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The role of transforming growth factor-beta in immune 
suppression and chronic inflammation of squamous cell 
carcinomas
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Abstract

Despite a decline in incidence of SCCs over the past 20 years, their survival rate has remained 

nearly the same, indicating that treatment options have not improved relative to other cancer types. 

Immunotherapies have a high potential for a sustained effect in SCC patients, but their response 

rate is low. Here, we review the suppressive role of TGFβ on the anti-tumor immune response in 

SCC and present its potential as a therapeutic target in combination with the current range of 

immunotherapies available for SCC patients. We conclude that SCCs are an optimal cancer type to 

study the effectiveness of TGFβ inhibition due to the prevalence of dysregulated TGFβ signaling 

in them.
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Squamous cell carcinomas (SCCs) are cancers that arise from areas of stratified epithelium 

and are primarily found in the skin, lung, and the epithelial lining of the oropharyngeal and 

nasopharyngeal cavities. Although skin SCC incidence cannot be estimated because most 

cancer registries do not collect data on it, deaths associated with non-melanoma skin cancer, 

which is primarily SCC, exceed melanoma deaths due to the high number of SCC cases1. 

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer 

worldwide and accounts for 53,000 new cases each year in the US.2 Although its incidence 

has decreased slightly, its mortality rate has slightly increased since 2012,2 indicating that 

current therapeutic options for patients with HNSCC have stagnated and novel therapeutics 

have not yet improved the majority of patient outcomes. The current standard of care is a 

combination of radiotherapy, surgery, and chemotherapy; patients who do not respond to 

those typically have incurable recurring metastatic disease. The primary causes of HNSCC 
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are either HPV or heavy tobacco and alcohol use. HPV- HNSCCs are associated with worse 

prognoses and a less inflammatory immune microenvironment.3

It is long established that mutagen-induced SCC results in elevated levels of secreted 

transforming growth factor-beta (TGFβ) in the tumor microenvironment.4 The TGFβ 
signaling pathway has been reviewed in depth elsewhere5,6and is summarized here in Figure 

1. Briefly, when the TGFβ receptor complex binds TGFβ ligand, it phosphorylates receptor-

associated Smad2 and Smad3 proteins. Smad2 and Smad3 form a complex with Smad4, 

which translocate to the nucleus, bind to Smad binding elements (SBEs) on genetic loci, and 

regulate numerous transcriptional pathways. The TGFβ receptor complex also activates 

numerous non-canonical signaling pathways independently of Smad proteins. In tobacco and 

alcohol-associated cases, HNSCC is often preceded by dysregulation of TGFβ signaling, 

resulting in elevated levels of TGFβ within a tumor while tumor cells simultaneously 

become unresponsive to the growth-inhibitory effects of TGFβ; early mouse SCC models of 

dysregulated TGFβ signaling demonstrated that TGFβ no longer inhibits growth of cells that 

lack the TGFβ receptor.7,8 When TGFβ expression is induced, tumor progression is 

exacerbated resulting in the formation and progression of premalignant lesions and 

subsequent metastasis.9,10 We have shown that Smad4 is lost or downregulated in 35% of 

HNSCC patients11 and TGFβRII is downregulated in 69% of HNSCC samples,12 resulting 

in high levels of TGFβ secreted within the tumor microenvironment.13 TGFβ is a daunting 

molecule to study because of the wide range of signaling that takes place downstream of the 

TGFβ receptor complex. Furthermore, it paradoxically functions as both a growth 

suppressor and tumor promoter, depending on the stage and TGFβ responsiveness of the 

tumor cells.14 TGFβ was originally identified as a pro-inflammatory cytokine that induced 

the migration of lymphocytes, monocytes, neutrophils, and fibroblasts.15 However, 

subsequent animal models with dysregulated TGFβ signaling (discussed below) revealed its 

role as a potent suppressor of inflammation. Its inhibitory effect on the anti-tumor immune 

response makes TGFβ an important therapeutic target as immunotherapy is further 

developed for use in SCC.

