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Abstract: Selenium NMR has become a standard tool for scaling
the m-accepting character of carbenes. Herein, we highlight that non-
classical hydrogen bonding (NCHB), likely resulting from
hyperconjugation, can play a significant role in the carbene-selenium
7Se NMR chemical shift, thus triggering a non-linear behaviour of
the Se-Scale.

Since the isolation of a (phosphino)(silyl)carbene’ and an N-
heterocyclic carbene (NHC),? stable carbenes have become
ubiquitous in chemical science.® Nowadays, a variety of sta
carbenes, featuring very diverse electronic and steric prope,
are known. * Accordingly, choosing the best carbene for a‘given
application is not an easy task;® it requires a
understanding of the carbene stereoelectronic properti
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Figure 1. Canonical Structures of Carbene-Se adducts and their relation to
"Se{'"H} NMR Spectroscopy.

properties of closel tching carbenes. Moreover, it benefits

| protocol i.e. addition of elemental

rated free carbene. Despite the

popularity of this method,™ careful examination of the literature

reveals several inconsistencies in "’Se{'H} NMR data. For

iears that the chemical shift for the selenium

s bearing tertiary N-alkyl substituents such as IAd

ppm) and I'Bu (183 ppm) display unexpectedly downfield

with respect to secondary alkyl analogues such as ICy
) and I'PrMe; (-18 ppm) (Figure 2)."*"
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Figure 2. Non-linear behavior of the "’Se{"H} NMR chemical shifts in NHC-Se
adducts

As mentioned by Cavallo, Nolan et al,"™™ such “difference
amongst N,N-dialkylimidazol-2-ylidenes was very intriguing”
since these data support, counterintuitively, a much stronger z-
accepting character for tertiary N-alkyl substituted NHCs. Similar
observations were recently highlighted by Huynh across several
other carbenes families,” stating caution should be taken when
analyzing ""Se{'"H} NMR data of carbene-selenium adducts.
Rather short intramolecular Se—H distances, which are close to
or within the sum of Van der Waals radii, were previously noted
across several Se-NHC adducts by Cavallo and co-workers."™
Herein, combining an experimental and theoretical approach, we
demonstrate that non-classical hydrogen bonding (NCHB)™
interactions resulting from negative hyperconjugation trigger a
non-linear behavior of the ""Se{'H} NMR scale in carbene-
selenium adducts. NCHB is well established with O and S, but is
less common for selenium, which is less electronegative. '
These interactions have been proposed with acidic protons in
some oxazolylidene-selenium adducts '® but are much more
surprising with unactivated alkyl protons.



To begin our study, we first considered the five-membered
cyclic (alkyl)(amino) carbenes (CAAC-5). " We previously
reported that the "Se{'H} NMR signal of the selenium adduct of
F'CAAC-5 1a is at 481 ppm.'® As observed with the NHC series,
we found that the ""Se{'H} NMR chemical shift of the selenium
adducts of the more sterically hindered “*""CAAC-5 (635 ppm)
1b and "°CAAC-5 (683 ppm) 1c (Figure 3) appeared
considerably downfield. Going further, we synthesized the
adducts of six-membered cyclic (alkyl)(amino)carbenes (CAAC-
6), which provide more steric crowding than CAAC-5s as a result
of a larger C-Ceanr-N angle.” Here also, we observed marked
differences in the chemical shift of the small ®'CAAC-6 (715
ppm) 2a and the large “‘CAAC-6 (863 ppm) 2b. Altogether,
these results suggest, counterintuitively, that the bulkier CAACs
1b,c and 2b could be more m-accepting than their smaller
variants 1a and 2a, respectively. Intrigued by these results, we
verified by DFT that within the same family, these carbenes
have comparable HOMO-LUMO gap and should therefore
display similar electronic properties (Figure 4)." Furthermore,
the X-ray crystallographic analysis showed short intramolecular
SeH distances for the adamantyl variants 1¢c and 2b (Figure 5),
which are not present in 1a'® and 2a."®%
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Figure 3. Non-linear behavior of the "’Se{'"H} NMR chemical
Se adducts.
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temperature "*C{'"H} NMR, we confirmed that they can be
generated at -80 °C and are persistent until -60 °C. Adducts 5a-e
were prepared by deprotonation of 3a-e with KHMDS at —78 °C
in the presence of excess elementglselenium.
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sis of CAAC-6 Se adducts 5a-e.

