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Abstract

Chronic obstructive pulmonary disease (COPD) is a common lung disease, and quantitative CT-

based bronchial phenotypes are of increasing interest as a means of exploring COPD sub-

phenotypes, establishing disease progression and evaluating intervention outcomes. Reliable, fully 

automated and accurate segmentation of pulmonary airway trees is critical to such exploration. We 

present a novel approach of multi-parametric freeze-and-grow (FG) propagation which starts with 

a conservative segmentation parameter and captures finer details through iterative parameter 

relaxation. First, a CT intensity-based FG algorithm is developed and applied for airway tree 

segmentation. A more efficient version is produced using deep learning methods generating 

airway lumen likelihood maps from CT images, which are input to the FG algorithm. Both CT 

intensity- and deep learning-based algorithms are fully automated, and their performance, in terms 

of repeat scan reproducibility, accuracy, and leakages, is evaluated and compared with results from 

a method where segmentation results were reviewed and corrected with manual intervention. Both 

new algorithms show a reproducibility of 95% or higher for total lung capacity (TLC) repeat CT 
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scans. Experiments on TLC CT scans from different imaging sites at standard and low radiation 

dosages show that both new algorithms outperform the comparison dataset in terms of leakages 

and branch-level accuracy. Considering the performance and execution times, the deep learning-

based FG algorithm is a fully automated option for large multi-site studies.

Index Terms—

Airway tree; COPD; CT; deep learning; freeze-and-grow; multi-parametric model; parameter 
relaxation; segmentation; tree-leakages

I. Introduction

Quantitative computed tomography (CT)-based bronchial characterizations of metrics such 

as airway lumen area, wall thickness, branching patterns, etc., along with parenchymal 

characterizations of emphysema and air trapping are in growing use in multi-center studies 

seeking to establish disease sub-phenotypes leading to improved understanding of disease 

etiology as well as intervention outcomes in chronic obstructive pulmonary disease (COPD) 

and asthma. Multi-center studies using such imaging approaches include COPDGene [1], 

SPIROMICS [2, 3], MESA Lung [4], CanCOLD [5] and SARP. [6] Through a combination 

of the use of CT imaging protocols selected to harmonize quantitative measures across sites, 

scanner manufacturers and scanner models, and through careful coaching of research 

subjects to a standardized full inspiratory (total lung capacity: TLC) and full expiratory 

(residual volume: RV) lung volume [2], objective quantitative assessments have led to a 

number of novel observations, including: 1) when the same anatomic airway segments are 

evaluated across subjects, airway walls, on average, are thinner in smokers with COPD 

compared with normal non-smokers [7]; 2) there are common airway branching variants in 

the over-all population which confer a greater risk of acquiring COPD in both the smoking 

and non-smoking population [8]; 3) metrics associated with quantitative CT assessment of 

the lung parenchyma and airways provide subject clusters in which distinct patterns of non-

imaging derived phenotypes emerge [9], and 4) differences in the total number of airway 

generations segmented from the CT scan provide a measure of disease progression, 

consistent with observations from microscope-based assessment of lung specimens 

suggesting that peripheral airways disappear prior to emphysematous destruction of the 

parenchyma. [10] While segmentation and automatic segment labeling [11, 12] out to two 

generations beyond the segmental airways is an industry standard, some user verification 

and correction remains. Despite successful deployment [2] into studies involving thousands 

of subjects, there remains a desire for approaches which reliably extend airway segmentation 

to the peripheral segments and which reduce segmentation failures including leakages into 

low density parenchymal regions associated with parenchymal pathology.

Various segmentation methods using shape [13], boundary [14], region-growing [15, 16], or 

other models have been explored in different medical imaging applications. While shape- 

and boundary-based methods have unique strengths and are popular, region-growing 

strategies have been widely adopted for segmentation of anatomic tubular structures due to 

the high complexity in their shapes and branching patterns. [17] Several CT-based 
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algorithms for airway tree segmentation have been reported in the literature. [18–20] 

Different approaches have been adopted for airway segmentation, which include—(1) region 

growing and thresholding [11, 21–24]; (2) morphologic and geometric model-based 

approaches [25–27]; and (3) hybrid methods combining the previous two approaches. [28–

30] Region growing methods rely on CT attenuation differences between airway lumen, 

airway wall, and surrounding lung parenchyma. However, due to limitations of spatial 

resolution and various imaging artifacts, CT attenuation differences become less pronounced 

at smaller bronchi causing segmentation leakages into the lung parenchyma, especially in 

the presence of parenchymal pathologies associated with decreased parenchymal density. 

Model-based methods rely on morphologic and geometric feature-based classification rules 

characterizing airway tree anatomy in CT images. However, it is difficult to manually select 

a set of features that holistically represents inter-subject and disease-related variabilities and 

models imaging artifacts as well as between-scanner variabilities.

Over the last several years, deep learning approaches have become popular in computer 

vision and image processing and have demonstrated unique strengths in extracting optimum 

knowledge embedded in data and put it into a process without requiring any application 

specific rules or process level design. [31–33] Following this trend, deep learning has also 

garnered attention in medical imaging including applications related to lung imaging. 