HNSCC is an excellent candidate for immunotherapy; it has a high mutational burden, one 

of the predictors of a response to immune checkpoint blockade,16 and a high percentage of 

HPV-negative patients score positive for PD-L1 expression.17 The phase II KEYNOTE 012 

clinical trial of the pembroluzimab PD-1 blockade had an 18% overall response rate in 

recurring and metastatic HNSCC.18,19 This led to two successful phase III trials 

(KEYNOTE 040 and CHECKMATE 141) with pembroluzimab and nivolumab,20,21 

resulting in FDA approval of both drugs for the treatment of metastatic HNSCC that is 

refractory to chemotherapy. The main success of immunotherapy has been its durability of 

response. However, a response rate of only 10-20% suggests that additional therapeutic 

targets are needed to improve the effectiveness of immunotherapy in HNSCC. Here, we 

review the impacts of dysregulated TGFβ signaling on immune suppression in HNSCC, and 

discuss how current cancer therapeutics are taking advantage of this interaction to improve 

the effectiveness immune checkpoint blockade.
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TGFβ impacts many arms of the immune response to cancer. The effects of secreted TGFβ 
in the SCC tumor microenvironment on various populations of stromal and immune cells 

within the tumor are discussed below and summarized in Figure 2.

Reduced anti-tumor function of T cells

TGFβ plays a critical role in T cell function, as evidenced by genetically engineered mouse 

models with dysregulated TGFβ signaling. Mice with T cell-specific disruptions of the 

TGFβ signaling pathway exhibit increased T cell activation and inflammatory disease,22-26 

and mice with TGFβRII loss in mature T cells have increased levels of T cell proliferation.27 

Therefore, HNSCCs with elevated levels of TGFβ have a high potential for reduced general 

T cell function within them based on the inhibitory effect of TGFβ on CD8+ cytotoxic T 

lymphocytes (CTLs), regulatory T cells (Tregs), and CD4 helper T (Th) cells.

It is generally accepted that CD8+ CTLs are one of the primary effectors of anti-tumor 

immunity, and increased numbers of tumor-infiltrating lymphocytes correlate with improved 

survival in HNSCC patients.28-30 Secreted TGFβ in the tumor microenvironment directly 

inhibits the expression of cytolytic genes in CD8+ T cells: Fas ligand, perforin, granzyme A, 

granzyme B, and interferon gamma, impairing their function.31 TGFβ signaling also 

contributes to CTL exhaustion; PD-1 expression on CTLs is increased by secreted TGFβ,32 

and T cells in TGFβ-rich HNSCC microenvironments are highly exhausted and incapable of 

mounting a cytolytic response against tumor cells.33 Preventing TGFβ from inhibiting 

effector T cell function is important for the effectiveness of T-cell mediated therapies; 

expressing a dominant-negative TGFβRII on chimeric-antigen receptor T cells increased 

their proliferation, activation, and resistance to exhaustion in prostate cancer models.34 The 

effects of combining TGFβ inhibition with other immunotherapies that improve T cell 

function within tumors are further discussed below.

Tregs are required to maintain immune homeostasis through their repression of effector T 

cell function. However, they are a major source of immune evasion in cancers and are often 

(but not always) associated with poor prognosis in solid tumors.35 Their role in HNSCC 

tumor progression is particularly controversial, with studies showing that infiltrating 

FOXP3+ Tregs are correlated both with tumor progression36,37 and improved prognoses.38,39 

One of the reasons for this discrepancy could be the tumor-specific environment that the 

Tregs are found in; Tregs have distinct anti-inflammatory and pro-inflammatory phenotypes 

depending on the presence of cytokines like TGFβ and IL-12 within the tumor,40 and 

HNSCC tumors that are high in IL-33 result in Treg-mediated immune suppression.41 TGFβ 
induces the differentiation of CD4+ cells into Tregs,42 and the FOXP3 expression that drives 

Treg differentiation is induced by TGFβ43,44 in a Smad2 and Smad3-dependent manner.45 

This mechanism has been shown to be relevant in tumor models; TGFβ pathway activation 

is correlated with increased FOXP3 expression in melanoma.46 Additionally, Tregs 

themselves further increase TGFβ levels within the tumor microenvironment,47 resulting in 

increased immune suppression of other infiltrating immune cells discussed here. Therapeutic 

targeting of surface-bound TGFβ on Tregs reduced tumor growth in mouse melanoma 

models,48 showing the importance of Tregs in the tumor microenvironment.
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TGFβ alters differentiation of naïve CD4+ T cells into Th cells in the periphery. TGFβ 
prevents naïve T cells from differentiating into Th1 T cells in vitro,49 and mice with a 

TGFβRII-knockout on T cells have increased Th1 cell activation.23,27,50 TGFβ also silences 

expression of the Th1 differentiation transcription factors TBET and STAT4.51,52 In 

pancreatic carcinomas, secreted TGFβ contributed to a shift in frequency from pro-

inflammatory Th1 cells to tumor-permissive Th2 cells.53 Therefore, in TGFβ-rich 

microenvironments, CD4+ T cells can become more tolerant of tumors and inhibit the CTL 

response against them.