The ""Se{"H} NMR chemical shifts for the room temperature
staile 5a-e were explored to confirm the substitution pattern that
o NCHB (Figure 6). Compared to the N-aryl substituted
669 ppm), an upfield shift is observed for the N-alkyl
stituted derivatives (5b: 521; 5¢: 526 ppm). This is in good
greement with alkyl substituents increasing electron density on
the nitrogen, thus raising the LUMO and reducing the carbene
r-acidity. This should also be the case with N-'Bu 5d and N-Ad
5e but their signals (777 and 789 ppm, respectively), were
downshifted by over 268 ppm compared 5b,c. As a reference,
this range is larger than the difference between the DAC-Se
adducts (846-856 ppm),™ and Alder's acyclic diaminocarbene-
Se (593 ppm),? which are two very distinct families of carbenes.
Interestingly, DFT predicted that the w-accepting properties of N-
alkyl carbenes 4b-e are within the same range, which conflicted
with the "Se NMR data."
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Figure 6. Non-linear behaviour of the "’Se{'"H} NMR chemical shifts in CAAC-
Se adducts. DAC- and Alder carbene-Se adducts included for comparison.



Upon comparing the 'H NMR of aldiminium 3b and carbene-
selenium adduct 5b, we noticed a marked downfield shift of the
exocyclic N-C-H, hydrogen from 3.75 ppm to 5.85 ppm (Figure
7). This is an additional indication of the participation of C(sp®)-H
bonds in non-classical C-H---Se interactions. Note that recording
the '"H NMR of 5b up to 100 °C did not show a coalescence of
the signal suggesting the presence of a rather strong Se-H
interaction.
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Figure 7. Comparison of the 'H NMR of 3b and 5b highlights NHCB Se-H
interactions.

The solid-state structures of compounds 5b-e also display
short intramolecular Se-H distances, which is not the case for 5a
(Figure 8).%° Note, that these distances (2.46-2.66 A) are well
within the range of intramolecular hydrogen bonding in Silks’
crystalline selenourea adduct [Se-H 2.51-2.60 A], and in line
with their proposed NCHB interactions.’® Following geometry
optimizations of 5¢ and 5d, based on the X-ray crystal structyge
data,'® at the BP98/def2tzvpp level of theory,” and qua
theory of atoms in molecules (QTAIM) analysis we confi
the existence of bond paths in both compounds (Figure 9).**
Comparison of the electron density p(r) at the Se-H
critical points (BCP) showed that NHCB interactions

(5d). *® Thus, the strength of these interacti
rationalize the observed upfield chemical shift of,
5d.

2.531,2.662 A
5e

s 5a-e indicating NCHB Se-H
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value was well re

e 10). The experimental
of the conformationally
ted 5b-e, which allow for
gen, calculations predicted
R chemical shifts compared to those
. We wondered, if in these cases, the
formational isomers, also stabilized
ould explain the discrepancies. As
an example, we consi d 5¢c and its conformer 5¢’. We
confirmed that 5¢’ is energetically accessible (+2.3 kcal.mol™)
d more i antly predicts a significant downfield shift (+74
) of th NMR signal. Consequently, we propose that the
ielding of the selenium atom in 5¢’ is favored by the
ion of a quasi-cyclic 6-membered conformation stabilized
B C(sp®)-H-Se interaction. In this case, the NCHB is
ibed as a negative hyperconjugative interaction
ne pair of the Se atom (H-bond acceptor) and the
0'c.r orbitaWof the C(sp®)-H (H-bond donor); orbital overlap is
maximized in a quasi 6-membered ring and facilitates electron
transfer.®?” Note that the directionality of this type of interaction
Iready been shown to be a critical parameter for
izing orbital overlap.?®*" This effect is more pronounced in
constrained systems such as 5d-e, which have a higher
bability of such 6-membered ring conformations than 5b,c.
oreover, it is particularly well exemplified in 1c and 2b in which
the unusual distortion of the backbone, observed by X-ray,
places the C-H bond in the right position with respect to the
selenium atom (Figure 11).
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Figure 10. Experimental and predicted ""Se{'"H} NMR chemical shift of 1c, 2b
and 5b-e (left). Significant downfield-shift of ”’Se{'H} NMR signal caused by
rotation of substituent and formation of quasi 6-membered ring (right).
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Non-classical hydrogen bonds (NCHB) in carbene-selenium adducts cause pronounced field shifts in ”"SeNMR spectra,

perturbing the Se scale for probing m-accepting properties within a carbene






