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ABSTRACT OF THE DISSERTATION

Visualization and Non–parametric Statistical Testing Methods for Multivariate Time Series

By

Duy Ngo

Doctor of Philosophy in Statistics

University of California, Irvine, 2018

Associate Professor Babak Shahbaba, Chair

Many model-based methods have been developed over the last several decades for analysis of

multivariate time series, such as electroencephalograms (EEG) in order to understand elec-

trical neural data. In this dissertation, we propose to use the functional boxplot to analyze

log periodograms of EEG time series data in the spectral domain. The functional boxplot

approach produces a median curve – which is not equivalent to connecting medians obtained

from frequency-specific boxplots. In addition, this approach identifies a functional median,

summarizes variability and detects potential outliers. By extending functional boxplots anal-

ysis from one-dimensional curves to surfaces, surface boxplots are also used to explore the

variation of the spectral power for the alpha (8−12 Hertz) and beta (16−32 Hertz) frequency

bands across the brain cortical surface. By using rank-based nonparametric tests, we also

investigate the stationarity of EEG traces across an exam acquired during resting-state by

comparing the spectrum during the early vs. late phases of a single resting-state EEG exam.

Moreover, we present an exploratory data analysis tool for visualizing and testing the sym-

metric positive definite matrices (e.g., covariance, spectral and coherence matrices) in a

multi–subject experimental setting. Our work is motivated by the clinician’s interest to de-

termine associations between brain functional connectivity (as measured by coherence) and

patients’ response to treatment. For each study participant, the geometric surface boxplot is

xiii



developed to characterize the distribution of coherence matrices through the median matrix

and the 50% most central region of the data. The surface boxplot will also be used to de-

tect the outlier coherence matrices as in the classical boxplot. To investigate the treatment

effect, we develop a rank–based non–parametric approach to test for significant differences

in coherence matrices between treatment and control groups. As an application, we demon-

strate our proposed methods on coherence matrices, derived from an electroencephalograms,

to determine potential associations treatment effect on patients with infantile spasms and

hypsarrhythmia both before and after treatment.

xiv



Chapter 1

Introduction

1.1 Background

Multivariate time series are commonly produced in many different domains, from environ-

ment, through finance, to physical science. In some instances, electroencephalograms (EEGs)

have been used for many decades to study the complex spatio–temporal dynamics of brain

processes ([50]). Due to its excellent temporal resolution (sampling rates usually range from

100 − 1000 Hz), EEGs can capture transient changes in brain activity, identify oscillatory

behavior and study cross-dependence between EEG components. Since EEGs indirectly

measure neuronal electrical activity, they can be used to infer the statistical properties of

the underlying brain stochastic process. One such statistical property is the spectrum (or

power spectrum) which decomposes the total variability in the EEG according to the con-

tribution of oscillations at different frequencies. Most approaches to analyzing EEGs focus

immediately on statistical modeling and spectral estimation. Here, we offer a systematic

framework for exploring structures, patterns and features in the signal – prior to formal

modeling. We explore the spectral properties only in a single channel using EEG traces from
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several epochs.

One approach to estimating the spectrum using EEG traces is to fit a parametric time

domain model, such as the autoregressive moving average (ARMA) model. Applications

of parametric modeling of EEGs have a long history. See [4], [37] [38] and [41] among

many others. When the spectrum of the EEG evolves over time (e.g., within an epoch),

one could still use the ARMA model but allow the coefficients to vary over time. A key

element in ARMA models is the order of the autoregressive (AR) and moving average (MA)

components. These can be obtained objectively using an information-theoretic criterion such

as the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).

Using these criteria, we obtain an optimal AR and MA order that jointly gives the best

fit with the least complexity (as determined by the orders). BIC puts a heavier penalty

for complexity compared to AIC and thus often gives a model with lower orders (lower

complexity). From the parametric fit, we derive the estimates of the auto-correlation function

and the spectrum. The theoretical background for parametric models are developed in [60],

[66] and [8]).