Charbonnier et al. [34] performed a post-segmentation step to classify leakages by using 

three orthogonal 2-D slices as input to a convolutional neural network (CNN). [35] Jin et al. 
[36] adopted a fully three-dimensional (3-D) approach using a 3-D U-Net [37, 38] in 

conjunction with incomplete sampling along the airway centerline to train a shallow (two 

pooling layers) but wide network to detect small airway tubular structures. Yun et al., 
employed a 2.5-D CNN to improve a fully automated segmentation result by extending 

peripheral branches and removing false positives. [39] Juarez et al. presented a 3-D U-Net 

with elastic deformation-based data augmentation, but it was evaluated in terms of dice 

coefficient over only six images with numerous leakages at peripheral branches. [40]

In this paper, we present two automated CT-based airway tree segmentation algorithms and 

evaluate their performance in terms of reproducibility, accuracy, and leakages. First, a 

conventional image processing method of freeze-and-grow is developed, which starts with a 

conservative segmentation parameter and progressively captures finer details through 

iterative volume freezing and parameter relaxation. Second, a deep learning network is 

designed, trained, and validated to compute an airway lumen likelihood map from chest CT 

scans. The deep learning and freeze-and-grow methods are coupled by feeding the deep 

learning-based lumen likelihood map as an input to the freeze-and-grow algorithm. The new 

methods have been applied to total lung capacity (TLC) CT scans from ongoing large multi-

site COPD-related studies, and their performance has been compared with existing manually 

corrected airway segmentations from multi-center trials.

II Methods

Although CT values at airway walls have empirically been found to be close to a value of 

−450HU, often the values decay to −800HU or less at distal sites; see Figure 1. Thus, a 

single parameter region growing model is not optimal for CT-based airway segmentation. In 
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the past, researchers have used space-varying parameter models. [11] Here, we present an 

iterative parameter-shift model that starts with a conservative parameter and gradually shifts 

to generous ones until convergence. We refer to this multi-parametric segmentation model as 

a freeze-and-grow (FG) algorithm. [41] A major advantage of the FG approach is that it does 

not rely on optimum selection of local parameters, which is always a challenging task and 

prone to errors causing leakages or early airway branch termination. In this section, first, we 

present a CT intensity-based airway segmentation algorithm using FG and support vector 

machine (SVM)-based post-pruning methods. [42] Later, we describe a deep learning (DL) 

method, based upon the FG results, for airway lumen classification and apply it to improve 

the efficiency and performance of FG and post-pruning methods. The DL method provided 

computational efficiency whereas the FG method is computationally intensive.

A. Freeze-and-Grow Algorithm

For CT intensity-based airway segmentation, the FG algorithm starts with the CT image as 

input and maintains two volume markings—(1) confident airway volume (CAV) 

representing validated airway volume and (2) forbidden volume (FV) around leakage-roots 

prohibiting connectivity paths to enter into leakage regions. FV is essential for iterative 

threshold relaxation. The algorithm consists of three steps—(1) initialization, (2) iterative 

parameter relaxation and segmentation volume update, and (3) termination.

At initiation, the algorithm selects a seed voxel inside the trachea using the method by Mori 

et al. [43]; let s be the seed voxel. Also, the algorithm begins with CAV = {s} and an empty 

FV. Moreover, it starts with a conservative CT intensity threshold parameter of −1000HU 

for airway lumen region growing. During an iteration, the algorithm relaxes the method by 

incrementing the threshold parameter; grows airway lumen region from CAV as seeds over 

the entire image space excluding FV; and checks for a potential leakage. The algorithm 

continues incrementing the threshold parameter until a new leakage occurs. At the 

occurrence of a leakage, the algorithm enters a leakage correction phase including CAV and 

FV augmentation; and finally, it moves to the next iteration. The FG algorithm terminates 

when the threshold range is exhausted or FV covers the entire outer surface of CAV. The 

threshold range of [−1000 HU −700HU] has been used in this paper. Intermediate steps 

during an iteration of the FG algorithm are schematically illustrated in Figure 2.

1) Initial Lumen Segmentation and Centerline Computation—Let Z3, where Z is 

the set of integers, denote the voxel grid or image space. During an iteration, at a threshold t, 
the airway tree volume Vt is computed using region growing from CAV over Z3 − FV and 

applying a fuzzy distance transform [44] (FDT)-based dilation for smoothing and hole-

filling. FDT-based dilation was preferred over a binary method to account for partial voxel 

effects and avoid artificial merging of locally separate lumen regions; see [45].

During the FG algorithm, segmented airway tree volume monotonically expands with 

iterations. To comply with the monotonicity of volume change, the skeletonization method 

by Palágyi [46] was modified so that the curve skeleton St of Vt ⊃ CAV is a superset of the 

skeleton SCAV of CAV. Also, a new algorithm was developed for pruning spurious branches 

in a curve skeletal tree. The method is based on a voxel-wise predecessor-follower 
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relationship in a curve skeleton. [45] Specifically, it uses the depth of each skeletal subtree 

emanating from a junction voxel as compared to its local scale. Let p be a skeletal voxel 

immediately following a junction voxel. The skeletal subtree from p is spurious, if depth(p)/

scale(p) < αs, where depth(p) denotes the depth of the skeletal subtree from p, and scale(p) 

is the FDT value at p. The value of the parameter αs = 3 was experimentally determined by 

analyzing the depth(p)/scale(p) ratio of true branches. A spurious subtree from p is removed 

by deleting p and all following voxels. After removing spurious branches in St, the algorithm 

enters the leakage detection step.

