooth coefficients which
are localized at frequency . 1. Precisely, we will use a multiplier M which is a sef-adjoint
differential operator having the form

(6.7) i2kM = aα(x)∂α + ∂αa
α(x)

with uniform bounds on a and its derivatives.
Before proving (6.5), we need the following lemma which is used to dismiss the (g − Id)

contribution to the commutator [∂αg
αβ∂β,M].

Lemma 6.3. Let s > d
2

and d ≥ 3, assume that h ∈ Ys+2, A ∈ Z1,s+1 and ψ ∈ l2kXk, let M
be as (6.7). Then we have∫ 1

0

〈[∂αhαβ≤k∂β,M]ψk, ψk〉ds . ‖h‖Ys+2‖ψk‖2
l2kXk

,(6.8) ∫ 1

0

Re〈Aα<k−4∂αψk,Mψk〉ds . ‖A‖Z1,s+1‖ψk‖2
Xk
.(6.9)

Proof of Lemma 6.3. By (6.7) and directly computations, we get

[∂αh
αβ∂β,M] ≈ 2−k[∇(h∇a+ a∇h)∇+∇h∇2a+ h∇3a].

Then it suffices to estimate

2−k
∫ 1

0

〈(h≤k∇a+ a∇h≤k)∇ψk,∇ψk〉dt+ 2−k
∫ 1

0

〈(∇h≤k∇2a+ h≤k∇3a)ψk, ψk〉dt

The first integral is estimated by (5.1) and (5.2). Using Sobolev embedding, the second
integral is bounded by

2−k
∫ 1

0

〈(∇h≤k + h≤k)ψk, ψk〉dt . ‖〈∇〉h≤k‖L∞2−k‖ψk‖2
L2L2 . ‖∇h‖L∞Hs‖ψk‖2

l2kXk
.

Hence, the bound (6.8) follows.
For the second bound (6.9), by (6.7) and integration by parts we rewrite the following

term as

Re〈Aα∂αψ, i
d∑

β=1

(aβ∂β + ∂βaβ)ψ〉

= Re
d∑

β=1

∫
Rd

[
i∂α(ψ̄Aαaβ∂βψ)− iψ̄∂αAαaβ∂βψ − iψ̄Aα∂αaβ∂βψ − iψ̄Aαaβ∂2

αβψ

+ i∂β(Aα∂αψ̄aβψ)− i∂βAα∂αψ̄aβψ − iAα∂2
αβψ̄aβψ

]
dx

≈
∫
Rd
〈∇〉Aψ∇ψdx.
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Then we bound the left-hand side of (6.9) by∫ 1

0

Re〈Aα<k−4∂αψk,Mψk〉ds .2−k
∫ 1

0

∫
Rd
|〈∇〉A<kψk∇ψk|dxds

.‖∇A‖L∞Hs‖ψk‖2
L2L2 .

This implies the bound (6.9), and hence completes the proof of the lemma. �

Returning to the proof of (6.6), for the self-adjoint multiplier M we compute

d

dt
〈ψk,Mψk〉 =2 Re〈∂tψk,Mψk〉

=2 Re〈i∂α(gαβ<k−4∂βψk)− 2Aα<k−4∂αψk − ifk,Mψk〉
=i〈[−∂αgαβ<k−4∂β,M]ψk, ψk〉+ 2 Re〈−2Aα<k−4∂αψk − ifk,Mψk〉

We then use the multiplier M as in [21, 22] so that the following three properties hold:

(1) Boundedness on frequency 2k localized functions,

‖Mu‖L2
x
. ‖u‖L2

x
.

(2) Boundedness in X,
‖Mu‖X . ‖u‖X .

(3) Positive commutator,

i〈[−∂αgαβ<k−4∂β,M]u, u〉 & 2k−l‖u‖2
L2
t,x([0,1]×Q) −O(2−k + ‖h‖Ys+2)‖u‖2

l2kXk
.

If these three properties hold for u = ψk, then by (6.9) and (6.4) the bound (6.6) follows.
We first do this when the Fourier transform of the solution ψk is restricted to a small angle

(6.10) suppψ̂k ⊂ {|ξ| . ξ1}.
Without loss of generality due to translation invariance, Q = {|xj| ≤ 2l : j = 1, . . . , d}, and
we set m to be a smooth, bounded, increasing function such that m′(s) = ϕ2(s) where ϕ is
a Schwartz function localized at frequencies . 1, and ϕ ≈ 1 for |s| ≤ 1. We rescale m and
set ml(s) = m(2−ls). Then, we fix

M =
1

i2k
(ml(x1)∂1 + ∂1ml(x1)).

The properties (1) and (2) are immediate due to the frequency localization of u = ψk and
ml as well as the boundedness of ml. By (6.8) it suffices to consider the property (3) for the
operator

−∆ = −∂αgαβ<k−4∂β + ∂αh
αβ
<k−4∂β.

This yields

i2k[−∆,M] = −2−l+2∂1ϕ
2(2−lx1)∂1 +O(1),

and hence

i2k〈[−∆,M]ψk, ψk〉 = 2−l+2‖ϕ(2−lx1)∂1ψk‖2
L2L2 +O(‖ψk‖2

L2L2)

Utilizing our assumption (6.10), it follows that

2k−l‖ϕ(2−lx1)ψk‖2
L2L2 . i〈[−∆,M]ψk, ψk〉+ 2−kO(‖ψk‖2

L2L2)
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which yields (3) when combined with (6.8).
We proceed to reduce the problem to the case when (6.10) holds. We let {θj(ω)}dj=1 be a

partition of unity, ∑
j

θj(ω) = 1, ω ∈ Sd−1,

where θj(ω) is supported in a small angle about the j-th coordinate axis. Then, we can set
ψk,j = Θk,jψk where

FΘk,jψ = θj(
ξ

|ξ|
)

∑
k−1≤l≤k+1

ϕl(ξ)ψ̂(t, ξ).

We see that

(i∂t + ∂αg
αβ
<k−4∂β)ψk,j + 2iAα<k−4∂αψk,j

=Θk,jfk − ∂α[Θk,j, g
αβ
<k−4]∂βψk − 2i[Θk,j, A

α
≤k−4]∂αψk.

By applying M, suitably adapted to the correct coordinate axis, to ψk,j and summing
over j, we obtain

2k−l‖ψk‖2
L2L2([0,1]×Q)

. ‖ψk‖2
L∞L2 +

d∑
j=1

∫ 1

0

〈−Θk,jfk,Mψk,j〉ds

+
d∑
j=1

∫
〈[Θk,j, ∂αg

αβ
<k−4∂β]ψk + [Θk,j, 2iA

α
<k−4]∂αψk,Mψk,j〉ds

+ (2−k + ‖A‖Z1,s+1 + ‖h‖Ys+2)‖ψk‖2
l2kXk

. ‖ψk‖2
L∞L2 + ‖fk‖Nk‖ψk‖Xk + (2−k + ‖A‖Z1,s+1 + ‖h‖Ys+2)‖ψk‖2

l2kXk
.

The commutator is done via (5.13) and (5.14). Then (6.6) follows.
Next we use the bound (6.6) to complete the proof of Proposition 6.2. Taking the supre-

mum in (6.6) over Q ∈ Ql and over l, we obtain

2k‖ψk‖2
X .‖ψk‖2

L∞L2 + ‖f1k‖Nk‖ψk‖Xk + ‖f2k‖L1L2‖ψk‖L∞L2

+ (2−k + ‖A‖Z1,s+1 + ‖h‖Ys+2)‖ψk‖2
l2kXk

.‖ψk‖2
L∞L2 + ‖f1k‖Nk‖ψk‖Xk + ‖f2k‖2

L1L2

+ (2−k + ‖A‖Z1,s+1 + ‖h‖Ys+2)‖ψk‖2
l2kXk

.

Combined with (6.3), we get

(6.11)
‖ψk‖2

Xk
.‖ψk(0)‖2

L2 + ‖f1k‖2
Nk

+ ‖f2k‖2
L1L2

+ (2−k + ‖A‖Z1,s+1 + ‖h‖Ys+2)‖ψk‖2
l2kXk

.

We now finish the proof by incorporating the summation over cubes. We let {χQ} denote
a partition via functions which are localized to frequencies . 1 which are associated to cubes
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Q of scale M2k. We also assume that |∇lχQ| . (2kM)−l, l = 1, 2. Thus,

(i∂t + ∂αg
αβ
<k−4∂β)χQψk + 2iAα<k−4∂αχQψk

=χQfk + [∂αg
αβ
<k−4∂β, χQ]ψk + 2iAα<k−4∂αχQ · ψk

Applying (6.3) to χQψk, we obtain∑
Q

‖χQψk‖2
L∞L2

.
∑
Q

‖χQψk(0)‖2
L2 + ‖A‖Z1,s+1

∑
Q

‖χQψk‖2
Xk

+ (
∑
Q

‖χQfk‖2
Nk

)1/2(
∑
Q

‖χQψk‖2
Xk

)1/2

+
∑
Q

‖[∂αgαβ<k−4∂β, χQ]ψk + 2iAα<k−4∂αχQ · ψk‖2
L1L2 .

But by (6.4) we have

(6.12)

∑
Q

‖[∇g∇, χQ]ψk‖2
L1L2 .

∑
Q

‖∇g · ∇χQ · ψk + g∇(∇χQ · ψk)‖2
L1L2

.(1 + ‖h‖Z1,s+2)M−2
∑
Q

‖χQψk‖2
L∞L2 ,

and also ∑
Q

‖2iAα<k−4∂αχQ · ψk‖2
L1L2 . (1 + ‖A‖Z1,s)M−2

∑
Q

‖χQψk‖2
L∞L2 .(6.13)

ForM sufficiently large, we can bootstrap the commutator terms, and, after a straightforward
transition to cubes of scale 2k rather than M2k, we observe that

(6.14) ‖ψk‖2
l2kL
∞L2 .‖ψk(0)‖2

L2 + ‖A‖Z1,s+1‖ψk‖2
l2kXk

+ ‖fk‖l2kNk‖ψk‖l2kXk .

We now apply (6.11) to χQψk, and then by (6.12) and (6.13) we see that∑
Q

‖χQψk‖2
Xk
.‖ψk(0)‖2

L2 +
∑
Q

‖χQfk‖2
Nk

+M−2
∑
Q

‖χQψk‖2
Xk

+ (2−k + ‖h‖Ys+2 + ‖A‖Z1,s+1)
∑
Q

‖χQψk‖2
l2kXk

.

For M � 1, we have

M−d‖ψk‖2
l2kXk
.‖ψk(0)‖2

L2 + ‖fk‖2
l2kNk

+ (2−k + ‖h‖Ys+2 + ‖A‖Z1,s+1)‖ψk‖2
l2kXk

.

By (6.4), for k sufficiently large (depending on M), we may absorb the last terms in the
right-hand side into the left, i.e

‖ψk‖2
l2kXk
. ‖ψk(0)‖2

L2 + ‖fk‖2
l2kNk

.

