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Abstract

Principles of Metalevel Control

by

Nicholas James Hay

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Stuart Russell, Chair

Intelligent agents perform computations to help them decide how to act. But which
computations will best inform these decisions? How long should an agent think before acting?
Given the impracticality of performing all possible relevant computations, AI systems need
effective strategies for metalevel control—that is, for choosing computations that contribute
most to the (object-level) action selection problem.

This thesis presents a theoretical basis for metalevel control problems, situating it within
the frameworks of Bayesian selection problems and Markov decision processes. We present
some fundamental results concerning the structure of these problems and the nature of
their solutions. These results establish bounds on the number of computations performed
by optimal policies and clarify how the context of multiple actions affects the choice of
computation.

For a more empirical investigation of metalevel control, we apply reinforcement learning
techniques to the problem of controlling Monte Carlo tree search. This requires learning a
metalevel policy to choose which computation to perform as a function of the internal state
of the tree search. To represent an learnable class of efficient policies, we describe how Monte
Carlo tree search can be implemented using pointed trees, a recursive data structure that
allows efficient evaluation of recursive functions and their derivatives. We propose a concrete
class of policies that includes UCT and AlphaGo as special cases, along with a method for
providing metalevel shaping rewards. We show that by initializing the metalevel policy to
UCT, reinforcement learning can find metalevel policies that outperform UCT for smaller
numbers of computations in the domain of computer Hex.

These results demonstrate the benefits of a solid theoretical understanding of metalevel
control, as well as the potential for using metalevel reinforcement learning to replace hand-
crafted algorithm design.

1



Contents

Contents i

List of Figures iv

List of Tables v

List of Symbols vi

1 Introduction 1
1.1 Metalevel control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Decision-theoretic metareasoning . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Selection problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Monte Carlo tree search . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Overview of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Mathematical background 14
2.1 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Sets and sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Markov decision processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Factoring and restricting MDPs . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Metalevel control 21
3.1 Beta-Bernoulli metalevel control problem . . . . . . . . . . . . . . . . . . . . 22
3.2 Metalevel control problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Stationary and Markov MCPs . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Metalevel MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Factored metalevel MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Deriving the cost of time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



4 Structure of metalevel policies 38
4.1 Bounding computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Bounding in expectation . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Bounding 1-action metalevel MDPs . . . . . . . . . . . . . . . . . . . 42
4.1.3 Bounding k-action metalevel MDPs . . . . . . . . . . . . . . . . . . . 45

4.2 Context effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1 No index policies for metalevel decision problems . . . . . . . . . . . 46
4.2.2 Context is not just a number . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Context and stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Metalevel reinforcement learning 54
5.1 Challenges of metalevel reinforcement learning . . . . . . . . . . . . . . . . . 55
5.2 Pointed trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Definition and recursive construction . . . . . . . . . . . . . . . . . . 56
5.2.2 Recursive functions of pointed trees . . . . . . . . . . . . . . . . . . . 58
5.2.3 Local operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.4 Local operations and recursive functions . . . . . . . . . . . . . . . . 59
5.2.5 Derivatives of recursive functions . . . . . . . . . . . . . . . . . . . . 62

5.3 Monte Carlo tree search (MCTS) . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 MCTS as a metalevel MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5 Metalevel policy class for MCTS . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5.1 UCT and AlphaGo metapolicies . . . . . . . . . . . . . . . . . . . . . 69
5.5.2 Metapolicy class: Recursive component . . . . . . . . . . . . . . . . . 71
5.5.3 Metapolicy class: Parameterized local component . . . . . . . . . . . 73

5.6 Metalevel shaping rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Experiments 77
6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1.1 Object-level environment: Hex . . . . . . . . . . . . . . . . . . . . . . 77
6.1.2 Metalevel environment . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1.3 Calibrating UCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1.4 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.1 Flat architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.2 Factored architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.3 Factored architecture initialized to UCT . . . . . . . . . . . . . . . . 83
6.2.4 Metalevel reward shaping . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Conclusions 89
7.1 Understanding metalevel control . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1.1 Mechanical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ii



7.1.2 Bayesian model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.1.3 Complementary models . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4 Parting thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 97

iii



List of Figures

1.1 Two different environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Hex environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Metalevel control problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 An agent deciding between actions . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 The k = 1 Beta-Bernoulli metalevel MDP . . . . . . . . . . . . . . . . . . . . . 29
3.3 Illustration of the upper bound of Theorem 3.16 . . . . . . . . . . . . . . . . . . 34

4.1 Structure of the optimal policy of the 1-action Beta-Bernoulli metalevel MDP . 39
4.2 Stopping in the 2-action Beta-Bernoulli metalevel MDP . . . . . . . . . . . . . . 45
4.3 Traces of the optimal policy for the 3-action Beta-Bernoulli metalevel MDP . . 47
4.4 The value function of a non-indexable metalevel decision problem . . . . . . . . 49
4.5 Two-action Bernoulli metalevel control problem . . . . . . . . . . . . . . . . . . 50
4.6 Optimal Q-function for the two-action Bernoulli metalevel control problem . . . 51

5.1 Decomposition of a pointed tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 The semantics of message passing over pointed trees . . . . . . . . . . . . . . . . 60
5.3 Valid messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Updating messages after a local operation . . . . . . . . . . . . . . . . . . . . . 62
5.5 A trace of Monte Carlo tree search . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.6 Neural network architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 A game of 3× 3 Hex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Learning curve for the flat policy architecture . . . . . . . . . . . . . . . . . . . 81
6.3 Learning curve for the factored policy architecture initialized to UCT . . . . . . 83
6.4 Trace of rewards and potential of the maximum estimated action-utility shaping

reward estimated by the average reward of rollouts . . . . . . . . . . . . . . . . 86
6.5 Trace of rewards and potential of the maximum estimated action-utility shaping

reward estimated by the Beta-posterior . . . . . . . . . . . . . . . . . . . . . . . 87

iv



List of Tables

6.1 Average reward of UCT against itself for varying weight k . . . . . . . . . . . . 80
6.2 Average reward for the flat policy architecture . . . . . . . . . . . . . . . . . . . 80
6.3 Average episode length and number of episodes per batch . . . . . . . . . . . . . 82
6.4 Average reward for the factored policy architecture . . . . . . . . . . . . . . . . 82
6.5 Average reward for the factored policy architecture initialized to UCT . . . . . . 83
6.6 Average reward for the factored policy architecture initialized to UCT, varying

test and training number of computations . . . . . . . . . . . . . . . . . . . . . 84
6.7 Average reward for the factored policy architecture initialized to UCT and shaped

by maximum estimated action-utility estimated by the average rollout reward . 86
6.8 Average reward for the factored policy architecture initialized to UCT and shaped

by maximum estimated action-utility estimated by the Beta-posterior . . . . . . 87

v



List of Symbols

♦ The unique empty context, page 57

|h| The length of a finite sequence h ∈ X∗ of elements of a set X, page 14

⊥ The unique terminal state of an MDP, page 15

π A policy for an MDP, page 15

At Random variable giving the action taken by policy π in MDP M at time
t, page 15

act In a metalevel MDP, stop and take the action of maximum posterior ex-
pected utility, page 32

A(s) Set of actions possible in a state s ∈ S of an MDP, page 15

Context Either the set of all contexts, or one Context(C,N, i, T1, . . . , Tk) con-
structed out of a context C, a node N , an index i ∈ {0, . . . , k} and k ≥ 0
trees Ti, page 57

down(T, i) Return the pointed tree T with the point moved down to the ith child of
the current point or T if this is impossible, page 59

E[·] The expectation of a random quantity, page 15

EπM [·] The expectation of a random quantity, where the random variables St, At, N
are a realization of MDP M controlled by policy π, page 16

ε The empty sequence, page 14

hi:j The subsequence of h ∈ X∗ from the ith to the jth elements, inclusive of
its endpoints, page 14

insert(T, i, T ′) Return the pointed tree T with T ′ inserted before the ith child of the
current node or T if this is impossible, page 59

M A Markov decision process (MDP), equal to a tuple (S,A, T,R), page 15

vi



M const
u The constant metalevel MDP of value u ∈ R, also denoted simply u,

page 32

M1 +M2 The composition of two MDPs, page 18

make tree(N) Construct a Tree from a Node N , page 59

modify(T,N ′) Return the pointed tree T with the point replaced by N ′, page 59

µ(s) The action-utility estimator of a metalevel MDP, mapping a state s ∈ S
to a k-dimensional real vector µ(s) ∈ Rk giving estimated utilities of all k
actions at that state, page 28

µ∗(s) A coherent upper bound on a metalevel MDP, i.e., such that µ∗(s) ∈ R
is an upper bound on maxi µi(s), and forms a martingale when composed
with a realization of the MDP as a Markov chain, page 40

µi(s) The action-utility estimator for the ith action of a metalevel MDP, map-
ping a state s ∈ S to a real value µ(s) ∈ R giving the estimated utility of
that action at that state, page 28

N Random stopping time giving the number of actions taken by policy π in
MDP M before termination, page 15

Context The set of nodes, page 57

P[·] The prior probability of an event, page 15

PπM [·] The prior probability of an event, where the random variables St, At, N
are a realization of MDP M controlled by policy π, page 16

π∗M(s) An optimal policy for MDP M , evaluated at state s ∈ S, page 16

point(T ) Denotes the Node the pointed tree is currently pointing to, page 58

PointedTree Either the set of all pointed trees, or one PointedTree(C,N, T1, . . . , Tk)
constructed out of a context C, a node N and trees Ti, page 57

Ψconst
u The constant MCP of value u ∈ R, page 32

Qπ
M(s, a) Q-value function of policy π in the MDP M given initial state s ∈ S and

action a ∈ A, page 16

Q∗M(s, a) Q-value function of the optimal policy in MDP M given initial state s ∈ S
and action a ∈ A, page 16

R(s, a, s′) Reward function of an MDP, giving the reward received upon transitioning
from state s by action a to state s′, page 15

vii



range(X) Set of possible values for the random variable X, page 15

S Set of states in an MDP, page 15

St Random variable giving the state of MDP M under policy π at time t,
page 15

T (s, a, s′) Transition function of an MDP, giving the probability of transitioning to
state s′ ∈ S ∪ ⊥ from state s ∈ S after action a ∈ A(s), page 15

Tree Either the set of all trees or one Tree(N, T1, . . . , Tk) constructed out of a
node N and k ≥ 0 trees Ti, page 57

up(T ) Return the pointed tree T with the point moved up to the parent of the
point, or T if this is impossible, page 59

V π
M(s) Value function of policy π in the MDP M given initial state s ∈ S, page 16

V ∗M(s) Value function of the optimal policy in MDP M given initial state s ∈ S,
page 16

X∗ The set of finite sequences of elements from a set X, including the empty
sequence ε, page 14

viii



Acknowledgments

My deepest thanks go to my advisor Stuart Russell, the ideal guide for those ventur-
ing into the metalevel. His broad perspective on AI, long history with metareasoning and
exacting scholarly standards have informed every aspect of this work. I am particularly ap-
preciative of his ability to state the key issues, ask the right questions and point me in helpful
directions, all of which have pushed me to achieve more than I’d thought was possible, even
(especially) when I thought I’d done enough.

I’m grateful to my committee members, Pieter Abbeel and Rhonda Righter, for their
insights and helpful feedback, and especially for their encouragement during the final disser-
tation stages.

Many others have guided me through earlier stages of this journey. I’m honored to
thank Cris Calude, my supervisor at the University of Auckland, who set me on the path
of research, taught me LATEX and was always ready with sage advice. I’m also grateful
for early encouragement and mentorship from James Goodman, who almost tempted me
into computer architecture research. I have Joe Halpern to thank for encouraging me to
pursue a PhD in the US while I was a visiting student at Cornell, and for teaching me that
apparently obvious foundations always have a variety of compelling alternatives if only you
look for them. Thanks to Eric Horvitz, for taking the time to talk to an eager young graduate
student about metareasoning and the future of AI.

Berkeley has served as the ideal setting for my graduate studies. Thanks to my fellow
RUGS members for their patience, comments and questions as I slowly came to under-
stand the metalevel: Gregory Lawrence, Jason Wolfe, Shaunak Chatterjee, Nimar Arora,
Kevin Canini, Norm Aleks, Rodrigo de Salvo Braz, Erik Sudderth, Emma Brunskill, Sid-
dharth Srivastava, David Moore, Lei Li, Yusuf Erol, Will Cushing, Daniel Duckworth, Dylan
Hadfield-Menell, Constantin Berzan and Yi Wu.

Thanks also to my Soda Hall batchmates: Mohit Bansal, Jon Barron, Dave Golland,
Jeremy Maitin-Shepard, Aditi Muralidharan, Ahn Pham and Jie Tang. I have fond memories
of adjusting to our new graduate student life together in that windowless basement office.

Special thanks to Dave for the Thanksgiving meals and wide-ranging conversations over
Thai food; John DeNero, for teaching me how to teach (and introducing me to Samosa), and
John Schulman, for all the discussions about brains and AI, future and present.

I’ve had the great fortune of finishing this chapter of my life while in the supportive
environment of Vicarious. I’m especially appreciative for the seemingly infinite patience of
Dileep George, Scott Phoenix, Michael Stark, Charlotte Bowell and Devin Gribbons.

I’m grateful to have known a community of people passionate about AI and its impact
on humanity. Thanks to Eliezer Yudkowsky, Michael Vassar, Marcello Herreshoff, Peter
de Blanc, Jey Kottalam, Daniel Dewey, Jasen Murray, Geoff Anders, Carl Shulman, Anna
Salamon Andrew Critch, Nick Tarleton, Paul Christiano, Jaan Tallinn, Nate Soares, Owain
Evans, Roger Grosse, Shane Legg, Toby Ord, Justin Shovelain, Michael Anissimov, Seth
Baum and Emil Gilliam.

ix



I cannot imagine having gotten through this without the support of friends and family
both back home in New Zealand and here in the Bay Area.

I’m thankful for my friends back home, James & Judy Ting-Edwards, Jamie & Emma
Robertson, Tess & Jared Mason, Nathan & Catrien (Fick) Kilpatrick, Sam Mockridge. I’m
always looking forward to my next Christmas visit, and fondly back on my last.

My internship at Google was life-changing in several respects. Thanks to Moshe Looks,
for his mentorship and for persistently asking “How many pages?”; to Jonni Kanerva, for all
the advice and linguistic fun; and to Praveen “Aphorist” Paritosh, for all his questions.

Special thanks to Adam Safron, for setting my sights high and always being there; to
Gopal Sarma, for keeping me going and reminding me this is only the beginning; to David
Andre, for support and advice from one who’s been there before; and to Michael Ellsworth
& Julia Bernd, for all the late night writing/cheese visits.

I’ve managed to gain two California families during the last few years. Thanks to the
Alvidrezim—Marc & Jill & Zev & Ari & Talia—for providing a home away from home, and
to my newest relatives, I-Cheng, Phoebe, Carrie and Sand. I’m looking forward to spending
more time with you!

Profound thanks to my family: Mum and Dad (Wendy and David), Jane and Andrew. I
leave home to spend a semester overseas, and look what happens! Thanks for your constant
(if sometimes teasing) support—I could feel it all the way from across the Pacific. And yes,
finally, really this time, I’m not even joking: I’m done!

Finally, Nancy, I’ll never thank you for everything you are, for everything you do for me,
for everything you mean to me... enough! I couldn’t imagine a better partner.

x
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Chapter 1

Introduction

1.1 Metalevel control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Decision-theoretic metareasoning . . . . . . . . . . . . . . . . . . 5
1.2.2 Selection problems . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Monte Carlo tree search . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Overview of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

It’s a commonplace that you should think before you act, and we sometimes do. Thinking,
at least in theory, can help us figure out how to act. We can consider our options, evaluate
their consequences and choose what we believe to be the best course of action. Likewise,
artificial agents exhibiting this aspect of intelligence perform computations, for the same
reasons and in a similar fashion.

How do humans come to be able to think? As with all skills, practice plays a central
role. By trying to think, paying attention to the consequences and making unconscious
adjustments to improve matters over time, we learn how to think better. We learn that
thinking can lead us to new options, or can tell us more about known options; we learn how
long to think before acting. In short, we learn how to get better at controlling our own
decision-making processes. Can AI systems learn how to compute, and compute better, in
the same way?

This thesis explores this question from two angles: one theoretical, the other practical.
To formalize our learning problem, we adopt and extend a theoretical framework in

which computation is characterized as a special metalevel action, one that helps an agent
(or system) gather information about the value of other possible actions. Different specific
computations yield different information; thus computing better, for these purposes, means
choosing more informative computations. The agent’s goal, in this casting, is to develop

1



(a) Maze navigation environment

⊙
oo

OO

//

(b) Hex board game environment

Figure 1.1: Two different environments, each with three possible actions: in the maze, move
left, up or right; in the game, place a blue piece in one of the unoccupied (white) locations.
In each case, an agent must choose one of these actions and may perform computations in
order to determine which one is best.

increasingly effective policies (or strategies) for choosing computations—that is, to learn
optimal algorithms for metalevel control.

We also approach our learning question in a more practical vein. Since metalevel control
problems can be analyzed as a kind of (metalevel) Markov decision problem, we can investi-
gate how techniques for learning can be applied to learn metalevel policies. In particular, we
apply reinforcement learning techniques experimentally in the context of AI game-playing,
specifically for the game Hex, and find that learned metalevel policies can outperform fixed
ones.

Before embarking on these formal and experimental explorations, we provide in this
chapter a few guideposts the reader may find useful along the way. We first give an intuitive
introduction to these theoretical concepts and their practical application using a simple
example (Section 1.1). We then situate the current work with respect to related lines of
research (Section 1.2) and the contributions it makes to these (Section 1.3). Finally, we give
an overview of the rest of the thesis (Section 1.4).

1.1 Metalevel control

Imagine an agent facing three possible actions in an uncertain environment (Figure 1.1).
Each action may lead to a new situation that may be better or worse, perhaps with a
different set of options.

If the agent has the computational means to reason about all three actions and explore
each of the (expected) consequences, it might gain insights that help it obtain a better
outcome. But assuming time and computation may be costly, it must decide whether to
spend any computational resources on any of the actions, and if so, how much, what kind and

2



in what order. In short, besides the original set of three actions in its external environment
(the object level), it also faces a host of other decisions about those actions (the metalevel).

A standard way to formalize the object-level decision, especially for game-playing and
other AI problems, is as an agent-environment interaction (Russell and Norvig, 2010).
The agent takes an observation as input and returns an action as output, while the environ-
ment takes an action as input and returns an observation, reward and termination signal.
Together they form a dynamic system, exchanging alternating actions and observations,
where the objective is to maximize the total reward the agent receives from the environment
before the end of the interaction. Choosing the best policy for this search through the state
space of possible computations is the metalevel control problem.

But in fact, the metalevel decision can be characterized the same way—though with the
set of actions expanded appropriately to include metalevel computations. In both cases, the
agent needs a policy for which actions to choose. If the state space can be formalized as a
tree, then tree-search algorithms correspond to policies for state-space exploration.

Figure 1.2 illustrates the metalevel control problem for tree search, where the object-level
actions are moves in a game-playing situation. In this case, computations expand leaves (A,
B or C) of the tree to further explore possible future consequences. The choice of which leaf
to expand is the choice of which computation to perform. Figure 1.3 shows how the metalevel
state of the search procedure continues after expanding leaf B (Figure 1.3a) and then leaf E
(Figure 1.3b). Each takes the metalevel system to a new state with new metalevel actions.

A CB
Figure 1.2: Three actions in the game of Hex, which can be explored at A, B or C.

In this thesis I explore and formalize the informal intuition above—that metalevel control
problems are direct analogs of object-level decision processes. This yields both theoretical
insights and practical benefits. Theoretically, connecting control problems to (metalevel)
Markov decision processes allows us to draw on the statistical framework of Bayesian selection
problems for richer theoretical analysis. I focus on computations that involve simulating and
evaluating possible future action sequences and present some fundamental results concerning
the structure of these problems and the nature of their solutions. These results include

3



Figure 1.3: Metalevel control problem: which computation, if any, to perform next?

A C

D E

(a) After expanding Figure 1.2 at leaf B, the
system can now choose between A, C, D and E.

A C

D

F
(b) After expanding Figure 1.3a at leaf E, the
system can now choose between A, C, D and F.

bounds on the number of computations performed by optimal policies, and an understanding
of how the context of multiple actions affects computation choice. Practically, we show how
to apply reinforcement learning to a class of metalevel control problems (i.e., Monte Carlo
tree search), finding solutions that outperform hand-crafted algorithms (i.e., UCT).

1.2 Related work

Our work relates most closely to three areas of research: decision-theoretic approaches to
metareasoning and metalevel control, selection problems and Monte Carlo tree search algo-
rithms. We treat each in turn.
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1.2.1 Decision-theoretic metareasoning

Matheson (1968) noted that the metalevel decision problem can be formulated and solved
decision-theoretically, borrowing directly from the related concept of information value
theory (Howard, 1966). Matheson studied the metalevel decision problem in the context of
human decision analysis, formulating it decision-theoretically and approximating its solution,
observing that computations can be selected according to the expected improvement in
decision quality resulting from their execution.

I. J. Good (1968) independently proposed using this idea to control search in chess. Good
(1971) later defined “Type II rationality” to refer to agents that maximize expected utility
less the cost of the expected time and effort taken to think and do calculations, i.e., agents
that optimally solve the metalevel decision problem before acting.

As interest in probabilistic and decision-theoretic approaches in AI grew during the 1980s,
several authors explored these ideas further. Horvitz (1987) studied beliefs and actions under
resource constraints, presenting classes of approximations and heuristics. Dean and Boddy
(1988) introduced, in the context of planning, the notion of anytime algorithms (called
flexible algorithms by Horvitz (1987); see below): algorithms that can be interrupted at
any point during computation to return a result whose utility is a function of the computation
time. Doyle (1988) formalized and studied metareasoning as rational self-government, where
the agent reflects upon itself in order to guide its own reasoning. Fehling and Breese (1988)
proposed an architecture for choosing between different problem-solving methods based on
their relative costs and benefits, measuring benefits as the value of information provided by
the problem-solving method.

The most direct antecedent to this work is that of Russell and Wefald (1988a,b, 1989,
1991a,b), who formulated the metalevel sequential decision problem, employing an
explicit model of the results of computational actions. In particular, Russell and Wefald
(1989) addressed the design of metalevel policies for game tree search, where each computa-
tion performed a leaf expansion followed by minimax backup. In order to estimate the value
of a computation, they used a probabilistic model of the computation’s result, learned from
the statistics of a set of training positions. This estimated the value of a computation by
the improvement in decision quality after performing that one computation (the single-step
assumption), selecting the computation that maximized this (the meta-greedy policy). They
applied the resulting algorithm, MGSS*, to the control of game-playing search in Othello
with encouraging results.

More recently, Tolpin and others have applied decision-theoretic metareasoning to de-
fine metalevel control policies that optimize analytically derived bounds on the value of
computation. Such policies were found to be quite successful at controlling several classes
of algorithms: depth-first search in constraint satisfaction problems (Tolpin and Shimony,
2011), Monte Carlo tree search (Hay et al., 2012), A* search (Tolpin et al., 2013) and IDA*
search (Tolpin et al., 2014).
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Anytime algorithms

Anytime algorithms, called flexible algorithms by Horvitz (1987), compute for a vari-
able amount of time before returning a result. A performance profile estimates the quality
of the algorithm’s result as a function of the time given to it. Performance profiles can be used
to decide how long to run the algorithm, weighing the improvement in result quality against
the cost of time. Russell and Zilberstein (1991) distinguish two kinds of anytime algorithms:
contract algorithms, which must be given in advance the amount of time they have to
compute, and interruptible algorithms, which can be interrupted without warning. They
show by an elegant doubling construction that a contract algorithm can be converted into
an interruptible one that requires at most four times the computation. They study several
constructions for forming an anytime algorithm from anytime components, showing how to
allocate time among the components and how to determine the performance profile of the
composite algorithm from those of its components. Zilberstein and Russell (1996) show that
while the problem of allocating computation time optimally to anytime components is in
general NP-complete, in certain cases a local compilation approach yields a globally optimal
allocation. With online monitoring of the progress of anytime algorithms, time allocation
can be continuously adjusted to the actual performance of the algorithm (Horvitz et al.,
1989; Horvitz, 1990; Horvitz and Rutledge, 1991; Zilberstein, 1993; Hansen and Zilberstein,
1996). More recent work extends anytime algorithms (Kumar and Zilberstein, 2010) and
their monitoring (Carlin and Zilberstein, 2011) to the multiagent setting.