One could also estimate the spectrum without resorting to a parametric model. Under this

approach, the EEGs are considered to be superpositions of sines and cosines (Fourier wave-

forms) with different frequencies and random amplitudes. These random amplitudes (or

coefficients) are computed using the fast Fourier transform (FFT). The squared magnitude

of these amplitudes, often called the periodograms, are the data-analogues of the spectrum

defined on discrete frequencies. The theoretical background on the frequency domain ap-

proach to time series is developed in [6] and [58]. This approach to analyzing EEGs continues

to be popular in the cognitive and brain sciences. The following papers cover both methods

and applications of spectral analysis to EEGs: [5], [47], [59] and [71], to name a few.

The common practice prior to spectral estimation is to pre-process EEGs, often to remove

artifacts [48]. After artifact rejection and segmentation according to epochs, the spectrum

2



is estimated from each EEG trace. As noted, there is a lack a systematic framework for

exploring structures, patterns and features in the signal – prior to formal modeling. Due

to the complexity of EEG data, exploratory data analysis (EDA) plays an important role,

especially when data are recorded from many epochs or trials during an experiment. For

example, it is often expected that brain responses to the same stimulus ought to be relatively

uniform, with minimal variation across epochs. In contrast, greater variability across epochs

may be expected during neuroimaging studies that examine the brain in resting-state, as

cognitive processes can vary within and across sessions for individual subjects and across

subjects. An appropriate EDA methods can provide insights into features of EEG, including

similarities and variability of the brain responses across epochs to facilitate the statistical

model. In this dissertation, we propose to use the functional boxplot (FBP) method originally

developed by [72] to address these questions.

Moreover, in multichannel EEG studies, there has been a growing interest in studying brain

oscillatory activity between brain regions. A common measure of functional brain connec-

tivity is coherence which is essentially the squared cross–correlation between oscillations at

different frequency of a pair of time series, and it is one of the most common measures of such

dynamics ([51, 67]). Coherence between all channels at a specific frequency (or frequency

band) is represented by a matrix whose off–diagonal element is an estimate of functional

interactions between two brain regions in each frequency. One of the properties of the co-

herence matrix is that it is symmetric positive definite (SPD), and thus we aim to develop

methods that respects this important property. Visualizing and extracting useful informa-

tion from a sample of coherence matrices is challenging especially in high dimensions because

each coherence matrix must be considered as a whole information unit. There are recent

advances on analyzing SPD matrices, such as [70, 56, 26, 80, 13] and [33], but not enough

consideration has been given to visualization of such SPD matrices. [30] introduced a surface

boxplot for visualization and exploratory analysis of samples of images, but this method does

not take into account the non–Euclidean geometry of the space of SPD matrices.

3



To overcome this limitation, we propose a geometric surface boxplot for samples of coherence

matrices. By using the geometric surface boxplot, we address two primary objectives. The

first objective is to determine the median coherence matrix by ordering a sample of matrices

based some depth measure. Here, the median matrix is that which is the deepest (in a sense

that it is ”covered” by the most number of pairs of matrices). The second objective is to

detect outlying matrices again based on the ordering of the depth values of these matrices.

These outliers are demonstrated by unusual connectivity between pairs of signals and hence

would warrant further investigation. Subsequently, confirmed outliers, if necessary, can

be removed in subsequent analyses. Thus our method pinpoints those epochs when these

unusual coherence matrices were observed.

One can define a multivariate order statistic for sample of SPD matrices by ranking the data

points according to their depth. Then a matrix–valued object has a high rank when it is

near the center whereas point far from the center has lower rank. As studied in [43] and

[44] for functional data, the test ranks of data points of the second sample are computed

with respect to their depth in the first sample. Using this concept and notion of data

depth, we develop two rank–based tests for two samples of matrix–valued objects under the

homogeneity hypothesis, i.e., the two samples of matrix–valued objects come from the same

distribution.

1.2 Contributions

The main contributions of this dissertation are as follows:

1. A functional boxplot to visualization and exploratory analysis for samples of curves

(log periodograms of EEG time series data).