On the other hand, for the remaining bounded range of k, we have

‖ψ‖Xk . ‖ψ‖L∞L2 ,
46



and then (6.14) and (6.4) gives

‖ψk‖2
l2kXk
.‖ψk(0)‖2

L2 + ‖A‖Z1,s+1‖ψk‖2
l2kXk

+ ‖fk‖l2kNk‖ψk‖l2kXk
.‖ψk(0)‖2

L2 + ‖fk‖2
l2kNk

,

which finishes the proof of (6.5). �

6.2. The full linear problem. Here we use the bounds for the paradifferential equation in
the previous subsection in order to prove similar bounds for the full equation (6.1):

Proposition 6.4 (Well-posedness). Let s > d
2
, d ≥ 3 and h = g − Id ∈ Ys+2, assume that

the metric g, and the magnetic potential A satisfy

‖h‖Ys+2 , ‖A‖Z1,s+1 � 1.

Then the equation (6.1) is well-posed for initial data ψ0 ∈ Hσ with −s ≤ σ ≤ s, and we have
the estimate

(6.15) ‖ψ‖l2Xσ . ‖ψ0‖Hσ + ‖F‖l2Nσ .

Moreover, for 0 ≤ σ ≤ s we have the estimate

(6.16) ‖ψ‖l2Xσ . ‖ψ0‖Hσ + ‖F‖l2Nσ∩L2Hσ−2 .

Proof. The well-posedness follows in a standard fashion from a similar energy estimate for
the adjoint equation. Since the adjoint equation has a similar form, with similar bounds on
the coefficients, such an estimate follows directly from (6.15). Thus, we now focus on the
proof of the bound (6.15). For ψ solving (6.1), we see that ψk solves{

i∂tψk + ∂αg
αβ
<k−4∂βψk + 2iAα<k−4∂αψk = Fk +Hk,

ψk(0) = ψ0k,

where

Hk =− Sk∂αgαβ≥k−4∂βψ − [Sk, ∂αg
αβ
<k−4∂β]ψ − 2i[Sk, A

α
<k−4]∂αψ

− 2iSk[A
α
≥k−4∂αψk].

If we apply Proposition 6.2 to each of these equations, we see that

‖ψk‖2
l2Xσ . ‖ψ0k‖2

Hσ + ‖Fk‖2
l2Nσ + ‖Hk‖2

l2Nσ .

We claim that∑
k

‖Hk‖2
l2Nσ . (‖h‖Ys+2 + ‖A‖Z1,s+1)2‖ψ‖2

l2Xσ , for − s ≤ σ ≤ s.

Indeed, the bound for the terms in Hk follows from (5.7), (5.13), (5.14), (5.8), respectively.
Then by the above two bounds, we obtain the estimate (6.15).

Finally, by the ψ-equation (6.1), for time derivative bound it suffices to consider the form

∂tψ = ∆ψ +∇(h∇ψ) + A∇ψ + F.

Then by the standard Littlewood-Paley dichotomy and Bernstein’s inequality, for 0 ≤ σ ≤ s
we have the following estimates

‖∂tψ‖L2Hσ−2 . ‖ψ‖L∞Hσ + ‖F‖L2Hσ−2 ,
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This, combined with (6.15), yields the bound (6.16), and then completes the proof of the
Lemma. �

6.3. The linearized problem. Here we consider the linearized equation:

(6.17)

{
i∂tΨ + ∂αg

αβ∂βΨ + 2iAα∂αΨ = F +G,

Ψ(0) = Ψ0,

where

G = −∇(G∇ψ)− 2iAα∂αψ,

and we prove the following.

Proposition 6.5. Let s > d
2
, 0 ≤ σ ≤ s− 1, d ≥ 3 and h = g − Id ∈ Ys+2, assume that Ψ

is a solution of (6.17), the metric g and A satisfy

‖h‖Ys+2 , ‖A‖Z1,s+1 � 1.

Then we have the estimate

(6.18) ‖Ψ‖l2Xσ . ‖Ψ0‖Hσ + ‖F‖l2Nσ∩L2Hσ−2 + (‖G‖Yσ+2 + ‖A‖Z1,σ+1)‖ψ‖l2Xs .

Proof. For Ψ solving (6.17), we see that Ψk solves{
i∂tΨk + ∂αg

αβ
<k−4∂βΨk + 2iAα<k−4∂αΨk = Fk +Gk +Hk,

Ψk(0) = Ψ0k,

where

Gk = −Sk(∇(G∇ψ)− 2iAα∂αψ),

Hk =− Sk∂αgαβ≥k−4∂βΨ− [Sk, ∂αg
αβ
<k−4∂β]Ψ− 2i[Sk, A

α
<k−4]∂αΨ

− 2iSk[A
α
≥k−4∂αΨk].

The proof of (6.18) is similar to that of (6.16). Here it suffices to prove∑
k

‖Gk‖2
l2Nσ . ‖G‖2

Yσ+2‖ψ‖2
l2Xs + ‖A‖2

Z1,σ+1‖ψ‖2
l2Xs ,

‖G‖L2Hσ−2 . (‖G‖Yσ+2 + ‖A‖Z1,σ+1)‖ψ‖l2Xs .

Indeed, the bound for the terms in Gk follows from (5.7), (5.3), (5.8) and (5.12). The second
bound follows from a standard Littlewood-Paley decomposition and Bernstein’s inequality.
This completes the proof of the Lemma. �

7. Well-posedness in the good gauge

In this section we use the elliptic results in Section 4, the multilinear estimates in Section 5
and the linear local energy decay bounds in Section 6 in order to prove the good gauge
formulation of our main result, namely Theorem 2.7.
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7.1. The iteration scheme: uniform bounds. Here we seek to construct solutions to
(2.35) iteratively, based on the scheme

(7.1)

(i∂t + ∂αg
(n)αβ∂β)ψ(n+1) + 2i(A(n)α − 1

2
V (n)α)∂αψ

(n+1) = F (n),

ψ(0) = ψ0,

with the trivial initialization

ψ(0) = 0,

where the nonlinearities are

(7.2) F (n) =∂αg
(n)αβ · ∂βψ(n) + (B(n) + A(n)

α A(n)α − V (n)αA(n)
α )ψ(n) − iλ(n)γ

σ Im(ψ(n)λ̄(n)σ
γ ),

and S(n) = (λ(n), h(n), V (n), A(n), B(n)) are the solutions of elliptic equations (2.36) with
ψ = ψ(n).

We assume that ψ0 is small in Hs. Due to the above trivial initialization, we also induc-
tively assume that

‖ψ(n)‖l2Xs ≤ C‖ψ0‖Hs ,

where C is a big constant.
Applying the elliptic estimate (4.14) to (2.36) with ψ = ψ(n) at each step, we obtain

‖S(n)‖Es . ‖ψ(n)‖l2Xs . ‖ψ0‖Hs ,

Applying at each step the local energy bound (6.16) with σ = s we obtain the estimate

‖ψ(n+1)‖l2Xs .‖ψ0‖Hs + ‖F (n)‖l2Ns∩L2Hs−2

.‖ψ0‖Hs + ‖S(n)‖Es(1 + ‖S(n)‖Es)‖ψ(n)‖l2Xs

.‖ψ0‖Hs + (C‖ψ0‖Hs)2(1 + C‖ψ0‖Hs).

Here the nonlinear terms in F (n) are estimated using (5.1), (5.7), (5.4), (5.5) and (5.6) with
σ = s. Since ψ0 is small in Hs, the above bound gives

(7.3) ‖ψ(n+1)‖l2Xs ≤ C‖ψ0‖Hs ,

which closes our induction.

7.2. The iteration scheme: weak convergence. Here we prove that our iteration scheme
converges in the weaker Hs−1 topology. We denote the differences by

Ψ(n+1) = ψ(n+1) − ψ(n),

δS(n+1) = (Λ(n+1),G(n+1),V(n+1),A(n+1),B(n+1)) = S(n+1) − S(n)

Then from (7.1) we obtain the systemi∂tΨ(n+1) + ∂α(g(n)αβ∂βΨ(n+1)) + 2i(A(n)α − 1

2
V (n)α)∂αΨ(n+1) = F (n) − F (n−1) +G(n),

Ψ(n+1)(0, x) = 0,

where the nonlinearities G(n) have the form

G(n) =− ∂α(G(n)∂βψ
(n))− 2i(A(n)α − 1

2
V(n)α)∂αψ

(n),
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By (4.16) we obtain

‖δS(n)‖Es−1 . ‖Ψ(n)‖l2Xs−1 .

Applying (6.18) with σ = s− 1 for the Ψ(n+1) equation we have

‖Ψ(n+1)‖l2Xs−1 .‖F (n) − F (n−1)‖l2Ns−1∩L2Hs−3 +
(
‖G(n)‖Ys+1 + ‖(V(n),A(n))‖Z1,s

)
‖ψ(n)‖l2Xs .

Then by (5.1), (5.7), (5.9), (5.10) and (5.11) with σ = s − 1 we bound the right hand side
above by

‖Ψ(n+1)‖l2Xs−1 .C‖ψ0‖Hs‖(Ψ(n), δS(n))‖l2Xs−1×Es−1 � ‖Ψ(n)‖l2Xs−1 .

This implies that our iterations ψ(n) converge in l2Xs−1 to some function ψ. Furthermore,
by the uniform bound (7.3) it follows that

(7.4) ‖ψ‖l2Xs . ‖ψ0‖Hs .

Interpolating, it follows that ψ(n) converges to ψ in l2Xs−ε for all ε > 0. This allows us
to conclude that the auxiliary functions S(n) associated to ψ(n) converge to the functions
S associated to ψ, and also to pass to the limit and conclude that ψ solves the (SMCF)
equation (2.35). Thus we have established the existence part of our main theorem.

7.3. Uniqueness via weak Lipschitz dependence. Consider the difference of two solu-
tions

(Ψ, δS) = (ψ(1) − ψ(2),S(1) − S(2)).

The Ψ solves an equation of this formi∂tΨ + ∂αg
(1)αβ∂βΨ + 2i(A(1)α − 1

2
V (1)α)∂αΨ = F (1) − F (2) +G,

Ψ(0, x) = ψ
(1)
0 (x)− ψ(2)

0 (x),

where the nonlinearity G is

G =− ∂α(G∂βψ(2))− 2i(Aα − 1

2
Vα)∂αψ

(2).

By (4.16), we have

(7.5) ‖δS‖Es−1 . ‖Ψ‖l2Xs−1 .

Applying (6.18) with σ = s− 1 to the Ψ equation, we obtain the estimate

‖Ψ‖l2Xs−1 . ‖Ψ0‖Hs−1 + ‖F (1) − F (2)‖l2Ns−1∩L2Hs−3 + (‖G‖Ys+1 + ‖(V ,A)‖Z1,s)‖ψ(2)‖l2Xs

. ‖Ψ0‖Hs−1 + C‖(ψ(1)
0 , ψ

(2)
0 )‖Hs‖(Ψ, δS)‖l2Xs−1×Es−1 .