2) Leakage Detection—Leakage detection is completed in two steps: (1) preliminary 

detection of potential leakages and (2) secondary screening for likely leakages. Potential 

leakages are identified by locating skeletal voxels with large change in associated airway 

lumen volume. These leakages are subjected to further topologic and geometric analysis for 

secondary screening of likely leakages, which are passed into a correction phase.

Let V denote an airway lumen volume and S ⊃ V be a reference subset; intuitively, S 
represents a skeletal-like structure. For a voxel p ∈ S, the associated volume γ(ρ) is the set 

of voxels υ ∈ V such that ∄q ∈ S closer to υ than p. Let χ(ρ) be the set of voxels in the 

skeletal subtree from p; the subtree volume ψ(ρ) is the union of associated volumes of all 

voxels in χ(ρ). Consider the confident lumen volume CAV, its skeleton SCAV and the current 

lumen volume Vt at threshold t; note that SCAV ⊂ CAV ⊂ Vt. For a skeletal voxel p ∈ SCAV, 

let γcav(p) and γt(p) denote its associated volumes in CAV and Vt, respectively. A skeletal 

voxel p is a potential leakage site if the change in its associated volumes |γt(p) − γcav(p)| 

exceeds a threshold αΔγ. We have used αΔγ = 10 mm3 as it represents a potential spherical 

leakage of three-voxel radius, which is difficult to visually detect.

If no potential leakages are detected, the algorithm increases the threshold parameter from t 
to t+1 and repeats the lumen segmentation with the updated region growing parameter; this 

step is repeated until a potential leakage is found. Once a potential leakage voxel p ∈ SCAV 

is detected, the secondary screening for a likely leakage at p is initiated. During this step, we 

compute the length l(p) of the skeletal subtree χ(p), which represents volume-weighted 

average geodesic length from p to terminal skeletal voxels. [41] A measure of pseudo cross-
sectional area η(p) is computed by dividing the subtree volume |ψ(p)| by l(p). Finally, the 

subtree emanating from p is upgraded to a likely leakage for correction if η(p) is 

significantly greater than the expected airway lumen cross-sectional area at p, which is π * 

FDT2(p). Specifically, a potential leakage at p is a likely leakage if

η(p)/ π * FDT 2(p) > αη . (1)

The value of the parameter αη = 3, used for experiments, was determined by analyzing the 

ratio η(p) / (π * FDT2(p)) at valid branches.

3) Leakage Correction—This step locates the root of a leakage and deletes the subtree 

volume from the leakage-root. The objective is to maximally recover valid airway branches 

passing the located likely leakage voxel. The leakage-root is located using a tree traversal 

approach starting from the likely leakage voxel and checking validity of individual branches. 
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Forward-branch-length, airway wall association, and subtree volume-to-linear outreach ratio, 

defined on Vt and its skeleton St, are used to define branch validity.

The forward-branch-length at a skeletal voxel p ∈ St is the Euclidean length of the longest 

branch among the one containing p and its immediate child-branches. Airway wall 

association of a branch is computed by analyzing CT-intensity values around boundary 

voxels of associated lumen volume. Let p be a boundary voxel of associated lumen volume 

of a target branch and B+ (p) denote the set of extended background neighbors of p, which 

are not radially farther than two voxels. [41] A lumen boundary voxel p is surrounded by 
airway wall if f+ (p) − μ(p) <5 0 HU, where f+ (p) is CT intensity of the brightest voxel in B+

(p), and μ(p) is the mean airway wall intensity in the parent branch. Finally, the airway wall 
association of a branch is positive if two-thirds of its boundary voxels are surrounded by 

airway walls. Linear outreach of a skeletal subtree χ(p) is the Euclidean distance between p 
and the farthest terminal voxel in χ(p). Subtree volume-to-linear outreach ratio at p is the 

ratio of the subtree volume |ψ(p)| and the linear outreach of χ(p). Finally, a skeletal branch 

is valid if (1) forward-branch-length is greater than half of the average airway branch length 

at the same generation as determined empirically; (2) airway wall association is positive; and 

(3) subtree volume-to-linear outreach ratio is less than three times the cross-section area of 

the immediate parent branch.

The leakage-root detection algorithm starts from a likely leakage voxel p and performs a 

recursive tree traversal checking validity of individual branches. If the branch containing p 
fails the validity test, the entire skeletal subtree χ(p), including p, is deleted; otherwise, it 

initiates a correction process for each of its children branches p1,p2,·⋯. The recursive 

correction process is continued until terminal branches are processed. Let St* be the skeletal 

tree after deleting all leakages.

4) Segmentation Volume Augmentation—The confident airway lumen volume is 

updated as CAU = ∪p ∈ St* γt(p) , where γt(p) is the associated volume of p in Vt with St as 

the reference skeleton; also, SCAV is updated as St*. New forbidden regions are computed 

around individual leakage-roots to arrest future leakage through the same leakage site; see 

[41] for details.