2. A geometric surface boxplot to visualization and exploratory analysis for samples of

4



SPD matrices (coherence matrices).

3. Non–parametric hypothesis testing procedures to test for difference between two pop-

ulations or groups of curves and SPD matrices.

1.3 Outline

This dissertation is organized as follows. In Chapter 2, we present functional boxplot with

an application on a motor skill acquisition study at the Neuro-rehabilitation laboratory at

the University of California, Irvine (Principal Investigator: Steven C. Cramer). In Chapter

3, we introduce geometric surface boxplot with an application on infantile spasms dataset

from Children Hospital of Orange County. Non–parametric hypothesis testing procedures

to test for difference between two populations or groups of curves and SPD matrices are

also presented in Chapter 2 and 3, respectively. My future works are discussed in the last

Chapter 4.
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Chapter 2

Functional Boxplot

2.1 Introduction

The methods presented in this chapter are motivated by a motor skill acquisition study at

the Neuro-rehabilitation laboratory at the University of California, Irvine (Principal Inves-

tigator: Steven C. Cramer). In the previous study, EEG was recorded from 17 subjects

both during resting-state prior to motor skill training and during motor skill training using

dense-array EEG (256 electrodes) as shown in Figure 2.1. The resting-state EEG exam was

three minutes, and during post-processing, was segmented into one-second non-overlapping

epochs. As demonstrated in [79], the spectral features of the resting-state EEGs when

combined with a partial least squares regression analysis, was predictive of an individual’s

subsequent ability to acquire a novel motor skill. These may be of clinical importance to

the field of rehabilitation, as improved methods for stratifying patients may significantly

improve response to treatment and assist allotment of limited resources. We present an

exploratory spectral analysis (ESA) of resting-state EEG traces using functional boxplots

for one subject. In spectral analysis, the spectrum is an important stochastic property of
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Figure 2.1: Map of channels on the scalp.

the signal. It indicates the amount (or proportion) of variance that is explained by each

frequency bin. Thus the spectrum or the log spectrum of the EEG signal can be used to ex-

amine relative amounts of variability explained by slow (delta or theta) waves and fast (alpha

or beta) waves. Throughout this analysis, we obtain a sample spectral curve by smoothing

the log periodograms of each one-second EEG epoch, and treat it as one observation unit

in the FBP. By using the FBP, we address three primary objectives. The first objective is

to identify the median, i.e., the most characteristic spectral curve rather than the pointwise

frequency-specific medians. In addition, outliers are demonstrated by their unusual sam-

ple log spectral curve, and can be caused by extra-brain artifacts, including eye blinks, eye

movements and muscle movements in the EEG signal. Subsequently, confirmed outliers will

be removed from subsequent analyses. The advantage of the FBP approach, over the usual

pointwise boxplot method, is that it identifies epochs that have potential outlying spectral

curves.

The second objective is to compare the median curves and the variability of the spectral

curves from multiple phases of the resting state period. To test the stationarity of the EEG

signal over the entire recording, we compare the spectral curves and the frequency-specific

7



spatial distribution of spectral power during the early phase (first 60 epochs) versus the

late phase (last 60 epochs). Evidence against stationarity must be taken seriously since this

would suggest an evolution of brain processes across the recording ([21]). Moreover, the FBP

approach is able to provide some characterization of the variation of the sample log spectral

curves across EEG recording. In experiments comparing more than one group (e.g., healthy

controls vs patients with stroke), it would be also interesting to determine whether groups

differ with respect to consistency (uniformity) of the EEG signal over time.

The third objective is to investigate the spatial variability of spectral power across the brain

for a given frequency band using the surface boxplot, which is a generalization of the FBP.

Using the surface boxplots approach, it is possible to identify cortical regions (or channels)

that, relative to the other channels, exhibit a high proportion of beta power. The beta band

is particular interest to neuroscientists, as changes in beta activity have a good association

with motor function ([63] and [39]).