Inhibition and inactivation of natural killer (NK) cells

Even in a T cell-suppressive microenvironment, NK cells can mount an effective response 

against tumor cells. However, TGFβ signaling impairs NK cell effectiveness by inhibiting 

their secretion of IFNγ, resulting in decreased Th1 cell activation.54,55 TGFβ signaling also 

silences NKG2D and NKp30 receptor expression on human NK cells ex vivo,56 which 

results in a decreased ability of NK cells to recognize abnormal tumor cells. NK cells in a 

murine model of HNSCC also exhibited decreased NKG2D expression in response to TGFβ,
57 and the activating receptor NKp46 and both inhibitory and activating KIRs were 

decreased on NK cells in HNSCC patients exhibiting high levels of TGFβ.58 TGFβ 
contributed to down-regulation of CD16 on NK cells in esophageal SCC patients that was 

associated with decreased NK cell function.59 TGFβ signaling also causes NK cells to 

differentiate into type 1 innate lymphoid cells60 that do not exhibit cytotoxic activity, and 

this process is further exacerbated by the loss of Smad4.61 Taken together, elevated TGFβ in 

the tumor microenvironment of HNSCC can result in dysfunctional NK cell activity and a 

dramatic reduction of the innate response to cancer.

Reduced dendritic cell function in SCC

Dendritic cells are the primary antigen-presenting cells within a tumor and are often required 

for anti-tumor immunity to function. In HNSCC, increased infiltration of antigen-presenting 

cells is associated with a better prognosis.62-64 TGFβ inhibits MHC-II expression on 

dendritic cells,65,66 impairing their antigen presentation and resulting in a more tumor-

permissive immune microenvironment. TGFβ signaling also induces dendritic cells to 

switch to an immature myeloid cell phenotype, which is associated with increased immune 

suppression.67 Finally, dendritic cells are a source of TGFβ in the tumor immune 

microenvironment; tumor cells can induce TGFβ secretion by dendritic cells, leading to 

increased Treg differentiation.68,69 This is one of the many ways that dysregulated TGFβ 
signaling within the tumor microenvironment can cause additional TGFβ secretion, 

compounding the effects of TGFβ within a tumor. Langerhans cells, dendritic cells localized 

in the epidermis, are often the first antigen-presenting cells to encounter SCC.70 Akin to 

dendritic cells in other regions, Langerhans cells are also a major source of TGFβ secretion,
71 and TGFβ is required for their maintenance and differentiation.72 TGFβ-rich 

microenvironments would, therefore, be tolerant of dendritic cell infiltration, but 

simultaneously inhibit their function as antigen-presenting cells.
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Increased tumor-permissive macrophages in SCC

Tumor-associated macrophages (TAMs) are commonly categorized into pro-inflammatory 

M1 and immune-suppressive M2 polarizations. TAM accumulation is a major contributor to 

immune evasion and poor prognoses in HNSCCs,73 implying that the majority of TAMs in 

HNSCC are M2-polarized macrophages. Indeed, HNSCC samples with high levels of TGFβ 
also had high levels of TAMs and their associated immune-suppressive phenotypes.74 A 

potential mechanism for this is revealed by research showing that TGFβ induced a M2-like 

phenotype via SNAIL signaling in a human macrophage cell line in vitro.75 TGFβ also 

inhibited toll-like receptor signaling in macrophages via inhibitory signaling of Smad676-78 

and inhibited the pro-inflammatory tumor necrosis factor pathway by Smad7-mediated 

inhibition of Tak1,79 resulting in decreased macrophage activation and reduced macrophage-

induced inflammation of the tumor. Therefore, TGFβ signaling in macrophages can inhibit 

both the innate and adaptive responses to tumors. We found that when macrophages were 

ablated in SCCs, tumors had increased apoptotic tumor cells and reduced angiogenesis,80 

which could be attributed to the reduction in pro-angiogenic and anti-inflammatory 

cytokines released by macrophages.

Neutrophils and monocytes inhibit T cell function

Similar to macrophages, neutrophils also polarize between pro-inflammatory N1 and 

immune-suppressive N2 categories.81 Increased neutrophil infiltration in HNSCCs is 

correlated with reduced survival,82 suggesting that just like with macrophages, HNSCC 

neutrophils are predominantly N2-polarized. TGFβ signaling induces N2 polarization; in 

mice, treatment with a TGFβ inhibitor caused a shift from N2 to N1 tumor-associated 

neutrophil polarization and increased immune clearance of mesothelioma tumors.81 Myloid-

derived suppressor cells (MDSCs) encompass both granulocytic polymorphonuclear cells 

that are closely related (if not identical) to neutrophils, and monocytic cells that are similar 

to monocytes.83,84 MDSCs strongly inhibit T cell proliferation and activation in vitro,85 and 

are associated with reduced survival in HNSCC.86 The expression of TGFβ1 and MDSC 

marker genes is positively correlated in HNSCC, and supplemental TGFβ enhanced the 

ability of cultured monocytes to impair T cell proliferation and induced Treg differentiation 

in vitro.87 Furthermore, as tumor cells lose TGFβ signaling components they enhance 

recruitment of MDSCs to the tumor microenvironment.88,89 Finally, MDSC suppressor 

activity is not limited to CTLs; monocytic MDSCs in the tumor microenvironment secrete 