5) Final Leakage Removal—A final leakage removal step is applied to remove small 

leakages mostly occurring at terminal branches. Such leakages are missed by the rapid 

growth criterion used for initial leakage screening and slowly accumulate over iterations. To 

remove such leakages, a classifier-based approach was applied using topologic and 

geometric features at skeletal voxels. [41] A support vector machine (SVM) [42] classifier 

with a radial basis function was trained using manually labeled leakage and non-leakage 

skeletal voxels. The final leakage labelling was obtained using a neighborhood voting 

method on the SVM outcome in a top-down skeletal tree traversal.

B. Deep Learning-Based Freeze-and-Grow Algorithm

Deep learning (DL) is applied to compute a voxel-level airway lumen likelihood map from a 

CT image, which is input to an FG algorithm for airway tree segmentation; see Figure 3. A 
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modified 3-D U-Net classifier was developed with three pooling and three de-convolutional 

layers. High memory and computational complexity restrict the use of an entire CT image 

through the network; so smaller sub-regions of 64×64×64 voxels were used as samples. CT 

intensity values were truncated between −1200 HU and 200 HU and scaled between −1 and 

1. Training sub-regions were selected using random sampling over the lung space. Data 

augmentation was avoided since it involves image transformation, introducing additional 

image blur and potential artifacts related to systematic feature perturbation. Kernels of size 

3×3×3 were used at every convolutional layer except at the last layer, where a 1×1×1 kernel 

was used. At the highest resolution, 64 feature maps were used, and along the contracting 

path, the number of feature maps was doubled at each down- sampling step leading to 128, 

256, and 512 feature maps at three lower resolutions. At each up-sampling step along the 

expansive path, the number of feature maps was halved after a concatenation with the 

feature map from the contracting path at the same resolution. To account for the sparsity and 

non-uniformity of airway structures in the training data, a weighted binary cross-entropy 

loss function was applied:

Loss = − βΣp ∈ O logyp − (1 − β)Σp ∈ O− log1 − yp, (2)

where O and O− are the object and background regions in a given training sample sub-

region, β is the class balancing weight, yp is the predicted value at a voxel p. [38]

At runtime, a trained 3-D U-Net was applied to compute a voxel-level airway lumen 

likelihood map from a chest CT image as follows—(1) generate a 32-voxel-spaced grid in 

the target CT image; (2) compute the airway lumen likelihood map over 64×64×64 sub-

region around each grid location; and (3) compute airway lumen likelihood value at each 

voxel by averaging likelihood values from eight sub-regions containing that voxel. We 

adopted this new strategy of using overlapping sub-regions to reduce effects of sub-region 

bias adding checkerboard-type sub-region boundary artifacts and improve fidelity of the 

likelihood map. For DL-based FG algorithm, the initial likelihood threshold of 0.95 was 

applied, and the range of likelihood map of 0.95 to 0.35 was searched at a step size of 0.05 

during FG iterations. The lower bound was empirically determined by running the algorithm 

over an extended range of likelihood values and selecting the lowest likelihood value that 

added a new airway branch.

1) Deep Learning-based Final Leakage Removal—A 3-D U-Net classifier was 

developed to remove small terminal leakages in DL and FG-based airway tree 

segmentations. The classifier was posed as a three-class segmentation problem—valid 

airway lumen, leakages, and background. CT intensity and initial segmentation label are fed 

as separate channels resulting in a 64×64×64×2 input sample. Similar network architecture 

and data normalization, described in the previous section, were adopted. Weighted 

categorical cross-entropy loss function was used for training and validation, where the 

weight for a class was computed over all training samples as one minus the average volume 

fraction of that class. Training samples were generated by randomly sampling 64×64×64 

sub-regions along the terminal, and two-generation ancestral branches. Sub-regions along 

the centerline of larger branches were ignored because no leakages were observed at larger 

branches using the DL and FG-based segmentation.
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At runtime, sub-regions were sampled on terminal, and two-generation ancestral branches 

with 32-voxel geodesic distance between two nearest samples. At each voxel, the leakage 

likelihood value was computed by averaging likelihood values from all sub-regions 

containing that voxel, and it was deleted if the leakage likelihood value exceeded a preset 

threshold αleak. For our experiments, we used αleak = 0.7, which was determined empirically 

as mean-plus-three-sigma of observed leakage likelihood values over leakages in the training 

dataset.

C. Experiments

Experiments were designed to examine the reproducibility of our methods and evaluate their 

accuracy at standard and low radiation CT imaging from different study centers. The 

accuracy of our methods was compared with datasets from the SPIROMICS project [1,2] 

where the automated airway segmentation results underwent an additional manual editing 

process following a strict quality control protocol. All airway paths were assured to reach at 

least the segmental level. The 5 main paths (RB1, RB4, RB10, LB1, and LB10) were 

assured to reach at least the segmental+2 generation. All obvious leaks were removed. The 

manually edited SPIROMICS airway masks are referred to below as “industry-standard 

segmentation after manual editing” and the details of imaging and image assessment are 

provided in Sieren et al. [2] Different airway segmentation methods are abbreviated as 

follows—(1) CT intensity-based freeze-and-grow (IN-FG), (2) deep learning-based freeze-

and-grow (DL-FG), (3) industry-standard segmentation before manual editing (IS-BE), and 

(4) industry-standard segmentation after manual editing (IS-AE). Our experiments involved 

(1) human chest CT data, (2) training and validation, (3) reference segmentation masks and 

analysis.