The remainder of the chapter is organized as follows. In Section 2.2, we present a com-

prehensive exploratory method which consists of the following: a review of the spectra in

Section 2.2.1, a demonstration of automatic bandwidth selector for periodogram smooth-

ing using the gamma generalized crossvalidation criterion in Section 2.2.2, some remarks

on smoothing the periodogram in Section 2.2.3, a description of the functional boxplots in

Section 2.2.4, a description of the surface boxplots in Section 2.2.5, and a demonstration of

testing for differences in mean curves between families of curves in Section 2.2.6. In Section

2.2.3, we examine the finite sample performance of the proposed exploratory method. In

Section 2.2.4, the resting-state EEG data are analyzed. Finally, in Section 2.2.5, conclusions

and future work are discussed.
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2.2 Method for Exploratory Spectral Analysis (ESA)

In this section, we review the methods that are needed for ESA of the EEG data. In Section

2.2.1, we first formally define the spectrum and then discuss a consistent estimator which is

obtained by smoothing the periodogram using a bandwidth that is automatically selected by

the gamma generalized cross-validation (Gamma-GCV) method described in Section 2.2.2.

Next, we highlight two remarks on smoothing the periodogram in Section 2.2.3, then we

present the functional boxplots method in Section 2.2.4 and surface boxplots method in

Section 2.2.5. Finally, we present a rank sum test which tests for differences in median

curves or surfaces between families of curves or surfaces in Section 2.2.6.

2.2.1 Spectrum

The spectrum of an EEG signal (which is assumed to be stationary) can give the amount

of variance contributed by oscillatory components (from delta to beta band activity). Let

X(t), t = . . . ,−1, 0, 1, . . . be a zero-mean stationary time series with covariance function

γ(τ) = E (X(t)X(t+ τ)) (τ = . . . − 1, 0, 1, . . .) that is assumed to be absolutely summable,

i.e.,
∑∞

τ=−∞ |γ(τ)| <∞. The spectrum, denoted f(ω), is defined to be

f(ω) =
∞∑

τ=−∞

γ(τ) e−i2πωτ , ω ∈
[
−1

2
,
1

2

]
.

The starting point for estimating f(ω) is the periodogram. Denote I(ωk) to be the peri-

odogram computed from a finite sample of the stationary process X(0), X(2), . . . , X(T − 1)

at frequency ωk = k/T which is defined to be

I(ωk) =
1

T

∣∣∣∣∣
T−1∑
t=0

X(t) e−i2πωkt

∣∣∣∣∣
2

, k = −[[T/2]]− 1, . . . , [[T/2]],
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where [[T/2]] is the quotient of T/2. To characterize the spectra of the EEG signals, we

Spectrum Time series

Frequency (Hz)
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Time (ms)
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(a) Delta
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Time (ms)

0 10 20 30 40 50
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Figure 2.2: Left: the spectrum of second order auto-regressive processes AR(2) with power
concentrated at the delta (0-4 Hertz), theta (4-8 Hertz), alpha (8-16 Hertz), beta (16-32
Hertz) and gamma (32-50 Hertz) bands. Right: realizations from each corresponding AR(2)
process.

classify the oscillatory patterns of periodograms into four primary frequency bands: delta

(0-4 Hz), theta (4-8 Hz), alpha (8-16 Hz), beta (16-32 Hz) and gamma (32-50 Hz) as shown
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in Figure 2.2. Since each frequency band is defined by a range, we define Ŝ(Ω) to be the

estimated spectral power at the Ω band:

Ŝ(Ω) =

∫
ω∈Ω

I(ω)dω.

It is well known that the periodogram I(ωk) is an asymptotically unbiased estimator for

f(ωk), but it is inconsistent because its variance approaches a positive constant when T →∞.

Therefore, to reduce the variance, we smoothed the periodogram. A number of nonpara-

metric smoothing methods have been proposed including the kernel smoother ([42, 52]),

wavelet ([28]), smoothing spline ([76, 55]), or local polynomial ([20]). For kernel smoothing,

([52]) developed an automatic span selector via the generalized crossvalidation criterion for

generalized additive models based on the deviance which is discussed in Section 2.2.