Continual computation (Horvitz, 1997, 2001) extends the anytime setting to the case
where a system receives a sequence of problems with interspersed idle time. Horvitz derives
optimal policies for using this idle time to perform valuable precomputations in various spe-
cific settings, along with presenting a number of applications. Shahaf and Horvitz (2009)
further extend this to the setting where problems are composed of subtasks that may be
shared, presenting complexity hardness results and polynomial time approximation proce-
dures.

Bounded optimality

Russell (1997, 2014) proposes that achieving the long-term goal of AI, the creation and un-
derstanding of intelligence, requires a precise notion of intelligence. Russell considers four
possible definitions and finds flaws in all but the last: perfect rationality, calculative ratio-
nality, metalevel rationality and bounded optimality. Perfect rationality, in which agents
exhibit perfectly optimal behavior, is impossible in all but trivial environments. Calcula-
tive rationality, in which agents are perfectly rational given unbounded time to compute,
can yield arbitrarily poor behavior given bounded time. Metalevel rationality refers to
an agent controlling its computations in an optimal manner; it is, sadly, just as impossible
as perfect rationality. By contrast, bounded optimality, in which agents exhibit the best
behavior possible given the limits of the architecture on which the agent is implemented, is
suitable as a foundation: it is always possible to achieve; it is theoretically tractable; and
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the constrained optimization problem captures a number of intuitions about intelligence.
Simon (1947, 1982) discussed bounded rationality informally, while Russell and Subrama-

nian (1995) put it on a formal footing: an agent is bounded-optimal for a given machine
architecture in a given environment class if it is of maximal expected utility among all agents
implementable on that architecture. A central motivation for metalevel control is as a tech-
nique to approximate bounded optimal agent design, by approaching designs that achieve
metalevel bounded optimality: developing bounded agents whose interaction with the
world is not direct, but mediated by controlling the computations of an object level.

Formalizing metalevel control

Russell and Wefald (1991a) used the idea of a joint-state system, i.e., one whose state
consists of the pair of an environment state and an internal state of the agent, in their for-
malization of metalevel control. Parr and Russell (1998); Andre and Russell (2002); Marthi
et al. (2005) formalized this joint-state formulation using MDPs in the context of hierar-
chical reinforcement learning. This setting is in some sense the opposite of metalevel
control: rather than seeing the choice of a single external action as composed of a multitude
of metalevel choices (e.g., seeing choosing where to step as composed of many choices of
simulations of possible foot trajectories), it composes the single external action itself into a
larger plan of behavior (e.g., composing where to step into the larger plan of walking to a
destination).

Harada and Russell (1999) consider what is necessary to formalize the value of com-
putation, taking the case of lookahead search in MDPs with application to playing Tetris.
They pose this as a reinforcement learning problem in the joint-state MDP, comparing three
metalevel controllers: one that uniformly searches to depth 1, one that uniformly searches
to depth 2, and one that selects whether to search to depth 1 or 2 in a state-dependent
way, learned by reinforcement learning. The third uniformly outperforms the first two no
matter how much time is given to the controller. Harada and Russell further argue for the
benefits of a formalism capable of handling active interaction between the object level and
the metalevel where, for example, the object level can interrupt the metalevel while it is
computing if something important arises.

Pearson (2006) illustrates how computation can be viewed as information gathering, ar-
guing that there’s no difference between a doctor performing a test on each of a sequence of
patients, and the same doctor deducing the test results of a sequence of patients after mem-
orizing their records. Both could be formalized as what we would term a Beta-Bernoulli
metalevel control problem (see Section 3.1). Following Matheson (1968), this directly re-
lates the value of information to the value of computation. Pearson applies this perspective to
the problem of sampling in influence diagrams, proposing an algorithm that explicitly repre-
sents a Dirichlet distribution over the (unknown) distribution of the utility node conditional
on actions and observations. This distribution is updated by performing random samples
of the influence diagram, which give evidence about this unknown distribution. Pearson
proposed several heuristics for selecting computations, including selecting the computation
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maximizing the myopic value of information, selecting the computation that has positive
k-step value of information for the smallest k, and selecting the computation that is about
an action with second-best expected utility. Empirically, Pearson examined only the myopic
policy, showing that it outperformed several others on this problem.

1.2.2 Selection problems

Bechhofer (1954) introduced the ranking and selection problem, where the agent has
a set of alternative actions to decide between, but can repeatedly sample (simulate) their
value before making a choice. How should an agent choose samples in order to make the
best final choice?

In early applications, the samples were physical information-gathering actions, such as in
agriculture, where sampling involves sowing a field with a grain variety, watching the grass
grow, then measuring its yield. This was later applied to discrete-event simulation (Swisher
et al., 2003), where sampling involves performing a computer simulation of a system. The
choice of which simulation to perform is metalevel control in another guise.

Bechhofer (1954) studied the ranking and selection problem in a frequentist setting,
finding policies that have good performance on the worst-case probability of selecting the
best action.

Decision-theoretic approaches

Raiffa and Schlaifer (1968) first proposed the use of Bayesian decision theory for the ranking
and selection problem, studying the problem of maximizing the expected utility of the chosen
action given an independent normal prior on the action’s utilities.

Most subsequent research has, however, either used the worst-case performance (following
Bechhofer) or aimed to maximize the probability of correctness. (See Bechhofer et al. (1995)
and Swisher et al. (2003) for reviews.)

We pick up the thread with Frazier and Powell (2007) who consider the setting with
k actions whose utilities are distributed according to independent normal priors, and in
which n measurements (corrupted by independent normal noise) can be made of the actions’
utilities. Frazier and Powell define the knowledge gradient policy as that which performs
the myopically optimal sample at each step, i.e., samples the action that would be optimal
to sample if there were only one sample left to perform, which can be computed in closed
form in this setting.

Subsequent work extends this basic idea to a number of other settings, deriving and
improving upon earlier less principled policies. Frazier and Powell (2008) consider the setting
where the prior is a normal-inverse-gamma distribution and there is a cost function C(n) on
the number of samples performed allowing early stopping. This gives a principled derivation
for a previously proposed policy for choosing samples (LL1 of Chick et al. (2007)) but with
a stopping rule that they empirically show to outperform earlier work. Frazier et al. (2009)
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consider the case with a correlated normal prior, given an algorithm for computing the
knowledge gradient policy exactly in time linear in the number of actions.

Knowledge gradient algorithms are myopic. Chick and Frazier (2012) use a continuous-
time approximation to address the non-myopic case. The continuous-time problem can
be put into a canonical form by change of variables and solved by numerical methods,
yielding two approximate policies ESPB and ESPb for the original discrete time problem.
ESPB uses the full numerical solution to decide what to do, while ESPb approximates the
numerical solution by the boundary of its continuation region. In their experiments, ESPb

outperforms a wide selection of prior policies, while their implementation of ESPB proved
too computationally expensive to use in practice.

1.2.3 Monte Carlo tree search

Metalevel control can be applied to algorithms using various kinds of computations. In this
thesis we’ll focus in particular on those which use Monte Carlo methods, in which random
sampling is used to estimate the expected value of a distribution based on the average of the
samples drawn from it.

Monte Carlo methods for sequential decision problems

There have been several applications of Monte Carlo methods to sequential decision problems,
i.e., where the agent will perform not just one but a sequence of actions. In the context of
game-tree search, Abramson (1990) introduced the expected-outcome model that defines
the value of a game position as the expected outcome given random play, proposing that this
value be estimated by the Monte Carlo method of simulating random play and averaging its
outcome. Bouzy and Helmstetter (2004) used a variant of this method to directly evaluate
the value of a move in the context of computer Go, finding it performed well against more
knowledge-based approaches.

Separately, Kearns et al. (2002) developed a method, sparse sampling, for choosing
actions in an MDP given the ability to perform simulations of it. Sparse sampling randomly
samples a uniform lookahead tree of possible futures from a given state to a fixed depth,
selecting the action based on this tree by alternate maximization and averaging. Kearns
et al. show sparse sampling computes near-optimal actions in time independent of the size
of the state space but exponential in the lookahead depth.

The straightforward application of Monte Carlo methods to evaluating the quality of
actions in the sequential setting has a central weakness: the quality of an action is evaluated
assuming future actions are determined randomly, when in fact they will be chosen by the
agent. The underlying assumption is that the one decision you are making now is the only
sensible one you’ll ever make, which yields various biases, e.g., away from reliable strategies
that require a sequence of well-chosen actions to work. Sparse sampling explicitly evaluates
a tree of future consequences so it doesn’t suffer this error. However, it expands the tree
uniformly, yielding exponential inefficiency for long time horizons.
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UCT

Kocsis and Szepesvári (2006) take a step toward resolving both difficulties with the UCT
algorithm. UCT operates in the context of Monte Carlo tree search (MCTS) algorithms,
that progressively build up a lookahead tree from the current state. Computations in MCTS
take the form of simulating a randomized sequence of actions leading from a leaf of the
current tree to a terminal state. UCT is primarily a method for selecting a leaf from which
to conduct the next simulation. UCT chooses a leaf by starting at the root of the tree, which
corresponds to the current state, then repeatedly choosing branches until a leaf is reached.

As described in Section 1.1, the choice of which leaves in a search tree to expand is a
prototypical example of a metalevel control problem. Any particular strategy for making
this choice forms a metalevel policy. UCT draws upon the theory of bandit problems
(Berry and Fristedt, 1985) for its metalevel control policy, using the bandit algorithm UCB1
(Auer et al., 2002) to choose which branch to take within the tree. (See Section 1.2.3 for
more on bandit problems.) Kocsis and Szepesvári (2006) show that UCT’s estimates of the
utility of the best action converges at rate O( logn

n
) in the number of simulations n, and that

the probability of simulating a suboptimal action at the root converges to zero polynomially.
Variants of UCT form the core for a large family of successful algorithms, with notable

successes in computer Go with the programs MoGo (Gelly and Silver, 2011) and its more
famous cousin AlphaGo (Silver et al., 2016).

Bandit problems and metalevel control

In bandit problems (Robbins, 1952; Berry and Fristedt, 1985), named after slot machines
(multi-armed bandits), the agent faces a set of actions of uncertain utility they can repeatedly
take. The object is to find a strategy (also known as a policy) for choosing which action to
take based on the results of the actions it has taken so far which maximizes the total sum
of the utilities of actions it has taken.

Medical trials are a real world example: here the actions are different treatments, and the
outcome is whether the patient was cured. Given knowledge of prior treatments and their
outcomes, which treatment do we try on the next patient? The one we can learn the most
about, to help the patients in the future? Or the one that appears best, to help the patient
at hand? These are the two extremes of the exploration vs. exploitation tradeoff that
any high-value strategy will balance.

Are bandit problems an appropriate model for the metalevel control problem of choosing
which branch to explore, as UCT’s choice of the bandit algorithm UCB1 may imply? Bubeck
et al. (2009) and Hay et al. (2012) observe that it is not: in bandit problems, every trial
involves executing a real object-level action with real costs, whereas in the metalevel control
problem the trials are simulations whose cost is usually independent of the utility of the
action being simulated.

Bubeck et al. (2009) define and study pure exploration bandits, where the decision-
maker first gets to sample a number of actions, not necessarily known in advance, and is
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then asked to choose a single action whose utility it wishes to maximize. This is similar
to a selection problem (recall Section 1.2.2 above). Bubeck et al. (2009) give theoretical
results comparing UCB to uniformly allocating samples to the actions, showing that for
small numbers of samples they are comparable; for moderate numbers of samples, UCB
outperforms uniform allocation; but for large numbers of samples, uniform outperforms
UCB. The latter result rests on an asymptotic bound showing that upper bounds on the
cumulative regret (i.e., how suboptimal the policy is for the regular bandit problem)
give lower bounds on the simple regret (i.e., how suboptimal the policy is for the pure
bandit problem). They give a simple empirical demonstration, noting, however, that for
large numbers of samples, the difference in performance between the two policies falls below
machine precision, making the difference more theoretical than practical. Audibert et al.
(2010) propose and analyze several policies in this setting, although their empirical results
do not conclusively find a policy outperforming UCB.

Hay et al. (2012) observe that one consequence of the mismatch between bandit problems
and the metalevel control problem is that bandit policies are inappropriately biased away
from exploring actions whose current utility estimates are low. Another consequence is
the absence of any notion of “stopping” in bandit algorithms, which are designed for infinite
sequences of trials. A metalevel policy needs to decide when to stop deliberating and execute
a real action. Instead, Hay et al. propose selection problems (Section 1.2.2) form a more
appropriate model of metalevel control, particularly in the Monte Carlo case. This is the
approach we will adopted here.

1.3 Contributions

The contributions of this thesis are on two fronts.
On the theoretical front, we provide a principled foundation for studying the metalevel

control problem. Specifically, we:

• Propose a decision-theoretic formalization of the metalevel control problem (Sec-
tion 3.2).

• Show that under reasonable conditions (Section 3.3) these problems are equivalent to
an MDP augmented with the additional structure of an action-utility estimator,
which we term a metalevel MDP (Section 3.4).

• Prove that we can always bound the number of computations by an optimal policy in a
metalevel MDP in expectation (Section 4.1.1), but by counter-example (Example 4.4)
that in some settings a policy can with some probability perform arbitrarily many
computations, even if this ends up outweighing the benefit of the final decision.

• Give settings where we can bound the number of computations (Theorem 4.8), and
show that in general we can bound the number of computations performed in a factored
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MDP (Definition 2.7) by the sum of bounds on the number of computations performed
in its factors (Theorem 4.9).

• Show that metalevel decision problems, unlike bandits (Gittins, 1979), do not in gen-
eral have index policies (Section 4.2.1) even when the different actions’ utilities are
independent of each other.

On the practical front, we offer techniques for applying reinforcement learning to the
metalevel control problem of controlling Monte Carlo tree search. Specifically, we:

• Show that recursive functions on the functional data structure of pointed trees and
their derivatives can be efficiently implemented by message passing (Section 5.2), mak-
ing them a suitable representation for metalevel control policies for tree search in gen-
eral.

• Show how Monte Carlo tree search algorithms can be defined as a metalevel MDP
(Section 3.4) using pointed trees.

• Propose a class of metalevel policies (Section 5.5) that includes UCT and AlphaGo as
special cases.

• Propose a metalevel shaping reward (Sections 5.6 and 6.2.4).

• Show that reinforcement learning in the MTCS metalevel MDP using the above recur-
sive policy class can find policies outperforming UCT at least when the bound on the
number of allowed computations is small.

An earlier version of the work in Chapters 3 and 4 was published as Hay et al. (2012).

1.4 Overview of thesis

The thesis is organized as follows.
Chapter 2 provides basic notational and mathematical background, including key con-

cepts from probability theory, Markov decision theory and reinforcement learning.
The next two chapters together provide the theoretical foundation for studying metalevel

control. Chapter 3 defines the central class of metalevel control problems and metalevel
Markov decision processes, relating the two. The analytical tools developed in Chapter 3
are then used in Chapter 4 to give fundamental results about the value of policies and the
structure of optimal policies, including whether and how one can bound the amount of com-
putation it is optimal to do (i.e., when to stop thinking), and how performing computations
relevant to one action can depend on the context of other actions and what the system knows
about them.

Chapters 5 and 6 relate the proposed theoretical models to practical problems. Chap-
ter 5 addresses how reinforcement learning techniques can be used to learn policies for the
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metalevel control problem, as exemplified by learning to control Monte Carlo tree search.
We show how to pose this problem as a reinforcement learning problem, how to represent
a learnable class of tractable policies, and how to apply several techniques for improving
learning. We demonstrate this method experimentally (Chapter 6) in the context of AI
game-playing, specifically for the game Hex.

We end with a brief summary of contributions and results in Chapter 7.
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Chapter 2

Mathematical background

2.1 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Sets and sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Markov decision processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Factoring and restricting MDPs . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

In this chapter we introduce some theoretical concepts and tools needed in the rest
of the thesis. We first provide basic notational conventions for concepts used throughout
(Section 2.1). Next, we recall basic definitions and results of Markov decision theory (Sec-
tion 2.2), following up with some less standard definitions and results for factoring and
restricting MDPs (Section 2.3). Finally, Section 2.4 covers reinforcement learning.

2.1 Basic notation

We will make use of standard notation for sets and sequences (Section 2.1.1) and probability
theory (Section 2.1.2).

2.1.1 Sets and sequences

Given a set X, let X∗ be the set of finite sequences of elements from X. Denote by ε the
unique empty sequence. Given a sequence h ∈ X∗, let |h| be its length, and note that |ε| = 0.
If h = x1 . . . xt ∈ X∗, for 1 ≤ i ≤ j ≤ t, let hi:j = xi . . . xj denote the subsequence from the
ith to the jth elements, inclusive of its endpoints.
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2.1.2 Probability theory

We assume knowledge of probability theory (see, e.g., Kallenberg (2006)) and present the
following simply to fix notation. A Y-valued random variable X is, formally, a measurable
function X : Ω → Y from a probability space Ω to a measurable space Y . We assume that
all our random variables are defined on a shared probability space. For a random variable
X, let range(X) denote its range as a function (i.e., its set of possible values).

Note, however, that in the following we’ll use mostly countable or real-valued random
variables, and thus will not usually need the full strength of the measure-theoretic apparatus.

Denote by P[·] the probability of an event or statement under this shared probability
space, and by E[X] the expectation of a random variable X. Conditional probabilities and
expectations are denoted by P[·|·] and E[·|·], respectively.

If random variables X and Y are conditionally independent given another Z, we write
this X ⊥⊥ Y |Z.

2.2 Markov decision processes

Markov decision processes (see, e.g., (Puterman, 1994)) are commonly used to model
sequential stochastic decision problems. To fix notation, we present the fundamental defini-
tions and results without proof.

Definition 2.1. A Markov decision process (MDP) M = (S,A, T,R) consists of a count-
able set S of states, a countable set A(s) of actions available in state s ∈ S, a transition
distribution T (s, a, s′) giving the probability of transitioning to state s′ ∈ S ∪ ⊥ from state
s ∈ S after action a ∈ A(s), where ⊥ is the unique terminal state, and a reward function
R(s, a, s′) giving the (average) reward received upon transitioning from state s by action a
to state s′.

Note that we restrict our attention to MDPs that are countable, undiscounted and have
a unique terminal state. MDPs in general needn’t satisfy any of these conditions, but it’s
what we’ll need in the following.

Definition 2.2. A policy π for an MDP M = (S,A, T,R) is a function mapping a state
s ∈ S to an action π(s) ∈ A(s) to perform in that state. A stochastic policy π generalizes
this, mapping a state s ∈ S to a probability distribution π(·|s) over actions A(s).

An MDP M = (S,A, T,R) with a policy π and an initial state S0 ∈ S (which may be a
random variable) defines a Markov chain S0, S1, . . . by:

At+1 = π(St),

St+1 |St, At+1 ∼ T (St, At+1, ·).
(2.1)
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In fact, this chain is defined only up to the point that the chain terminates by transitioning
to ⊥. Let N ∈ {0, . . . ,∞} be the random stopping time defined by

N = min{t : St+1 = ⊥} (2.2)

giving the number of non-terminal actions before termination.
We’ll use PπM [·] and EπM [·] for probabilities and expectations whenever the random vari-

ables St, At, N are a realization of an MDP M controlled by policy π (i.e., whenever they
are defined and distributed according to Equations 2.1 and 2.2 above).

Definition 2.3. The value function V π
M for a policy π in an MDP M = (S,A, T,R) gives

the expected total reward received when taking actions according to that policy for each
possible starting state s ∈ S:

V π
M(s) = EπM

[
N∑
t=0

R(St, At, St+1)

∣∣∣∣∣S0 = s

]
. (2.3)

Similarly, the Q-function Qπ
M gives the total reward received when starting in state s ∈ S

and taking action a ∈ A(s) then following π:

Qπ
M(s, a) = EπM

[
N∑
t=0

R(St, At, St+1)

∣∣∣∣∣S0 = s, A0 = a

]
. (2.4)

Definition 2.4. An optimal policy π∗ for an MDP M , if any exist, is one that maximizes
the value of every state: V π∗

M (s) ≥ supπ V
π
M(s) for all s ∈ S.

If we define for each s ∈ S:

V ∗M(s) = sup
π
V π
M(s),

Q∗M(s, a) = sup
π
Qπ
M(s, a),

then a policy π∗ is optimal iff V π∗
M (s) = V ∗M(s) for all s ∈ S and iff π∗(s) ∈ argmaxaQ

∗
M(s, a).
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Theorem 2.5. Given an MDP M and a policy π, the functions V π
M , Qπ

M , V ∗M , and Q∗M can
be uniquely defined as fixed points:

V π
M(s) =

∑
s′

T (s, π(s), s′)(R(s, π(s), s′) + V π
M(s′))

Qπ
M(s, a) =

∑
s′

T (s, a, s′)(R(s, a, s′) +Qπ
M(s′, π(s′)))

V ∗M(s) = max
a

∑
s′

T (s, a, s′)(R(s, a, s′) + V ∗M(s′))

Q∗M(s, a) =
∑
s′

T (s, a, s′)(R(s, a, s′) + max
a′

Q∗M(s′, a′)).

Proof. See Puterman (1994).

2.3 Factoring and restricting MDPs

In Chapters 3 and 4 we’ll establish properties of MDPs by establishing properties of their
subcomponents. The two kinds of analysis we will use are based on the operations of fac-
toring and restricting an MDP’s state space.

In this thesis, a factored MDP (related to but distinct from the factored MDPs of
Boutilier et al. (2000)) is an MDP that behaves like two separate MDPs running in parallel
with their actions interleaved. To formalize this idea, we’ll define the operation of compos-
ing two MDPs in this interleaved manner. We can then define a factored MDP as one that
equals the composition of two other MDPs.

Definition 2.6. The composition of MDPsM1 = (S1, A1, T1, R1) andM2 = (S2, A2, T2, R2)
is the MDP M1 +M2 = (S,A, T,R) that has:

• States S = S1 × S2,

• Actions A = A1 ∪ A2, where we assume A1 and A2 are disjoint,

• Transition function:

T ((s1, s2), a, (s′1, s
′
2)) =


T1(s1, a, s

′
1) if a ∈ A1 and s′2 = s2,

T2(s2, a, s
′
2) if a ∈ A2 and s′1 = s1,

0 otherwise, and

• Reward function:

R((s1, s2), a, (s′1, s
′
2)) =

{
R1(s1, a, s

′
1) if a ∈ A1,

R2(s2, a, s
′
2) otherwise.
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Definition 2.7. A factored MDP M is one for which there exists two other MDPs M1

and M2 such that M equals1 their composition M1 +M2.

Our second way of forming a subcomponent of the MDP is to restrict its state space to
a subset of the full state space. We can use this to restrict an MDP to a part of its space
that we know something about, prove something there, then lift that result to the original
MDP (for an example of this method, see Theorem 3.17 and Corollary 3.18 later, which rely
on Lemmas 2.10 and 2.11 below).

However, we cannot restrict the state space to any possible subset and still have an MDP.
We can restrict an MDP’s state space only to a subset that the MDP’s transitions cannot
“get out of”. Stating this requirement more formally:

Definition 2.8. In an MDP M = (S,A, T,R), a subset of states S̄ ⊆ S is closed under
transitions if whenever s ∈ S̄, a ∈ A(s), s′ ∈ S, and T (s, a, s′) > 0, we have s′ ∈ S̄.