1) Human Chest CT Data—Three different datasets of total lung capacity (TLC) chest 

CT scans used for our experiments.

Datastand:  TLC chest CT scans of 120 subjects (age (years): [42 80] ([Min Max]), 62.5±9.9 

(mean±std.); 60 female, smoking (pack-year): 43.4±25.6; COPD status (N): GOLD 0 (38), 

GOLD 1 (20), GOLD 2 (25), GOLD 3 (22), GOLD 4 (15)) were randomly selected from 

baseline visits of the subpopulations and intermediate outcome measures in COPD study 

(SPIROMICS). [3] This dataset includes scans from ten different sites with a variety of 

scanners utilizing scan protocols outlined in Sieren et al. [2] This dataset was used for 

training and validation of different algorithms as well as performance evaluation in terms of 

accuracy.

Datarepro:  A set of forty pneumotachometer-monitored [47] TLC chest CT scans were 

acquired on a Siemens Sensation 64 (N = 15) or Siemens SOMATOM Definition Flash 128 

(N = 5) scanner (Forchheim, Germany) from twenty subjects (age (years): [21 64], 

29.6±11.1; 10 females; 8 current/former smokers), where each subject underwent two repeat 

scans at full inspiration 3 to 5 minutes apart. [48] Between scans, the subjects got off the 

scanner table, walked around, and returned to the table. This data set was used to examine 

reproducibility of the new methods.
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Datalow:  Low radiation TLC chest CT scans of twelve non-smoking normal subjects (age 

(years): [20 54], 35.4±12.0; 5 females; all non-smokers). These scans were acquired on a 

Siemens SOMATOM Force scanner using 120 kV, LD CareDose reference 36 mA, 512×512 

image matrix, 0.6 mm slice thickness, 0.5 mm slice spacing, pitch of 1.0, and low radiation 

dose of 1.3 mSv versus 3.2 mSv standard dose. This data set was used to examine accuracy 

of different methods at low radiation CT imaging.

2) Training and Validation—Twenty scans were randomly selected from Datastand and 

used for training and validation of (1) SVM leakage classifier, (2) DL-based airway lumen 

classifier, and (3) DL leakage classifier. Among these scans, fifteen were used for training 

and five for validation. For SVM leakage classifier, 6,489 leakage and 87,370 non-leakage 

samples were used for training, while 1,922 leakage and 22,986 non-leakage samples were 

used for validation. A leakage sample was collected at a skeletal voxel with leakages in its 

associated volumes, while non-leakage samples were obtained at other skeletal voxels. All 

training samples for SVM leakage classifier were collected at terminal branches and their 2-

generation ancestors.

For DL airway lumen classifier, manually edited airway lumen segmentation using IS-AE 

were used for training and validation. For each scan, 2000 sub-regions of size 64×64×64 

were randomly sampled yielding a set of 30,000 training and 10,000 validation samples. The 

network training step converged after twenty epochs using Adam optimization algorithm 

[49] with β1 = 0.9, β2 = 0.999 and a learning rate of 1×10−4. The network training process 

took 40 hours running on an Intel Core i9–79000X CPU using a NVIDIA GeForce GTX 

1080 Ti graphics card. For DL leakage classifier, 250 64×64×64 sub-regions with leakages 

and another 250 sub-regions without leakages were sampled at centerline locations from 

terminal branches and their 2-generation ancestors from each scan resulting 7,500 training 

and 2,500 validation samples. The training process converged after thirteen epochs using 

Adam optimization algorithm with β1=0.9, β2=0.999 and a learning rate of 1×10−4 taking 6 

hours and 18 minutes.

3) Reference Segmentation Mask and Analysis—Reference segmentation masks 

(again utilizing data generated via SPIROMICS [2]) were used to assess accuracy. 

Considering the difficulties with manual outlining of true airway masks, a method was 

designed to generate unbiased reference airway masks. For a given scan, the segmentation 

masks generated using each of the three methods, namely, IS-AE, IN-FG, and DL-FG, were 

manually corrected by an expert. Finally, a reference airway mask was computed as the 

union of these manually corrected volumes.

Accuracy of an airway segmentation method was examined as the percentage of true branch 

detection along the five segmental airway paths (RB1, RB4, RB10, LB1, LB10) up to two 

generations beyond. Also, the branch- level accuracy along all airway paths at different 

generations was analyzed. Moreover, the residual leakage performance was examined in 

terms of leakage count and total leakage volume. Reproducibility was examined along the 

five standardized segmental paths and at different airway tree generations. There was no data 

overlap between training and testing datasets. Thus, one hundred datasets from Datastand 

were used for accuracy analysis at standard dose CT imaging. Note that Datarepro and 

Nadeem et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Datalow were not used for training; thus, they were used in their entirety for performance 

analysis.