Then, by the above bound (7.5), we further have

‖Ψ‖l2Xs−1 . ‖Ψ0‖Hs−1 + C‖(ψ(1)
0 , ψ

(2)
0 )‖Hs‖Ψ‖l2Xs−1

Since the initial data ψ
(1)
0 and ψ

(2)
0 are sufficiently small, we obtain

(7.6) ‖Ψ‖l2Xs−1 . ‖Ψ0‖Hs−1 .

This gives the weak Lipschitz dependence, as well as the uniqueness of solutions for (2.35).
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7.4. Frequency envelope bounds. Here we prove a stronger frequency envelope version
of estimate (7.4).

Proposition 7.1. Let ψ ∈ l2Xs be a small data solution to (2.35), which satisfies (7.4). Let
{p0k} be an admissible frequency envelope for the initial data ψ0 ∈ Hs. Then {p0k} is also
frequency envelope for ψ in l2Xs.

Proof. Let pk and sk be the admissible frequency envelopes for solution (ψ,S) ∈ l2Xs × Es.
Applying Sk to the Schrödinger equation (2.35), we obtain the paradifferential equation(i∂t + ∂αg

αβ
<k−4∂β)ψk + 2i(A− 1

2
V )α<k−4∂αψk = Fk + Jk,

ψ(0, x) = ψ0(x),

where

Jk =− Sk∂αgαβ≥k−4∂βψ − [Sk, ∂αg
αβ
<k−4∂β]ψ − 2i[Sk, (A−

1

2
V )α<k−4]∂αψ

− 2iSk[(A−
1

2
V )α≥k−4∂αψk],

and S = (λ, h, V,A,B) is the solution to the elliptic system (2.36). We estimate ψk = Skψ
using Proposition 6.4. By Proposition 5.2, Lemma 5.1 and Lemma 5.3 we obtain

‖ψk‖l2Xs . p0k + pk‖S‖Es + sk‖ψ‖l2Xs . p0k + (pk + sk)‖ψ‖l2Xs .

Then by (4.15), the definition of frequency envelope (3.3) and (7.4), this implies

pk . p0k + pk‖ψ‖l2Xs .

By the smallness of ψ ∈ l2Xs, this further gives pk . p0k, and concludes the proof. �

7.5. Continuous dependence on the initial data. Here we show that the map ψ0 →
(ψ,S) is continuous from Hs into l2Xs × Es. By (4.16), it suffices to prove ψ0 → ψ is
continuous from Hs to l2Xs.

Suppose that ψ
(n)
0 → ψ0 in Hs. Denote by p

(n)
0k , respectively p0k the frequency envelopes

associated to ψ
(n)
0 , respectively ψ0, given by (3.3). If ψ

(n)
0 → ψ0 in Hs then p

(n)
0k → p0k in l2.

Then for each ε > 0 we can find some Nε so that

‖p(n)
0,>Nε

‖l2 ≤ ε, for all n.

By Proposition 7.1 we obtain that

(7.7) ‖ψ(n)
>Nε
‖l2Xs ≤ ε, for all n.

To compare ψ(n) with ψ we use (7.6) for low frequencies and (7.7) for the high frequencies,

‖ψ(n) − ψ‖l2Xs .‖S<Nε(ψ(n) − ψ)‖l2Xs + ‖S>Nεψ(n)‖l2Xs + ‖S>Nεψ‖l2Xs

.2Nε‖S<Nε(ψ(n) − ψ)‖l2Xs−1 + 2ε

.2Nε‖S<Nε(ψ
(n)
0 − ψ0)‖Hs−1 + 2ε.

Letting n→∞ we obtain

lim sup
n→∞

‖ψ(n) − ψ‖l2Xs . ε.
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Letting ε→ 0 we obtain
lim
n→0
‖ψ(n) − ψ‖l2Xs = 0,

which completes the desired result.

7.6. Higher regularity. Here we prove that the solution (ψ,S) satisfies the bound

(7.8) ‖(ψ,S)‖l2Xσ×Eσ . ‖ψ0‖Hσ , σ ≥ s,

whenever the right hand side is finite.
Differentiating the original Schrödinger equation (2.35) yields

(i∂t + ∂αg
αβ∂β)∇ψ + 2i(A− V

2
)α∂α∇ψ = −∂α(∇gαβ∂βψ)− 2i∇Aα∂αψ +∇F,

where F is defined as in (7.2) without superscript (n). Using Proposition 6.5 we obtain

‖∇ψ‖l2Xs . ‖∇ψ0‖Hs + ‖(∇ψ,∇S)‖l2Xs×Es‖(ψ,S)‖l2Xs×Es(1 + ‖(ψ,S)‖l2Xs×Es)
N .

For elliptic equations, by (4.16) we obtain

‖∇S‖Es . ‖∇ψ‖l2Xs .

Hence, by (7.4) and the smallness of ψ0 in Hs, these imply

‖(∇ψ,∇S)‖l2Xs×Es . ‖∇ψ0‖Hs .

Inductively, we can obtain the system for (∇nψ,∇nS). This leads to

‖(∇nψ,∇nS)‖l2Xs×Es . ‖ψ0‖Hs+n + ‖ψ‖l2Xs+n‖ψ‖l2Xs(1 + ‖ψ‖l2Xs)N ,

which shows that

‖(ψ,S)‖l2Xs+n×Es+n . ‖ψ0‖Hs+n + ‖ψ‖l2Xs+n‖ψ‖l2Xs(1 + ‖ψ‖l2Xs)N ,

and hence gives the bound (7.8) by the smallness of ψ in l2Xs.

7.7. The time evolution of (λ, g, A). As part of our derivation of the (SMCF) equations
(2.35) for the mean curvature ψ in the good gauge, coupled with the elliptic system (2.36),
we have seen that the time evolution of (λ, g, A) is described by the equations (2.31), (2.26)
and (2.32). However, our proof of the well-posedness result for the Schrödinger evolution
(2.35) does not apriori guarantee that (2.31), (2.26) and (2.32) hold. Here we rectify this
omission:

Lemma 7.2. Assume that ψ ∈ C[0, T ;Hs] solves the SMCF equation (2.35) coupled with
the elliptic system (2.36). Then the relations (2.26), (2.31) and (2.32) hold.

Proof. We recall that, by Theorem 4.1, the solution S = (λ, h, V,A,B) in Hs for the system
(2.36) satisfies the fixed time constraints (2.4), (2.8), (2.15), (2.13), (2.19) and (2.16). On
the other hand, in terms of the time evolution, at this point we only have the equation (2.35)
for the mean curvature ψ. We will show that this implies (2.26), (2.31) and (2.32).

To shorten the notations, we define the tensors

T 1
αβ = ∂tgαβ − 2 Im(ψλ̄αβ)−∇αVβ −∇βVα,

T 2,σ
α = (∂Bt − V γ∇A

γ )λσα − i∇A
α∇A,σψ + λγα Im(ψλ̄σγ) + λαγ∇γV σ − λσγ∇αV

γ,

T 3
α = ∂tAα − ∂αB − Re(λγα∂̄

A
γ ψ̄) + Im(λγαλ̄γσ)V σ.
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We need to show that T 1 = 0, T 2 = 0, T 3 = 0. To do this, we will show that (T 1, T 2, T 3)
solve a linear homogeneous coupled elliptic system of the form

∆gT
1 = ∇(ΓT 1) + λ2T 1 + λT 2,

∇A,αT 2,σ
α = λT 3 + λ∇T 1 + T 1∇λ,

∇A
αT

2,σ
β −∇A

β T
2,σ
α = λT 3 + λ∇T 1 + T 1∇λ,

∇αT 3
α = T 1∇A,

∇αT
3
β −∇βT 3

α = λT 2.

Considering this system for (T 1, T 2, T 3) ∈ Ḣ1 × L2 × L2, the smallness condition on the
coefficients (λ, h, V,A,B) ∈ S insures that this system has the unique solution (T 1, T 2, T 3) =
0. It remains to derive the system for (T 1, T 2, T 3).

The equation for T 1. This has the form

(7.9)
∆gT

1
αβ = T 1

δβRicδα + T 1
δαRicδβ + 2T 1,µνRαµβν −∇β(T 1,µνΓµν,α)−∇α(T 1,µνΓµν,β)

− 2 Re(gσβT
2,σ
α ψ̄ + T 1

σβλ
σ
αψ + λ̄αβT

2,σ
σ − gσµT 2,σ

α λ̄µβ − T
1
σµλ

σ
αλ̄

µ
β − λ̄ασT

2,σ
β ).

We start with the first term in T 1, and compute the expression ∆g∂tgαβ. We have

∆g∂tgαβ = gµν(∂µ∇ν∂tgαβ − Γδνα∇ν∂tgδβ − Γδµβ∇ν∂tgαδ)

= [∂t(g
µν∂µ∂νgαβ)− ∂tgµν∂µ∂νgαβ] + [−gµνΓδνα∂µ∂tgδβ − gµνΓδνβ∂µ∂tgδα

− gµν∂µΓδνα∂tgδβ − gµν∂µΓδνβ∂tgδα − gµν(Γδµα∇ν∂tgδβ + Γδµβ∇ν∂tgδα)]

:= I + II.

We then use covariant derivatives to write II as

II =− gµνΓδµα(2∇ν∂tgδβ + Γσνδ∂tgσβ + Γσνβ∂tgσδ)

− gµνΓδµβ(2∇ν∂tgδα + Γσνδ∂tgσα + Γσνα∂tgσδ)

− gµν∂µΓδνα∂tgδβ − gµν∂µΓδνβ∂tgδα

=− 2gµνΓδµα∇ν∂tgδβ − 2gµνΓδµβ∇ν∂tgδα

− ∂tgδβgµν(∂µΓδνα + ΓσµαΓδνσ)− ∂tgδαgµν(∂µΓδνβ + ΓσµβΓδνσ)

− 2∂tgσδg
µνΓδµαΓσνβ.