TGFβ that in turn inhibits NK cells.90

Cancer-associated fibroblasts (CAFs) and their interactions with immune 

cells in SCC

Late-stage HNSCCs are comprised of up to 80% CAFs91 that secrete a variety of 

immunosuppressive cytokines,92 and they are the primary source for secreted TGFβ in the 

tumor microenvironment.93 The secretion of TGFβ by CAFs is increased by the loss of 

TGFβ signaling components in tumor cells.94 TGFβ signaling also drives a gene expression 

program in HSNCC CAFs that both promotes immune evasion and predicts the failure of 

immune checkpoint blockade.95 This TGFβ signaling program functions as a better 
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predictor of anti-PD-1 therapeutic failure than other commonly used biomarkers, including 

tumor mutational burden, amount of infiltrating T cells, and T cell activation markers.95 

Recent research suggests that the mechanism for this is TGFβ-mediated signaling in CAFs 

that results in the exclusion of CD4+ and CD8+ infiltrating T lymphocytes from the tumor; 

once TGFβ signaling was inhibited, CTLs were able to reach the tumor cells and became 

responsive to immune checkpoint blockade as their cytolytic signaling pathways were 

activated.96

The paradox of TGFβ as a pro-inflammatory molecule

As discussed above, TGFβ plays many anti-inflammatory roles in the tumor 

microenvironment. However, TGFβ also has a paradoxical pro-inflammatory effect in SCCs. 

We found that TGFβRII-negative HNSCCs exhibited increased CD45+ and F4/80+ cell 

infiltration and an upregulation of inflammatory cytokines when compared to wild-type 

mucosa,12 and similarly Smad4-negative SCCs had increased CD11b+ and Th17 cell 

inflammation.13 Th17 cells are a subset of CD4+ T cells that can both promote inflammation 

by inducing CXCL9 and CXCL10 secretion by tumor cells,97 and suppress it via induction 

of Treg and Th1 cell differentiation.98-100 Whether Th17 cells function as a tumor 

suppressor or promoter depends on the context and type of the tumor, but in HNSCCs they 

are associated with improved prognoses.101 Th17 cells were originally identified by their 

propensity to secrete IL-17, a pro-inflammatory cytokine that is required for TGFβ-induced 

inflammation in premalignant skin lesions.102 Th17 cells also need TGFβ to differentiate 

from naïve T cells,103 and elevated levels of TGFβ in the skin are associated with increased 

Th17 cell infiltration in premalignant lesions.13 However, as HNSCC tumors reach a later 

stage, IL-17 secretion is inhibited and the number of infiltrating Th17 cells decreases.104 

Although the significance of the inflammatory effect of TGFβ in the skin has not been fully 

explored in SCC treatment, it has the potential to create paradoxical effects of TGFβ 
inhibition in epithelial cancers as TGFβ-induced inflammation would be abrogated by TGFβ 
inhibitors. Indeed, when mice bearing a TGFβ1-knockout model of psoriasis were treated 

with a TGFβ-inhibitory drug, chronic inflammation was drastically and durably reduced.105

TGFβ signaling and immune checkpoints

The expression of PD-1 on tumor-infiltrating lymphocytes and the positivity of tumors for 

PD-L1 staining are associated with improved survival in HNSCC patients,106 and the 

expression of PD-L1 is a commonly used metric to predict a response to PD-1 blockade.107 

Multiple preclinical models have demonstrated that TGFβ signaling induces expression of 

both PD-1 and PD-L1, for example, TGFβ induced PD-1 and PD-L1 expression on 

infiltrating T cells in a transplant model.108 Furthermore, PD-1 expression on tumor-

infiltrating lymphocytes was abrogated in mice treated with either a TGFβ-depleting 

antibody or a TGFβRII inhibitor.32 Recent research showing that PD-L1 on human non-

small cell lung cancer cell lines was induced by TGFβ in vitro suggests that the mechanism 

behind this is Smad2-mediated canonical TGFβ signaling in response to TGFβ ligand 

stimulation.109 This has important implications for the combination of TGFβ inhibitors with 

PD-1 and PD-L1 checkpoint blockade, as TGFβ inhibition has the potential to reduce the 
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effectiveness of immune checkpoints in the tumor microenvironment from impairing CTLs 

within the tumor.