III. Results and Discussion

Results of DL-based voxel-level airway lumen likelihood classification are presented in 

Figure 4 using color-coded maximum intensity projections (MIPs). Checkerboard type sub-

region boundary artifacts are visible in (a), where 64 voxel sample grid-spacing without 

overlaps were used. Also, uncertain regions (greenish yellow) appear in (a) around small to 

medium airway branches. Both checkerboard artifacts as well as uncertain regions mostly 

disappear in (b), when a sample grid spacing of 32 voxels with 32-voxel overlapping was 

used. Further increase in sample density with grid spacing of 16 voxels significantly 

increased computation time to 854 seconds from 149 seconds for 32-voxel grid spacing 

without noticeable improvements in lumen classification; see (c). It is notable that likelihood 

averaging from adjacent sub-regions adds no lumen blurring even at fine scales; see (b,c). 

Finally, while the lumen structures are visible in the MIPs of (a-c), lumen color grades at 

finer scales are different justifying the use of multi-parametric FG algorithm for final 

segmentation.

Intermediate results of the DL-FG algorithm at different FG iterations are shown in Figure 5. 

DL-FG adds new airway branches at each iteration and completes the entire tree 

segmentation in thirteen iterations. For the same scan, IN-FG took 95 iterations to complete 

the airway tree segmentation producing visually similar results as DL-FG. It may be 

clarified that the result after the first iteration is the optimum segmentation result using a 

single threshold parameter on DL-based airway lumen classification, and new branches at 

subsequent iterations are added through the FG framework.

A Reproducibility

Figure 6 illustrates repeat scan reproducibility of airway tree segmentation using the DL-FG 

algorithm. For the subject on the top, segmented airway trees in repeat scans have fewer 

branches as compared to the one on the bottom. For both subjects, repeat scan 

reproducibility of airway tree segmentations are visually satisfactory with only a few minor 

differences at peripheral branches. Quantitative results of repeat scan reproducibility on 

Datarepro are summarized in Figure 7. Mean and variance of branch-counts at different 

generations are shown in (a). Branch-count variability up to 5th generation is ‘0’ using both 

methods, while peak branch- counts for both methods occur at 8th generation. Beyond 8th 

generation, average branch-counts for both methods continue decaying suggesting increased 

numbers of missing branches. Agreement of segmented branches in repeat scans are shown 

in (b). Both IN-FG and DL-FG algorithms deliver 97.7% or higher repeat scan 

reproducibility up to 8th generation where the peak mean branch-count occurs in (a).

For the five segmental bronchial paths (RB1, RB4, RB10, LB1, and LB10) and two 

generations beyond, both algorithms were found 100% reproducible except at the sub-sub-

segmental level along RB4. Both algorithms successfully detected the five segmental paths 

and their expected sub-segmental branches in both repeat scans. At the sub-sub-segmental 

level, both algorithms detected expected four branches along each segmental path in both 
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repeat scans, except along RB4, where, on an average, IN-FG and DL-FG algorithms 

detected 3.6 and 3.5 branches, respectively, with 98.6 and 97.2% reproducibility.

B. Accuracy at Standard CT Dosage

Results of accuracy experiments at standard CT radiation dosage for different algorithms are 

presented in Figures 8 and 9 and Table 1. Figure 8 presents the reference mask and airway 

tree segmentation results for two subjects. For the subject at the top row, IS-BE produced 

two leakages near LB1 and a terminal branch in the upper-right lobe, which were removed 

by IS-AE; also, a few branches were added; see the upper-left and right lobes. Results using 

IN-FG and DL-FG are visually similar to the reference segmentation mask with no apparent 

leakages. The two new methods captured additional branches near LB1 missed by the 

industry-standard method even after manual editing. For the case at the bottom row, there are 

no apparent leakages, and more branches are captured. Among different methods, both IN-

FG and DL-FG captured more branches than the industry-standard methods. An entire LB1 

subtree was added by both IN-FG and DL-FG, which were missed by IS-BE and partially 

added by editing (IS-AE). Also, the industry-standard methods missed numerous peripheral 

branches, which were automatically captured by the two new methods. Between the two new 

methods, there are only a few minor differences at peripheral branches, e.g., at the top row 

near RB10. Figure 9 presents results of accuracy analysis. Mean and variability of branch-

counts in reference masks are shown in (a), while the branch-level accuracies are presented 

in (b). IS-AE and the two new methods captured all branches up to the 5th generation 

covering all segmental bronchi. At the 9th generation, where the peak branch count occurs in 

the reference masks, IS-BE, IS-AE, IN-FG, and DL-FG captured 87.0, 90.4, 98.4, and 

95.4% of true branches, respectively. The accuracy results beyond 12th generation are 

insignificant as the number of branches captured beyond this generation are fewer.

For 100 subjects in Datastand, IS-AE as well as the two new methods captured all five 

segmental bronchi for all subjects except for two cases—one missing LB10 and another 

missing RB10. IS-BE missed three additional segmental branches, which were manually 

added (IS-AE). All algorithms including IN-FG missed two expected sub-segmental 

branches for one subject. Both DL-FG and IS-AE missed one additional sub-segmental 

branch, while IS-BE missed another 17 sub-segmental branches. At the sub-sub-segmental 

level, IN-FG missed 44 branches, while DL-FG missed 42 branches. At this level, the 

industry-standard method missed 260 and 56 branches before and after editing. In summary, 

the branch level performance of the three methods IN-FG, DL-FG, and IS-AE are similar 

with minor improvements using the new fully automated methods, especially at the sub-sub-

segmental level.