For I, by the g equation (2.22) we have

I = ∂t[−∂αgµν∂µgνβ − ∂βgµν∂µgνα + ∂αg
µν∂βgµν ]

+ [2∂t(g
µνΓµα,δΓ

δ
νβ)− ∂tgµν∂µ∂νgαβ]− 2∂t R̃icαβ

:= I1 + I2 + I3.
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The expression I1 is written as

I1 =− ∂α∂tgµνΓµν,β − ∂β∂tgµνΓµν,α −
1

2
∂β∂tg

µν∂αgµν +
1

2
∂α∂tg

µν∂βgµν

− ∂αgµν∂µ∂tgνβ − ∂βgµν∂µ∂tgνα + ∂αg
µν∂β∂tgµν

=− (∇α∂tg
µν − 2Γµαδ∂tg

δν)Γµν,β − (∇β∂tg
µν − 2Γµβδ∂tg

δν)Γµν,α

+
1

2
[∇α(∂tg

µν∂βgµν −∇β(∂tg
µν∂αgµν)]

− ∂αgµν(∇µ∂tgνβ + Γδµν∂tgδβ)− ∂βgµν(∇µ∂tgνα + Γδµν∂tgδα + Γδµα∂tgνδ)

+ ∂αg
µν(∇β∂tgµν + Γδβν∂tgµδ)

= ∇α∂tg
µν(−Γµν,β + Γµβ,ν) +∇β∂tg

µν(−Γµν,α + Γµα,ν)−∇µ∂tgνβ∂αg
µν −∇µ∂tgνα∂βg

µν

+ 2∂tg
µν(ΓδαµΓδν,β + ΓδβµΓδν,α) + ∂tg

µν(−Γδαµ∂βgδν + Γδβµ∂αgδν)

+ ∂tg
µν(−∂βgµσgσδΓδα,ν + ∂αgµσg

σδΓδβ,ν)

− ∂tgδβ∂αgµνΓδµν − ∂tgδα∂βgµνΓδµν
For I2, we first compute

2gµν∂t(Γµα,δΓ
δ
νβ) =gµνΓδνβ(∇µ∂tgαδ +∇α∂tgµδ −∇δ∂tgµα) + 4gµνΓδνβΓσαµ∂tgσδ

+ gµνΓδνα(∇µ∂tgβδ +∇β∂tgµδ −∇δ∂tgµβ) + 2∂tg
σδgµνΓµα,δΓνβ,σ

By the above computations, we collect the ∇∂tg terms from I1, I2 and II

∇α∂tg
µν(−Γµν,β + Γµβ,ν) +∇β∂tg

µν(−Γµν,α + Γµα,ν)−∇µ∂tgνβ∂αg
µν −∇µ∂tgνα∂βg

µν

+ gµνΓδνβ(∇µ∂tgαδ +∇α∂tgµδ −∇δ∂tgµα) + gµνΓδνα(∇µ∂tgβδ +∇β∂tgµδ −∇δ∂tgµβ)

− 2gµνΓδµα∇ν∂tgδβ − 2gµνΓδµβ∇ν∂tgδα,

where the terms containing ∇∂tgνα and ∇∂tgνβ vanish, i.e.

∇µ∂tgνβ(−∂αgµν − gνδΓµδα − g
δµΓνδα) +∇µ∂tgνα(−∂βgµν − gνδΓµδβ − g

µδΓνδβ) = 0,

and the terms with ∇∂tgµν were rewritten as

(7.10)
−∇α∂tg

µνΓµν,β −∇β∂tg
µνΓµν,α

=−∇α(∂tg
µνΓµν,β)−∇β(∂tg

µνΓµν,α) + ∂tg
µν(∇αΓµν,β +∇βΓµν,α)

We collect the ∂tg terms from I and II into

2∂tg
µν(ΓδαµΓδν,β + ΓδβµΓδν,α)− ∂tgδβ∂αgµνΓδµν − ∂tgδα∂βgµνΓδµν

+ ∂tg
µν(2Γµα,δΓ

δ
νβ − ∂µ∂νgαβ)

− ∂tgδβgµν(∂µΓδνα + ΓσµαΓδνσ)− ∂tgδαgµν(∂µΓδνβ + ΓσµβΓδνσ).

Adding the ∂tg terms together with the third term in (7.10) we obtain

∂tg
µν(∇αΓµν,β +∇βΓµν,α + 2ΓδαµΓδν,β + 2ΓδβµΓδν,α + 2Γµα,δΓ

δ
νβ − ∂µ∂νgαβ)

=∂tg
µν(∂αΓµν,β + ∂βΓµν,α − ∂ν(Γβµ,α + Γαµ,β) + 2Γµα,δΓ

δ
νβ − 2ΓδαβΓµν,δ)

=2∂tg
µνRαµβν .
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Finally, using the harmonic coordinate condition gµνΓδµν = 0, the terms containing the ∂tgδα
expression are written as

− ∂tgδβ∂αgµνΓδµν − ∂tgδα∂βgµνΓδµν − ∂tgδβgµν(∂µΓδνα + ΓσµαΓδνσ)− ∂tgδαgµν(∂µΓδνβ + ΓσµβΓδνσ)

= ∂tgδβRicδα + ∂tgδαRicδβ.

Hence, the expression ∆g∂tgαβ is written as

(7.11)
∆g∂tgαβ =−∇α(∂tg

µνΓµν,β)−∇β(∂tg
µνΓµν,α) + ∂tgδβRicδα + ∂tgδαRicδβ

+ 2∂tg
µνRαµβν − 2∂t R̃icαβ .

For the last term −2∂t R̃icαβ, using the expression T 2 we have

−2∂t R̃icαβ =− 2 Re(gσβT
2,σ
α ψ̄ + T 1

σβλ
σ
αψ + λ̄αβT

2,σ
σ − gσµT 2,σ

α λ̄µβ − T
1
σµλ

σ
αλ̄

µ
β − λ̄ασT

2,σ
β )

+ 2 Im(∇A
α∇A

βψψ̄ +∇A
σ∇A,σψλ̄αβ −∇A

α∇A
σψλ̄

σ
β −∇A

β∇A
σψλ̄

σ
α)(I31)

− 2 R̃icβγ∇αV
γ − 2 R̃icαγ∇βV

γ − 2∇γ R̃icαβ V
γ(I32)

− 2 Re(ψλ̄αγ) Im(ψλ̄γβ) + 2 Re(λαβλ̄
σγ) Im(ψλ̄σγ).(I33)

Next, we compute

III := −∆g(2 Im(ψλ̄αβ) +∇αVβ +∇βVα)

= − 2∇σ∇σ Im(ψλ̄αβ) + [∆g,∇α]Vβ − [∆g,∇β]Vα −∇α∆gVβ −∇β∆gVα

= − 2∇σ∇σ Im(ψλ̄αβ)−∇β Ricαγ V
γ −∇α Ricβγ V

γ − 2∇γ Ricαβ V
γ

− Ricαγ∇γVβ − Ricβγ∇γVα + 2Rασβδ(∇σV δ +∇δV σ)−∇α∆gVβ −∇β∆gVα

Using the V -equation (2.30) we write the last two terms as

−∇α∆gVβ −∇β∆gVα

=2∇α∇σ Im(ψλ̄σβ) + 2∇β∇σ Im(ψλ̄σα) +∇α Ricσβ V
σ +∇β Ricσα V

σ

+ Ricσβ∇αV
σ + Ricσα∇βV

σ +∇α(∂̃tgµνΓµν,β) +∇β(∂̃tgµνΓµν,α),

where ∂̃tgµν denotes the expression

∂̃tgµν := ∂tg
µν − T 1,µν .

We then add I31 together with ∇2 Im(ψλ) in III to get

I31 − 2∇σ∇σ Im(ψλ̄αβ) + 2∇α∇σ Im(ψλ̄σβ) + 2∇β∇σ Im(ψλ̄σα)

=− 2 Ricβδ Im(ψλ̄δα) + 2Rασβδ Im(ψλ̄σδ) + 2 Re(λσαψ̄) Im(λσµλ̄
µ
β).

The last term and I33 can be further written as

2 Re(λσαψ̄) Im(λσµλ̄
µ
β) + I33

=2Rασβδ Im(ψλ̄σδ)− 2 Ricαδ Im(ψλ̄δβ).
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Hence, given the expressions of I3 and III, we obtain

I3 + III

=− 2 Re(gσβT
2,σ
α ψ̄ + T 1

σβλ
σ
αψ + λ̄αβT

2,σ
σ − gσµT 2,σ

α λ̄µβ − T
1
σµλ

σ
αλ̄

µ
β − λ̄ασT

2,σ
β )

− Ricσβ∂̃tgασ − Ricσα∂̃tgβσ − 2Rασβδ∂̃tgσδ +∇α(∂̃tgµνΓµν,β) +∇β(∂̃tgµνΓµν,α),

which combined with (7.11) yields the T 1-equation (7.9). �

The equation for T 2. This has the form

(7.12)



∇A,αT 2,σ
α =igσµψT 3

µ − iλβσT 3
β + gσδλαβ(−∇αT

1
βδ +

1

2
∇δT

1
αβ)

− T 1,αβ(∇A
β λ

σ
α + Γµαβλ

σ
µ) + T 1,σµ∇A

µψ,

∇A
αT

2,σ
β −∇A

β T
2,σ
α =

1

2
gσγ[−λµβ(∇αT

1
µγ +∇µT

1
αγ −∇γT

1
αµ)

+ λµα(∇βT
1
µγ +∇µT

1
βγ −∇γT

1
βµ)]− iT 3

αλ
σ
β + iT 3

βλ
σ
α.

We compute the divergence of T 2 in (7.12) first. Applying ∇A,α to T 2,σ
α , we have

∇A,αT 2,σ
α =[∇A,α, ∂Bt − V γ∇A

γ ]λσα + [∂Bt − V γ∇A
γ ,∇A,σ]ψ +∇A,σ(∂Bt − V γ∇A

γ )ψ

+∇A,α(λγα Im(ψλ̄σγ))− i∇A,α∇A
α∇A,σψ

+∇A
γ ψ∇γV σ −∇A,σλαγ∇αV γ + λαγ∇α∇γV

σ − λσγ∆gV
γ.

Three of the terms on the right-hand side are written as

[∇A,α, ∂Bt − V γ∇A
γ ]λσα −∇A,σλαγ∇αV γ + λαγ∇α∇γV

σ

=gαβ(∇β∂tλ
σ
α − ∂t∇βλ

σ
α) + igαβ(∇βB − ∂tAβ)λσα − ∂tgαβ∇A

β λ
σ
α

+ λαγ∇α∇γV
σ − 2∇A,σλαγ∇αV γ − V γ[∇α,∇γ]λ

σ
α − iVγFαγλσα

=− ∂tgαβ(∇A,σλαβ + Γµαβλ
σ
µ)− ∂tΓσβµλβµ + λαγ∇α∇γV

σ

− i(∂tAβ −∇βB)λβσ − iVγFαγλσα − 2∇A,σλαγ∇αV γ − V γ[∇α,∇γ]λ
σ
α

We can further use T 1 to rewrite the last two terms on the first line above as

− ∂tΓσαβλαβ + λαγ∇α∇γV
σ

=− ∂tgσδΓαβ,δλαβ − gσδ∂t(∂αgβδ −
1

2
∂δgαβ)λαβ + λαγ∇α∇γV

σ

=gσδλαβ(∂tgµδΓ
µ
αβ − ∂α∂tgβδ +

1

2
∂δ∂tgαβ) + λαγ∇α∇γV

σ

=gσδλαβ(−∇α∂tgβδ +
1

2
∇δ∂tgαβ) + λαγ∇α∇γV

σ

=λµν(∇µT 1,νσ − 1

2
∇σT 1,µν)

+ λαβ[−2∇α Im(ψλ̄σβ) +∇σ Im(ψλ̄αβ)− [∇α,∇σ]Vβ]

and the following term as

−i(∂tAβ −∇βB)λβσ − iVγFαγλσα =− iλβσT 3
β − iλβσ Re(λγβ∇A

γ ψ).
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Similarly, we compute the second commutator by

[∂Bt − V γ∇A
γ ,∇A,σ]ψ +∇A

γ ψ∇γV σ =∂tg
σµ∇A

µψ + igσµψT 3
µ + iψRe(λσγ∇A

γ ψ)

+∇A
γ ψ(∇γV σ +∇σV γ).