We can then define the restriction of an MDP to such a subset:

Definition 2.9. Let M = (S,A, T,R) be an MDP and S̄ ⊆ S be a subset of M ’s states closed
under transitions. Then the restriction of M onto S̄ is the MDP M |S̄ = (S̄, A|S̄, T |S̄, R|S̄)
where:

• A|S̄ is the action function A(s) restricted to S̄.

• T |S̄(s, a, s′) = T (s, a, s′) for s, s′ ∈ S̄ and a ∈ A(s). Note that S̄ being closed under
transitions is exactly the condition required for T |S̄ to be normalized.

• R|S̄(s, a, s′) = R(s, a, s′) for s, s′ ∈ S̄ and a ∈ A(s).

The restricted MDP is closely related to the original MDP. In particular, its value function
is the restriction of the original MDP’s value function:

Lemma 2.10. Let M = (S,A, T,R) be an MDP and S̄ ⊆ S be a subset of M ’s states closed
under transitions. Then for any s ∈ S̄ and a ∈ A(s): the optimal value function and optimal
Q-functions of M |S̄ satisfy

V ∗M |S̄(s) = V ∗M(s) (2.5)

Q∗M |S̄(s, a) = Q∗M(s, a). (2.6)

Proof. Let (V ∗M)|S̄ be the value function V ∗M : S → R with domain restricted to the set S̄,
and (Q∗M)|S̄×A be the Q-function Q∗M : S ×A→ R with domain restricted to the set S̄ ×A,
where S × A and S̄ × A denote

S × A = {(s, a) : s ∈ S and a ∈ A(s)}
S̄ × A = {(s, a) : s ∈ S̄ and a ∈ A(s)}.

1Properly speaking, we don’t really want to require that M equals M1 +M2, but that they be equivalent
in some appropriate sense. As interesting as this line of thought gets (Lawvere and Schanuel, 2009), for our
purposes we can use simple equality without any difficulties.
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Then, observe that (V ∗M)|S̄ and (Q∗M)|S̄×A satisfy the Bellman equations for M |S̄.

Further, the optimal policy of a restricted MDP is the restriction of an optimal policy of
the original MDP:

Lemma 2.11. If π∗M is an optimal policy for the MDP M , then (π∗M)|S̄ is an optimal policy
for M |S̄. Conversely, if π∗M |S̄ is an optimal policy for M |S̄, then there exists an optimal

policy π∗ of M such that π∗M |S̄ = π∗|S̄. Diagrammatically, the following commutes:

M

��

//M |S̄

��
π∗M

// (π∗M)|S̄ = π∗M |S̄

Proof. Follows from Equation 2.6 of Lemma 2.10.

2.4 Reinforcement learning

Reinforcement learning (Sutton and Barto, 1998; Szepesvári, 2010) is the problem of
learning what to do in an environment in order to maximize a numerical reward signal. This
problem can be formalized as an MDP, and reinforcement learning techniques can be seen
as optimization methods for finding policies of high value.

Policy optimization methods are a class of reinforcement learning techniques that seek
to directly optimize the policy. Let M = (S,A, T,R) be an MDP, S0 be a random variable
giving an initial state of M , and πθ(a|s) for θ ∈ Rk be a parameterized class of stochastic
policies. Let

η(θ) = EV πθ(S0)

be the expected return of the policy πθ as a function of θ. Policy optimization methods seek
to optimize η(θ). This is non-trivial since η(θ) is highly nonlinear in θ and can be estimated
only empirically.

Trust-region policy optimization (TRPO) (Schulman et al., 2015) is a recent policy
optimization method that has been demonstrated to be robust: little hyperparameter search
is needed to adapt it to different domains. It is derived by making several approximations to
an approach that is guaranteed to increase η(θ) monotonically iteration by iteration. It is a
batch method that collects trajectories produced by the current policy πθ0 and uses them to
estimate an approximate lower bound of η(θ). It optimizes this lower bound robustly using a
trust-region method that caps the allowed average KL divergence between the probabilities
assigned to the trajectories by the old policy πθ0 , and the probabilities assigned by the new
policy πθ. This ensures that the new policy is not wildly dissimilar to the old policy.

Generalized advantage estimate (GAE) (Schulman et al., 2016) is a complementary
method that fits a value function Vφ(s) to the empirical returns of the policy, using this to
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reduce the variance in the estimate of the bound on η(θ). This is closely related to the idea
of reward shaping (Dorigo and Colombetti, 1994; Ng et al., 1999).

We use TRPO combined with GAE in our experiments in Chapter 6, and refer the reader
to the original publications for the details of these algorithms.

Having establishing this background, we now turn to our theoretical investigations.
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Chapter 3

Metalevel control

3.1 Beta-Bernoulli metalevel control problem . . . . . . . . . . . . . . . . . . 22
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3.3 Stationary and Markov MCPs . . . . . . . . . . . . . . . . . . . . . . . . 26
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3.5 Factored metalevel MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Deriving the cost of time . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

In this chapter we formalize the problem of controlling computation by introducing sev-
eral new theoretical constructs, starting with the class of metalevel control problems
(MCPs). We illustrate these first by example in Section 3.1 and define them generally in
Section 3.2. These formalize the problem of controlling an agent’s computations from a
Bayesian perspective. To study policies for controlling computation, it will prove helpful to
define an equivalent MDP to which we can apply established MDP results. This motivates
defining stationary and Markov MCPs, since stationary Markov MCPs are exactly those
that have an equivalent MDP (Section 3.3). These equivalent MDPs fall into the broader
class of metalevel MDPs, defined in Section 3.4; later results, particularly in Chapter 4,
apply to this larger class of problems, although with a richer interpretation for those met-
alevel MDPs converted from MCPs.

We end by exploring factored metalevel MDPs (Section 3.5): metalevel MDPs that
are also equivalent to factored MDPs (Section 2.3)—that is, metalevel MDPs that are com-
posed of other metalevel MDPs. One important special case is that of a metalevel MDP
composed with an action of constant known utility. We give results on how the value func-
tion transforms as a function of the known utility action, and when in a composition of two
metalevel MDPs it is optimal for a policy to compute in only one of the component metalevel
MDPs. These general analytical results are applied in Chapter 4 to study the structure of
optimal metalevel policies.
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4

~~   
U1 U2

Figure 3.1: The agent is deciding between two actions, the ith action being of unknown
utility Ui ∈ {0, 1}.

3.1 Beta-Bernoulli metalevel control problem

Consider again the scenario described in Section 1.1, of the agent deciding between k different
actions of uncertain utility. In decision-theoretic terms, a good Bayesian agent would do
its best to to maximize expected utility: it dutifully represents the utility of each action
i = 1, . . . , k by a random variable Ui, and expresses its uncertainty in its prior. Given no
further information, the optimal choice is to simply maximize the prior expected utility: i∗ =
argmaxi EUi. But what if the agent has another option: to perform additional computations
that may better inform its choice? If, however, these computations aren’t free, the agent now
faces a new problem: it needs a good policy for choosing which computations to perform and
when to stop and act. How does it determine which policy to adopt? Or, in other words,
how should the agent decide what to think about before acting?

To explore this question, we’ll start with a simple fundamental case. Suppose the agent
is deciding between two actions (Figure 3.1). Each action i = 1, 2 will either succeed or fail,
with an unknown probability Θi of success. Success is of utility 1, failure of utility 0. The
agent is unsure about the probability of success Θi, having a uniform prior over it. Thus the
agent’s prior over the utilities of its actions is for i = 1, 2:

Θi ∼ Beta(1, 1)

Ui |Θi ∼ Bernoulli(Θi)
(3.1)

where we recall that Beta(1, 1) is the uniform distribution over [0, 1].
In order to decide which action to select, the agent can choose between two possible

computations: it can perform a Monte Carlo simulation (Section 1.2.3) of the first or the
second action. Each simulation of action i succeeds or fails with its corresponding action’s
probability Θi, each simulation being independent of the others conditional on Θi. That the
simulations succeed with the same probability as their corresponding real action represents
the belief that these are simulations of that action. Denote by Ot,i ∈ {0, 1} the result of the
Monte Carlo simulation of action i if it is performed at time t, i.e., after t computations of
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either action have been performed.1 Then for i = 1, 2:

Ot,i |Θi
iid∼ Bernoulli(Θi) for t ≥ 0. (3.2)

Suppose the agent has performed a sequence of such computations. Naming the compu-
tation of simulating the ith action by the number i, the set of all computations is C = {1, 2}.
Any particular history of computations h performed is a finite sequence of 1’s and 2’s,
i.e., h ∈ C∗. Having performed these computations means the agent has observed their
corresponding outcomes. In particular, if h = h1 . . . hT ∈ C∗ is the history of performed
computations, then the agent has observed Ot,ht for t = 1, . . . , T .

How do the results of these computations inform the agent’s beliefs about the utility
Ui of action i? That is, what is the posterior distribution over Ui given the computational
results? Noting that Ui is conditionally independent of Ot,i given Θi and recalling that the
Beta and Bernoulli distributions are conjugate, we have for i = 1, 2:

Θi |O1,h1 , . . . , OT,hT ∼ Beta

(
1 +

∑
1≤t≤T :ht=i

Ot,i, 1 +
∑

1≤t≤T :ht=i

(1−Ot,i)

)
(3.3)

and thus:

Ui |O1,h1 , . . . , OT,hT ∼ Bernoulli

(
1 +

∑
1≤t≤T :ht=i

Ot,i

2 + #{1 ≤ t ≤ T : ht = i}

)
. (3.4)

Now, Equation 3.1 gives the agent’s prior belief about the actions’ probability of success
Θi and utility Ui before computation, Equation 3.2 specifies how the agent believes its
computations are generated, and Equations 3.3 and 3.4 gives the agent’s posterior belief
about the actions’ probability of success Θi and utility Ui after computation.

We can now ask again: how should the agent decide what to think about before acting?
In other words: what policy for choosing computations will yield the greatest utility?

In general, a policy is a function mapping a state to an action. A computational policy
should map the agent’s informational state (what it knows) to its decision of what to compute
next (or whether it should stop computing and act instead).

What does the agent know after performing computations h = h1 . . . hT ∈ C∗? In one
sense, it knows Ot,ht for t = 1, . . . , T . But Equations 3.1–3.4 show that this is more than
it needs to remember: the posterior over Θi determines the distribution over the action’s
utilities and all future computational outcomes, and this posterior is determined by the pair

1We need multiple copies of the random variable containing the outcome of a stochastic simulation of
an action because different simulations of the same action will yield different results. Later expressions are
simplified by indexing by the total number of computations that have been performed so far rather than by,
for instance, the total number of times that particular computation has been performed.
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of outcome counts (plus 1):2(
1 +

∑
1≤t≤T :ht=i

Ot,i, 1 +
∑

1≤t≤T :ht=i

(1−Ot,i)

)
. (3.5)

Denote by S̃h the vector of both pairs (for i = 1 and i = 2), with the pair corresponding to
action i denoted (S̃h[αi], S̃h[βi]).

3

S̃h is the random variable giving the agent’s full internal state after performing a sequence
of computations h ∈ C∗. A computational policy can now be fully determined by a function
π : N2×2 → {1, 2,act1,act2}, where after performing a sequence of computations h ∈ C∗,
the value of π(S̃h) determines what the agent does next:

1. If π(S̃h) = 1, it simulates action 1;

2. If π(S̃h) = 2, it simulates action 2;

3. If π(S̃h) = act1, it stops and takes action 1; and

4. If π(S̃h) = act2, it stops and takes action 2.

Finally, what is the value of such a policy? We suppose computations have a uniform
cost d > 0.4 The value of the policy is the expected utility of the action it eventually takes,
less the cost of the computations it performs before doing so. To formalize this, we need to
define the trace of the agent’s internal state under a policy π:

Hπ
0 = ε

Hπ
t+1 = Hπ

t · π(Sπt )

Sπt = S̃Ht
Nπ = min{t : π(Sπt ) ∈ {act1, . . . ,actk}}

(3.6)

where Nπ gives the time the agent acts, Hπ
t for 0 ≤ t ≤ Nπ gives the sequence of the first

t computations performed, and Sπt for 0 ≤ t ≤ Nπ gives the agent’s internal state at that
point. Thus, the value of a policy π is:

V π = E[−dNπ + Uπ(SπN )]. (3.7)

The above defines the Beta-Bernoulli metalevel control problem, whose optimal solu-
tion is a policy π∗ that maximizes Equation 3.7.

Having come to this point, we can ask:
2 In Equations 3.3 and 3.5 we directly store the parameters of the posterior Beta distribution over Θi,

rather than storing the counts of simulated successes and failures. This choice simplifies later expressions.
Since the prior is Beta(1, 1), the parameters in the initial state before any computations all have value 1,
which requires that we add one to the counts.

3 This notation is used because (α, β) is the conventional notation for a Beta distribution’s parameters.
4This assumption of a fixed cost of computation is a simplification; precise conditions for its validity are

given by Harada (1997).
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1. How generally applicable is the above chain of reasoning? What information is sufficient
to specify this problem? Section 3.2 addresses these questions, retracing the above steps
more generally and more formally.

2. What can we say about the optimal policy π∗ for this problem? Can we find it?
Sections 3.3–3.5 and Chapter 4 explore these issues.

3.2 Metalevel control problems

We can now formally define the more general problem exemplified by the Beta-Bernoulli
metalevel control problem introduced in Section 3.1.

Definition 3.1. A metalevel control problem (MCP) Ψ = (S, C, {Sh}h∈C∗ , {Ui}i=1,...,k, d)
consists of:

• a set S of metalevel states;

• a set C of possible computations, where C∗ denotes the set of all finite sequences of such
computations, and ε ∈ C∗ denotes the empty sequence consisting of no computations;

• for any finite sequence of computations h ∈ C∗, an S-valued random variable S̃h giving
the (uncertain) metalevel state after performing that sequence of computations;

• for each of k possible actions, an R-valued random variable Ui representing its utility;
and

• a uniform cost d ≥ 0 of performing a computation.

Example 3.2. The k-action Beta-Bernoulli metalevel control problem with compu-
tation cost d > 0, as described in Section 3.1, is a metalevel control problem with:

• metalevel states s ∈ S = N2k consisting of a k-dimensional vector of integer pairs, the
ith pair of which, denoted (s[αi], s[βi]), holds the number of simulated successes (plus
1; see footnote 2) and the number of simulated failures (plus 1), respectively;

• a set of computations C = {1, . . . , k}, computation i ∈ C performing independent
well-calibrated stochastic simulations of action i’s outcome;

• S̃h as defined in Equation 3.5;

• Ui for i = 1, . . . , k as defined in Equation 3.1; and

• computation cost d > 0.

We now define the policy and value function of an MCP.
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Definition 3.3. A policy π for an MCP Ψ = (S, C, {Sh}h∈C∗ , {Ui}i=1,...,k, d) is a function
π : S → C ∪ {act1, . . . ,actk} mapping states to either a computation c ∈ C or the decision
acti to stop and perform the ith action.

Definition 3.4. The value V π
Ψ of a policy π for an MCP Ψ = (S, C, {Sh}h∈C∗ , {Ui}i=1,...,k, d)

is given by
V π = E[−dNπ + Uπ(SπN )], (3.8)

a function of the trace of the policy π in this MCP:

Hπ
0 = ε

Hπ
t+1 = Hπ

t · π(Sπt )

Sπt = S̃Ht
Nπ = min{t : π(Sπt ) ∈ {act1, . . . ,actk}}.

We have now laid the basic theoretical foundation for MCPs and their associated policies
and policy values. But which of these policies are of high value, and how can we find them?
What can we say about their structure?

To approach these questions, we will convert MCPs into equivalent MDPs, since MDPs
are more amenable to certain kinds of analysis. This construction works only for MCPs
satisfying specific properties that we define in Section 3.3.

We will see that both the original MCP and its MDP conversion are important. While
the MDP allows certain forms of analysis, the MCP defines the semantics of the MDP, giving
the underlying random variables Ŝh and Ui that generate the MDP’s transitions and rewards.
This equivalence will prove important later, particularly in Theorem 4.3.

3.3 Stationary and Markov MCPs

This section defines the two properties of MCPs necessary and sufficient for there being an
equivalent MDP.

A stationary MCP is one for which the particular sequence of computations it took to
reach a metalevel state is irrelevant. Specifically:

Definition 3.5. A stationary MCP (S, C, {S̃h}h∈C∗ , {Ui}i=1,...,k, d) is one for which for all
s ∈ S for any h, h′ ∈ C∗ such that P[S̃h = s] > 0 and P[S̃h′ = s] > 0, we have

P[S̃hc = s′ | S̃h = s] = P[S̃h′c = s′ | S̃h′ = s] for all c ∈ C, s′ ∈ S,

E[Ui | S̃h = s] = E[Ui | S̃h′ = s] for all i = 1, . . . , k.

To avoid mentioning the irrelevant h, we’ll use the notation E[Ui | S̃ = s] where appropriate.

A Markov MCP is one whose execution trace forms a Markov chain. Formally:
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Definition 3.6. A Markov MCP (S, C, {Sh}h∈C∗ , {Ui}i=1,...,k, d) is one in which the distribu-
tion of the successor state S̃hc is conditionally independent of the earlier states S̃ε, . . . , S̃h1:t−1

given the immediately preceding state Sh:

S̃hc ⊥⊥ S̃ε, . . . , S̃h1:t−1 | S̃h (3.9)

and similarly for the expectation of the utility variables Ui:

E[Ui | S̃ε, . . . , S̃h] = E[Ui | S̃h]. (3.10)

Example 3.7. The Beta-Bernoulli MCP (Example 3.2) is both stationary and Markov. To
see this, first observe for any h ∈ C∗ the posterior distribution of Θi given the computational
trajectory S̃ε, . . . , S̃h:

Θi | S̃ε, . . . , S̃h
d
= Θi |O1,h1 , . . . , O|h|,h|h|

∼ Beta(1 +
∑
t:ht=i

Ot,ht , 1 +
∑
t:ht=i

(1−Ot,ht))

= Beta(S̃h[αi], S̃h[βi]) (3.11)

with each Θi being independent in the posterior, the first equality holding since both sets
are deterministic functions of each other, the second by conjugacy of Beta and Bernoulli
distributions, and the last by definition of S̃h. Since Ui, O1:|h|,i, and Ot+1,i are all conditionally
independent of each other given Θi, we have by the above that

Ot+1,i | S̃ε, . . . , S̃h ∼ Bernoulli(S̃h[αi]/(S̃h[αi] + S̃h[βi])) (3.12)

E[Ui | S̃ε, . . . , S̃h] = S̃h[αi]/(S̃h[αi] + S̃h[βi]). (3.13)

Next note that:

S̃hc[αi] =

{
S̃h[αi] +O|h|,c if i = c,

S̃h[αi] otherwise.

S̃hc[βi] =

{
S̃h[βi] + (1−O|h|,c) if i = c,

S̃h[βi] otherwise.

Letting s[αi ← αi + 1] denote s ∈ R2k with the αi component incremented and similarly for
s[βi ← βi + 1], it follows from the above and Equation 3.12 that:

S̃hc | S̃ε, . . . , S̃h ∼

{
S̃h[αi ← αi + 1] with probability S̃h[αi]/(S̃h[αi] + S̃h[βi]),

S̃h[βi ← βi + 1] with probability S̃h[βi]/(S̃h[αi] + S̃h[βi]).
(3.14)

Stationarity follows because Equations 3.14 and 3.13 are functions only of the value of S̃h
not of h. Markovness follows because Equations 3.14 and 3.13 are functions only of S̃h not
S̃ε, . . . , S̃h1:|h|−1

.
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3.4 Metalevel MDPs

We can now formally define metalevel Markov decision processes (MMDPs). These
extend the familiar class of MDPs (Section 2.2) with extra machinery needed to formalize
the metalevel environment. In particular, an MMDP must be able to distinguish metalevel
actions (that is, computation) from object-level actions (that is, physical actions), and to
evaluate the object-level actions with an action-utility estimator. We will later state an
equivalence between certain subclasses of MMPDs and MCPs.

Definition 3.8. A metalevel MDP (MMDP) M = (S,A, T, µ, d, R) is an undiscounted
MDP (S,A, T, R) combined with an action-utility estimator µ : S → Rk, the ith compo-
nent of which at state s ∈ S gives an estimate µi(s) ∈ R of the utility of the ith action, and
a cost of computation d > 0, whose action set A(s) decomposes into computations c ∈ C(s)
and physical actions act1, . . . ,actk:

A(s) = C(s) ∪ {acti}i=1,...,k,

where physical actions transition to the unique terminal state ⊥ /∈ S, and whose reward
function is of the form:

R(s, c, s′) = −d, for s, s′ ∈ S and c ∈ C,
R(s,acti,⊥) = µi(s), for s ∈ S, i = 1, . . . , k.

Note that µ, d are sufficient to reconstruct R.

Definition 3.9. The metalevel MDP of a stationary Markov metalevel control
problem (S, C, {Sh}h∈C∗ , {Ui}i=1,...,k, d) is the tuple (S,A, T, µ, d, R) where:

• the states S of the MDP are those of the MCP, as is the computational cost d,

• action set A(s) = C ∪ {acti}i=1,...,k,

• transition function

T (s, c, s′) = P[Shc = s′ |Sh = s]

for any h such that P[S̃h = s] > 0,

• action-utility estimator

µi(s) = E[Ui |Sh = s]

for any h such that P[S̃h = s] > 0,

• R is defined from µ and d as in Definition 3.8.
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Figure 3.2: Illustration of the k = 1 Beta-Bernoulli metalevel MDP. Blue means success, red
means failure. Each node corresponds to a state, and edges are labeled by the probability
of transitioning along that edge after performing a simulation of the unknown action (the
only computation). On the left, nodes are labeled with their corresponding state s, the first
component being s[α1] and the second s[β1]. On the right, nodes are labeled with µ1(s), the
posterior expected utility of action 1 in that state.
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Example 3.10. The metalevel MDP of the k-action Beta-Bernoulli MCP is M =
(S,A, µ, d, T,R) where:

• The states S (see Figure 3.2) of the MDP are those of the MCP, namely vectors
s ∈ N2k of k pairs of natural numbers, the ith of which, denoted (s[αi], s[βi]), holds the
number of observed successes (plus 1) and the number of observed failures (plus 1),
respectively. Equivalently, these form the parameters of the Beta(s[αi], s[βi]) posterior
over the utility Ui of action i.

• Action set A(s) = {1, . . . , k} ∪ {acti}i=1,...,k.

• Transition function (see Figure 3.2) for c ∈ {1, . . . , k} follows from Equation 3.14:

T (s, i, s′) =


s[αi]/(s[αi] + s[βi]) if s′ = s[αi ← αi + 1],

s[βi]/(s[αi] + s[βi]) if s′ = s[βi ← βi + 1],

0 otherwise.

• Action-utility estimator (see Figure 3.2) follows from Equation 3.13:

µi(s) = s[αi]/(s[αi] + s[βi]).

• R is defined from µ and d as in Definition 3.8.

The following theorem shows that optimal policies for the MMDP are optimal policies
for the MCP. This means we can solve the MCP using MDP methods.

Theorem 3.11. Let Ψ be a stationary Markov MCP and MΨ its corresponding MMDP.
Then:

V π
Ψ = EV π

MΨ
(S̃ε). (3.15)

Proof. Recall Definition 3.4 of the value of the policy π in MCP Ψ:

V π = E[−dNπ + Uπ(SπN )]

Hπ
0 = ε

Hπ
t+1 = Hπ

t · π(Sπt )

Sπt = S̃Ht .