Results of leakage analysis are summarized in Table 1. Prior to editing, on an average, the 

industry-standard method generated 7.4 leakages at a volume of 449 mm3 per image, which 

were reduced to 1.2 leakages at 54 mm3. Both IN-FG and DL-FG produced fewer than one 

leakage at significantly reduced leakage volume per image (Table 1). The largest leakage 

observed for DL-FG was 29 mm3 or approximately 5×5×5 voxels. Also, the farthest leakage 

voxel for DL-FG and IN-FG among all 100 cases examined in this experiment were 6 mm 

and 9 mm, respectively. Thus, the leakages identified for the two new methods are borderline 
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cases and are within the regime of lumen delineation variability. The largest leakage in the 

industry-standard method was 7,571 and 1,642 mm3 with farthest voxel at 40 and 15 mm 

before and after manual editing, respectively. Also, the high standard deviation in total 

leakage volume per image using the industry-standard methods suggest high performance 

unreliability. Notably, the leakage performance variability is significantly low for the new 

methods suggesting their high reliability. Between the two new methods, the DL-FG method 

outperforms IN-FG, which was expected because DL-FG uses advanced deep learning 

methods for leakage correction, while IN-FG uses conventional SVM approach with a few 

hand-picked features.

C. Accuracy at Low CT Dosage

Accuracy results at low CT radiation dosage are presented in Figures 10 and 11 and Table 2. 

Figure 10 presents the reference mask and airway tree segmentation results for two subjects. 

For the subject at the top row, results by IS-BE show leakages near the upper-right and 

lower-left lobes which were manually removed, and branches were added by IS-AE near the 

lower-right lobe. Results using the two new methods are visually similar to corresponding 

reference masks with no apparent leakages. Also, both new methods captured additional 

branches near the lower- and upper-left lobes and lower-right lobe, which were missed by 

the industry-standard methods even after manual editing. For the case at the bottom row, 

there are no apparent leakages; but there are fewer branches as compared to the case at the 

top row. Among different methods, both IN-FG and DL-FG captured more peripheral airway 

branches than industry-standard methods, e.g., upper and lower left lobes.

Figure 11 presents quantitative accuracy results. Mean and variability of branch-counts in 

reference masks are shown in (a), while the branch-level accuracies are presented in (b). The 

two new methods captured all branches up to 6th generation while IS-BE and IS-AE 

captured all branches only up to 5th generation using low-dose CT input data. At 8th 

generation, where the peak branch-count occurs in reference masks, IS-BE, IS-AE, IN-FG, 

and DL-FG captured 88.1, 92.2, 99.5, and 98.7% of true branches, respectively. Moreover, 

Figure 11(a) shows that mean airway branch count at standard and low radiation reference 

masks are similar up 7th generation, and the difference become visible only at 8th generation, 

and it grows beyond afterward. These results suggest that low radiation CT scans are 

suitable for airway analysis up to the segmental level and two generations beyond. However, 

the performance may not be optimum for peripheral airways.

For the 12 subjects in Datalow, the four methods successfully captured all five standard 

bronchi at the segmental level. IS-AE and the two new methods were able to capture all 

expected sub-segmental branches along the five standardized bronchial paths. Two sub-

segmental branches along RB1, RB4, and LB1 were missed by IS-BE, which were manually 

added in IS-AE results. At the sub-sub-segmental level, both IN-FG and DL-FG missed only 

two branches, while the industry-standard methods missed 51 and 9 branches before and 

after editing. Like the results at standard dosage, the performance of IN-FG, DL-FG, and IS-

AE along five standard bronchial paths are similar with small improvements using the new 

methods, especially at the sub-sub-segmental level.
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Table 2 summarizes the results of leakage analysis. Prior to editing, on an average, the 

industry-standard method generated 10.2 leakages at a volume of 30 mm3 per image, which 

were reduced to 0.4 leakages at 7 mm3 per image after editing. Both IN-FG and DL-FG 

produced 0.3 or fewer leakage at low leakage volume per image. The largest leakage 

observed for DL-FG was 17 mm3. In general, fewer and smaller leakages were observed in 

low radiation results as compared to those at standard radiation dosage. This observation is 

intriguing, and a possible justification is that leakages are often formed at higher generations 

with thinner airway walls, and, in low radiation scans, segmentation methods stop at 

relatively lower generations producing fewer leakages.

IV. Conclusions

CT-based fully automated algorithms for human airway tree segmentation have been 

presented and validated that at least match a method involving manual review and editing of 

an industry standard segmentation approach. [2] A multi-parametric FG segmentation 

algorithm has been developed, which provides a novel iterative framework that starts with a 

conservative parameter and progressively relaxes it until convergence. Effectiveness of the 

FG algorithm in iteratively augmenting airway branches using its parameter relaxation 

model has been demonstrated. Also, it has been experimentally observed that, in terms of 

branch-level accuracy and leakage performance, the fully automated intensity-based FG 

algorithm is superior to the manual edited results. A short coming of the FG algorithm is that 

it requires approximately one hour per CT scan.