2.2.2 Automatic Span Selector Using the Gamma Generalized

Crossvalidation Method

From [6] (Theorem 5.2.6), I(ωk) follows an asymptotic distribution

I(ωk) ∼

 Gamma(1, f(ωk)) k = 1, . . . , T/2− 1

Gamma(1
2
, 2f(ωk)) k = 0, T/2,

where I(ω0), . . . , I(ωT/2) are independent. As a caveat, we note here that the actual result

requires that the number of frequencies is fixed and does not depend on T . However, in most

applications, this is often ignored. This result can be equivalently stated as I(ωk)/f(ωk) ∼ εk

where εk ∼̇ χ2(1) when k = 0 or T/2 and εk ∼̇ 1
2
χ2(2) when k = 1, . . . , T/2− 1. As noted,

we need to smooth the periodogram I(ωk) to produce a consistent estimator for f(ωk). Let
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f̂p(ωk) be a smoothed periodogram estimator of f(ωk) which we define to be

f̂p(ωk) =

p∑
j=−p

Wp,jI(ωk+j) k = 0, . . . , T/2, and j = −p, . . . , p

where 2p+1 is the smoothing span and Wp,j are nonnegative weights that satisfy the following

conditions for any fixed p:

Wp,j = Wp,−j(j = 1, . . . , p),

p∑
j=−p

Wp,j = 1.

Generally, the weights are chosen so that Wp,j is a decreasing function of p, but [60] shows

that the choice of the weights Wp,j is of secondary importance to the value of the span

or bandwidth. Thus, for simplicity, we use the boxcar smoother with weights defined by

Wp,j = 1/(2p + 1) for all j = −p, . . . , p. The gamma generalized crossvalidation method

selects p to minimize the generalized crossvalidated deviance function

GCV (p) =

M−1
M−1∑
j=0

D(I(ωj), f̂p(ωj))

(1− tr(Hp)/M)2
,

whereM = T/2+1. The devianceD(I(ωj), f̂p(ωj)) can be chosen as qj{− log(I(ωj)/f̂p(ωj))+

(I(ωj) − f̂p(ωj))/f̂p(ωj)} ([49]). Here, qj = 1 − 0.5I{j = 0,M − 1}, and I is the indicator

function. The Hp is the smoother matrix with smoothing parameter p, and the term (1 −

tr(Hp)/M)2 often referred to as the model degrees of freedom, can be expressed in terms

of the weight at the center of the smoothing window: (1 −Wp,0)2. Then, the generalized

crossvalidated deviance function can be written as

GCV (p) = M−1

M−1∑
j=0

qj

{
− log(I(ωj)/f̂p(ωj)) + (I(ωj)− f̂p(ωj))/f̂p(ωj)

(1−Wp,0)2

}
.
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2.2.3 Remarks

For frequencies over 100 Hz, the periodogram values are almost negligible because the signals

underwent low–pass filtering at 100 Hz. , so for simplicity, we will only show the spectrum

over the frequency range of 0−100 Hertz. In Figure 2.3, we show the location of channel 197

in right pre-motor region at the resting-state. Figure 2.4 gives an illustration of smoothing

the periodograms for randomly selected epochs 3, 85 and 160 for a fixed channel 197. It

can be seen that the power at these periodograms are dominated by low frequencies, and

the values of smoothing span minimizing the generalized crossvalidated deviance function are