First, observe that since the MCP is Markov, Sπt forms a Markov chain. By Definition 3.9,
the transition dynamics of this chain are exactly those of MΨ. Next, recalling stationarity
of the MCP and Definition 3.9, we have µi(S

π
N) = E[Ui |SπN ]. Then by Definition 2.3 and
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Definition 3.9:

EV π
MΨ

(S̃ε) = E

[
E

[
Nπ∑
t=0

RMΨ
(Sπt , π(Sπt ), Sπt+1) |Sπ0 = S̃ε

]]

= E

[
Nπ−1∑
t=0

RMΨ
(Sπt , π(Sπt ), Sπt+1)

]
= E

[
−dNπ + µπ(SπN )(S

π
N)
]

= E
[
−dNπ + E[Uπ(SπN ) |SπN ]

]
= E

[
−dNπ + Uπ(SπN )

]
= V π.

The next two results simplify our analysis in the following. Lemma 3.12 shows that when
optimal policies stop to act, they always take the action of maximum posterior expected
utility. Lemma 3.13 expresses the value of a metalevel MDP as the expected utility of the
action chosen on stopping, less the expected cost of computation.

Lemma 3.12. Given a metalevel policy π for a metalevel MDP M , the policy

π′(s) =

{
actargmaxi µi(s) if π(s) = actj for some j,

π(s) otherwise,

is never worse than π: V π
M(s) ≤ V π′

M (s) for all s ∈ S.

Proof. Intuitively, π′ behaves the same as π except that whenever π takes a terminal action,
π′ takes the best terminal action. Formally, let Sact be the set of states where π(s) ∈
{acti}i=1,...,k. Let v : S → R be an arbitrary function on states such that v(⊥) = 0 and
observe that:

(T πMv)(s) =
∑

s′∈Sact

T (s′|s, π(s)(R(s, a, s′) + v(s′)) +
∑

s′∈S\Sact

T (s′|s, π(s))(R(s, a, s′) + v(s′))

=
∑

s′∈Sact

T (s′|s, π(s))µπ(s)(s) +
∑

s′∈S\Sact

T (s′|s, π(s))(R(s, a, s′) + v(s′)) (3.16)

≤
∑

s′∈Sact

T (s′|s, π(s))µπ′(s)(s) +
∑

s′∈S\Sact

T (s′|s, π′(s))(R(s, a, s′) + v(s′))

=
∑

s′∈Sact

T (s′|s, π′(s))(R(s, a, s′) + v(s′)) +
∑

s′∈S\Sact

T (s′|s, π′(s))(R(s, a, s′) + v(s′))

= (T π
′

M v)(s),

where Equation 3.16 holds because µπ(s)(s) ≤ maxi µi(s) = µπ′(s)(s) for all s ∈ Sact and
π(s) = π′(s) for all s ∈ S \ Sact. Thus, V π

M(s) ≤ V π′(s) for all s ∈ S.
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Given the above, we’ll assume for all policies that whenever π(s) = acti for some i =
1, . . . , k, then i = argmaxi µi(s), breaking ties to the action with smaller index. In this case
we’ll use the shorthand π(s) = act to denote this action.5

Lemma 3.13. For any metalevel MDP M = (S,A, T,R, µ, d) and policy π:

V π
M(s) = EπM [−dN + max

i
µi(SN)|S0 = s]. (3.17)

Proof. Recalling Definition 2.3 of the value function, we have:

V π
M(s) = EπM

[
N∑
t=0

R(St, At, St+1)

∣∣∣∣∣S0 = s

]

= EπM

[(
N−1∑
t=0

−d

)
+R(SN , AN , SN+1)

∣∣∣∣∣S0 = s

]
= EπM

[
−dN + max

i
µi(SN)

∣∣∣S0 = s
]
,

where for the chain to terminate we must have AN = act and so R(SN , AN , SN+1) =
maxi µi(SN).

3.5 Factored metalevel MDPs

Finally, we consider metalevel MDPs that have compositional structure, which we call fac-
tored metalevel MDPs. We first study the simple case of an MMDP M composed with
a constant MMDP u, defined below (Definition 3.14), studying in particular the properties
of the value function of their composition M + u. These results are central to the study of
context in Section 4.2. We then apply this to characterizing when it’s optimal to compute
in only one metalevel MDP of a composition M1 +M2. This result is used in Section 4.1 to
bound the number of computations.

Definition 3.14. The constant metalevel control problem is ({?}, ∅, {Sε}, {u}, 0), de-
noted by Ψconst

u . It has a unique state ?, no computations, a single-state random variable
Sε = ? that is constant, one action of constant utility u and no cost of computation. The
constant metalevel MDP M const

u of value u ∈ R is the one corresponding to this MCP.
Where it causes no confusion we’ll denote M const

u simply by u.

We will commonly form the composition M + u of a metalevel MDP M and a constant
metalevel MDP u. This metalevel MDP has states (s, ?) for s ∈ S, which we’ll denote by s
for simplicity.6

5One might ask why we defined the metalevel MDP to have seemingly redundant actions act1, . . . ,actk

when the single action act seems to suffice. The main reason is that our approach simplifies the treatment
of factored metalevel MDPs; see Section 3.5.

6This is justified by an equivalence of MDPs relying on the isomorphism S × {?} ∼= S.
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Theorem 3.15. Given a metalevel MDP M , the value function V π
M+u(s) of M + u is for

any s non-decreasing and convex in u ∈ R. Further, the subdifferential at u0 ∈ R, i.e., the
set of all c ∈ R that are the gradient of a linear lower bound

c(u− u0) ≤ V π
M+u(s)− V π

M+u0
(s) for all u,

is [
PπM
(

max
i
µi(SN) < u0 |S0 = s

)
,PπM

(
max
i
µi(SN) ≤ u0 |S0 = s

)]
⊆ [0, 1].

Proof. From Equation 3.17:

V π
M+u(s) = EπM+u[−dN + max(u,max

i
µi(SN)) |S0 = s]

= EπM [−dN + max(u,max
i
µi(SN)) |S0 = s]

= EπM [−dN |S0 = s] + EπM [max(u,max
i
µi(SN)) |S0 = s],

where the second equality is justified by the fact that the distributions of N and SN under a
policy π in M + u equal those in M . Observing that max(u,maxi µi(SN)) is non-decreasing
and convex in u, and that these properties are closed under expectation, we see that V π

M+u(s)
is non-decreasing and convex in u.

For the subdifferential it suffices to compute (see Rockafellar (1979)):

lim
u↑u0

V π
M+u(s)− V π

M+u0
(s)

u− u0

= lim
u↑u0

EπM
[

max(u,maxi µi(SN))−max(u0,maxi µi(SN))

u− u0

∣∣∣∣S0 = s

]
= EπM

[
lim
u↑u0

max(u,maxi µi(SN))−max(u0,maxi µi(SN))

u− u0

∣∣∣∣S0 = s

]
= EπM [1(max

i
µi(SN) < u0)|S0 = s]

= PπM [max
i
µi(SN) < u0|S0 = s]

lim
u↓u0

V π
M+u(s)− V π

M+u0
(s)

u− u0

= PπM [max
i
µi(SN) ≤ u0|S0 = s],

where the first equality holds by linearity of expectation, and the second by the monotone
convergence theorem (Kallenberg, 2006).

Theorem 3.16. Given a metalevel MDP M , for any integrable random variable U and any
real u0 ∈ R, we have:

E[V π
M+U(s)] ≤ V π

M+u0
(s) + Emax(U − u0, 0). (3.18)

Proof. Recall that V π
M+u(s) is convex in u with every subgradient within [0, 1]. For any

u, u0 ∈ R, the following uppper bound follows (illustrated in Figure 3.3):

V π
M+u(s) ≤ V π

M+u0
(s) + max(u− u0, 0) (3.19)
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Figure 3.3: Illustration of the upper bound in Equation 3.19 of Theorem 3.16.

since for u = u0 both sides are equal, for u < u0 since there is no subgradient below 0
(i.e., V π

M+u(s) is non-increasing in u), and for u > u0 since there is no subgradient above 1.
Substituting u = U then taking expectations gives the result.

Theorem 3.17. Let M1 and M2 be two metalevel MDPs. If it’s optimal to act in all states
s1 of M1 + u for all u ∈ R, then for any M2 it’s optimal not to perform M1’s computations
in state (s1, s2) of M1 +M2 for any s2 ∈ S2.

Proof. First define µxmax(s1) = maxi µ
x
i (s

1) for x = 1, 2. It suffices to show for all s2 ∈ S2

that
V ∗M1+M2

(s1, s2) = V ∗µ1
max(s1)+M2

(s2), (3.20)

where the left-hand side is the optimal value function of M1 +M2 and the right-hand side is
the optimal value function of µ1

max(s1) +M2, since optimal policies for the latter will then be
optimal policies for the former. We’ll establish Equation 3.20 by showing that the right-hand
side satisfies the Bellman equation for the optimal policy of M1 +M2, which by Theorem 2.5
establishes the equality.

In particular, if we establish

V ∗µ1
max(s1)+M2

(s2) = max

(
µ1

max(s1), µ2
max(s2), max

c2∈A2(s2)
EV ∗µ1

max(s1)+M2
(S2

c2
)− d

)
(3.21)

V ∗µ1
max(s1)+M2

(s2) ≥ max
c1∈A1(s1)

E[V ∗µ1
max(S1

c1
)+M2

(s2)]− d, (3.22)
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then by applying these (in)equalities in turn we show that V ∗µ1
max(s1)+M2

(s2) satisfies the
Bellman equation for M1 +M2:

max

(
µ1

max(s1), µ2
max(s2), max

c1∈A1(s1)
EV ∗µ1

max(S1
c1

)+M2
(s2)− d, max

c2∈A2(s2)
EV ∗µ1

max(s1)+M2
(S2

c2
)− d

)
= max

(
V ∗µ1

max(s1)+M2
(s2), max

c1∈A1(s1)
EV ∗µ1

max(S1
c1

)+M2
(s2)− d

)
= V ∗µ1

max(s1)+M2
(s2).

Equation 3.21 is simply the Bellman equation for µ1
max(s1) +M2. For Equation 3.22, let

S1
c1
∼ T (·|s1, c1) be a random variable distributed according to the state reached by starting

in state s1 and performing computation c1 ∈ C1. Observe that because it is optimal to stop
in M1 + u for any u, it holds in particular for u = µ1

max(s1) and so:

−d+ Emax(µ1
max(S1

c1
), µ1

max(s1)) = Q∗M1+µ1
max(s1)(s1), c1)

≤ Q∗M1+µ1
max(s1)(s1),act)

= µ1
max(s1).

Combining this result with Theorem 3.16, we see that:

E[V ∗µ1
max(S1

c1
)+M2

(s2)] ≤ V ∗µ1
max(s1)+M2

(s2) + Emax(µ1
max(S1

c1
)− µ1

max(s1), 0)

≤ V ∗µ1
max(s1)+M2

(s2) + d.

Rearranging and maximizing over c1 ∈ C1 we get Equation 3.22 and thus our result.

Corollary 3.18. Let M1 and M2 be two metalevel MDPs, and let S̄1 ⊆ S1 be a set of states
of M1 that is closed under transitions of M1. If it’s optimal to act in all states s1 ∈ S̄1 of
M1 + u for all u ∈ R, then for any M2 it’s optimal not to perform M1’s computations in
states S̄1 × S2.

Proof. This follows by applying Lemma 2.11 to Theorem 3.17.

Before continuing to Chapter 4, we first revisit an assumption we made in passing when
defining the metalevel control problem: that computations incur a fixed cost. How strong an
assumption is this? When does it apply? Can we derive it from something more reasonable?

3.6 Deriving the cost of time

A central effect of performing a computation rather than acting is time delay: what we would
have done now, we’ll now do later. In some cases delay has no effect, up to a point: Strictly
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speaking, it doesn’t matter how close you get to a deadline so long as you don’t cross it. In
other cases, the effect of time is arbitarily complex: wait long enough and the situation you
face will change completely.

Russell and Wefald (1991a, pp. 67–68) observe that if there is a well-defined cost of
time, i.e., if the effect that time delay has on the utility of an action is a constant cost
independent of the action, then the choice of the best action is unchanged over time. This
means that although delay incurs a cost, it doesn’t change the nature of the object-level
decision the agent is making, and so the agent doesn’t have to change what it is computing
about. We show below that the converse holds: if the effect of a delay doesn’t change the
object-level decision problem, and if the effect of a delay doesn’t itself change over time, then
there is a well-defined cost of time.

Let T be a set of times, O be a set of outcomes, and U : O×T → R be a utility function
of an outcome occurring at a given time. Fix a time t ∈ T and consider the object-level
decision problem of choosing between actions at that time. An action is characterized by
a probability distribution pa : O → R that it induces over outcomes, and the best action
is the one that maximizes the expectation of U under pa. Von Neumann and Morgenstern
(1944) show that a utility function is uniquely characterized, up to a translation and positive
scaling, by the ordering it induces over such distributions pa (termed lotteries).

If the object-level decision problem is unchanged by time, then the ordering induced over
distributions pa will be unchanged, and there exist functions α : T → R+ and β : T → R
such that:

U(o, t) = α(t)U(o) + β(t), (3.23)

where U(o) = U(o, 0) is the utility of receiving the outcome o now.7

Suppose, further, that the problem is stationary, i.e., that the problem of deciding be-
tween actions at different times isn’t affected by time advancing by a time interval ∆t ∈ T .
Then, there exist functions α′ : T → R+ and β′ : T → R such that

U(o, t+ ∆t) = α′(∆t)U(o, t) + β′(∆t). (3.24)

Comparing Equations 3.23 and 3.24, we find that for all t and o:

α(t+ 1)U(o) + β(t+ 1) = U(o, t+ 1)

= α′(1)U(o, t) + β′(1)

= α′(1)(α(t)U(o) + β(t)) + β′(1)

= α′(1)α(t)U(o) + (α′(1)β(t) + β′(1)) .

7Note that α(t) and β(t) just describe the effect of delaying the action; they don’t capture any intrinsic
costs of computation, such as resources consumed, which might vary for different kinds of computations.
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Thus, denoting a = α′(1) and b = β′(1), we have:

α(t+ 1) = aα(t)

= at+1 (3.25)

β(t+ 1) = b+ a β(t)

= b (at + at−1 + · · ·+ 1)

= b
1− at+1

1− a
. (3.26)

Observe also that if delaying is a cost rather than a benefit, then 0 ≤ a ≤ 1 and b ≤ 0.
Combined with Equation 3.23, we see that each unit of time delay incurs (potentially) two
costs: a discount a, devaluing the future, and a cost b of spending time.

In this chapter, we have defined a number of key theoretical concepts and established a
variety of their fundamental properties:

• metalevel control problems and their associated policies and value, illustrated first with
the Beta-Bernoulli example and then defined for the general case,

• two subclasses of MCPs that have useful properties: stationary MCPs and and Markov
MCPs,

• metalevel MDPs and their correspondences with stationary and Markov MCPs,

• factored MMDPs, which are composed of other MMDPs,

• the cost of time, and its derivation.

These definitions and properties equip us to analyze metalevel policies in Chapter 4, in
particular exploiting the structure of MCPs to establish bounds on metalevel computation
and understand the effect of context.
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Chapter 4

Structure of metalevel policies

4.1 Bounding computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.1 Bounding in expectation . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Bounding 1-action metalevel MDPs . . . . . . . . . . . . . . . . . 42
4.1.3 Bounding k-action metalevel MDPs . . . . . . . . . . . . . . . . . 45

4.2 Context effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1 No index policies for metalevel decision problems . . . . . . . . . 46
4.2.2 Context is not just a number . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Context and stopping . . . . . . . . . . . . . . . . . . . . . . . . . 52

This chapter investigates the structure of optimal policies for the metalevel MDPs defined
in Chapter 3. It addresses two main questions:

1. Can you bound the amount of computation an optimal policy performs?

2. How can the optimal strategy for computing about an action depend on its context,
i.e., by the other actions and the agent’s state of knowledge about them?

These questions may best be understood by visualizing the behavior of the optimal policy.
Figure 4.1 shows that state space of the 1-action Beta-Bernoulli metalevel MDP of computa-
tion cost d composed with the constant metalevel MDP of known utility u. Each diagram of
the figure plots two policies (the optimal one and the myopic one defined in Definition 4.5),
while varying values for d and u.

Note in particular the filled colored nodes in the diagrams, which represent the states in
which these policies compute. Call this set of nodes the continuation region.

Observe first that in this problem, the continuation region is bounded, that is, the optimal
policy always eventually stops computing. Further, this bound increases with the inverse
cost 1/d. Section 4.1 presents results on when and how one can bound the number of
computations performed by the optimal policy.
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(a) d = 0.01, u = 0.5 (b) d = 0.01, u = 0.6666

(c) d = 0.005, u = 0.5 (d) d = 0.005, u = 0.6666

Figure 4.1: The above depicts the state space of the 1-action Beta-Bernoulli metalevel MDP
of cost d composed with an action of known utility u. The cost d varies vertically and the
action of known utility u varies horizontally. Its triangular structure is similar to that of
Figure 3.2 but zoomed out. The black line is the line of posterior utility equal to u, i.e.,
it covers all (fractional) states s such that µ1(s) = u. The color of the nodes indicates the
decisions made by the optimal and myopic policies (defined in Definition 4.5). Both policies
stop in gray nodes, and both compute in red nodes. In blue nodes, the optimal policy
computes, while the myopic one stops. Filled colored nodes are reachable from the initial
state at the apex of the triangle. Open nodes are not.

Observe second that the continuation region clusters around the black line in the figure
that depicts the states s whose posterior expected utility µ1(s) is near that of the utility u
of the constant alternative. Section 4.2 presents results on the effect that the context of an
action, such as u in Figure 4.1, can have on the optimal policy for that action.
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4.1 Bounding computation

What bounds can we establish on the number of computations performed by the optimal
policy? Section 4.1.1 shows that although there is a fully general bound on the expected
number of computations proportional to the inverse cost (Theorem 4.3), there are cases
where the actual number of computations an optimal policy performs is unbounded (such as
Example 4.4). Sections 4.1.2 and 4.1.3 then show general cases where one can find such a
bound.

4.1.1 Bounding in expectation

In order to bound the amount of computation performed from a given state s of a metalevel
MDP, we’ll need an upper bound on the utility the agent can expect to achieve with un-
bounded computation. Metalevel MDPs that come from MCPs automatically have such a
bound: E[maxi Ui | S̃ = s]. The following definition gives the extension required for metalevel
MDPs in general:

Definition 4.1. A coherent upper bound on a metalevel MDP M = (S,A, µ, d, T,R) is
a function µ∗ : S → R such that for all s ∈ S and c ∈ C(s)

µ∗(s) ≥ max
i
µi(s),

µ∗(s) =
∑
s′

T (s, c, s′)µ∗(s′).

Lemma 4.2. Given a metalevel MDP derived from an MCP

µ∗(s) = E[max
i
Ui | S̃ = s]

is a coherent upper bound.

Proof. This is clearly an upper bound, and it is coherent by the tower property of expecta-
tions.

Theorem 4.3. In a metalevel MDP M with a coherent upper bound µ∗, the expected number
of computations performed by an optimal policy π∗ is bounded:

Eπ∗M [N |S0 = s] ≤ 1

d

(
µ∗(s)−max

i
µi(s)

)
. (4.1)

If the metalevel MDP is derived from a metalevel control problem, this can be interpreted as
the value of perfect information divided by the cost of computation:

Eπ∗M [N |S0 = s] ≤ 1

d

(
E[max

i
Ui | S̃ = s]−max

i
E[Ui | S̃ = s]

)
.

Further, this holds for any policy π that outperforms the policy that does no computation.
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Proof. We prove the more general case. Recalling Lemma 3.13, we have for any π that

V π
M(s) = EπM [−dN + max

i
µi(SN) |S0 = s]

= −dEπM [N |S0 = s] + Eπm[max
i
µi(SN) |S0 = s]

≤ −dEπM [N |S0 = s] + Eπm[µ∗(SN) |S0 = s]

= −dEπM [N |S0 = s] + µ∗(s)

where the inequality in line 3 holds as maxi µi(s) ≤ µ∗(s) and the equality in line 4 as µ∗(St)
is a martingale. Rearranging, we find:

EπM [N |S0 = s] ≤ 1

d
(µ∗(s)− V π

M(s)) .

The result then follows because by hypothesis V π(s) ≥ maxi µi(s), since maxi µi(s) is the
value function for the policy πact(s) = act that does no computation. If the metalevel
MDP is derived from a metalevel control problem, the second part of the theorem follows
immediately from Definition 4.2.

As noted above, although the expected number of computations is always bounded, there
are important cases in which the actual number is not, such as the following inspired by the
sequential probability ratio test (Wald, 1945):

Example 4.4. Consider the 1-action Beta-Bernoulli model but with different prior: Θ1 is
1/3 or 2/3 with equal probability. After performing computations with s simulated successes
and f simulated failures, the posterior odds ratio is

P(Θ1 = 2/3|s, f)

P(Θ1 = 1/3|s, f)
=

(2/3)s(1/3)f

(1/3)s(2/3)f
= 2s−f .

Note that this ratio completely determines the posterior distribution of Θ1:

P(Θ1 = u) =


1/(2f−s + 1) if u = 2/3,

1/(2s−f + 1) if u = 1/3,

0 otherwise.

Thus, whether it is optimal to stop or compute is a function only of this ratio and thus of s−f .
For sufficiently low computation cost, the optimal policy computes when s− f ∈ {−1, 0, 1}.
But with probability 1/3, a state with s− f = 0 transitions to another with s− f = 0 after
two samples, giving a finite, although exponentially decreasing, probability to arbitrary long
sequences of computations. In particular, for all n ≥ 0:

(1/3)n ≤ P[N ≥ 2n].
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Note that the cost of computation can far exceed the value of computing, even for an
optimal policy; there is no sense in which the policy says “I’ve already spent more on that
than it’s worth.” This may seem strange, but it is the correct choice in this situation: the
amount already spent on computation is a sunk cost, so it should not influence your future
decisions.

4.1.2 Bounding 1-action metalevel MDPs

In a number of settings, including the original Beta-Bernoulli example, we can give a concrete
upper bound on the number of computations performed by the optimal policy. To do this,
we first need to get an analytical handle on the optimal policy. The key insight comes from
considering two natural suboptimal policies.

The first is πact which always acts immediately: πact(s) = act for all s ∈ S. Its value
and Q-value functions are a lower bound on the optimal value and Q-value functions:

V ∗M(s) ≥ V πact

M (s) = max
i
µi(s) (4.2)

Q∗M(s, a) ≥ Qπact

M (s, a) =

{
maxi µi(s) if a = act,

−d+
∑

s′ T (s′|s, a) maxi µi(s
′) otherwise.

(4.3)

The myopic policy πm (known as the metagreedy approximation with single-step as-
sumption in (Russell and Wefald, 1991a)) makes the best decision, to either stop and act
or perform a computation, assuming (perhaps wrongly) that it has at most one computation
left to do. This is equivalent to believing that its future decisions are made by πact, i.e., to
optimizing Qπact

M (s, a):

Definition 4.5. The myopic policy optimizes the lower bound in Equation 4.3:

πm(s) = argmax
a

Qπact

(s, a), (4.4)

breaking ties towards act.

The myopic policy has a tendency to stop too early, because changing one’s mind about
which object-level action to take often takes more than one computation. Concretely, the
myopic policy stops in a state s ∈ S iff

−d+ max
c∈C

∑
s′

T (s′|s, c) max
i
µi(s

′) ≤ max
i
µi(s)

max
c∈C

[∑
s′

T (s′|s, c) max
i
µi(s

′)

]
−max

i
µi(s) ≤ d, (4.5)

otherwise performing the computation achieving the maximum in Equation 4.5.
However, if the myopic policy doesn’t stop, then neither does the optimal policy:
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Lemma 4.6. In a metalevel MDP M = (S,A, T,R, µ, d), if the myopic policy performs a
computation in state s ∈ S, then the optimal policy does too, i.e., if πm(s) 6= act then
π∗(s) 6= act.

Proof. Let s be a state in which the myopic policy doesn’t stop. Then:

Q∗M(s,act) = max
i
µi(s)

= Qm
M(s,act)

≤ max
c∈A(s)

Qm
M(s, c)

≤ max
c∈A(s)

Q∗M(s, c).