Hence, using T 2,α
α and the V equation (2.30) we reorganize the expression of ∇A,αT 2,σ

α and
obtain

∇A,αT 2,σ
α =igσµψT 3

µ − iλβσT 3
β + gσδλαβ(−∇αT

1
βδ +

1

2
∇δT

1
αβ)

− ∂tgαβ(∇A
β λ

σ
α + Γµαβλ

σ
µ) + λαβ[−2∇α Im(ψλ̄σβ) +∇σ Im(ψλ̄αβ)]

− iλβσ Re(λγβ∇A
γ ψ) + ∂tg

σµ∇A
µψ + iψRe(λσγ∇A

γ ψ)

−∇A,σ(λγα Im(ψλ̄αγ )) +∇A,α(λγα Im(ψλ̄σγ))

− iRicσδ∇A,δψ −∇αF
σαψ − 2Fσα∇A

αψ

+∇A
γ ψ(∇γV σ +∇σV γ)− 2∇A,σλαγ∇αV γ

− 2λσγ∇α Im(λαγψ̄) + λσγ ∂̃tg
αβΓγαβ.

Using T 2,α
α and the V -equation (2.30), we have

λαβ[−2∇α Im(ψλ̄σβ) +∇σ Im(ψλ̄αβ)]− iλβσ Re(λγβ∇A
γ ψ)

+ iψRe(λσγ∇A
γ ψ) +∇A,α(λγα Im(ψλ̄σγ))− iRicσδ∇A,δψ −∇αF

σαψ − 2Fσα∇A
αψ

+ 2λσγ∇α Im(ψλ̄γα)−∇A,σ(λγα Im(ψλ̄αγ ))

=2∇A
γ ψ Im(ψλ̄σγ)− 2∇A,σλαβ Im(ψλ̄αβ)

Combining these two expressions, we obtain

∇A,αT 2,σ
α =igσµψT 3

µ − iλβσT 3
β + gσδλαβ(−∇αT

1
βδ +

1

2
∇δT

1
αβ)

− T 1,αβ(∇A
β λ

σ
α + Γµαβλ

σ
µ) + T 1,σµ∇A

µψ +∇A,σT 2,α
α .

Next we compute the curl of T 2 in (7.12). By T 2 we have

∇A
αT

2,σ
β −∇A

β T
2,σ
α

=[∇A
α , ∂

B
t − V γ∇A

γ ]λσβ − [∇A
β , ∂

B
t − V γ∇A

γ ]λσα + λγβ∇α Im(ψλ̄σγ)− λγα∇β Im(ψλ̄σγ)

− i[∇A
α ,∇A

β ]∇A,σψ + λγβ∇α∇γV
σ − λγα∇β∇γV

σ

− λσγ [∇α,∇β]V γ −∇A
γ λ

σ
α∇βV

γ +∇A
γ λ

σ
β∇αV

γ.

We use T 1 and T 3 to rewrite six of the terms on the right-hand side as

[∇A
α , ∂

B
t − V γ∇A

γ ]λσβ − [∇A
β , ∂

B
t − V γ∇A

γ ]λσα + λγβ∇α∇γV
σ − λγα∇β∇γV

σ

−∇A
γ λ

σ
α∇βV

γ +∇A
γ λ

σ
β∇αV

γ

=
1

2
gσγ[−λµβ(∇αT

1
µγ +∇µT

1
αγ −∇γT

1
αµ) + λµα(∇βT

1
µγ +∇µT

1
βγ −∇γT

1
βµ)]

− iT 3
αλ

σ
β + iT 3

βλ
σ
α

− λµβ∇α Im(ψλ̄σµ) + λµα∇β Im(ψλ̄σµ) + I1 + I2,
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where I1 and I2 are

I1 :=λµβ(−∇µ Im(ψλ̄σα) +∇σ Im(ψλ̄αµ))− λµα(−∇µ Im(ψλ̄σβ) +∇σ Im(ψλ̄βµ))

− iRe(λγα∇A
γ ψ)λσβ + iRe(λγβ∇A

γ ψ)λσα,

I2 :=
1

2
λµβ(Rαµσδ +Rσ

αµδ +Rσ
µαδ)V

δ − 1

2
λµα(Rβµσδ +Rσ

βµδ +Rσ
µβδ)V

δ

− V γRαγσδλ
δ
β − V γRαγβδλ

σδ + V γRβγσδλ
δ
α + V γRβγαδλ

σδ.

Then we use Bianchi identities and compatibility conditions to compute I1 and I2 by

I1 = i[∇A
α ,∇A

β ]∇A,σψ

and

I2 = V γRβγσδλ
δ
α + V γRβγαδλ

σδ = λσγ [∇α,∇β]V γ.

Hence, we obtain

∇A
αT

2,σ
β −∇A

β T
2,σ
α =

1

2
gσγ[−λµβ(∇αT

1
µγ +∇µT

1
αγ −∇γT

1
αµ)

+ λµα(∇βT
1
µγ +∇µT

1
βγ −∇γT

1
βµ)]− iT 3

αλ
σ
β + iT 3

βλ
σ
α.

This completes the derivation of (7.12). �

The equation for T 3. This has the form{
∇αT 3

α = −T 1,αβ∂αAβ,

∇αT
3
β −∇βT

3
α = Im(T 2,σ

α λ̄σβ + λσαT
2
σβ).

Applying ∇α to T 3
α, we then use the Coulomb condition ∇αAα = 0 and the B-equation

(2.33) to get

∇αT 3
α =∇α∂tAα −∆gB −∇α Re(λσα∇A

σψ + iλσαλ̄σγV
γ)

=gαβ∂β∂tAα + ∂tg
βγ∂βAγ − T 1,βγ∂βAγ = −T 1,αβ∂αAβ.

The curl of T 3 is obtained by (2.13) directly. �

�

8. The reconstruction of the flow

In this last section we close the circle of ideas in this paper, and prove that one can start
from the good gauge solution given by Theorem 2.7, and reconstruct the flow at the level
of d-dimensional embedded submanifolds. For completeness, we provide here another, more
complete statement of our main theorem:

Theorem 8.1 (Small data local well-posedness). Let s > d
2
, d ≥ 4. Consider the skew mean

curvature flow (1.1) for maps F from Rd to the Euclidean space (Rd+2, gRd+2) with initial
data Σ0 which, in some coordinates, has a metric g0 satisfying ‖∂x(g0 − Id)‖Hs ≤ ε0 and
mean curvature ‖H0‖Hs(Σ0) ≤ ε0.

If ε0 > 0 is sufficiently small, then there exists a unique solution

F : Rd × [0, 1]→ (Rd+2, gRd+2)
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which, when represented in harmonic coordinates, has regularity

∂2
xF, ∂tF ∈ C([0, 1];Hs(Rd)).

and induced metric and mean curvature

∂xg ∈ C([0, 1];Hs+1(Rd)), H ∈ C([0, 1];Hs(Rd)).

In addition the mean curvature satisfies the bounds

‖ψ‖l2Xs + ‖(λ, h, V,A,B)‖Es . ‖ψ0‖Hs .

where ψ and λ are expressed using the Coulomb gauge in the normal bundle NΣt.

We complement the theorem with the following remarks:

Remark 8.1.1. Here uniqueness should be interpreted in two steps:

(i) If s > d
2

+ 1 then we have a direct uniqueness statement for solutions F which in
some coordinate system are continuous with values in Hs+2.

(ii) For smaller s, then our solutions can be identified as the unique limits of smooth
solutions expressed in harmonic coordinates.

Remark 8.1.2. The only role of the smallness condition on the metric is to exclude large
nonflat minimal surfaces; the topology we use there is less essential as long as some critical
norm of F is made small. This guarantees that (i) we can find harmonic coordinates on
the surface Σ0 and a Coulomb frame in the normal bundle and (ii) in harmonic coordinates
and the Coulomb gauge the surface is uniquely (and smoothly) determined by the mean
curvature ψ up to rigid rotations.

We do this in several steps:

8.1. The starting point. Our evolution begins at time t = 0, where we need to represent
the initial submanifold as parametrized with global harmonic coordinates, represented via
the map F : Rd → Rd+2, and to construct a Coulomb frame in the normal bundle, leading to
the complex mean curvature function ψ. This is the goal of this subsection, which is carried
out in Proposition 8.2.

Once this is done, we have the frame Fα in the tangent space and the frame m in the
normal bundle. In turn, as described in Section 2, these generate the metric g, the second
fundamental form λ with trace ψ and the connection A, all at the initial time t = 0.

Moving forward in time, Theorem 2.7 provides us with the time evolution of ψ via the
Schödinger flow (2.35), as well as the functions (λ, g, V, A,B) satisfying the elliptic system
(2.36) together with the constraints (2.4), (2.8), (2.15), (2.13), (2.16) and (2.19) and the
time evolutions (2.26), (2.31) and (2.32). The objective of the rest of this section is then
to use these functions in order to reconstruct the map F which describes the manifold F at
later times.

We now return to the question of constructing the harmonic coordinates at the initial
time. In order to state the following proposition, we define some notations. Let F : Rd

x →
(Rd+2, gRd+2) be an immersion with induced metric g(x). For any change of coordinate
y = x+ φ(x), we denote

F̃ (y) = F (x(y)),

and its induced metric g̃αβ(y) = 〈∂yαF̃ , ∂yβ F̃ 〉. We also denote its Christoffel symbol as Γ̃

and h̃(y) = g̃(y)− Id.
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Proposition 8.2. Let d ≥ 3, s > d
2
, and F : (Rd

x, g) → (Rd+2, gRd+2) be an immersion with
induced metric g = Id + h. Assume that ∇h(x) and mean curvature H are small in Hs(dx),
namely

‖∂xh‖Hs ≤ ε0, ‖H‖Hs ≤ ε0.

Then there exists a unique change of coordinates y = x+φ(x) with limx→∞ φ(x) = 0 and ∇φ
uniformly small, such that the new coordinates {y1, · · · , yd} are global harmonic coordinates,
namely,

g̃αβ(y)Γ̃γαβ(y) = 0, for any y ∈ Rd.

Moreover,

(8.1) ‖∇2φ(x)‖Hs(dx) . ‖∇h(x)‖Hs(dx),

and, in the new coordinates {y1, · · · , yd},

(8.2) ‖∂yh̃‖Hs(dy) . ‖∂xh‖Hs(dx).

In addition, for the mean curvature we have equivalent norms,

(8.3) ‖H‖Hs(dy) . ‖H‖Hs(dx),

and the bound for complex scalar mean curvature ψ in the Coulomb gauge

(8.4) ‖ψ‖Hs . ε0.