(A)
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Figure 2.3: EEG time series and raw periodograms after filtering out frequency 60 HZ by
averaging method of channel 197 (right pre-motor region) for the first 10 traces. (A) Red
circle represents right pre-motor region (channel 197) on the scalp, (B) EEG time series of
right pre-motor region (channel 197) and (C) Raw periodograms after filtering out frequency
60 HZ by averaging method.
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about 3-5. Also, the smoothing lines reasonably approximate the periodograms and the small

bandwidths preserve the peaks. Second, since the distribution of I(ωk) is a multiple of the
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Figure 2.4: Smoothing periodograms at randomly selected epochs: (A) Epoch 3, (B) Epoch
85 and (C) Epoch 160 of channel 197 (in the right pre-motor region) using the bandwidth
that was automatically selected by the gamma generalized crossvalidation (gamma-GCV)
method.
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Figure 2.5: Log bias-corrected periodograms of epochs: (A) Epoch 3, (B) Epoch 85 and (C)
Epoch 160 from Channel 197 (Right pre-motor region)

spectral density, its variance (which depends on f(ωk)) also changes across the frequencies ωk.

To stabilize the variance across frequencies and to standardize comparisons of median curves

across two phases (early vs late phases of the resting-state EEG recording) we will use the log

transformed periodograms. It is convenient then, that the variance of the log periodograms

at each frequency is constant and takes the approximate value of π2

6
. Moreover, while the

periodogram is approximately unbiased for the spectrum, the log periodogram is no longer

(approximately) unbiased for the log spectrum due to Jensen’s inequality. This is easily fixed

by adding the Euler Mascheroni constant 0.57721 to log transformed periodograms to obtain
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the log bias-corrected periodograms ([76]). Let g(ωk) be the true log spectrum, then Yr(ωk),

the log bias of the corrected periodogram at epoch r, is defined as

Yr(ωk) = g(ωk) + 0.57721, k = 0, 1, . . . , T/2.

Figure 2.5 gives the log bias-corrected periodograms, Yr(ωk), corresponding to Figure 2.4.

Throughout this chapter, we will apply the gamma crossvalidation method to obtain the

optimal smoother of log bias-corrected periodograms.

2.2.4 Functional Boxplots

The functional boxplot is constructed in a similar manner to the classical (pointwise) boxplot.

Each observation will be sorted based on decreasing values of some depth measure, and band

depth is one notion. A curve is said to be “deeply situated” within a sample of curves if it is

covered by many bands from pairs of curves. This idea is an extension of a pointwise boxplot

where the median is also located “deep” in a sample because it is situated in the middle of the

boxplot and hence covered by many pairs of points. Here, our observation units are curves (or

real-valued functions) which are the log bias-corrected periodograms Yr(ωk), k = 0, . . . , T/2

over many epochs r. The notion of a band depth was introduced in [46] through a graph-

based approach to order all sample curves which we briefly describe. Suppose that a curve

Y (ωk) is the subset of the plane G(Y (ωk)) = {(ωk, Y (ωk)) : ωk ∈ A = [0, T/2]}. The

band in R2 can be delimited by a number J of curves, and this number is fixed as J = 2

in our study. Now, let Yα, Yβ be two continuous functions, Lk = min(Yα(ωk), Yβ(ωk)), and

Uk = max(Yα(ωk), Yβ(ωk)). Then the band delimited by Yα, Yβ is

B(Yα, Yβ) = ((ωk, Y
′(ωk)) : ωk ∈ A, Lk ≤ Y ′(ωk) ≤ Uk) .
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Let Y1, . . . , Yn be n independent sample curves, then the band depth for a given curve

Yi, i = 1, . . . , n is defined as

BD(Yi) =

(
n

2

)−1 ∑
α=1,...,n; β=1,...,n

I{G(Yi) ⊆ B(Yα, Yβ)}

where I(·) is the indicator function. When J = 2, there are
(
n
2

)
possible bands delimited

by two curves. The limit of the band depth BD is that it does not measure the proportion

of curve inside the band. Thus, [46] also proposed a modified band depth method (MBD),

which measures the proportion of a curve Yi that is actually in a band:

MBD(Yi) =

(
n

2

)−1 ∑
α=1,...,n; β=1,...,n

λ{A(Yi;Yα, Yβ)}

where A(Yi;Yα, Yβ) ≡ {ωk ∈ A : Lk ≤ Yi ≤ Uk}, λ(Yi) = λ(A(Yi;Yα, Yβ))/λ(A), and λ is

a Lebesgue measure on A. We notice that the MBD computation will be time-consuming

when n is large, so we use an exact fast method from [75] to compute the MBD for the EEG

data.