There is a partial converse:

Theorem 4.7. Given a metalevel MDP M = (S,A, T,R, µ, d) that has a subset of states
S̄ ⊆ S closed under transitions, if the myopic policy stops on all states in S̄ then so does the
optimal policy.

Proof. Take any state s ∈ S̄ and note that all states to which the chain can transition are
also in S̄, by closure under transitions. If we initialize the chain with S0 = s then the myopic
policy will stop in all states reachable under any policy π, i.e., that for all t > 0:

EπM [1(t < N)(max
i
µi(St+1)− d) |S0 = s] ≤ EπM [1(t < N) max

i
µi(St) |S0 = s]

where 1(t < N) is a random variable equal to 1 if t < N and 0 otherwise. Therefore:

V π
M(s) = EπM [−dN + max

i
µi(SN)|S0 = s]

= EπM [max
i
µi(S0) +

N−1∑
t=0

(max
i
µi(St+1)− d−max

i
µi(St)) |S0 = s]

≤ EπM [max
i
µi(S0) |S0 = s]

= max
i
µi(s).

Thus, stopping maximizes expected utility in state s, so the optimal policy stops.

As a concrete corollary:

Theorem 4.8. The number of computations performed in the 1-action Beta-Bernoulli deci-
sion problem with constant action u ∈ [0, 1] is at most:

u(1− u)

d
− 3 ≤ 1

4d
− 3.
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Proof. States of this MDP are of the form s = (α, β). Fixing one particular s = (α, β), let
n = α + β, and let s+ = (α + 1, β) and s− = (α, β + 1) be the states reached from s after a
simulation that succeeds or fails, respectively. First note that with n = α + β we have:

µ1(s+) =
α + 1

n+ 1
=

n

n+ 1
µ1(s) +

1

n+ 1
,

µ1(s−) =
α

n+ 1
=

n

n+ 1
µ1(s).

Next, observe that the myopic policy stops in this state s if

d ≥ µ1(s) max(µ1(s+), u) + (1− µ1(s)) max(µ1(s−), u)−max(µ1(s), u)

= µ1(s) max

(
n

n+ 1
µ1(s) +

1

n+ 1
, u

)
+ (1− µ1(s)) max

(
n

n+ 1
µ1(s), u

)
−max(µ1(s), u).

Note that µ1(s) ∈ [0, 1] and consider the above function of µ1(s). Breaking into cases to
remove the maximum operators, we can restate the inequality piecewise as:

d ≥


µ1(s)u+ (1− µ1(s))u− u if µ1(s) ∈ [0, u− (1− u)/n]

µ1(s)
(

n
n+1

µ1(s) + 1
n+1

)
+ (1− µ1(s))u− u if µ1(s) ∈ [u− (1− u)/n, u]

µ1(s)
(

n
n+1

µ1(s) + 1
n+1

)
+ (1− µ1(s))u− µ1(s) if µ1(s) ∈ [u, u+ u/n]

µ1(s)
(

n
n+1

µ1(s) + 1
n+1

)
+ (1− µ1(s)) n

n+1
µ1(s)− µ1(s) if µ1(s) ∈ [u+ u/n, 1]

d ≥


0 if µ1(s) ∈ [0, u− (1− u)/n]
n
n+1

µ1(s)2 +
(

1
n+1
− u
)
µ1(s) if µ1(s) ∈ [u− (1− u)/n, u]

n
n+1

µ1(s)2 +
(

1
n+1
− u− 1

)
µ1(s) + u if µ1(s) ∈ [u, u+ u/n]

0 if µ1(s) ∈ [u+ u/n, 1].

Observe that the second piece is increasing and the third decreasing, so the maximum of the
function is at their junction, µ1(s) = u, and so the following inequality is sufficient to ensure
myopic stops in s:

d ≥ u(1− u)

n+ 1

n ≥ u(1− u)

d
− 1.

Finally, observe that the initial state in this problem is (1, 1), which has n = 2, so the number

of computations is bounded above by u(1−u)
d
− 3. Optimizing over u gives the weaker bound

of 1
4d
− 3. The result then follows from Theorem 4.7.
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Figure 4.2: All states (α1, β1, α2, β2) with n1 = α1 + β1 − 2 ≤ 40 and n2 = α2 + β2 − 2 ≤ 40
which are reachable by the optimal policy from initial state (1, 1, 1, 1); such a state is plotted
at the coordinates (n1, n2). A downward line leaving a state means it is optimal to sample
the first action, a rightward line that it is optimal to sample the second, and no lines that it
is optimal to stop (ties towards stopping then sampling the first action). Notice the L shape,
where the arms of the L are 1-action problems. The arms extend off to infinity.

4.1.3 Bounding k-action metalevel MDPs

Bounds for 1-action metalevel MDPs, such as those established in the previous section, can
be extended to bounds in the k-action setting by utilizing the results of Section 3.5 on
factored MMDPs.

Theorem 4.9. For i = 1, . . . , l let Mi = (Si,Ai, µi, d, Ti, Ri) be a metalevel MDP in which it
is optimal to perform at most ni computations in Mi+u for all u ∈ R from any si ∈ Si. Then

it is optimal to perform at most
∑l

i=1 ni computations in the metalevel MDPs
(∑l

i=1Mi

)
+u

and
(∑l

i=1 Mi

)
from any state.

Proof. It suffices to establish the result for
(∑l

i=1Ml

)
+ u, for in general M + (−∞) is

equivalent to M . Further, we can assume l = 2 since the l = 1 case is immediate and l > 2
follows by induction.

For each i and si ∈ Si, let n∗i (s
i) be the maximal number of computations the optimal

policy performs starting in si in Mi+u for any u ∈ R, which is well-defined and finite since it
is at most ni. Note that if s′i is reachable from si in a single transition, then n∗i (s

′
i) ≤ n∗i (si)−1.

Let S0
i = {si ∈ Si : n∗i (si) = 0} ⊆ Si be the set of states in which it is optimal to stop in Mi,

and observe that this set is closed under transitions.
Define n∗(s1, s2) = (n∗1(s1), n∗2(s2)) for states (s1, s2) of M1 + M2 + u. We’ll show that

computations must decrease one of the two components, and that it is optimal not to perform
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Mi’s computations if the ith component is zero. The result then follows as n∗1(s1) +n∗2(s2) ≤
n1 + n2.

The first follows because performing Mi’s computation changes only the ith component of
the state, and we’ve already observed that if s′i is reachable from si, then n∗i (s

′
i) ≤ n∗i (si)−1.

The second follows by applying Corollary 3.18 twice to the hypothesis, once to M1 and
(M2 +u), the other to M2 and (M1 +u). We see it is optimal in M1 +M2 +u not to perform
M1’s computations in the states S0

1×S2, and not to perform M2’s computations in the states
S1 × S0

2 (see Figure 4.2).
As a result, from a state (s1, s2) at most n∗1(s1) computations of M1 will be performed and

at most n∗2(s2) computations of M2 will be performed, thus at most n∗1(s1)+n∗2(s2) ≤ n1 +n2

computations will be performed.

Corollary 4.10. The number of computations performed in the k-arm Beta-Bernoulli deci-
sion problem is at most:

k

(
1

4d
− 3

)
.

Proof. Combine the results of Theorem 4.8 and Theorem 4.9.

One key implication is that the optimal policy can be computed in time O(1/d2). This is
particularly appropriate when the cost of computation is relatively high, such as in simulation
experiments (Swisher et al., 2003), or when the decision to be made is critical. See Figure 4.3
for a trace of the optimal policy for the 3-action Beta-Bernoulli problem, which can be
computed by using the above bounds to make the state space finite. The choice of which
action to compute depends on the posterior, but there is a bias towards uncertain actions
and towards actions which might be best, although the exact tradeoff is subtle.

4.2 Context effects

We now consider a different aspect of the structure of optimal policies: the effect of context.
Section 4.2.1 gives a counter-example where the context has a significant influence on the
optimal computation, while Section 4.2.2 shows that an action’s context cannot be simply
summarized. Section 4.2.3 provides a counterbalance, showing that the pattern observed in
Figure 4.1 of the continuation region clustering around a constant context u holds in general
for these contexts.

4.2.1 No index policies for metalevel decision problems

The Gittins index theorem (Gittins, 1979) is a famous structural result for bandit problems
(Section 1.2.3). It states that in bandit problems with independent reward distribution for
each arm and geometric discounting, the optimal policy is an index policy: each arm is
assigned a real-valued index based on its state only, such that it is optimal to sample the
arm with the greatest index.
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2 3 4 5

(a) Continual success makes for a quick decision. Trace: simulate action 1, succeed; simulate action
1, succeed; simulate action 1, succeed; stop computing and take action 1.

2 3 4 6

7 8 9

(b) Mixed results merit prolonged thought. Trace: simulate action 1, succeed; simulate action 1,
succeed; simulate action 1, fail; simulate action 2, fail; simulate action 3, succeed; simulate action
3, fail; stop computing and take action 1.

Figure 4.3: Two traces of the optimal policy for the 3-action Beta-Bernoulli metalevel control
problem with cost d = 0.01. This was solved exactly using the results of Section 4.1. Each
trace consists of a number of states s depicted in two ways. The triangle-rooted trees (above
the graphs) provide counts of simulated successes (top row; equal to s[αi]−1) and simulated
failures (bottom row; equal to s[βi]−1), where edges correspond to the three possible actions
and the circle indicates the action computed or taken. Each graph in the figure overlays the
posterior probability densities for each action, color-coded to match action edges, with a
vertical line on the x-axis marking the posterior mean of each density.

47



The analogous result does not hold for metalevel decision problems, even when the ac-
tion’s values are independent, as the following example shows:

Example 4.11 (Non-indexability). Consider a metalevel probability model with three ac-
tions. U1 is equally likely to be −1.5 or 1.5 (low mean, high variance), U2 is equally likely
to be 0.25 or 1.75 (high mean, low variance), and U3 = u has a known value (the context).
The two computations are to observe exactly U1 and U2, respectively, each with cost 0.2.

The corresponding metalevel MDP has 3 × 3 = 9 states, which can be denoted (u1, u2)
for ui ∈ {0,+,−}: either of u1 or u2 is unobserved (0), observed to have a large value (+),
or observed to have a small value (−).

This metalevel MDP can be exactly solved, as a function of u, by considering all policies
that might be optimal. Note that if both variables are observed, it is optimal to stop, and if
U2 = 1.75, then it is optimal to stop regardless of whether U1 is measured: it’s known that
U1 < U2, and after measuring U2 it is known whether u > U2 or u ≤ U2. Thus in the five
states (+,+), (+,−), (−,+), (−,−), and (0,+), an optimal policy must act. This leaves
only the four states in which potentially optimal policies can vary in their choice: (0, 0), in
which a policy can either act, observe U1, or observe U2; (−, 0) and (+, 0), in which a policy
can either act, or observe U2; and (0,−), in which a policy can either act or observe U1. If
a state is unreachable under the policy, it doesn’t matter which action is taken.

Notate a policy by a string giving its action in these four states in order, with 1 for
observing U1, 2 for observing U2, a for acting, and x for unreachable. Figure 4.4a gives
the expected utility of all policies that observe U1 in state (0, 0), minus the utility of the
policy that acts immediately, and Figure 4.4b does the same for policies observing U2 first.
Figure 4.4c compares just the two best policies from the previous figures, giving the optimal
Q-values for observing U1, observing U2, or acting.

An index policy would assign a value of observing U1 depending only on what is known
about U1, and similarly for observing U2. In particular, this is independent of the value of u
which affects only U3, so in state (0, 0) there’s a value λ1 of observing U1 and λ2 of observing
U2. However, note in Figure 4.4c that if u = 0 then it’s better to observe U1, so we must have
λ1 > λ2, but if u = 1 it is better to observe U2, so we must have λ1 < λ2, a contradiction.
Therefore the optimal policy is not an index policy, unlike in bandit problems.

4.2.2 Context is not just a number

The previous example used a constant context u ∈ R. In deciding what to compute about
the ith action, is it sufficient to use a 1-dimensional summary of the other actions like their
expected utility? No, as the following analysis of the Bernoulli metalevel MDP establishes.

In a Bernoulli selection problem, each action’s utility is independently distributed ac-
cording to a Bernoulli distribution. The agent can compute, at cost d, the exact value of
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(a) The expected utility of all the policies that
observe U1 in state (0, 0), minus the utility of
the policy that acts immediately.
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(b) The expected utility of all the policies that
observe U2 in state (0, 0), minus the utility of
the policy that acts immediately.
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(c) The expected utility of the maximum over
the policies from (a) and (b), giving the opti-
mal Q-values for observing U1 or U2 relative to
stopping and acting.

Figure 4.4: The value function for Example 4.11.
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Figure 4.5: Metalevel states and transitions in a Bernoulli selection problem with two actions.
Rectangular nodes are metalevel states, with outgoing arrows labeled by computations (com-
putations not depicted are those that have already been performed so repeats won’t change
the state). Circular nodes are chance nodes whose outgoing edges label possible successor
states with their probability. Choosing to take an action transitions from any state to the
unique terminal state ⊥ (at bottom right with incoming arrows elided).

any action. This corresponds to the metalevel probability model

Ui ∼ Bernoulli(pa) for i = 1, . . . , k,

Mber = ({Ui}i=1,...,k, {Ui}i=1,...,k),

where we assume without loss of generality that the pi are non-increasing.
There are 3k possible metalevel states (not including the unique terminal state), that can

each be denoted by vectors giving for each of the k actions i the marginal probability that
Ui = 1 (either 0, 1, or pi) e.g. if k = 5 we denote metalevel state {(2, 0), (3, 0), (5, 1)} by
〈p1, 0, 0, p4, 1〉.

For k = 2 this metalevel MDP is small enough to illustrate (Figure 4.5), and small enough
to solve by hand (Figure 4.6). Observe that its optimal to act when any action is observed
to have utility 1.

It’s likewise optimal for general k to act if any action is observed to have utility 1:
Since the maximum utility is 1, performing any computation yields utility at most 1 − d.
This implies that after performing a computation there’s at most one successor state that
performs a computation (the one where the previous computational outcome was 0), and so
the policy observes variables in a fixed order a1, . . . , ak given by:

ai = π({(aj, 0) : for j < i})

where m is the least index such that am+1 = act. In fact, we can say more:
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m Q∗(m,act) Q∗(m, 1) Q∗(m, 2)
〈0, 0〉 0
〈0, 1〉 1
〈1, 0〉 1
〈1, 1〉 1
〈p1, 0〉 p1 −d+ p1

〈p1, 1〉 1 −d+ 1
〈0, p2〉 p2 −d+ p2

〈1, p2〉 1 −d+ 1
〈p1, p2〉 p1 −d+ p1 + (1− p1)p2 −d+ p2 + (1− p2)p1

Figure 4.6: Optimal Q-function for two-action Bernoulli selection problem computed by
backwards induction. Repeated computations are elided since the value of repeating a com-
putation in state m is V ∗(m)− d: always suboptimal.

Theorem 4.12. In the Bernoulli selection problem there is some 0 ≤ m < k such that it
is optimal to observe action utilities 1, 2, . . . ,m in sequence, acting immediately if any has
utility 1, otherwise acting after the full sequence.

Proof. The above discussion shows that we can restrict our search for optimal policies to
those that observe variables a1, . . . , am in a fixed order, stopping early upon observing a 1.
We can further assume that m < k, as it is optimal to act when there’s only one unknown
action left: the other k − 1 actions will have been observed to have value 0, so the final
action’s utility cannot be worse.

Thus, it suffices to show for any 0 ≤ m < k that the value of any policy a1, . . . , am is
no more than the value of the policy 1, . . . ,m. We’ll give a closed-form expression for the
value of such a policy and show we can transform any policy a1, . . . , am into 1, . . . ,m using
transformations that only increase policy’s value, namely sorting a1, . . . , am in increasing
order (i.e., such that if i < j then ai < aj) and replacing actions ai by smaller actions (i.e.,
ones with high prior probability of one).

Fix a policy a1, . . . , am. Let am+1 be the action of least index (i.e., that with the highest
prior probability of being one) not in the set {a1, . . . , am}, and observe that this policy is
guaranteed to take an action of utility 1 if there is one within the set {a1, . . . , am+1}, receiving
utility 0 otherwise. Thus, the policy’s value equals:

V [a1,...,am] = −d
m∑
i=1

i−1∏
j=1

(1− paj) +

(
1−

m+1∏
j=1

(1− paj)

)
, (4.6)

where the first term is the expected cost of performing at most m computations factoring
in the chance of stopping early, and the second the expected utility of the action taken after
computation.
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First observe that the right term of Equation 4.6 is independent of the ordering of the
ai’s, but the left term is maximized when they are in decreasing order, for suppose they
weren’t. Then there would be an inversion pal+1

> pal . Now, the only two terms of the left
summation that would be affected by the swap are:

−d

(
l∏

j=1

(1− paj) +
l+1∏
j=1

(1− paj)

)
= −d

l−1∏
j=1

(1− pal)(1 + (1− pal+1
))

= −d
l−1∏
j=1

(2− 2pal − pal+1
+ palpal+1

)

that is clearly maximized by the swap.
Finally observe that increasing the value of any individual pai would increase both terms

of Equation 4.6, so replacing ai with a smaller action would increase the policy’s value,
completing the proof.

Theorem 4.12 reduces the k-action Bernoulli problem to a stopping problem that by
Equation 4.6 can be solved by a recurrence:

V [] = p1

V [1,...,m−1,m] = V [1,...,m−1] + (pm+1(1− pm)− d)
m−1∏
j=1

(1− pj)

Consider now the case of d = 0.05 and p1, p2 = 0.9, 0.4 with two values of p3:

p3 = 0.3 p3 = 0.1

V [] 0.9 0.9
V [1] 0.89 = 0.9 + (0.4(1− 0.9)− 0.05) 0.89 = 0.9 + (0.4(1− 0.9)− 0.05)
V [1,2] 0.903 = 0.89 + (0.3(1− 0.4)− 0.05)0.1 0.891 = 0.89 + (0.1(1− 0.4)− 0.05)0.1

When p3 = 0.3 it is optimal to compute in the initial state, and when p3 = 0.1 it is optimal
to stop. But in both cases the state p1 of the action it is optimal to compute, and the value
of the best alternative, p2, are the same. That is, the context of the action we are sampling
cannot be summarized as simply the expected value of the best alternative. In general, all
of the alternative actions can have an influence.

4.2.3 Context and stopping

Despite the negative results of the previous sections, there is a restriction on what kind of
influence the context can have, generalization the observation we made in the opening of
this chapter about the 1-action Beta-Bernoulli metalevel MDP with constant context u.
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Theorem 4.13. Given a metalevel MDP M , for each s ∈ S, there is a closed interval I(s) ⊆
R such that it is optimal to act in state s of M + u iff u ∈ I(s). Further, maxi µi(s) ∈ I(s)
if I(s) is nonempty.

Proof. Consider the advantage of following π versus acting as a function of u ∈ R:

φs(u) = V π
M+u(s)−max(max

i
µi(s), u)

and note that
I(s) = {u : φs(u) ≥ 0}.

Observe that by Theorem 3.15 and one-sided derivatives of max we have:

lim
u↑u0

φs(u)− φs(u0)

u− u0

= PπM
(

max
i
µi(SN) < u0 |S0 = s

)
− 1(u0 > max

i
µi(s))

lim
u↓u0

φs(u)− φs(u0)

u− u0

= PπM
(

max
i
µi(SN) ≤ u0 |S0 = s

)
− 1(u0 ≥ max

i
µi(s)),

so φs(u) is non-decreasing on (−∞,maxi µi(s)] and non-increasing on [maxi µi(s),∞).

This brings us to the end of our theoretical investigations. The last two chapters have
established a formal basis for the general problem of metalevel control, defining an equivalent
class of metalevel MDPs and exploiting structural properties of both to yield results on
computational bounds and the effect of context.

We turn next to our practical investigations: applying reinforcement learning to the
metalevel control problem, with specific application to Monte Carlo tree search.
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How can the principles of metalevel control be put into practice? The theoretical frame-
work defined in Chapters 3 and 4 provides formal tools for understanding and reasoning
about the problem of controlling computation, cast as a class of metalevel MDPs. It does
not, however, address what specific (metalevel) policy should be followed by the metalevel
agent.

The natural choice for MDPs is to exploit reinforcement learning techniques to find good
policies. In this chapter we describe how metalevel reinforcement learning can be used
to find good policies for controlling computation. After laying out some of the challenges
that arise in applying reinforcement learning to metalevel control problems (Section 5.1),
we describe pointed trees (Section 5.2), a recursive data structure that affords efficient
learnable functions. Sections 5.3–5.6 then show how to apply this in the context of controlling
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Monte Carlo tree search (MCTS; Section 1.2.3). Experiments applying these techniques are
given in Chapter 6.

5.1 Challenges of metalevel reinforcement learning

We focus for concreteness on the specific application of controlling Monte Carlo tree search
(MCTS, described in Section 5.3). Several challenges arise in applying reinforcement learning
(Section 2.4) to the problem of controlling computations in this context:

1. We must precisely define the metalevel MDP for which we’ll be finding policies. The
states of the metalevel MDP are possible internal states of the algorithm. For MCTS,
this internal state is a tree, along with a pointer to the node in the tree the algorithm is
currently processing. Metalevel actions control search, centrally by navigating through
and manipulating this search tree.

2. Reinforcement learning uses and modifies various functions of state and state-action
pairs: policies, value functions and Q-functions. In typical reinforcement learning
applications, state spaces can be encoded as arrays of fixed shape (e.g. 2d or 3d arrays
for images, 2d arrays for audio sequences). But for controlling search, the elements
of the state space include trees, which have complex recursive structure. Naively,
functions of such trees (such as those used in MCTS) would take time proportional
to the tree’s size to evaluate, which would quickly become intractable. How can we
tractably represent policies and value functions on this space?

3. There is no intrinsic value to computing: a computation is useful only inasmuch as it
leads to a better action choice down the line. There may be hundreds, thousands or
millions of computations before acting. This means that rewards, which can come only
by acting in the environment, will be very rare. How should we handle this reward
sparsity?

The rest of the chapter addresses these issues as follows:
Section 5.2 addresses (1) above by defining the pointed tree, a representation with

properties useful for modeling and implementing Monte Carlo tree search (Section 1.2.3).
Section 5.3 describes Monte Carlo tree search with pointed trees as internal states, including
the specific case of UCT. MCTS is then cast as a metalevel MDP in Section 5.4.

Section 5.5 addresses (2) above by describing a tractable metalevel policy class suitable
for learning to control MCTS.

Finally, Section 5.6 addresses (3) above by describing a method for applying shaping
rewards to reduce reward sparsity based on the estimated best value of the next physi-
cal action. This method has an elegant theoretical interpretation related to the value of
computation.
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5.2 Pointed trees

We begin with a substantial theoretical prelude needed for our later discussion of Monte
Carlo tree search: we define pointed trees (Section 5.2.1), which will represent the internal
state of MCTS, as well as recursive functions on pointed trees (Section 5.2.2), which
will represent policies. In subsequent sections we discuss local operations on pointed trees
(Section 5.2.3), how recursive functions on pointed trees can be efficiently maintained after
local operations (Section 5.2.4), and how derivatives of these functions can be efficiently
computed (Section 5.2.5). These discussion provide the basis for understanding how efficient
algorithms that exploit complex internal state can be represented and learned.

5.2.1 Definition and recursive construction

A pointed tree is a tree with one selected node, which we will call the point. Pointed trees
can be constructed in a recursive fashion, following Huet (1997).1

T

(a) A pointed tree

C

T1

T2
T3

N

(b) See Equation 5.1

C

T1

T2 T31

N3

N

T32

(c) See Equation 5.2

1

T1

T2

NC

TC1

C’

T31

N3

N

T32

0

(d) See Equation 5.3

Figure 5.1: A pointed tree T and its recursive decomposition into trees, contexts and nodes.
Dots correspond to T ’s Nodes, and T ’s point is the node colored orange. An open square
marks the context’s hole. Dashed lines connect structures that have been decomposed. See
text for details.