To overcome the limitations of the CT intensity-based FG algorithm, while benefitting from 

the multi-parametric framework, a hybrid method combining DL-based airway lumen 

enhancement and FG algorithm has been developed. Specifically, a 3-D U-Net has been 

developed, trained, and validated for computing voxel-level likelihood maps of airway 

lumen from chest CT images. It has been shown that overlapping sub-regions at runtime 

reduces sub-region boundary artifacts and uncertainty. Like the intensity-based version, DL-

based FG algorithm, also, has results superior to the manually edited results. DL-based FG 

algorithm has significantly improved the computational efficiency requiring approximately 

6.5 minutes per CT scan. A major challenge with DL-based methods is related to their 

generalizability. Both training and testing data for our experiments were randomly chosen 

from ten different data acquisition sites with different CT scanners and imaging protocols. 

Also, the method has been applied to a dataset acquired with a different scan protocol at 

significantly reduced radiation. Although low radiation data were not used for training, 

experimental results were better than the industry-standard method with editing. These 

observations suggest that our DL-based FG method is generalizable.

Considering the performance and efficiency, the DL-based FG method is a viable fully 

automated solution for airway segmentation. Although the intensity-based FG algorithm is 

marginally superior to the DL-based version in terms of branch-level accuracy, its 

computation complexity makes it less suitable. An ideal setup for a large study will be to 

generate airway lumen masks for a smaller training dataset using the intensity-based FG 

algorithm; use the results to train a DL-based airway lumen classifier; and finally, apply a 

DL-based FG algorithm for larger study data.
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Figure 1. 
Decaying CT intensities of airway walls from proximal to distal sites in a TLC CT scan. At 

proximal airway sites, high CT intensity of −456 HU or similar values are observed for 

airway walls, which are reduced to as low as −832 HU at distal sites.
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Figure 2. 
Illustration of intermediate steps during an iteration of the FG algorithm. (a) Confident 

airway volume CAV and its centerline (blue) at the beginning of an iteration. (b) Initial 

region growing from CAV. (c) Identification of possible leakages (yellow dots) by locating 

regions with rapid growth (centerline in green). (d) Confirmation of leakages (magenta). (e) 

Augmentation of leakage-free CAV and insertion of forbidden volume (red) around the 

leakage-root. The algorithm enters the next iteration with the result of (e) as input i.e. CAV, 

its skeleton, and FV.
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Figure 3. 
Block diagram of the major steps of the deep learning-based FG airway segmentation 

algorithm.
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Figure 4. 
Results of DL-based voxel-level airway lumen likelihood classification. (a-c) Color-coded 

MIPs of voxel-level likelihood maps generated using our modified 3-D U-Net. Sample grid 

spacings of 64, 32, and 16 voxels were used for (a-c), respectively. Checkerboard-type sub-

region boundary artifacts are visible in (a), which mostly disappear in (b,c).
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Figure 5. 
Intermediate segmentation results of airway lumen segmentation at different FG iterations 

using the DL-FG algorithm.

Nadeem et al. Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Repeat scan reproducibility of CT-based airway lumen segmentation for two different 

human subjects using the DL-FG algorithm.
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Figure 7. 
Quantitative repeat CT scan reproducibility oi airway segmentation using IN-FG and DL-

FG. (a) Mean (solid line) and variance (shaded region) of segmented airway counts at 

different generations. (b) Number of common segmented branches in repeat scans at 

different generations. Mean branch-counts of (a) are copied at the bottom.
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Figure 8. 
Accuracy of different airway segmentation methods as compared to the reference mask. 

Results from two subjects are shown on two rows.
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Figure 9. 
Quantitative accuracy of airway tree segmentation at standard radiation CT scans. (a) Mean 

and variance of airway counts in reference segmentation masks at different generations. (b) 

Percentage of true branches captured by different methods. Mean branch-counts of (a) are 

copied at the bottom.
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Figure 10. 
Accuracy of different airway segmentation methods at low CT radiation. Results from two 

subjects are shown on two rows.
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Figure 11. 
Quantitative accuracy of airway tree segmentation for low radiation CT scans. (a) Mean 

(blue line) and variance (shaded region) of airway counts at different generations in 

reference segmentation masks for low radiation CT scans. Mean airway branch counts of 

reference masks at standard CT radiation are shown by the dotted line. (b) Percentage of true 

branches captured by different methods.
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TABLE I

Statistics of leakages by different airway segmentation methods

IS-BE IS-AE IN-FG DL-FG

Leakage count 7.4±8.4 1.2±1.6 0.7±1.0 0.4±0.8

Total leakage volume (mm3) (mean±std.) 449±1143 54±185 20±40 10±23

Largest leakage size (mm3) 7571 1642 173 29
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TABLE II

Statistics of leakages by different airway segmentation methods at low radiation CT scans

IS-BE IS-AE IN-FG DL-FG

Leakage Count 10.2±4.0 0.4±0.5 0.3±0.5 0.1±0.0

Total Leakage Volume (mm3) (mean±std.) 30±25 7±9 6±9 l±0.0

Largest leakage size (mm3) 98 21 19 17
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