TGFβ inhibition as an immunotherapy

Because of the numerous ways TGFβ promotes immune suppression, it makes for a 

promising target in cancer therapeutics. However, TGFβ also functions as a growth inhibitor 

of tumor cells at early cancer stages until they become unresponsive to TGFβ signaling. 

This, combined with the cardiac toxicity reported in early-generation TGFβ inhibitors,110 

resulted in few TGFβ inhibitors being developed until the impact of immunotherapies and 

the importance of targeting immune evasion by cancer became apparent. More recently, 

TGFβ receptor inhibitors such as Galunisertib (LY2157299) have been developed with 

special care given to their impact on the cardiac health of patients.111 The current range of 

TGFβ inhibitors and their clinical trial status has been reviewed elsewhere,112 but they have 

proved to be effective both as a single agent and in combination with other therapeutics. For 

example, an immune-suppressive response in mice treated with an EGFR inhibitor was 

driven by secreted TGFβ in a preclinical model of HNSCC.113

Perhaps the TGFβ inhibition therapy with the most potential has been in combination with 

immune checkpoint blockade. As mentioned earlier, TGFβ signaling and immune 

checkpoint signaling are closely related. In murine SCC, anti-PD-1 treatment induces Treg 

expansion and elevated TGFβ signaling within the tumor that can be abrogated with the 

addition of a TGFβ depleting antibody.114 Recent studies show that the mechanism behind 

this is TGFβ-mediated signaling in fibroblasts that causes T cell exclusion, resulting in 

increased T cell infiltration into tumors that were treated with a TGFβ inhibitor.96,115,116 In 

addition to combining TGFβ inhibitors with PD-1 blockade, bifunctional antibodies that 

combine the TGFβRII ligand-binding domain with immune checkpoints blockade antibody 

have also been effective in both preclinical models and clinical trials. TGFβ/PD-1 and 

TGFβ/CTLA-4 bifunctional antibodies improved the anti-tumor response in melanoma and 

triple-negative breast cancer lines that are otherwise resistant to immune checkpoint 

blockade.46 M7824, a combination of the TGFβRII ligand trap and anti-PD-L1, improved 

the response against murine breast and colon cancer models, resulting in increased T cell 

and NK cell activation within the tumors.117 TGFβ inhibition also improves systemic 

responses to cancer. A pan-TGFβ depleting antibody improved tumor clearance in mice 

when used in combination with irradiation, including in non-irradiated areas.118

Conclusion

TGFβ has wide-ranging effects on multiple arms of the immune response to cancer. Because 

of the prevalence of dysregulation of TGFβ signaling in them, SCC is an optimal cancer for 

the application of TGFβ-inhibitory therapy. Furthermore, because the loss of TGFβ 
signaling components also results in increased DNA damage and tumor mutational burden, 

SCC is already primed for immune checkpoint blockade. However, because the tumor-

infiltrating T cells in these tumors are already exhausted and incapable of mounting an anti-

tumor response, immune checkpoint blockade must be combined with other therapies that 

release T cells from immune suppression. Therapeutically targeting TGFβ in combination 
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with immune checkpoint blockade has the potential to prevent immune evasion by SCC, and 

allows a complete anti-tumor response by reducing the immunosuppressive effects of 

multiple arms of the immune system on T cells within the tumor.
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Figure 1: 
A simplified schematic of the TGFβ signaling pathway. The TGFβ receptor complex is a 

heterotetramer of TGFβRI and TGFβRII dimers. Upon TGFβ ligand binding, the TGFβ 
receptor phosphorylates Smad2 and Smad3, which then form a complex with Smad4 that 

localizes to the nucleus, binds to SBEs at genetic loci and regulates downstream 

transcription. Smad7 is a genetic product of canonical TGFβ signaling that inhibits this 

process. Additionally, the TGFβR complex can activate non-canonical signaling pathways 

independently of Smad proteins.

Strait and Wang Page 16

Mol Carcinog. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
The effects of TGFβ on major populations of stromal cells in SCC. TGFβ both inhibits and 

promotes the infiltration and function of many infiltrating immune and stromal cells in SCC 

tumors. These cell populations can have anti-tumor (blue) and tumor-promoting effects 

(orange) within the tumor microenvironment.
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