By way of example, consider the pointed tree T in Figure 5.1a with point N (colored
orange). This can be decomposed (Figure 5.1b) into the node N , N ’s subtrees (T1, T2 and
T3), and N ’s context C, where C effectively has one leaf with a “hole” corresponding to the

1Huet termed the structure a zipper; our Tree is his tree, our Context is his path, and our PointedTree
is his path combined with his location. Note also that his zippers are binary trees, but the generalization
is natural.
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original tree’s point (N). Denote the fact of this decomposition by the equality:

T = PointedTree(C,N, T1, T2, T3). (5.1)

The tree T3 can in turn be decomposed (Figure 5.1c) into its root node N3 and its two
subtrees T31 and T32:

T3 = Tree(N3, T31, T32). (5.2)

Finally, denote the parent of C’s hole by NC , and note that C’s hole is the second child of
NC (where NC ’s children are labeled with their indices in the figure). We can decompose
C into a new context C ′ by removing the tree rooted at NC , and splitting that tree into its
subtrees (Figure 5.1d). Effectively, in going from the lower context C to the upper context
C ′, the original hole can be seen as “moving” up to its parent. In sum, the context C is
decomposed into the context C ′ of the parent node NC of C’s hole, the parent node NC of
C’s hole, the number 1 indicating the index in NC ’s (zero-indexed) list of children of C’s
hole, and the other subtrees of NC , in this case only the one TC1:

C = Context(C ′, NC , 1, TC1). (5.3)

Since each subcomponent is smaller than the original structure, this decomposition will
eventually bottom out into a set of Nodes and the unique empty context, which we denote
by ♦.

A specific class of pointed trees is defined by specifying the Node type: what fields does
it have? What do they store?

The above equations are instances of the more general constructors:

PointedTree(C,N, T1, . . . , Tk) for a context C, a node N
and k ≥ 0 trees Ti

Tree(N, T1, . . . , Tk) for a node N and k ≥ 0 trees Ti
Context(C,N, i, T1, . . . , Tk) for a context C, a node N ,

an index i ∈ {0, . . . , k} and k ≥ 0 trees Ti
♦ the unique empty context (a constant)

These constructors correspond to the following recursive set definitions for the set of all
trees, contexts and pointed trees:

Tree = Node×
∞⋃
k=0

Treek

Context = {♦} ∪ Context× Node×
∞⋃
k=1

k × Treek−1

PointedTree = Context× Node×
∞⋃
k=0

Treek.

57



For a pointed tree, denote by point(T ) the node the pointed tree is currently pointing
to. More precisely, this is defined by:

point(PointedTree(C,N, T1, . . . , Tk)) = N.

To make use of pointed trees as a representation useful for metalevel control, we need
recursive functions (Section 5.2.2) of pointed trees and local operations on pointed trees
(Section 5.2.2). We define these next.

5.2.2 Recursive functions of pointed trees

An X-valued function f : PointedTree→ X on pointed trees is recursive if its value f(T )
at T ∈ PointedTree is defined by structural recursion on T . This means that f is extendable
to a function on pointed trees, trees and contexts:

f : PointedTree ∪ Tree ∪ Context→ X (5.4)

for which there exist functions:

• fTree : Node×X∗ → X,

• fContext : X × Node× N×X∗ → X,

• f♦ ∈ X,

• fPointedTree : X × Node×X∗ → X,

which satisfy the recursive equations:

f(Tree(N, T1, . . . , Tk)) = fTree(N, f(T1), . . . , f(Tk))

f(Context(C,N, i, T1, . . . , Tk−1)) = fContext(f(C), N, i, f(T1), . . . , f(Tk))

f(♦) = f♦

f(PointedTree(C,N, T1, . . . , Tk)) = fPointedTree(f(C), N, f(T1), . . . , f(Tk))

In fact, by structural induction, the functions fPointedTree, fTree, fContext, f♦ suffice to
exactly characterize any recursive f .

See Section 5.5.1 for examples of specific recursive functions.

5.2.3 Local operations

Local operations make a local change to a pointed tree, either modifying its nodes or
structure or moving its pointer. The following local operations on a pointed tree T will
suffice:
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• up(T ): return the pointed tree with the point moved up to the parent of the point, or
T if this is impossible.

• down(T, i) for i ∈ N: return the pointed tree with the point moved down to the ith
child of the current point, or T if there is no ith child.

• modify(T,N ′) for N ′ ∈ Node: return the pointed tree with the node at the point
replaced by a new node N ′.

• insert(T, i, T ′) for i ∈ N and T ′ ∈ Tree: return the pointed tree with T ′ inserted
before the ith child of the current node, or T if i is out of bounds. Note this operation
preserves all existing subtrees of the point, and T ′ becomes the new ith child.

Note that when combined with the method Tree(N) to construct a tree out of a single
node N and the empty context ♦, the above operations can locally construct any pointed
tree starting from any one-element pointed tree PointedTree(♦, N) for N ∈ Node. (Our
implementation of MCTS in Section 5.3 does exactly this, for example.) It will also be
convenient to have a method PointedTree(N) that constructs a pointed tree out of a single
node N .

Notice that every node in a pointed tree T can be reached by performing a sequence of
up and down operations. In fact, the set of all pointed trees T ′ that can be reached by these
operations is isomorphic to the set of nodes of the tree, this isomorphism being witnessed
by the function point : PointedTree→ Node.

All these functions have an efficient immutable implementation.2

5.2.4 Local operations and recursive functions

Our implementation of Monte Carlo tree search (Section 5.3) will maintain a pointed tree
to which it will apply local operations to figure out what to do. It will use functions f of
the current value of the pointed tree to decide what to compute. It is imperative that these
functions be tractably computable. In particular, after performing a local operation, the
time required to compute the next value of the function must be independent of the size of
the tree.

Fortunately, the value of recursive functions on pointed trees can be maintained by
caching the intermediate values of the recursive computation as messages that are lazily
propagated in time independent of the size of the tree. We sketch such a message-passing
algorithm below.

Denote the current pointed tree by T , and let f be the X-valued recursive function we
wish to incrementally compute. The algorithm extends the Node type to include two fields
that store messages (see Figure 5.2). Specifically, for a node N :

2And an even more efficient mutable implementation.
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C

T1

T2
T3

N
f(T1)

f(T2)

f(T3)

f(C)

Figure 5.2: Any node N of a pointed tree (not only the point) has a context C surrounding
it and subtrees T1, . . . , Tk (compare Figure 5.1b). The down message (blue) to N is f(C),
the function f evaluated at the context surrounding N , and the up messages (green)
to N are f(T1), . . . , f(Tn), the value of function f evaluated at N ’s child subtrees Ti. The
message-passing algorithm extends the Node type to include a field down msg storing the (not
necessarily valid) down message to the node, and a field up msgs storing the (not necessarily
valid) up messages to the node.

• N.down msg stores an X-valued down message to N , which when valid contains the
value of f evaluated at the context surrounding N , and

• N.up msgs stores a list of X-valued up messages to N , the ith entry of which, denoted
N.up msgs[i], contains the value of f evaluated at the subtree rooted at the ith child
of N , when valid.

Not all of these messages will be valid: this algorithm will lazily propagate them just in
time. In fact, it is not possible for all of these messages be valid: local changes cannot be
propagated to the rest of the tree in constant time.

However, for every node in the tree, at least one message coming from it will be valid,
namely the one heading toward the point (Figure 5.3). More formally:

• For every node N of the tree that is not an ancestor of the node point(T ), excluding
the point itself, the up message from N to its parent is valid. If N ′ is the parent of N ,
i is the index of N in the child list of N , and Tree(T,N) is the tree rooted at N in T ,
then:

N ′.up msgs[i] = f(Tree(T,N)). (5.5)
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• For all the ancestors N of point(T ), including the point itself, the down message to
N from its parent is valid, i.e.:

N.down msg = f(Context(T,N)), (5.6)

where Context(T,N) denotes the context surrounding a node N of T .

Note that no messages from the point itself are required to be valid, and that we are implictly
using the extension of recursive functions on pointed trees to recursive functions on pointed
trees, trees and contexts (Equation 5.4).

If this invariant holds, the value of f at the current pointed tree is locally computable:

f(T ) = f(PointedTree(C,N, T1, . . . , Tk))

= fPointedTree(f(C), N, f(T1), . . . , f(Tk))

= fPointedTree(N.down msg, N,N.up msgs).

Figure 5.3: A pointed tree T with valid up and down messages indicated as arrows between
nodes. (The point node is orange, ancestors are blue and non-ancestors are green.) For
every node N of the tree T that is an ancestor of the node point(T ) (those nodes in blue),
including the point itself, the down message N.down msg to N (blue arrows) is valid, i.e.,
equals f(Context(T,N)). For every node N of the tree that is not an ancestor of the node
point(T ) (those nodes in green), including the point itself (if it’s not the root), the up
message from N (green arrows) is valid, i.e., equals f(Tree(T,N)).

To initialize the algorithm for a pointed tree T , the above messages can be recursively
computed; since intermediate computations can be shared, it can be seen that the messages
are the only values of f that need to be evaluated. In total, one of fTree and fContext needs
to be invoked for each node of the tree (and none for the point). If these can be computed
in time linear in the number of their arguments, initialization can be done in time linear in
the number of nodes in T .3

3Recall that the total sum of degrees of nodes in any graph is twice the number of nodes in the graph.
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A

B

(a) Pointed tree T1

A

B

(b) Pointed tree T2

A

C B

(c) Pointed tree T3

Figure 5.4: When the point in a pointed tree is moved either up (e.g., taking T1 to T2) or
down (e.g., taking T2 to T1) there is only one message that needs to be computed. To see
this, note that T1 has the down message from node A to node B (the thick blue down arrow)
while T2 does not, and T2 has the up message from node B to node A (the thick green up
arrow) while T1 does not. If modify is used to change the node at the point this affects no
messages. If insert is used to add a subtree (marked C in figure (c)) already satisfying the
invariant to the point (taking T2 to T3), the messages in the subtree are all already valid
(none of the nodes of the subtree are ancestors of the point) and no other message is invalid.

Suppose a given pointed tree T is annotated with messages satisfying this invariant. If
a local operation is applied to yield a new pointed tree T ′, the invariant can be restored by
generating only one new message (see Figure 5.4).

The messages are best maintained by modifying the local operations to transparently
update the fields up msgs and down msg, so that algorithms using the pointed tree can have
the value of f(T ) always efficiently available.

This algorithm can be further refined to track which messages are invalid and update
only those that are changed.

Note that many familiar tree algorithms can be reinterpreted, in line with the foregoing
discussion, as effectively maintaining the value of a recursive pointed tree function. This is
the case with UCT (Kocsis and Szepesvári, 2006), to be discussed in Section 5.3 below.

5.2.5 Derivatives of recursive functions

In order to learn a recursive function, it’s important to be able to compute derivatives.
Specifically, consider a parameteric family fθ of recursive functions on pointed trees, for θ a
real-valued vector. Let its recursive component functions fPointedTree, fTree, fContext and f♦
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take θ in as their first argument:

fθ(Tree(N, T1, . . . , Tk)) = fTree(θ,N, fθ(T1), . . . , fθ(Tk))

fθ(Context(C,N, i, T1, . . . , Tk−1)) = fContext(θ, fθ(C), N, i, fθ(T1), . . . , fθ(Tk))

fθ(PointedTree(C,N, T1, . . . , Tk)) = fPointedTree(θ, fθ(C), N, fθ(T1), . . . , fθ(Tk)).

Invoking the chain rule for partial derivatives, we see that if fθ is a recursive function
on pointed trees, contexts and trees, then so too is the combination of fθ and its derivative
∂θfθ.

4 Using subscript ·,i to denote the partial derivative of a function with respect to its
ith parameter:

∂θfθ(Tree(N, T1, . . . , Tk))

= ∂θfTree(θ,N, fθ(T1), . . . , fθ(Tk))

= fTree,1(θ,N, fθ(T1), . . . , fθ(Tk))

+
k∑
i=1

fTree,2+i(θ,N, fθ(T1), . . . , fθ(Tk)) ∂θfθ(Ti) (5.7)

∂θfθ(Context(C,N, i, T1, . . . , Tk−1))

= ∂θfContext(θ, fθ(C), N, i, fθ(T1), . . . , fθ(Tk))

= fContext,1(θ, fθ(C), N, i, fθ(T1), . . . , fθ(Tk))

+ fContext,2(θ, fθ(C), N, i, fθ(T1), . . . , fθ(Tk)) ∂θfθ(C)

+
k−1∑
i=1

fContext,4+i(θ, fθ(C), N, i, fθ(T1), . . . , fθ(Tk)) ∂θfθ(Ti) (5.8)

∂θfθ(PointedTree(C, T1, . . . , Tk−1))

= ∂θfPointedTree(θ, fθ(C), N, fθ(T1), . . . , fθ(Tk))

= fPointedTree,1(θ, fθ(C), N, fθ(T1), . . . , fθ(Tk))

+ fPointedTree,2(θ, fθ(C), N, fθ(T1), . . . , fθ(Tk)) ∂θfθ(C)

+
k−1∑
i=1

fPointedTree,3+i(θ, fθ(C), N, fθ(T1), . . . , fθ(Tk)) ∂θfθ(Ti). (5.9)

5.3 Monte Carlo tree search (MCTS)

We can now turn to the problem that motivated our introduction of pointed trees: repre-
senting the complex internal state of Monte Carlo tree search (MCTS).

4The derivative by itself is not a recursive function, since its recursive evaluation requires the evaluation
of f . The combination of a function and its first derivative forms what is called a (1-)jet, and this result can
be seen as taking advantage of the fact that the composition of a 1-jet is the 1-jet of its composition.
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Recall the framework of interacting agents and environments described in Chapter 1, and
consider an agent that has, in addition to its input observations and potential output actions,
access to a stochastic simulator of the environment. As before, the agent’s objective is to
maximize the total reward received from the environment before the interaction terminates.

Perhaps the simplest thing to try is the Monte Carlo approach: simulate the reward
received by taking each action a number of times, and choose the action with greatest
average reward. By the law of large numbers, the empiricial average of simulated rewards
tends toward the expected reward as the number of simulations increases.

In situations where multiple actions must be taken before receiving the final reward,
as is typically the case, this simulation process requires a particular policy for choosing
future actions. The easiest approach is to use a fixed stochastic policy, termed a rollout
policy, the simplest of which takes actions uniformly at random. However, the rollout
policy is inaccurate: it doesn’t necessarily represent what the agent would actually do in
those scenarios. Nor does it improve in any way as the algorithm computes more about the
problem it is facing.

Monte Carlo tree search (Section 1.2.3) algorithms address these issues by using the
results of simulations to form a lookahead tree to improve the rollout policy near the current
state. Approaches vary in how they decide which Monte Carlo simulations to perform, what
additional information (if any) they have, and how to use the results of those simulations to
decide which action to take.

To specify MCTS, we first describe how we represent interacting agents and environments,
and then define the tree-search algorithm, using the pointed trees introduced in Section 5.2
as a means of representing complex internal state.

An agent (for example, the Monte Carlo tree search agent of Algorithm 1) implements
two methods:5

• agent.init(), which initializes any persistent internal state, and

• agent.act(observations), which updates internal state and returns an action.

An environment (for example, Algorithm 2 below) implements two methods:

• environment.reset(), which initializes any persistent internal state and returns the
first observation to get the alternating interaction started, and

• environment.step(actions), which advances the environment’s state and returns a
tuple of an observation, reward and termination signal.

MCTSAgent (Algorithm 1) gives a general framework for Monte Carlo tree search using
pointed trees for internal state.6 Recall that the function point is defined in Section 5.2.1

5Function names and signatures in the following are inspired by those of the OpenAI Gym (Brockman
et al., 2016).

6MCTS algorithms don’t all fit into exactly this framework: in particular, they often add only a single
node after a rollout, and might not expand a leaf every time. These are easy extensions.

64



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.5: A trace of Monte Carlo tree search (Algorithm 1) divided into stages, where the
point is colored in orange: (a)-(g) rolling down the tree to a leaf (algorithm line 21), (h)
performing a rollout (lines 11-12), (i) expanding a leaf (lines 13-14), and (j)-(o) backing up
to the root (lines 15-16). Notice that this takes 15 steps to perform one rollout, of which the
first six, (a)-(f), require a choice of a branch into which to descend.
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Algorithm 1 Monte Carlo Tree Search Agent

1 MCTSAgent.init()

2 simulator <- new_simulator()

3 last_action <- None

4 last_state <- None

5 MCTSAgent.act(state)

6 T <- PointedTree(new_node(last_state, last_action, state))

7 simulator.reset(state)

8 last_simulated_action <- None

9 while not finished(T)

10 if at_leaf(T)

11 score <- simulator.rollout()

12 T <- modify(T, update_node(point(T), last_simulated_action,

simulator.state(), score))

13 for action, next_state in simulator.successors()

14 T <- insert(T, 0, Tree(new_node(simulator.state(),

action, next_state)))

15 while not at_root(T)

16 T <- move_up()

17 simulator.reset(state)

18 else

19 last_simulated_action <- choose_branch(T)

20 simulator.act(action)

21 T <- down(T, action)

22 last_action <- best_action(T)

23 last_state <- state

24 return last_action

and the functions up, down, modify, insert and PointedTree are defined in Section 5.2.3.
(See Figure 5.5 for an example execution trace.)

The following functions must be specified by any specific class of MCTS algorithm:

• new node(last state, action, state): Create a Node corresponding to the given
state, which was reached by performing action in state last state. (In the inital
state, both last state and last action are given stub value None.)

• update node(node, action, state, score): Update the value of the given Node,
which corresponds to the given state (which was reached by the given action), with
the result score of a rollout started at node.
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• choose branch(T): Choose a branch of point(T) to roll down into.

• finished(T): Decide whether to stop and act.

• best action(T): Decide which action to take.

UCT (Kocsis and Szepesvári, 2006) is a special case of Algorithm 1 where:

• new node(last state, action, state) and
update node(node, action, state, score) maintain for each node N the number
of times nN that node has been visited by the algorithm, the number of times nN,i the
ith branch has been taken by the algorithm, and the average future reward rN,i received
in those simulations.

• choose branch(T) implements the UCB algorithm (Auer et al., 2002) from the theory
of multi-armed bandits (see Section 1.2.3): if there are any untried branches, it selects
one at random, otherwise selecting the branch i that maximizes

rpoint(T),i + k

√
log npoint(T)
npoint(T),i

for some fixed constant k. The first term favors actions that have performed well so
far, the second term favors actions that have been tried fewer times (so their value is
more uncertain), and the constant k tunes the balance between these two goals.

• finished(T) terminates either when a time limit is reached, or after a given number
of simulations.

• best action(T) returns the branch i at the root node point(T ) of T (note this function
is called only when T ’s point is at its root) of maximal rpoint(T),i.

5.4 MCTS as a metalevel MDP

Observe that the definition of MCTS in MCTSAgent (Algorithm 1) can be viewed from
the familiar perspective of an agent’s actions in the object-level—i.e., its interactions with
the external environment. With respect to its internal state representation (the pointed
tree), the node manipulation functions new node(action, state) and update node(node,

action, state, score), along with the simulator, determine what tree the agent inter-
nally searches, while the functions finished(T), choose branch(T) and best action(T)

control the agent’s computations and actions.
But our overarching goal here is to learn how to control computations, that is, to learn the

functions finished(T), choose branch(T) and best action(T). That is, in the framing of
Chapter 1, it is the metalevel agent’s (metalevel) actions that we wish to learn. Hence, the
particulars of the MCTSAgent’s search are not of direct use for the metalevel agent; rather,
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Algorithm 2 Monte Carlo Tree Search Metalevel Environment

MCTSMetaEnvironment.reset()

state <- objectlevel_environment.reset()

simulator <- new simulator

simulator.reset(state)

T <- PointedTree(new_node(None, None, state))

return T

MCTSMetaEnvironment.step(meta_action)

if meta_action is a computation

simulator.step(meta_action)

T <- down(T, meta_action)

if at_leaf(T)

score <- simulator.rollout()

T <- modify(T, update_node(point(T), meta_action,

simulator.state(), score))

for action, next_state in simulator.successors()

T <- insert(T, 0, Tree(new_node(simulator.state(), action,

next_state)))

simulator.reset(state)

while not at_root(T)

T <- move_up()

return T, 0, False

else meta_action is an action

next_state, score, done <- objectlevel_environment.step(meta_action)

T <- PointedTree(new_node(state, meta_action, next_state))

simulator.reset(next_state)

state <- next_state

if done

return T, score, done

else

return T, 0, False

this metalevel agent interacts with a metalevel environment, which provides as observations
its metalevel state (i.e., the pointed tree T ). It also expects to receive (from the metalevel
agent) a metalevel action that specifies either a computation to perform (i.e., a branch to
select) or an action to take in the underlying object-level environment.

The metalevel environment, defined in MCTSMetaEnvironment (Algorithm 2), thus wraps
the object-level environment and provides as observation its metalevel state, the pointed tree
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Algorithm 3 Monte Carlo Tree Search Metalevel Agent

MCTSMetaAgent.act(T)

if finished(T)

return choose_branch(T)

else

return best_action(T)

T , and expects to receive a metalevel action that specifies either a computation to perform
(i.e., a branch to select) or an action to take in the underlying object-level environment.

MCTSMetaAgent (Algorithm 3) shows how we can construct a metalevel agent from the
functions finished(T), choose branch(T) and best action(T).

In general, a metalevel agent can be described by a single metalevel policy π(T ) that
maps a pointed tree T to the choice of either a branch to roll down or an external action to
take.

5.5 Metalevel policy class for MCTS

This section describes UCT and AlphaGo Silver et al. (2016) as metalevel policies for MCTS,
then presents the class of metalevel policies we’ll use in Chapter 6 to learn how to control
MCTS.

5.5.1 UCT and AlphaGo metapolicies

UCT can be specified as a metalevel policy for MCTS in the following fashion. UCT’s Node
has the fields:

• num rollouts: the number of rollouts started from this node. new node(last state,

action, state) initializes this to zero, and update node(node, action, state,

score) increments it by one.

• sum rollouts: the sum of the rewards of these rollouts. new node(last state,

action, state) initializes this to zero, and update node(node, action, state,

score) increments it by score.

69



Then UCT’s policy is defined at the pointed tree T = PointedTree(C,N, T1, . . . , Tk) by:

wr(Ti) =
∑
N∈Ti

N.sum rollouts

nr(Ti) =
∑
N∈Ti

N.num rollouts

πUCT(T ) = argmax
i

wr(Ti)

nr(Ti)
+ k

√
log
∑

i nr(Ti)

nr(Ti)
.

This is a recursive function on pointed trees, where the up message is [wr(Ti), nr(Ti)] and
the down message is empty (context is ignored).

Note that the infinities go in the right direction: if nothing has been done yet, pick an
action at random; prefer an action that’s not yet been selected.

AlphaGo (Silver et al., 2016) has at its core an MCTS algorithm that uses information
gained both from rollouts using a carefully trained rollout policy and by evaluating a prior
policy and value function.7

Let π0(a|s) be the probability distribution of the prior policy, assigning a probability
to taking action a in state s, and V0(s) its value function. AlphaGo’s Node will store, in
addition to UCT’s fields, the following:

• num value: the number of times the prior value function is evaluated.
new node(last state, action, state) initializes this to zero, and
update node(node, action, state, score) increments it by one.

• sum value: the sum of these evaluations. new node(last state, action, state)

initializes this to zero, and update node(node, action, state, score) increments
it by V0(state).

• prior prob: the probability the prior policy would take the action.
new node(last state, action, state) initializes this to π0(action|last state),
and update node(node, action, state, score) does nothing.