Proof. Step 1: Derivation of the φ-equations.
We make the following change of coordinates such that the {y1, · · · , yd} is a global har-

monic coordinate
Rd −→ Rd −→ Rd+2

y 7−→ x 7−→ F (x(y)) = F̃ (y)

where x+ φ(x) = y with limx→∞ φ(x) = 0 and ∇φ small.
To determine the function φ, we perform a few computations. For any vector f =

(f1, · · · , fd), we denote

∂f

∂x
=


∂f1
∂x1

· · · ∂f1
∂xd

...
. . .

...
∂fd
∂x1

· · · ∂fd
∂xd

 .

Then we have
∂x

∂y
+
∂φ

∂x

∂x

∂y
= Id.

This implies that
∂x

∂y
= Id −

∂φ

∂x
+ C(x),

where the matrix C(x) is a higher order term which satisfies

C(x) = (
∂φ

∂x
)2 − C(x)

∂φ

∂x
,

or, equivalently, it is given by

C(x) = (
∂φ

∂x
)2(I − ∂φ

∂x
)−1.
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We denote

Pµα := −∂φµ
∂xα

+ Cµα(x).

Since F̃ (y) = F (x(y)), then we have

(8.5)
g̃αβ(y) =〈 ∂F̃

∂yα
,
∂F̃

∂yβ
〉 = 〈 ∂F

∂xµ

∂xµ
∂yα

,
∂F

∂xν

∂xν
∂yβ
〉

=gµν(x)(δµα − ∂αφµ + Cµα)(δνβ − ∂βφν + Cνβ)

and

g̃αβ(y) =gµν
∂yα
∂xµ

∂yβ
∂xν

= gµν(δαµ + ∂µφα)(δβν + ∂νφβ).(8.6)

We also have

∂g̃αβ(y)

∂yγ
=
∂g̃αβ(y)

∂xm

∂xm
∂yγ

= −gµβ∂2
αγφµ − gαν∂2

βγφν + ∂γgαβ +Kαβ,γ,(8.7)

where the higher order terms Kαβ,γ are defined as

Kαβ,γ :=− gµν∂2
αγφµPνβ + gµν∂γCµα

∂xν
∂yβ
− gµνPµα∂2

βγφν + gµν
∂xµ
∂yα

∂γCνβ

+ ∂γgανPνβ + ∂γgµνPµα
∂xν
∂yβ

+ ∂xm [gµν(x)
∂xµ
∂yα

∂xν
∂yβ

]Pmγ .

The relation g̃αβΓ̃αβ,γ = 0 combined with (8.6) and (8.7) implies that

0 =gmn(δαm + ∂mφα)(δβn + ∂nφβ)
[
− gµβ∂2

αγφµ − gγν∂2
βαφν + ∂αgγβ +Kγβ,α

+
1

2
gµβ∂

2
αγφµ +

1

2
gαν∂

2
βγφν −

1

2
∂γgαβ −

1

2
Kαβ,γ

]
.

This gives the elliptic equations of φ,

(8.8) ∆φγ =Nonγ(g, φ),

with the boundary condition limx→∞ φ(x) = 0, where the nonlinearities Nonγ(g, φ) are given
by

Nonγ(g, φ) :=− hγν∆φν − hαβgγν∂2
αβφν + gαβ(Γαβ,γ +Kγβ,α −

1

2
Kαβ,γ)

+ gmn(δαm∂nφβ + ∂mφαδ
β
n + ∂mφα∂nφβ)

[
− gµβ∂2

αγφµ − gγν∂2
βαφν

+
1

2
gµβ∂

2
αγφµ +

1

2
gαν∂

2
βγφν + Γαβ,γ +Kγβ,α −

1

2
Kαβ,γ

]
.

Step 2: Solve the φ-equations (8.8). By the contraction principle, the existence and
uniqueness of solution of (8.8) and the bound (8.1) are obtained by the following Lemma.

Lemma 8.3. Let g be as in Proposition 8.2. Then the map φ → Nonγ(g, φ) is Lipschitz
from

Hs+2 + Ḣ2 → Hs

with Lipschitz constant ε for ‖∇2φ‖Hs . ε.
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Proof of Lemma 8.3. In order to prove Lemma 8.3, we consider the following simplified lin-
earization for Nonγ(g, φ) as a function of φ:

(8.9)

T (g, φ,Φ) =h(1 + h)∇2Φ + g(∇h+ δK)

+ g(∇Φ +∇φ∇Φ)
[
g∇2φ+∇h+K

]
+ g(∇φ+∇φ∇φ)

[
g∇2Φ + δK]

where Φ is the linearized variable associated to φ, K has the form

K :=g∇2φP + g∇C(1 + P) +∇hP(1 + P) +∇[g(1 + P)2]P ,

and δK is

δK :=g∇2ΦP + g∇2φδP + g∇δC(1 + P) + g∇CδP +∇hδP(1 + P)

+∇[gδP(1 + P)]P +∇[g(1 + P)2]δP .

Here C and δC satisfy

C = ∇φ∇φ+ C∇φ, δC = ∇φ∇Φ + δC∇φ+ C∇Φ,

and P and δP are

P = ∇φ+ C, δP = ∇Φ + δC.
Then for the equation (8.9) we have estimates as follows:

Lemma 8.4 (Elliptic estimates for (8.9)). Let d ≥ 3 and s > d/2. Assume that ‖∇h‖Hs . ε
and ‖∇2φ‖Hs . ε, then for the linearized expression (8.9) we have the following estimate

(8.10) ‖T (g, φ,Φ)‖Hs . ‖∇h‖Hs + ε‖∇2Φ‖Hs .

Proof of Lemma 8.4. First, we bound C, δC, P and δP . By Sobolev embeddings, using also
the smallness condition ‖∇2φ‖Hs . ε, we have

‖∇C‖Hs . ‖∇2φ‖2
Hs + ‖∇C‖Hs‖∇2φ‖Hs . ε2 + ε‖∇C‖Hs ,

and

‖∇δC‖Hs .‖∇2φ‖Hs‖∇2Φ‖Hs + ‖∇δC‖Hs‖∇2φ‖Hs + ‖∇C‖Hs‖∇2Φ‖Hs

.ε‖∇2Φ‖Hs + ε‖∇δC‖Hs + ‖∇C‖Hs‖∇2Φ‖Hs .

These imply

(8.11) ‖∇C‖Hs . ε2, ‖∇δC‖Hs . ε‖∇2Φ‖Hs .

Similarly we have

(8.12) ‖∇P‖Hs . ε, ‖∇δP‖Hs . ‖∇2Φ‖Hs .

By Sobolev embedding we bound δK by

‖δK‖Hs .(1 + ‖∇h‖Hs)[‖∇2Φ‖Hs‖∇P‖Hs + ‖∇2φ‖Hs‖∇δP‖Hs

+ ‖∇δC‖Hs(1 + ‖∇P‖Hs) + ‖∇C‖Hs‖∇δP‖Hs

+ ‖∇h‖Hs‖∇δP‖Hs(1 + ‖∇P‖Hs)2

+ (1 + ‖∇h‖Hs)‖∇δP‖Hs‖∇P‖Hs(1 + ‖∇P‖Hs)].
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This combined with (8.11) and (8.12) implies

‖δK‖Hs . ε‖∇2Φ‖Hs .(8.13)

Similarly, we also have

‖K‖Hs . ε2.(8.14)

Now by Sobolev embedding we bound T (g, φ,Φ) by

‖T ‖Hs .‖∇h‖Hs(1 + ‖∇h‖Hs)(1 + ‖∇2Φ‖Hs) + (1 + ‖∇h‖Hs)‖δK‖Hs

+ (1 + ‖∇h‖Hs)‖∇2Φ‖Hs(1 + ‖∇2φ‖Hs)

· [(1 + ‖∇h‖Hs)‖∇2φ‖Hs + ‖∇h‖Hs + ‖K‖Hs ]

+ (1 + ‖∇h‖Hs)‖∇2φ‖Hs(1 + ‖∇2φ‖Hs)[(1 + ‖∇h‖Hs)‖∇2Φ‖Hs + ‖δK‖Hs ].

By the assumptions, (8.14) and (8.13), this gives

‖T (g, φ,Φ)‖Hs . ‖∇h‖Hs + ε‖∇2Φ‖Hs .

We conclude the proof of the lemma. �

We continue to prove Lemma 8.3. With small Lipschitz constant ε for ‖∇2φ‖Hs . ε, by
(8.10) we have

‖Nonγ(g, φ)‖Hs . ‖∇h‖Hs + ε2,

and

‖Nonγ(g, φ)−Nonγ(g, φ̃)‖Hs . ε‖∇2(φ− φ̃)‖Hs .

These give the Lipschitz continuity, completing the proof of Lemma 8.3. �

Step 3: Prove the bound (8.2). First we prove the following bound

(8.15) ‖(∂yh̃)(y(x))‖Hs(dx) . ‖∂xh‖Hs(dx).

By (8.5), it suffices to bound

‖(1 + P)∂x[g(1 + P)2]‖Hs .‖∂x[g(1 + P)2]‖Hs(1 + ‖∇P‖Hs)

.‖∂xg‖Hs(1 + ‖∇P‖Hs)3

+ ‖∂xP‖Hs(1 + ‖∂xh‖Hs)(1 + ‖∇P‖Hs)2

.(‖∂xg‖Hs + ‖∂xP‖Hs)(1 + ε)3 . ‖∂xh‖Hs .

This gives the bound (8.15).
In order to complete the proof, we also need the following lemma:

Lemma 8.5. Let the change of coordinates x + φ(x) = y be as in Proposition 8.2. Define
the linear operator T as T (f)(y) = f(x(y)) for any function f ∈ L2(dx). Then we have

(8.16) ‖T (f)(y)‖Hσ(dy) . ‖f(x)‖Hσ(dx), σ ∈ [0, [s] + 1].

Given this lemma, the bound (8.2) is obtained by (8.15) and (8.16) with σ = s, and the
proof of Proposition 8.2 is concluded. It remains to prove the Lemma.
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Proof of Lemma 8.5. Let k be an integer k ∈ [0, [s] + 1], where [s] is the integer part of s.
By the change of coordinates x+ φ(x) = y, we have

∂kyT (f)(y) = [
∂x

∂y

∂

∂x
]kf(x) ≈ [(1 + P)∂x]

kf(x).

It suffices to consider the following forms∑
1≤i≤k−1, l+l1+···+li=k,

l≥1, l1≥···≥li≥1

∂lxf∂
l1
x P · · · ∂lixP(1 + P)k−i.

By Sobolev embedding, we bound each terms by

‖∂lxf∂l1x P · · · ∂lixP(1 + P)k−i‖L2(dy) .‖∂lxf∂l1x P · · · ∂lixP(1 + P)k−i
√

det(I + ∂xφ)‖L2(dx)

.‖∂lxf∂l1x P · · · ∂lixP‖L2(1 + ‖∇P‖Hs)k−i‖1 +∇φ‖dL∞

.‖f‖Hk‖∇P‖iHs(1 + ‖∇h‖Hs)k−i(1 + ‖∇h‖Hs)d

.εi‖f‖Hk .