Based on the ranks of the depths of the curves, the functional boxplots can provide the

descriptive statistics, such as the 50% central region, the median curve, and the maximum

and minimum non-outlying curves. Moreover, the potential outliers can be detected by the

1.5 times inter-quartile range (IQR) empirical rule, which is commonly used for classical

boxplots. The boundary region is defined as 1.5 times the height of the 50% central region.

Any curves outside this region are considered potential outliers. In contrast with a constant

factor 1.5 in classical boxplot, a factor 1.5 in functional boxplot can be modified due to

potential spatio-temporal outliers. This is because the curves from different locations will be

spatially correlated, and there can be dependence in time/frequency for each curve ([73]).
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2.2.5 Surface Boxplots

Similar to functional boxplots, one can compute the data depth of all the observations, then

order them according to decreasing depth values. Suppose that the observed sample surfaces,

z1(s), . . . , zn(s), s ∈ S, where S is a region in R2. The information unit for such a dataset is

the entire surface. To order sample surfaces, we need to generalize univariate order statistics

to surfaces. To this end, we generalize the MBD with J = 2 to R3 through a volume. [30]

define the sample modified volume depth (MVD) to be

MVDn(z) =

(
n

2

)−1 ∑
1≤i1≤i2≤n

λrA(z; zi1 , zi2),

where A(z; zi1 , zi2) ≡ s ∈ S : minr=i1,i2 zr(s) ≤ z(s) ≤ maxr=i1,i2 zr(s), and the measurement

λr(z) =
λ(A(z;zi1 ,zi2 ))

λ(S)
, if λ is the Lebesgue measure on R3. A sample median surface is a

surface from the sample with the largest sample modified volume depth value, designed by

arg maxz∈z1,...,zn MVDn(z). If there are ties, the median will be the average of the surfaces

maximizing the sample modified volume depth.

The first step for constructing surface boxplots is the surface ordering. Sample surfaces

are ordered from the center outwards based on their MVD values, inducing the order

z[1], z[2], . . . , z[n]. The sample α central region is naturally defined as the volume delim-

ited by the α proportion (0 < α < 1) of the deepest surfaces. In particular, the sample 50%

central region is

C0.5 = {(s, z(s)) : min
r=1,...,[n/2]

z[r](s) ≤ z(s) ≤ max
r=1,...,[n/2]

z[r](s)},

where [n/2] is the smallest integer not less than n/2. The border of the 50% central region is

defined as the inner envelope representing the box in a surface boxplot. This is the surface

analogue of the first and third quartiles of the classical boxplot. The median surface in the

box is the one with the largest depth value. Because the ordering is from the center outwards,
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the volume of the central region increases as α increases. Hence, the maximum envelope, or

the outer envelope, is defined as the border of the maximum non-outlying central region. To

determine this region, we propose to identify outlying surfaces by an empirical rule similar

to the 1.5 times the 50% central region rule in a functional boxplot. The fences (or the

upper and lower surface boundaries for flagging potential outliers) are obtained by inflating

the inner envelope (as defined above) by 1.5 times the height of the 50% central region.

Any surface crossing the fences are flagged as potential outliers. The factor 1.5 can be also

adjusted as in the adjusted functional boxplots to take into account spatial autocorrelation

and possible correlations between surfaces.

2.2.6 Testing for Differences in Median Between Families of Curves

or Surfaces

To compare the median curves from two populations of curves, [46] proposed the rank sum

test. Let µ̃Y and µ̃Y ′ be the median curves of two populations Y and Y ′ respectively. Define

the null hypothesis to be

H0 : µ̃Y = µ̃Y ′ for all µ.