Then AlphaGo’s policy is defined at the pointed tree T = PointedTree(C,N, T1, . . . , Tk)

7We bypass the complexities needed to have a parallel implementation of this algorithm: our work here
is serial.
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by:

wr(Ti) =
∑
N∈Ti

N.sum rollouts

nr(Ti) =
∑
N∈Ti

N.num rollouts

wv(Ti) =
∑
N∈Ti

N.sum value

nv(Ti) =
∑
N∈Ti

N.num value

πAlphaGo(T ) = argmax
i

(1− λ)
wv(Ti)

nv(Ti)
+ λ

wr(Ti)

nr(Ti)

+ cpuct point(Ti).prior prob

√∑
j nr(Tj)

1 + nr(Ti)

for constants λ and cpuct. This is a recursive function on pointed trees, where the up mes-
sage is [wr(Ti), nr(Ti), wr(Ti), nr(Ti), prior prob] and the down message is empty (context
is ignored).

UCT and AlphaGo are special cases of the metapolicy representation we will use, pre-
sented in the next section.

5.5.2 Metapolicy class: Recursive component

Our policies are the composition of two components: a fixed recursive function on trees
ffixed(T ) and a parameterized function class gθ on top of this:

πθ(T ) = gθ(ffixed(T )). (5.10)

We describe ffixed in this section and gθ in the next. The major reason for making this
decomposition is technical: we use batch reinforcement learning methods that compute and
store execution paths and optimize θ over those paths. If we used a general recursive function
on trees, we’d have to keep the trees around and perform computation linear in the size of
the tree every time the optimization algorithm adjusted θ.

Throughout we assume a deterministic adversarial environment where players move in
alternation. By using negamax scoring we treat each player symmetrically.

Similar to the previous section, we first describe the fields our Nodes are annotated with,
then the recursive functions on pointed trees we use. We follow by describing how the
messages are computed.

Our Nodes have the following fields:

• AlphaGo fields: num value, sum value, prior prob, num rollouts, sum rollouts.
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• expanded?: whether this node has been expanded, 1 if it has, 0 if it hasn’t.

We incrementally maintain the following functions of Trees T :

• num visits(T ): total number of simulations that passed through the root of T .

• all done(T ): whether all leaves of T are expanded, 1 if true, 0 if false.

• avg r(T ): the average value to the current player of rollouts resulting from simulations
passing through T .

• avg v(T ): the average evaluation to the current player of leaves expanded by simula-
tions passing through T .

• p over n+1(T ): the prior probability of the root of T divided by the number of visits
incremented by one.

• negamax(T ): the value to the current player derived from evaluations of leaves in T ,
evaluated by negamax.

which satisfy the following recurrences for a tree T = Tree(N, T1, . . . , Tk):

num visits(T ) = N.num rollouts +
∑
i

num visits(Ti)

all done(T ) =

{
N.expanded? if k = 0,

max
i

all done(Ti) otherwise.

avg r(T ) =


N.sum rollouts−

∑
i num visits(Ti) avg r(Ti)

N.num visits
if k > 0,

0 otherwise.

avg v(T ) =


N.prior value−

∑
i num visits(Ti) avg v(Ti)

N.num visits
if k > 0,

0 otherwise.

p over n+1(T ) =
N.prior probability

N.num visits + 1

negamax(T ) =

{
N.prior value if k = 0,

max
i
−negamax(Ti) otherwise.

We also incrementally maintain the following functions of Contexts C:

• depth(C): the depth of the context’s hole.

• α(C): the alpha value of this context, a lower bound on the utility we can achieve: we
can achieve at least this much somewhere else in the tree.
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• β(C): the beta value of this context, an upper bound on the utility we can achieve:
our opponent can achieve at most this much somewhere else in the tree.

which satisfy the following recurrences:

depth(♦) = 0

depth(Context(C,N, i, T1, . . . , Tk)) = 1 + depth(C)

α(♦) = −1

β(♦) = 1

α(Context(C,N, i, T1, . . . , Tk)) = −β(C)

β(Context(C,N, i, T1, . . . , Tk)) = −max(α(C),max
i
−negamax(Ti))

At a pointed tree T = PointedTree(C,N, T1, . . . , Tk), the fixed component ffixed(T ) pack-
ages the value of the above functions together into a vector (see the red vector at the top of
Figure 5.6a):

• node: various features of the node N to be elaborated in Section 6.1.2.

• down: the down message from the context: depth(C), α(C), and β(C).

• up-i: for each subtree Ti the up message from it: num visits(T ), all done(T ),
avg r(T ), avg v(T ), p over n+1(T ), negamax(T ).

In practice, we maintain the value of ffixed(T ) by further wrapping the MCTS metalevel
environment; see Section 6.1.2 for details.

5.5.3 Metapolicy class: Parameterized local component

Our second component, the parameterized local component gθ, maps the output of the
fixed recursive component, ffixed(T ) to a probability distribution over meta-actions, i.e., over
actions and computations. Concretely, the output distribution is a max branching×2 matrix
of probabilities. We compare two different neural network architectures for implementing
gθ (Figure 5.6). The first is a straightfoward architecture, and the second makes use of
symmetries in the metalevel MDP (namely, repeated up messages coming from different
branches) to improve scaling.

1. Flat (Figure 5.6a). This maps the flattened ffixed(T ) to the distribution array without
reshaping. We use dense linear mappings with tanh activation into the hidden layers,
and a dense linear mapping with softmax to the output layer.

2. Factored (Figure 5.6b). This utilizes structure in ffixed(T ) by splitting it into two
components:

• The context: node vector, and the down message.

73



• The up messages: reshaped into a max branching× up msg size array.

The up messages are linearly mapped to form the first hidden layer, a max branching×
h1 size dimension array, the ith up message mapping to the ith row, all rows being
mapped by the same linear map. The context is mapped linearly into an h1 size

dimensional array which is added to each component of the second hidden layer. A
tanh activation is then applied.

The rest of the layers are mapped in a similarly uniform manner, applying tanh acti-
vation at hidden layers and softmax at the output.

node down up1 up2 up3

h1

h2

prob_act1
prob_act2
prob_act3

prob_comp1
prob_comp2
prob_comp3

(a) Flat architecture

node down

up1
up2
up3

h11
h12
h13

h21
h22
h23

prob_act1
prob_act2
prob_act3

prob_comp1
prob_comp2
prob_comp3

(b) Factored architecture

Figure 5.6: Neural network architectures for the local component of the metalevel policy
(see Section 5.5.3). Input layer(s) in red, output layer in yellow, hidden layers in green. See
the text for descriptions of the specific transformations between layers.

5.6 Metalevel shaping rewards

Reward shaping (Dorigo and Colombetti, 1994; Ng et al., 1999) is a method for addressing
reward sparsity by giving the learning process intermediate rewards. Rewards are especially
sparse in metalevel MDPs, where computations yield no intrinsic reward, and there may be
millions of computations before any external action.

In general, applying shaping rewards runs the risk of distorting the objective and changing
which policies are optimal, but potential-based shaping rewards do not (Ng et al., 1999). As
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their name suggests, they are defined from a potential φ function over states. They give as
intermediate rewards the change in the state’s potential after a transition.8 Ng et al. (1999)
show that the optimal shaping potential for an MDP is the true value function, and suggest
that approximations of the value function will be good shaping rewards.

The metalevel environment described in this chapter can be seen as an instance of a
joint-state MDP (Russell and Wefald, 1991a; Parr and Russell, 1998; Andre and Russell,
2002): one whose state has two components: the state of the object-level environment and
the internal state of the agent. Denote the former by w (the world state) and the latter by
s. The full state of the metalevel environment is then given by the joint state (w, s).

One lower bound on the value of a joint state is the value of acting immediately without
further computation. The value of this is not known exactly, but algorithms often maintain
an approximation, such as avg r(T ) and avg v(T ) from Section 5.5.2.

Denoting by Q̂(w, a|s) such an approximation, our shaping reward is

φ(w, s) = max
a
Q̂(w, a|s). (5.11)

Denote the unshaped reward function R by:

R(w, s; a;w′, s) = RW(w; a;w′)

R(w, s; c;w, s′) = 0.

Then the shaped reward function Rφ is:

Rφ(w, s; a;w′, s) =
[
RW(w; a;w′) + max

a′
Q̂(w′, a′|s′)

]
−max

a
Q̂(w, a|s)

Rφ(w, s; c;w, s′) = max
a
Q̂(w, a|s′)−max

a
Q̂(w, a|s)

This shaped reward has an interesting interpretation. The shaped reward after a physical
action a is the difference between how much reward the system expected to get before
knowing the next reward and how much reward the system expects to get after knowing
the next reward. Letting a∗(w|s) = argmax Q̂(w, a|s), the expected shaped reward under
computations can be decomposed into two terms:∑

s′

TS(s, c, s′)Rφ(w, s; c;w, s′)

=
∑
s′

TS(s, c, s′)
[
Q̂(w, a∗(w|s′)|s′)− Q̂(w, a∗(w|s)|s)

]
=
∑
s′

TS(s, c, s′)
[
Q̂(w, a∗(w|s′)|s′)− Q̂(w, a∗(w|s)|s′)

]
−

[
Q̂(w, a∗(w|s)|s)−

∑
s′

TS(s, c, s′)Q̂(w, a∗(w|s)|s′)

]
8Note that if there are terminal states, the potential must have the same value on all terminal states,

otherwise what is optimal can be changed.
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The first component measures the (necessarily non-negative) expected improvement in deci-
sion quality resulting from performing computation c: it equals the estimated utility differ-
ence between the action a∗(w|s′) that would be chosen having performed the computation c
and the action a∗(w|s) that would be chosen having not performed it, both measured using
post-computation value estimates Q̂(w, a|s′). This is closely related to the value of informa-
tion. The second component measures the failure of Q̂(w, a|s′) to behave like a conditional
expectation.

Having established how Monte Carlo tree search, along with an appropriate representa-
tion of the metalevel state, can be used to define a metalevel MDP, we can now investigate
how metalevel reinforcement learning can be used to learn to control MCTS computations.
Experiments applying these techniques are given in Chapter 6.
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Chapter 6

Experiments
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We set out to investigate whether metalevel reinforcement learning can successfully learn
to control Monte Carlo tree search. Section 6.1 describes the practical details for our exper-
iments and elaborates how the approach outlined in Chapter 5 can be applied to the board
game Hex. Section 6.2 presents the experiments and analyzes their results, and Section 6.3
ends with discussion.

6.1 Experimental setup

6.1.1 Object-level environment: Hex

We used as our object-level environment for MCTS the board game Hex (Figure 6.1). In
Hex, the players alternately fill in empty tiles, trying to connect opposite sides with tiles of
their color. The first player wins by connecting the top side to the bottom side, while the
second player wins by connecting the left side to the right side. Full-size Hex is 11 × 11,

77



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.1: A game of 3× 3 Hex. Players alternate filling empty (hexagonal) tiles, with the
first player colored in blue, the second in red. The goal of both players is to create a path of
contiguous tiles in their respective colors between two of the edges: top and bottom for the
first player (blue), left and right for the second (red). In this game the second player (red)
wins.

but we use odd-sized boards from 3× 3 upwards to control the difficulty of the object-level
problem, denoting the board size by L.

In our experiments, the state of the Hex environment is not directly observable to the
metalevel policy.

Hex has a first-player advantage in practice, and can be shown to have a winning strategy
in theory. For this reason, we randomize which player gets to play first in order to remove
this asymmetry and normalize our results: an agent playing against itself will receive zero
average reward (see Table 6.1 for illustration).
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6.1.2 Metalevel environment

Our metalevel environment, which we name MCTSEnv, wraps MCTSMetaEnvironment (Algo-
rithm 2 of Section 5.5) to compute the recursive functions ffixed(T ) defined in Equation 5.10
of Section 5.5.2. The local parameterized policy gθ is a function of the observation vector
defined at the end of Section 5.5.3. Specifically, we used the following:

• can act: 1 if it’s valid to act, 0 otherwise. It is valid to act when at the root and after
having performed the minimum number of computations.

• can comp: 1 if it’s valid to compute, 0 otherwise. It is valid to compute when not at
the root or when it has not yet performed the maximum number of computations.

• node vector: vector of derived quantities of the node. In our case, this equals
[
√
num visits, 1, is root?] (this is in order to represent AlphaGo, and p-UCT specif-

ically, within this class).

• messages: flattened (1+max actions)×(1+message size) array. This constant-sized
array stores a variable number of messages. The first row is the down message, the
rest are up messages. The first column is a validity bit marking whether that message
exists: 1 if it exists, 0 otherwise. This validity bit is needed to pass a fixed-sized
vector into the neural network of the metalevel policy even while the branching factor
is variable. Invalid messages are zeroed out.

The metalevel policy masks its action distribution to exclude invalid choices: performing
a physical action in a non-root state before the preset number of computations is performed,
performing a computation after the preset number of computations is performed, or choosing
an action or a branch that does not exist (an artifact of mapping into an observation vector
of uniform size).

6.1.3 Calibrating UCT

We use UCT (Section 5.5.1) as the opponent for the following experiments, and also as a
baseline to measure the performance of our learned policies. UCT has a free parameter k
(see Section 5.5.1), and its performance may be sensitive to its value.

To investigate UCT’s sensitivity to varying this parameter, we conducted a preliminary
experiment in which games of Hex were played using UCT as the metalevel policy for both
players—effectively allowing UCT to play against itself. We varied k between 0 and 100 for
both players independently.

Table 6.1 shows the average reward for these pairings, along with the reward against an
opponent following a random policy. Positive valued entries are bolded, and indicate cases
where the player outperforms its opponent. In the later tables of this section, bold entries
will show cases where our learned policy outperforms the baseline. The more bold entries,
the better the learning method.
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k=0 k=0.1 k=0.2 k=0.5 k=1 k=2 k=5 k=10 k=100 random
k=0 0.03 -0.12 -0.16 -0.30 -0.31 -0.24 -0.04 -0.15 0.01 0.44
k=0.1 0.14 0.02 -0.03 -0.11 -0.12 -0.06 0.01 0.06 0.08 0.51
k=0.2 0.14 0.01 -0.03 -0.12 -0.09 -0.07 0.02 0.06 0.07 0.58
k=0.5 0.25 0.06 0.07 -0.02 -0.05 -0.01 0.13 0.08 0.17 0.57
k=1 0.29 0.13 0.08 0.02 0.02 0.01 0.17 0.17 0.23 0.66
k=2 0.21 0.07 0.07 -0.02 -0.04 -0.03 0.11 0.10 0.16 0.61
k=5 0.15 -0.08 -0.09 -0.14 -0.14 -0.13 -0.02 -0.01 0.06 0.53
k=10 0.09 -0.06 -0.05 -0.16 -0.21 -0.12 -0.01 -0.01 0.04 0.56
k=100 0.01 -0.12 -0.13 -0.16 -0.24 -0.17 -0.06 -0.04 -0.01 0.52
random -0.46 -0.52 -0.55 -0.63 -0.65 -0.58 -0.55 -0.53 -0.52 0.02

Table 6.1: Average reward of UCT vs. UCT varying the weight k of the upper confidence
term, with L = 3 board size, n = 20 computations, averaged over 1000 random games. The
final column/row give the performance against random game play for calibration. Observe
that k = 1 performs no worse than the rest.

6.1.4 Reinforcement learning

In our experiments we applied TRPO with GAE (Section 2.4) for reinforcement learning,1

using settings that have been demonstrated to be robust: γ = 0.995, λ = 0.97, maxKL =
0.01, and conjugate gradient damping factor of 0.1. We used a batch size of 50, 000 steps
throughout. (See Schulman et al. (2015, 2016) for the semantics of these parameters.)

For the flat policy architecture (Figure 5.6a), we used 64 hidden units, while for the
factored policy architecture (Figure 5.6b), we used 8 hidden units.

6.2 Experimental results

6.2.1 Flat architecture

n=10 n=20 n=50 n=100
L=3 0.69 0.31 -0.03 -0.29
L=5 0.68 -0.03 -0.80 -0.79
L=7 0.31 -0.07 -0.42 -0.17

Table 6.2: Average reward for the flat policy architecture (Figure 5.6a) as a function of Hex
board size L and number of computations n. The performance of UCT against itself averages
0.0, so the learned metalevel policy outperforms UCT for small number of computations.

1We used the reference implementation available online at https://github.com/joschu/modular rl.
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Figure 6.2: Average reward as a function of learning iteration for the flat policy architecture
(see Figure 5.6a), varying the board size L for constant number of computations n = 10.
The metalevel policy outperforms UCT for all the board sizes, but learning is slower for
larger boards (see text).

We first investigated reinforcement learning in the metalevel environment MCTSEnv (Sec-
tion 6.1.2) using the flat policy class architecture (Figure 5.6a) to determine what quality
metalevel policies it would learn. Table 6.2 shows the results for varying board size and
number of computations. RL successfully learns metalevel policies outperforming UCT for
varying board size if the number of computations is small, outperforming UCT for n = 10
(Figure 6.2), and at least matching for n = 20. The performance drops off for larger number
of computations and larger board size.

We considered three potential reasons for this performance decrease:

1. The number of parameters of the flat architecture scales with the square of the board
size L: the observation vector (Section 6.1.2) is of size 12 + 7L2 and the first layer of
the flat architecture (Figure 5.6a) is a dense layer with (12 + 7L2)× 64 parameters.

2. A randomly initialized policy acts effectively at random. As the number of computa-
tions available to the opponent increases, and as a larger board size reduces the chance
of blind luck, the initial performance of the learned policy decreases. If the policy
starts out losing every game, it has no information to learn from.
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3. Increasing the board size or number of computations increases the average length of
each episode and decreases the number of episodes per batch (Table 6.3). This makes
learning more difficult by increasing the chance of overfitting to peculiarities of those
particular episodes, by making the influence of any given computation on overall reward
more indirect, and by decreasing the information available to the learner (there is only
one non-zero reward: at the end of an episode indicating a win or a loss).

n=10 n=20 n=50 n=100
L=3 49.02 131.49 540.77 996.12
L=5 127.88 370.30 1239.29 2690.58
L=7 288.23 714.04 2146.38 4389.08

n=10 n=20 n=50 n=100
L=3 1019.94 380.27 92.46 50.19
L=5 390.98 135.03 40.35 18.58
L=7 173.47 70.02 23.30 11.39

Table 6.3: Average length of episode (above) and number of episodes per batch (below) as a
function of board size L and number of computations n. Notice the two orders of magnitude
difference between L = 3, n = 10 and L = 7, n = 100, and the absolutely few number of
episodes per batch in the latter case. These numbers are for the learned flat policies (see
Table 6.2), but the numbers are consistent across metalevel policies.

The following sections propose improvements to help address these issues: Section 6.2.2
addresses policy parameters scaling with the square of the board size; Section 6.2.3 addresses
the initial policy’s poor performance; Section 6.2.4 addresses sparsity of reward.

6.2.2 Factored architecture

n=10 n=20 n=50 n=100
L=3 0.60 0.44 -0.59 -0.60
L=5 0.50 0.48 -0.42 -0.91
L=7 0.35 0.50 -0.63 -0.54

Table 6.4: Average reward for the factored policy architecture (Figure 5.6b) as a function of
Hex board size L and number of computations n. Note the wider range of settings relative
to the flat policy class in which the learned metalevel policy outperforms UCT.

The factored architecture (Figure 5.6b) maps each up message through the same network,
making the number of weights invariant to the board size. Table 6.4 shows the performance
of RL using the factored architecture.
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Compared to the flat architecture (Table 6.2), the factored architecture now uniformly
outperforms UCT for n = 20 computations. However, it still fails to find a good policy for
larger numbers of computations (n = 50, 100).

The following section improves upon this situation by jump-starting the learned policy.

6.2.3 Factored architecture initialized to UCT

n=10 n=20 n=50 n=100
L=3 0.58 0.47 0.47 0.33
L=5 0.70 0.60 0.51 -0.89
L=7 0.37 0.47 0.36 -0.45

Table 6.5: Average reward for the factored policy architecture initialized to UCT as a func-
tion of Hex board size L and number of computations n. The learned policy outperforms
UCT for up to 50 computations per move, on all board sizes.
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Figure 6.3: Learning curve for the factored policy architecture initialized to UCT for board
size L = 3 and varying number of computations n. Learning succeeds in all cases, although
the n = 100 curve is less robust than the others.
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UCT falls within the factored policy class by design. This means we can initialize the
weights of the network to implement UCT, then continue learning. Since UCT already
performs well against itself, with an expected performance of 0, this should significantly
improve learning.

Table 6.5 shows what results. The learned policy now outperforms UCT for up to 50
computations per move, on all board sizes. (See Figure 6.3 for learning curves.) Learning
fails in two settings, n = 100 with L = 5, 7, finding a policy worse than its initialization.
Table 6.3 suggests a reason: in these settings there are fewer than 20 episodes per batch,
yielding at most 20 bits of information to the learning algorithm per batch, not enough to
even maintain the initially good weight assignment.

L=3 ntest=10 ntest=20 ntest=50 ntest=100
ntrain=10 0.46 0.02 -0.52 -0.96
ntrain=20 0.42 0.34 -0.98 -1
ntrain=50 0.4 0.4 0.48 0.68
ntrain=100 0.42 0.42 0.24 0.22

L=5 ntest=10 ntest=20 ntest=50 ntest=100
ntrain=10 0.6 0.46 0.22 -0.1
ntrain=20 0.6 0.58 0.56 0.22
ntrain=50 0.58 0.62 0.64 0.54
ntrain=100 -0.52 -0.82 -0.98 -0.84

Table 6.6: Average reward for the factored policy architecture initialized to UCT, system-
atically varying the number of computations used in training (ntrain) and the number of
computations used in testing (ntest). See text for discussion.

How robust is the policy found by RL? Does a policy learned for n = 10 computations
generalize to one for n = 50 computations, and vice versa? Table 6.6 shows the results of an
experiment run to investigate this question, in which we systematically vary the number of
computations at training and test time. We find that policies trained for larger numbers of
computations generalize to smaller number of computations but not the reverse (as indicated
by performance increasing as we move along a row to the left). This makes sense, as the
process of constructing a good n = 50 tree, for example, produces a good n = 10 tree along
the way, but a policy constructing an n = 10 tree has never seen a larger tree.

6.2.4 Metalevel reward shaping

The third issue identified in Section 6.2.1 was that of reward sparsity. Recall from Section 5.6
that reward shaping (Dorigo and Colombetti, 1994; Ng et al., 1999) is a method for addressing
reward sparsity by giving the learning process intermediate rewards.

We investigated using the shaping reward proposed in Section 5.6. This shaping reward
shapes by an estimate of the utility to be gained by stopping and acting immediately, equal
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to the maximum over the estimated utilities of the actions available in the current world
state. We estimate the utility of a particular action by the average reward avg r of all the
rollouts that begin with that action. Concretely, if w is the current world state, s is the
current metalevel state (the pointed tree), n+1

a (s) the number of rollouts starting with action
a at the root yielding reward +1, and n−1

a (s) the number of rollouts starting with action a
at the root yielding reward -1, avg r estimates the value of the action by:

Q̂1(w, a|s) =


n+1
a (s)− n−1

a (s)
n+1
a (s) + n−1

a (s)
if n+1

a (s) + n−1
a (s) > 0,

0 otherwise.

This gives the shaping potential:

φ1(w, s) = max
a
Q̂1(w, a|s).

Table 6.7 shows the results. In fact, the performance for this shaped cases is worse than
that in the unshaped case (Table 6.7). Examining the shaping rewards before and after
training (Figure 6.4) shows the reason for this failure. Because the average rollout after a
single success has value 1, the maximum possible reward, the shaping reward quickly hits
its maximum, giving no further signal. The metalevel policy learns to hit this maximum as
soon as possible. This, for example, gives it a bias toward not resampling an action that has
succeeded once, because its estimated utility can only go down.

A more accurate estimate of an action’s utility, such as one that regressed toward the
mean for estimates based on few samples, would not have this weakness because it would
be roughly equally likely to go up as down upon further computation. The Beta-Bernoulli
metalevel control problem (recall Section 3.1) suggests such an estimate: model the samples
gained from rollout as Bernoulli samples of an underlying probability of success (i.e., reward
+1 rather than -1) with a Beta prior, and use the posterior mean. Concretely:

Q̂2(w, a|s) =
n+1
a (s)− n−1

a (s)

n+1
a (s) + n−1

a (s) + 2

φ2(w, s) = max
a
Q̂2(w, a|s).