Then we have

‖∂kyT (f)(y)‖L2(dy) .
k−1∑
i=0

εi‖f(x)‖Hk(dx) . ‖f(x)‖Hk(dx).

This implies

‖T (f)(y)‖Hk(dy) . ‖f(x)‖Hk(dx), for any k ∈ [0, [s] + 1].

Thus the bound (8.16) is obtained if σ ∈ [0, [s] + 1] is an integer. The similar bound for
noninteger σ follows by interpolation. �

Step 4: Prove the bound (8.3). We first prove that the ∂2
yαyβ

F̃ ∈ Hs is also small under
the above change of coordinates as follows.

Proposition 8.6. Let d ≥ 3, s > d
2
, and F : (Rd

x, g)→ (Rd+2, gRd+2) be an immersion as in
Theorem 8.1. Under the change of coordinates y = x + φ(x) as in Proposition 8.2, we also
have

(8.17) ‖∂2
yαyβ

F̃‖Hs(dy) . ε0.

Once the bound (8.17) holds, by (8.2) and Sobolev embedding we obtain the bound (8.3).
Here we turn our attention to the proof of Proposition 8.6 and complete the proof of Propo-
sition 8.2.

Proof of Proposition 8.6. Here we first prove that ∂2F is also small in Hs. Precisely, by the
smallness of ∂xg and Sobolev embedding, we have

‖gαβΓγαβ∂γF‖Hs .‖gαβΓγαβ‖Hs + ‖gαβΓγαβ(∂γF − ∂γF (∞))‖Hs

.‖∂xh‖Hs(1 + ‖∂xh‖Hs)(1 + ‖∂2F‖Hs) . ε0(1 + ‖∂2F‖Hs).
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Then we can bound ∂2F by

‖∂2F‖Hs =‖R∆F‖Hs . ‖∆F‖Hs . ‖gαβ∂2
αβF‖Hs + ε0‖∂2F‖Hs

.‖∆gF‖Hs + ‖gαβΓγαβ∂γF‖Hs + ε0‖∂2F‖Hs

.‖H‖Hs + ε0(1 + ‖∂2F‖Hs)

.ε0(1 + ‖∂2F‖Hs),

which implies

(8.18) ‖∂2F‖Hs . ε0.

Next, we turn to prove the bound (8.17). By the change of coordinates, we have the
representation ∂2

yαyβ
F̃ as

∂2
yαyβ

F̃ = ∂yα(∂γF
∂xγ
∂yβ

) = ∂2
σγF

∂xσ
∂yα

∂xγ
∂yβ

+ ∂γF
∂

∂yα

∂xγ
∂yβ

.

Since ∂xγ
∂yβ

is a function depending on x and has the form ∂x
∂y

= Id + P(x), we write this as

∂2
yαyβ

F̃ =∂2
σγF (Id + P)2 + ∂γF∂x(Id + P) · (Id + P)

=∂2
σγF (Id + P)2 + ∂γF∂xP · (Id + P).

As a vector depends on x, by Sobolev embedding, (8.18) and (8.12) we have

‖(∂2
yαyβ

F̃ )(x)‖Hs(dx) .‖∂2
σγF‖Hs(1 + ‖∂xP‖2

Hs) + (1 + ‖∂2F‖Hs)‖∂xP‖Hs(1 + ‖∂xP‖Hs)

.ε0.

Then by Lemma 8.5, the bound (8.17) follows. �

Step 5: Prove the bound (8.4). Finally, we construct the initial data ψ0 in the harmonic
coordinates and Coulomb gauge. To obtain the Coulomb gauge, we choose ν̃ constant
uniformly transversal to TΣ0; such a ν exists because, by Sobolev embeddings, ∂xF has a
small variation in L∞. Projecting ν̃ on the normal bundle NΣ0 and normalizing we obtain
some ν̃1 with the same regularity as ∂F . Then we choose ν̃2 in NΣ0 perpendicular to ν̃1.
We obtain the orthonormal frame (ν̃1, ν̃2) in NΣ0, which again has the same regularity and
bounds as ∂xF . Then we rotate the frame to get a Coulomb frame (ν1, ν2), i.e. where
the Coulomb gauge condition (2.16) is satisfied. Projecting the mean curvature H on the
Coulomb frame as in Section 2.3 we obtain the complex mean curvature ψ ∈ Hs.

In order to get the bound for ψ, we recall that the second fundamental form λ satisfies

λαβ = (∂2
αβF )⊥ · ν1 + i(∂2

αβF )⊥ · ν2.

We easily have

‖λ‖L2 . ‖∂2F‖L2 . ε0.
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Then it suffices to bound the Ḣs norm of λ. If s ∈ N, we have

‖λ‖Ḣs .
∑

ν∈{ν1,ν2};n1+n2=s

‖∂n1(∂2
αβF − ΓγαβFγ) · ∂

n2ν‖L2

.
∑

ν∈{ν1,ν2}

‖(∇x + A)s∇α∂βF · ν‖L2

.‖(∇x + A)s∇α∂βF‖L2

.‖∂2F‖Hs(1 + ‖∇A‖sHs).

If s /∈ N, let 1
p

+ 1
q

= 1
2

we also have

‖λ‖Ḣs .
∑

ν∈{ν1,ν2};n1+n2=[s]−1

‖|D|1+s−[s]
(
∂n1(∂2

αβF − ΓγαβFγ) · ∂
n2ν
)
‖L2

.
∑

ν∈{ν1,ν2}

‖|D|1+s−[s]
(
(∇x + A)[s]−1∇α∂βF · ν

)
‖L2

.
∑

ν∈{ν1,ν2}

(
‖|D|1+s−[s](∇x + A)[s]−1∇α∂βF · ν‖L2

+ ‖(∇x + A)[s]−1∇α∂βF · |D|1+s−[s]ν‖L2

)
.‖|D|1+s−[s](∇x + A)[s]−1∇α∂βF‖L2

+ ‖(∇x + A)[s]−1∇α∂βF‖Lp
∑

ν∈{ν1,ν2}

‖|D|1+s−[s]ν‖Lq

=I1 + I2.

We bound the first term by

I1 . ‖∂2F‖Hs(1 + ‖∇A‖[s]
Hs) .ε0(1 + ‖∇A‖[s]

Hs).

For the second term, we choose integer k = [d+1
2

] and 1
p

= k−1−(s−[s])
d

, then we have

I2 .‖(∇x + A)[s]−1∇α∂βF‖H1+s−[s]

∑
ν∈{ν1,ν2}

‖∂kν‖L2

.‖∂2F‖Hs(1 + ‖∇A‖[s]
Hs)(1 + ‖A‖Hs + ‖λ‖Hs)k.

Therefore, by the elliptic estimates of the div-curl system (2.13)-(2.16) for A we obtain

‖λ‖Hs . ε0(1 + ‖∇A‖[s]
Hs)(1 + ‖A‖Hs + ‖λ‖Hs)k . ε0(1 + ‖λ‖Hs)4[s]+1 . ε0 + ε0‖λ‖4[s]+1

Hs .

By continuity method, this implies the bound

‖λ‖Hs . ε0.

which combined with the smallness of ∂xg ∈ Hs also gives the bound (8.4) for ψ. �
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8.2. The moving frame. Once we have the initial data ψ0 which is small in Hs, Theo-
rem 2.7 yields the good gauge local solution ψ, along with the associated derived variables
(λ, h, V,A,B). But this does not yet give us the actual maps F .

Here we undertake the task of reconstructing the frame (Fα,m). For this we use the
system consisting of (2.6) and (2.25), viewed as a linear ode. We recall these equations here:

(8.19)

{
∂αFβ = ΓγαβFγ + Re(λαβm̄),

∂Aαm = −λγαFγ,

respectively

(8.20)

{
∂tFα = − Im(∂Aαψm̄− iλαγV γm̄) + [Im(ψλ̄γα) +∇αV

γ]Fγ,

∂Bt m = −i(∂A,αψ − iλαγV γ)Fα,

where (ψ, λ, g, V, A,B) is the unique solution of (2.35)-(2.36) with initial data ψ0 small.
We start with the frame at time t = 0, which already is known to solve (8.19), and has

the following properties:

(i) Orthogonality, Fα ⊥ m, 〈m,m〉 = 2, 〈m, m̄〉 = 0 and consistency with the metric
gαβ = 〈Fα, Fβ〉.

(ii) Integrability, ∂βFα = ∂αFβ.
(iii) Consistency with the second fundamental form and the connection A:

∂αFβ ·m = λαβ, 〈∂αm,m〉 = −2iAα.

Next we extend this frame to times t > 0 by simultaneously solving the pair of equations
(8.19) and (8.20). To avoid some technical difficulties, we first do this for regular solutions,
i.e. s > d/2 + 2, and then pass to the limit to obtain the frame for rough solutions.

8.2.1. The frame associated to smooth solutions. The system consisting of (8.19) and (8.20)
is overdetermined, and the necessary and sufficient condition for existence of solutions is
provided by Frobenius’ theorem. We now verify these compatibility conditions in two steps:

a) Compatibility conditions for the system (8.19) at fixed time. Here, by C2
αβ = 0, C3

αβ = 0

and C7
αβµν = 0 we have

∂α(ΓσβγFσ + Re(λβγm̄))− ∂β(ΓσαγFσ + Re(λαγm̄)) = C7
σγαβF

σ = 0,

and

∂α(iAβm+ λσβFσ)− ∂β(iAαm+ λσαFσ) = iC3
αβm = 0,

as needed.

b) Between the system (8.19) and (8.20). By (8.19) and (8.20) we have

∂t(iAαm+ λσαFσ)− ∂α(iBm+ i(∂A,σψ − iλσγV γ)Fσ) = iT 3
αm+ T 2σ

α Fσ

and

(8.21)
∂β[− Im(∂Aαψm̄− iλαγV γm̄) + [Im(ψλ̄γα) +∇αV

γ]Fγ]− ∂t[ΓγβαFγ + Re(λβαm̄)]

=− Re[(gσαT
2σ
β + λσβT

1
σα)m̄]− T 1γσΓβα,σFγ −

1

2
(∂βT

1
ασ + ∂αT

1
βσ − ∂σT 1

βα)F σ.
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The first equality is obtained directly. For the second equality (8.21), by (8.19) and (8.20)
we compute this by

LHS(8.21) =− Re[(gσαT
2σ
β + λσβT

1
σα)m̄] +∇β(Im(ψλ̄σα) +∇αVσ)F σ

+ Im(∇A
αψλ̄σβ −∇A

σψλ̄αβ)F σ − R̃σαβγV
γF σ − ∂tΓγβαFγ.

By T 1 and the notation Gαβ (2.29) we compute the last term by

−∂tΓγβαFγ =− (T 1γσ − 2Gγσ)Γβα,σFγ −
1

2
[∂β(T 1

ασ + 2Gασ)]F σ

− 1

2
[∂α(T 1

βσ + 2Gβσ)]F σ +
1

2
[∂σ(T 1

βα + 2Gβα)]F σ

=− T 1γσΓβα,σFγ −
1

2
(∂βT

1
ασ + ∂αT

1
βσ − ∂σT 1

βα)F σ

+ [−∇β Im(ψλ̄ασ)− Im(∇A
αψλ̄βσ) + Im(∇A

σψλ̄βα)

− 1

2
(∇α∇β +∇β∇α)Vσ −

1

2
[∇β,∇σ]Vα −

1

2
[∇α,∇σ]Vβ]F σ.

Then by Bianchi identities and (2.8), we collect the terms above containing V and have

1

2
([∇β,∇α]Vσ − [∇β,∇σ]Vα − [∇α,∇σ]Vβ)− R̃σαβγV

γ

=
1

2
(Rβασγ −Rβσαγ −Rασβγ − 2Rσαβγ)V

γ = 0.

From the above expressions the equality (8.21) follows.

Once the compatibility conditions in Frobenius’ theorem are verified, we obtain the frame
(Fα,m) for t ∈ [0, 1]. For this we can easily obtain the regularity

∂x(Fα,m) ∈ L∞Hs+2, ∂t(Fα,m) ∈ L∞Hs+1.

Finally, we show that the properties (i)-(iii) above also extend to all t ∈ [0, 1]. The properties
(ii) and (iii) follow directly from the equations (8.19) and (8.20) once the orthogonality
conditions in (i) are verified. For (i) we denote

g̃00 = 〈m,m〉, g̃α0 = 〈Fα,m〉, g̃αβ = 〈Fα, Fβ〉.

Then by (8.20) and T 1
αβ = 0, we have

∂tg̃α0 =− i

2
(∂Aαψ + iλ̄αγV

γ)(g̃00 − 2)− i(∂A,σψ + iλ̄σγV
γ)(gασ − g̃ασ)

+
i

2
(∂Aαψ + iλαγV

γ)〈m̄,m〉+ (Im(ψλ̄γα) +∇αV
γ)g̃γ0 + iBg̃α0,

∂t(g̃00 − 2) = 2 Im(∂A,αψ − iλαγV γ)g̃α0,

∂t〈m, m̄〉 = −iB〈m, m̄〉 − i(∂A,αψ − iλαγV γ)g̃α0,

∂t(gαβ − g̃αβ) =(Im(ψλ̄γα) +∇αV
γ)(gβγ − g̃βγ) + (Im(ψλ̄γβ) +∇βV

γ)(gαγ − g̃αγ)
+ Im(∂Aαψg̃β0 − iλαγV γ ¯̃gβ0) + Im(∂Aβ ψg̃α0 − iλβγV γ ¯̃gα0).

Viewed as a linear system of ode’s in time, these equations allow us to propagate (i) in time.
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8.2.2. The frame associated to rough solutions. Here we use our approximation of rough
solutions with smooth solutions for the ψ equation in order to construct the frame in the
rough case. Precisely, given a small initial data ψ0 ∈ Hs, there exists a sequence {ψ0n} ∈
Hs+2 such that ‖ψ0n − ψ0‖Hs → 0. By Theorem 2.7, the Schrödinger system (2.35) coupled
with (2.36) admits solutions ψn with ψn(0) = ψ0n and

‖ψn‖Hs+2 . ‖ψ0n‖Hs+2 , ‖ψn − ψ‖Hs . ‖ψ0n − ψ0‖Hs → 0.

A-priori, we do not know whether the initial data ψ0n is associated to a frame at the

initial time. Hence we first use (8.19) to construct the frame (F
(n)
α ,m(n)) associated with ψ0n

at t = 0. At some point x0, we choose F
(n)
α (x0) and m(n)(x0) so that they are orthogonal,

and 〈m(n),m(n)〉 = 2, 〈m(n), m̄(n)〉 = 0 and 〈F (n)
α , F

(n)
β 〉 = g

(n)
αβ hold. With this initial data,

we view (8.19) as a linear ode with continuous coefficients. As above, the necessary and
sufficient condition for solvability, as provided by Frobenius’ theorem, is a consequence of
the relations C2 = 0, C3 = 0 and C7 = 0, which are in turn a consequence of Theorem 4.1.

The above construction determines the frame (F
(n)
α ,m(n)) up to symmetries (rigid rotations

and translations). Hence, the frame (F
(n)
α ,m(n)) at t = 0 is uniquely determined by the

condition

lim
x→∞

(F (n)
α ,m(n))(x, 0) = lim

x→∞
(Fα,m)(x, 0).

In this construction, the properties (i)-(iii) above also extend to all x. The properties (ii) and
(iii) follow directly from equation (8.19) once the orthogonality conditions in (i) are verified.
For (i) we use (8.19) to compute

∂αg̃β0 = Γγαβ g̃γ0 +
1

2
λαβ〈m̄,m〉+

1

2
λ̄αβ(g̃00 − 2) + λ̄γα(gβγ − g̃βγ) + iAαg̃β0,

∂α(g̃00 − 2) = −2 Re(λγαg̃γ0),

∂α〈m, m̄〉 = −2iAα〈m, m̄〉 − 2 Reλγα ¯̃gγ0,

∂α(gβγ − g̃βγ) = Γσαβ(gσγ − g̃σγ) + Γσαγ(gσβ − g̃σβ) + Re(λ̄βαg̃γ0 + λ̄γαg̃β0).

By ode uniqueness and the choice of the initial data, the desired properties for the frame are
propagated spatially.

Once we have the frames (F
(n)
α ,m(n)) at t = 0, we can invoke the smooth case analysis

above, using (8.20) and ψn ∈ Hs+2 to extend the frame (F
(n)
α ,m(n)) to t > 0 with initial data

(F
(n)
α ,m(n))(x, 0).
In order to obtain a limiting frame (Fα,m) we study the properties of the regular frames

(F
(n)
α ,m(n)) in three steps:

a) Uniform bounds. By (8.19), (2.37) and Sobolev embeddings we have

‖∂xF (n)
α ‖Hs .‖Γ(n)F (n)

γ + λ(n)m(n)‖Hs

.‖ψn‖Hs(|Fα(∞)|+ |m(∞)|+ ‖∂x(F (n)
α ,m(n))‖Hs)

and

‖∂xm(n)‖Hs .‖A(n)m(n) + λ(n)F (n)
α ‖Hs

.‖ψn‖Hs(|Fα(∞)|+ |m(∞)|+ ‖∂x(F (n)
α ,m(n))‖Hs)
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Then, by the smallness of ψn ∈ Hs, we obtain

‖∂x(F (n)
α ,m(n))‖Hs . ‖ψn‖Hs .

b) Sobolev and uniform convergence at t = 0. Using an argument similar to that in a), by
(8.19) and Theorem 4.1 b) we have

‖∂x(F (n)
α − Fα,m(n) −m)‖Hs .‖ψ0n − ψ0‖Hs + ‖ψ0‖Hs‖∂x(F (n)

α − Fα,m(n) −m)‖Hs .

By the smallness of ψ0, this implies the Hs convergence. The uniform convergence at t = 0
also follows by Sobolev embeddings.

c) a.e. convergence for t > 0. Here we use (8.20) as an ode in time. The coefficients

converge in L2
t for a.e. x, so the frames (F

(n)
α ,m(n)) will also converge uniformly in time for

a.e. x. This can be rectified to uniform convergence in view of the uniform Sobolev bounds
in (i). This yields the desired limiting frames (Fα,m).

By (8.19) we also have

‖∂x(F (k)
α − F (l)

α ,m(k) −m(l))‖L∞t Hs . ‖ψk − ψl‖L∞t Hs . ‖ψ0k − ψ0l‖Hs .

This shows that the limiting frame satisfies both equations (8.20) and (8.19), as well the as
the uniform bounds in (a).

8.3. The moving manifold Σt. Here we propagate the full map F by simply integrating
(2.24), i.e.

F (t) = F (0) +

∫ t

0

− Im(ψm̄) + V γFγds.

Then by (8.19), we have

∂αF (t) = ∂αF (0) +

∫ t

0

− Im(∂Aαψm̄− iλαγV γm̄) + [Im(ψλ̄γα) +∇αV
γ]Fγds,

which is consistent with above definition of Fα.

8.4. The (SMCF) equation for F . Here we establish that F solves (1.1). Using the
relation λαβ = ∂2

αβF ·m we have

− Im(ψm̄) =− Im(gαβ∂2
αβF · (ν1 + iν2) (ν1 − iν2))

=(∆gF · ν1)ν2 − (∆gF · ν2)ν1

=J(∆gF )⊥ = JH(F ).

This implies that the F solves (1.1).

Acknowledgments

J. Huang would like to thank Prof. Lifeng Zhao for many inspirations and discussions,
and Dr. Ze Li for carefully reading the manuscript, helpful discussions and comments.

70



References

[1] F. J. Almgren, Jr. Some interior regularity theorems for minimal surfaces and an extension of Bern-
stein’s theorem. Ann. of Math. (2) 84 (1966) 277–292.

[2] E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein problem. Invent. Math. 7
(1969) 243–268.

[3] T. H. Colding and W. P. Minicozzi, Minimal submanifolds. Bull. London Math. Soc. 38 (2006), no. 3,
353–395.

[4] P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations. J. Amer. Math. Soc.
1 (1989), 413–446.

[5] W. Craig, T. Kappeler, and W. Strauss, Microlocal dispersive smoothing for the Schrödinger equation.
Comm. Pure Appl. Math. 48, No. 8 (1995), 769–860.

[6] L. Da Rios, On the motion of an unbounded fluid with a vortex filament of any shape. Rend. Circ.
Mat. Palermo 22 (1906) 117–135.

[7] E. De Giorgi, Frontiere orientate di misura minima. Sem. Mat. Scuola Norm. Sup. Pisa, (1961) 1–56.
[8] S. Doi, Remarks on the Cauchy problem for Schrödinger-type equations. Comm. Partial Differential

Equations 21 (1996), 163–178.
[9] S. Doi, Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow.

Math. Ann. 318 (2000), 355–389.
[10] V. Fock, The theory of space, time and gravitation. New York: The Macmillan Co., 1964
[11] H. H. Gomez, Binormal motion of curves and surfaces in a manifold. ProQuest LLC, Ann Arbor, MI,

2004. Thesis (Ph.D.)–University of Maryland, College Park.
[12] S. Haller and C. Vizman, Non-linear Grassmannians as coadjoint orbits. Math. Ann. 329(4) (2004)

771–785.
[13] M. Ifrim and D. Tataru, Local well-posedness for quasilinear problems: a primer. Preprint,

arXiv:2008.05684
[14] R. Jerrard, Vortex filament dynamics for Gross–Pitaevsky type equations. Ann. Sc. Norm. Super. Pisa

CI. Sci. (5) 1(4) (2002) 733–768.
[15] C. E. Kenig, G. Ponce, and L. Vega, Small solutions to nonlinear Schrödinger equations. Ann. Inst.
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