The shaping rewards and potentials before and after training (Figure 6.5) are much more
reasonable, with no pathological clamping. The results in Table 6.8 suggest that for smaller
numbers of computations, the shaped reward scales better with number of actions.

These results are not yet as good as we’d like. Ng et al. (1999) argues that good shap-
ing potentials closely approximate the value function, and the above approximations are
still quite crude. Better approximations of the value function of Beta-Bernoulli model of
Section 3.1 may well yield more powerful shaping rewards.
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n=10 n=20 n=50 n=100
L=3 0.54 0.31 -0.10 -0.77
L=5 0.71 0.66 0.58 -0.33
L=7 0.61 0.55 -0.42 -0.43

Table 6.7: Average reward for the factored policy architecture initialized to UCT and
shaped by the maximum estimated action-utility estimated by the average reward of roll-
outs (φ1(w, s); see text) as a function of Hex board size L and number of computations n.
Compared with the unshaped case (Table 6.5) this shows worse performance. See text for
explanation.

0 20 40 60 80 100 120 140
1.0

0.5

0.0

0.5

1.0

0 50 100 150
1.0

0.5

0.0

0.5

1.0

0 20 40 60 80 100 120 140
1.0

0.5

0.0

0.5

1.0

1.5

0 50 100 150
1.0

0.5

0.0

0.5

1.0

1.5

Figure 6.4: Traces over an episode for the factored policy architecture, with board size L = 3
and number of computations n = 20. The top plots the shaping reward at each time step
(blue bars) along with the single final reward (red bar). The bottom plots the shaping
potential φ1(w, s) over time: the shaping rewards equal the change in potential. The left
side is before training, the right side is after training. Note that the maximum value of the
shaping potential is 1, corresponding to a certain win. See text for discussion.
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n=10 n=20 n=50 n=100
L=3 0.55 0.45 0.34 -0.74
L=5 0.73 0.77 0.00 0.00
L=7 0.61 0.92 -0.67 -0.43

Table 6.8: Average reward for the factored policy architecture initialized to UCT and shaped
by the maximum estimated action-utility estimated by the Beta-posterior (φ2(w, s); see text)
as a function of Hex board size L and number of computations n. Compared with the
unshaped case (Table 6.5) this shows worse performance. See text for explanation.
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Figure 6.5: Traces over an episode for the factored policy architecture, with board size L = 3
and number of computations n = 20. The top plots the Beta-posterior shaping reward at
each time step (blue bars) along with the single final reward (red bar). The bottom plots
the shaping potential φ2(w, s) over time: the shaping rewards equal the change in potential.
The left side is before training, the right side is after training. Note that that unlike the
trace for φ1, this does not immediately clamp at +1. See text for further discussion.
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6.3 Discussion

Section 6.2.1 demonstrated that reinforcement learning in the metalevel environment can
successfully learn metalevel policies that outperform hand-crafted policies like UCT. How-
ever, straightforward approaches have issues scaling to larger domains and greater numbers
of computations. We identified three broad issues: the number of parameters in a flat ar-
chitecture scales with the maximum number of actions, in an adversarial setting poor initial
policies may greatly hinder learning, and the reward sparsity of the metalevel MDP.

The first two issues were addressed with the factored policy architecture, which includes
UCT within its parameter space, allowing learning to start from UCT and explore a contin-
uous space of variants.

For the third issue, our use of reward shaping was not successful, but we outlined a
direction for improvement through shaping potentials based on approximate value functions
of simpler metalevel MDPs, such as the Beta-Bernoulli metalevel MDP.

Further directions for resolving the issue of reward sparsity include exploring environ-
ments in which the agent selects computations for only a single real-world action, with either
an oracle policy (a high-quality policy for the domain) that determines other actions or an
oracle value function (an accurate object-level value function) that evaluates the quality
of the decision. Such an approach would provide feedback after every object-level action,
increasing the information available to the learning process. A similar improvement may
result simply from shaping the object-level environment with an accurate object-level value
function.

In sum, the above experiments show that metalevel reinforcement learning can find met-
alevel policies that outperform hand-crafted metalevel policies. The reward sparsity and
recursive structure of computations makes this an exceptionally difficult learning problem,
providing scope and promise for future work.
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Conclusions
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We have come some way toward a principled foundation for addressing the questions we
began with: How can an agent learn to control its own decision-making process? How can
it know when it’s better to think a bit more before acting, and for how long? How much
more computation does it need to perform—or information does it need to gather—before
choosing a course of action?

These questions, and the answers offered in the previous chapters, reflect different ways of
conceptualizing the complex problems at hand. We conclude our investigations by stepping
back to consider the conceptual models we have used to understand the metalevel control
problem (Section 7.1). We then revisit our contributions in light of these distinctions (Sec-
tion 7.2) and suggest potentially fruitful directions for continued progress (Section 7.3). We
end with a few remarks on the broader context of the ideas explored here (Section 7.4).

7.1 Understanding metalevel control

Discussions of metalevel agents, metalevel control, metalevel decision-making and metar-
easoning are bound to invite confusion. We talk about, and think about, such abstract
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concepts in a variety of ways that are not always consistent.1 The notion of metalevel con-
trol constructed here also depends on many other equally complex concepts, which can be
organized in different ways for different modeling goals and approaches.

This section makes explicit the conceptual models adopted in this work, in the hope of
dispelling potential terminological and conceptual confusion. Broadly speaking, the theo-
retical and practical studies reflect two conceptual models of metalevel control, which we
will term the mechanical model and the Bayesian model. We discuss each of these in turn
(Sections 7.1.1 and 7.1.2) and compare them (Section 7.1.3) below.

7.1.1 Mechanical model

The mechanical model views computations as actions that change the internal state of the
agent. These contrast with external actions that change the state of the environment, but
they are not fundamentally different. From this perspective, the metalevel control problem
is likewise not fundamentally different from the (non-metalevel) control problem of choosing
among possible actions: choose the computation-actions that maximize the overall reward
received.

The mechanical model is exemplified in our treatment of MCTS as a metalevel environ-
ment (recall Sections 5.3 and 5.4 and Figure 5.5). The internal state of the MCTS agent
is a pointed tree, i.e., a tree with a pointer at a particular node. Computations are actions
that move this pointer up and down the tree, propagating information along with it, and
performing random rollouts at the leaves.

The mechanical model has two broad variants. One takes an internal perspective, adding
computations to the existing set of external actions available to an agent. This relates to
the everyday experience of choosing to either do something or think about doing something.
The other takes an external perspective, in which the agent is limited to its existing set of
external actions, while a separate meta-agent is responsible for the computations that direct
the agent. (On this view, the agent is part of the environment, relative to the meta-agent.)
This view is akin to separating ourselves into a part that acts and thinks (the agent), and a
part that chooses what to think (the meta-agent).

Formally, these two variants are closely related. The mechanical model can be formalized
as a joint-state MDP (Section 5.6). A joint policy for this joint-state MDP is a function
π : W ×S → A∪C taking joint states (w, s) to either an action a ∈ A(w) or a computation
c ∈ C(s). This joint policy can be subdivided into three sub-policies:

• a stopping policy πstop : W × S → {comp,act} that decides whether to compute
more or stop and act,

• a computational policy πcomp : W ×S → C that decides what specific computation
to perform, and

1They are in this regard much like other abstract concepts that are understood as metaphorical extensions
of more concrete domains (Lakoff and Johnson, 1980).
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• an action policy πact : W ×S → A that decides what specific action to take.

In the internal variant, a single agent chooses actions and computations, and so specifies
the joint policy π. In the external variant, the action policy πact is part of the agent, while
the stopping πstop and computational policies πcomp are part of the meta-agent.

7.1.2 Bayesian model

The Bayesian model views computations as providing Bayesian evidence relevant for
decision-making. The state of the agent records the evidence it has accumulated so far.
The metalevel control problem, in this framing, is a sequential information-gathering prob-
lem: choose the computations that yield the most relevant information at the least cost.

The formal problems defined in Chapter 3—the Beta-Bernoulli metalevel control problem
(Section 3.1) and metalevel control problems (MCP) in general (Section 3.2)—directly reflect
this Bayesian perspective. In MCPs, computations provide evidence about the utility of
different actions. The result of a computation and the utility of an action are both uncertain,
and are thus both modeled as random variables distributed according to some prior. In the
Beta-Bernoulli metalevel control problem, the state of the agent is a representation of the
posterior distribution over the action’s utilities conditional on the simulations observed so
far. This is the minimal record of evidence provided by these simulations.

The Bayesian model builds upon the mechanical model by giving the agent’s states and
computations a Bayesian semantics. This semantics makes it clear what use computations
have: they provide information relevant to making the decision.

7.1.3 Complementary models

The models serve different and complementary purposes.
The Bayesian model is analytically tractable, as Chapters 3 and 4 illustrate. It allows us

to formalize important intuitions about computation, such as: the results of a computation
are not known before it’s performed; computations provide information relevant to deciding
how to act, including especially information about the relative utility of actions; the agent’s
state integrates the results of the computations performed.

The mechanical model is more general: any algorithm class can be understood in terms
of the mechanical model; the metalevel control problem can thus be posed and good policies
can be learned, as Chapter 5 and 6 demonstrate. Further, any Bayesian model can be seen
as a mechanical model by integrating out the probabilities, as illustrated in the conversion
of an MCP to a metalevel MDP (Definition 3.9).

Results and understanding gained through the Bayesian model can be transferred to the
mechanical model. For example, the Bayesian model allows analytic approximations to the
value function of a problem; such value functions are useful candidates for shaping rewards
(see Section 6.2.4).
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While the different perspectives demand different analytical tools and practical tech-
niques, a clear understanding of their conceptual compatibility enables us to benefit from
the insights of both views without confusion.

7.2 Summary

We can now summarize the contributions of the thesis with respect to the different conceptual
bases for metalevel control just delineated.

As noted above, the Bayesian perspective provided an ideal setting for the theoretical
analysis of metalevel control, as pursued in Chapters 3 and 4.

• We formalized the problem of controlling computations by defining metalevel control
problems (MCPs), which captures the view of computation as information-gathering.

• We characterized the conditions under which these MCPs have an equivalent MDP
that we can then analyze using the theory of MDPs.

• We combined the notions of factored and metalevel MDPs, and showed how one can
derive properties of the factored MDP from properties of its component factors, in
particular bounding the number of computations of the optimal policy of the factored
MDP by the sum of the bounds on the number of computations of optimal policies in
its factors.

• We showed that the context of an action can centrally influence what it is optimal to
compute, but we demonstrated limits on what this influence can be.

For the practical experiments described in Chapter 5 and 6, the more general mechanical
perspective proved more appropriate. This perspective allows a wider range of applications,
since an explicit Bayesian model is not required.

• We showed how to represent Monte Carlo tree search as a metalevel MDP, and how to
represent metalevel policies for controlling such MDPs.

• We observed that using the formalism of pointed trees to represent the internal state
of Monte Carlo tree search allows us to define an efficient class of policies. Specifically,
we showed that recursive functions on pointed trees can be efficiently computed in an
incremental fashion by message-passing. UCT, among other MCTS algorithms, can be
seen from this perspective as implementing this message-passing algorithm to compute
a particular recursive function on pointed trees.

• We proposed concrete classes of parameterized recursive functions on pointed trees and
demonstrated that reinforcement learning by policy optimization can learn metalevel
policies that outperform fixed algorithms like UCT.
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• We introduced two classes of recursive functions on trees, flat and factored, and further
showed that the factored representation outperforms the flat representation.

• The factored representation includes UCT as a special case, and we showed that ini-
tializing the metalevel policy to UCT allows metalevel reinforcement learning to learn
faster and scale to a larger number of computations.

• Finally, we began an exploration of how metalevel shaping rewards can help address
the reward sparsity problem, although further work is required to make this approach
a uniform success.

7.3 Future work

This thesis opens up a number of avenues for exploration, from both the mechanical and
Bayesian perspectives. Some concrete next steps suggested by the foregoing:

1. Let a coherent metalevel MDP M = (S,A, T, µ, d, R) be one whose utility estimates
are coherent (cf. Definition 4.1), i.e., such that for all i = 1, . . . , k, s ∈ S and c ∈ C:

µi(s) =
∑
s′

T (s, c, s′)µi(s
′). (7.1)

One can show that if St is a Markov chain realizing the above MDP, then µi(St) is
a martingale. Under reasonable conditions, e.g., if µ is bounded, standard results
of martingale theory (Kallenberg, 2006) can be used to show there exists a random
variable Ui such that µi(St) = E[Ui|St]. Further, one can make this construction
uniform, defining Ui independently of the metalevel policy used. Can this be extended
to show that coherent metalevel MDPs correspond exactly to Markov stationary MCPs,
or are further conditions required?

2. The treatment of factored MDPs (Sections 2.3 and 3.5) may be made more precise
by defining a factored MDP as one that is equivalent to the composition of other
MDPs, as alluded to in Definition 2.7. It would then be a theorem that the k-action
Beta-Bernoulli MMDP is equivalent to the composition of k copies of the 1-action
Beta-Bernoulli MMDP. This theorem could strengthen the analysis of the previous
point, by showing, for instance, that converting a coherent MMDP into an MCP and
back again yields an equivalent MDP. There are a number of ways to define equivalent
MDPs, but the key properties will likely be analogs of Lemmas 2.10 and 2.11.

3. Theorem 4.8, bounding the number of computations performed in the 1-action Beta-
Bernoulli MMDP by the inverse cost O(1/d), can be straightforwardly extended to
normal distributions. How generally does it hold? Can it be proven for exponential
families with conjugate priors, under suitable conditions to exclude Example 4.4? The
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posterior in this case can be parameterized by two terms: the weight (α + β in the
Beta-Bernoulli case) and the sum of observations (α in the Beta-Bernoulli case). The
weight increases with the number of samples observed. Can the weight play the role
of α + β in an exponential-family version of Theorem 4.8? The result of Yu (2011,
Theorem 2), that the value of a two-armed bandit with arms distributed according to
an exponential family decreases in the weight, may be relevant here.

4. Metalevel control problems and MDPs are defined for the one-shot case, where there is
only a single external action to take. These concepts can be extended to the sequential
case in a number of ways. Which way is most theoretically tractable, allowing analogous
results to those in Chapters 3 and 4? One approach replaces the Ui of Definition 3.1
with random variables Rw,a and Q̂w,a for world states w ∈ W and external actions
a ∈ A(w) applicable in them. These variables each take up one of the two roles that Ui
plays in the one-shot theory. The cumulative discounted sum of Rw,a defines the actual
object-level reward the agent received, using the definition of the value of the policy
(cf. Equation 3.8). The estimated value Q̂w,a (similar to the estimated utility model
of Russell and Wefald (1991a)) specifies what the agent uses to select external actions
once it decides to stop computing. The motivation for separating these two cases is
similar to Russell and Wefald (1991a): ensuring the agent always has a well-defined
external action to take when computation stops.

One might want to consider, were it tractable, defining Q̂w,a as a Bellman-like fixed
point:

Q̂w,a = Rw,a + γ
∑
w′∈W

TW(w, a, w′) max
a′

Q̂w′,a′ , (7.2)

for discount ratio γ. Note, however, that this assumes that the future agent will act
optimally, selecting the action that does in fact maximize the cumulative reward. For
a bounded agent this is false, so a more tractable model of future actions may be
required.

5. Section 5.2 shows how the derivative of a recursive function on pointed trees can be
computed efficiently. It would be very interesting to extend the policy class given in
Section 5.5 to a fully recursive class and extend the results of Chapter 6. Note that when
the parameters θ of a fully recursive function fθ are changed, all its messages need to
be recomputed, which requires time proportional to the size of the tree. However, when
a function fθ is evaluated over a sequence of trees generated by applying a succession
of local operations to an empty tree, this function can be computed efficiently (recall
5.2.4).

6. Metalevel reinforcement learning (Chapters 5 and 6) can in principle be applied to
any metalevel control problem, not just that of controlling Monte Carlo tree search.
Metalevel reinforcement learning may be especially powerful where the agent has a
range of computations whose value may depend on subtle conditions that are best
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learned. Particularly interesting applications include the control of sampling in in-
fluence diagrams (Pearson, 2006), hierarchical lookahead search (Marthi et al., 2009)
and it may be possible to apply metalevel reinforcement learning more generally to
any partially specified agent program, perhaps by adapting programming languages
designed for specifying partial policies in hierarchical reinforcement learning (Parr and
Russell, 1998; Andre and Russell, 2002; Marthi et al., 2005).

7.4 Parting thoughts

Spending time thinking meta- encourages one to reflect, and to reflect upon one’s reflections.
And to reflect upon how long and in what manner one should reflect upon whatever it is one
should be reflecting on.2 (This might take a while.)

One observes, in this vein, a general transformation that takes a something at the object-
level to a something at the metalevel. Object-level control of an environment to maximize
utility transforms into metalevel control of an agent to maximize utility. Object-level uncer-
tainty about the environment’s response to an action transforms into metalevel uncertainty
about the result of a computation. Object-level learning to control action transforms into
metalevel learning to control thought.

This thesis is an application of the same pattern of transformation. The theoretical
portion repurposes Bayesian decision theory to model and understand metalevel control.
The practical portion repurposes reinforcement learning to learn metalevel control. There’s
a lot more object-level work ripe for being transformed, and a lot more work to do at the
metalevel.

As for the (metametalevel) choice of potential paths that warrant exploration, our collec-
tive attention may do well to look to biological instances of metalevel control for inspiration.
For example, Swanson (2000, 2012) describes how the non-cerebral parts of the brain form
what he terms the behavioral control column that can sense and act on its own. In
many non-mammalian vertebrates it largely does. The cerebral hemispheres (the metalevel)
systematically map onto the behavioral control column (the object-level) and modulate its
activity. Examining exactly how the cerebral hemispheres modulate and control the behav-
ioral control column may yield insight into metalevel control: evolution may have stumbled
upon tricks that we’ve yet to discover.

Reflecting more broadly, the impact of AI on society has increasingly become a subject
of attention, both within the field and in the public at large. In the near term, autonomous
vehicles, armed (Russell, 2016b) or otherwise, and the economic and social impact of in-
creased job automation loom large. In the long term, the possibility of AI systems meeting
and exceeding human intelligence has become a topic of serious consideration (Good, 1965;
Yudkowsky, 2008; Bostrom, 2014; Russell et al., 2015b; Russell, 2016a). Although such a
possibility remains distant and speculative, the potential magnitude of its effects—beneficial
and otherwise—warn against procrastination, and a number of tractable research directions

2This sort of thinking risks infinite regress, which for the sake of the reader we’ve carefully sidestepped.1
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are being actively pursued (Russell et al., 2015a; Hadfield-Menell et al., 2017; Amodei et al.,
2016; Taylor et al., 2016). With such work we can help ensure that the benefits of AI continue
to robustly outweigh its costs.

Returning to the present, which is where we always already are, we hope the reader has
correctly calculated how long to spend with this thesis, and has gained maximal benefit at
reasonable cost.
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Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-Carlo Planning. ECML, 2006.

Akshat Kumar and Shlomo Zilberstein. Anytime Planning for Decentralized POMDPs using
Expectation Maximization. In Proceedings of the Twenty-Sixth Conference on Uncertainty
in Artificial Intelligence, pages 294–301, Catalina Island, California, 2010. URL http:

//rbr.cs.umass.edu/shlomo/papers/KZuai10.html.

George Lakoff and Mark Johnson. Metaphors we live by. University of Chicago Press, 1980.

F William Lawvere and Stephen H Schanuel. Conceptual mathematics: a first introduction
to categories. Cambridge University Press, 2009.

Bhaskara Marthi, Stuart Russell, and David Latham. Writing Stratagus-playing agents in
concurrent ALisp. IJCAI-05 Workshop on Reasoning, Representation, and Learning in
Computer Games, 2005.

Bhaskara Marthi, Stuart Russell, and Jason Wolfe. Angelic hierarchical planning: Optimal
and online algorithms (revised). Technical Report UCB/EECS-2008-150, EECS Depart-
ment, University of California, Berkeley, 2009.

James E Matheson. The economic value of analysis and computation. Systems Science and
Cybernetics, 4:325–332, 1968.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward trans-
formations: Theory and application to reward shaping. In Proc. Sixteenth International
Conference on Machine Learning. Morgan Kaufmann, 1999.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. Ad-
vances in neural information processing systems, pages 1043–1049, 1998.

Mark Pearson. Utility-Directed Sampling in Influence Diagrams. Master’s thesis, UC Berke-
ley, 2006.

M.L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. John
Wiley & Sons, Inc., 1994.

Howard Raiffa and Robert Schlaifer. Applied Statistical Decision Theory. M.I.T. Press, 1968.

100

http://rbr.cs.umass.edu/shlomo/papers/KZuai10.html
http://rbr.cs.umass.edu/shlomo/papers/KZuai10.html


Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the
American Mathematical Society, 58:527–535, 1952.

R Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1979.

Stuart Russell. Rationality and intelligence. Artificial intelligence, 94(1-2):57–77, 1997.

Stuart Russell. Rationality and intelligence: A brief update. In Fundamental Issues of
Artificial Intelligence, pages 7–28. Springer, 2014.

Stuart Russell. Should We Fear Supersmart Robots? Scientific American, 314(6):58–59,
2016a.

Stuart Russell. Robots in war: the next weapons of mass destruction? World Economic
Forum, January 2016b.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
3rd edition, 2010.

Stuart Russell and Eric Wefald. Do The Right Thing. The MIT Press, 1991a.

Stuart Russell and Eric Wefald. Principles of metareasoning. Artificial Intelligence, 1991b.

Stuart Russell, Daniel Dewey, and Max Tegmark. Research Priorities for Robust and Bene-
ficial Artificial Intelligence. AI Magazine, 36(4), 2015a.

Stuart Russell, Tom Dietterich, Eric Horvitz, Bart Selman, Francesca Rossi, Demis Hassabis,
Shane Legg, Mustafa Suleyman, Dileep George, and Scott Phoenix. Research Priorities
for Robust and Beneficial Artificial Intelligence: An Open Letter. AI Magazine, 36(4),
2015b.

Stuart J Russell and Devika Subramanian. Provably bounded-optimal agents. Journal of
Artificial Intelligence Research, 2:575–609, 1995.

Stuart J. Russell and Eric H. Wefald. Decision-theoretic control of search: General theory and
an application to game-playing. Technical Report UCB/CSD 88/435, Computer Science
Division, University of California, Berkeley, 1988a.

Stuart J. Russell and Eric H. Wefald. Multi-Level Decision-Theoretic Search. In Proceedings
of the AAAI Spring Symposium Series on Computer Game-Playing, Stanford, California,
1988b. AAAI.

Stuart J. Russell and Eric H. Wefald. On optimal game-tree search using rational meta-
reasoning. In Proc. Eleventh International Joint Conference on Artificial Intelligence,
pages 334–340, Detroit, 1989. Morgan Kaufmann.

101



Stuart J Russell and Shlomo Zilberstein. Composing real-time systems. In IJCAI, volume 91,
pages 212–217, 1991.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
Region Policy Optimization. ICML, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. ICLR, 2016.

Dafna Shahaf and Eric Horvitz. Investigations of Continual Computation. In IJCAI, pages
285–291, 2009.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timo-
thy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis.
Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):
484–489, 2016.

Herbert A. Simon. Administrative Behavior: a Study of Decision-Making Processes in Ad-
ministrative Organization. Macmillan, 1947.

Herbert A. Simon. Models of bounded rationality, volume 2. MIT Press, 1982.

R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. Cambridge University
Press, 1998.

Larry W Swanson. Cerebral hemisphere regulation of motivated behavior. Brain research,
886(1):113–164, 2000.

Larry W Swanson. Brain Architecture: Understanding the Basic Plan. Oxford University
Press, 2012.

James R. Swisher, Sheldon H. Jacobson, and Enver Yücesan. Discrete-event simulation
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