Suppose that we observe two sets of curves, namely {y1, . . . , yn} and {y′1, . . . , y′m}. Then

define the reference sample to be {r1, . . . , rk} which is from one of the two observed sets

with k ≥ max(n,m). The position of a particular yi for i = 1, . . . , n, or y′j for j = 1, . . . ,m

with respect to the reference sample r, is defined as

R(yi) =
1

n

n∑
l=1

I{MBD(zl) ≤MBD(yi)},
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R(y′j) =
1

m

m∑
l=1

I{MBD(zl) ≤MBD(y′j)},

where MBD is the modified band depth defined in previous section, and I is the indicator.

Then we can order the values R(yi) and R(y′i) from the smallest to the largest, and their

ranks are between 1 and n + m. The test statistics T =
∑m

l=1 rankR(y′j), then under the

null hypothesis H0, the distribution of T is the distribution of the sum of m numbers that

are randomly chosen from 1, 2, . . . , n+m ([74]).

2.2.7 Remarks on the applications of functional and surface box-

plots

In this chapter, we use functional and surface boxplots to explore the structure of EEGs.

However, these methods are general and can be applied to other types of data such as growth

data and climate time series ([74]).

2.3 Simulation Study

The purpose of the simulation study is to examine the performance of the exploratory spec-

tral methods under various experimental settings. In Section 2.3.1, we demonstrate the

performance of the FBP on the smoothed log periodograms of a mixture of two first order

autoregressive time series, denoted AR(1). In Section 2.3.2, we illustrate the rank sum test

to compare the functional median from two families of curves.
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2.3.1 Functional Boxplot Simulation Study

For the rth epoch, let U1r(t) be an AR(1) process with its spectra dominated by high frequen-

cies and U2r(t) be another AR(1) with its spectra mostly containing low frequencies. The

AR(1) parameters are allowed to vary across epochs. Here, we set t ∈ T = {1, . . . , 1000}.

We define Xr(t) to be the mixture of U1r(t) and U2r(t), such that

Xr(t) = a1rU1r(t) + a2rU2r(t)

where r = 1, . . . , 220, a1r and a2r are weighted coefficients of U1r(t) and U2r(t) respectively.

Then, the model for high and low frequency AR(1) processes are defined as

U`r(t) = φ`rU`r(t− 1) +Wrt

where ` = 1, 2 and W (t) is white noise. In this setting, the high and low frequency AR(1)
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Figure 2.6: Time series AR(1) for group 1 and group 2

are distinguished by the value of φ`r. For example, for high frequency U1r(t), we set φ1r =

0.9 + ξr, where ξr are independent and identically distributed from N (0, 0.001). Similarly,

for low frequency U2r(t), we set φ2r = −0.5 + ηr, and ηr are also independent and identically
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distributed from N (0, 0.001). Here, we need the variance of ξr and ηr to be small so that it

guarantees causality, i.e. ξr ∈ (−1, 1) and ηr ∈ (−1, 1). Next, we split the 220 subjects into

two groups, such that the first group will include both high and low frequency series, U1r(t)

and U2r(t), while the second group will only have the high frequency series U1r(t). To split

Xr(t) into two groups, we set the weight coefficients a1r and a2r as following

a1r ∼ N (10, 1) for r = 1, . . . , 220

a2r ∼ N (5, 1), for r = 1, . . . , 120, and a2r ∼ N (0, 0.001) for r = 121, . . . , 220.

The two groups of Xr(t) are shown in Figure 2.6. Using the gamma generalized crossvali-
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Figure 2.7: Smoothed log bias-corrected periodograms for Group 1 and Group 2

dation method, Figure 2.7 displays the log bias-corrected periodograms for each group, and

Figure 2.8 shows the corresponding FBPs. Note that group 1 is dominated by both high

(right) and low (left) frequencies while group 2 includes only low frequencies. Thus, the

functional median of group 1 should have two peaks, one each in high and low frequency

ranges, while the functional median of group 2 has only one peak in the low frequency range.

In Figure 2.8, the black curve is the median curve in the center of the functional boxplot.

The two median curves from each group have clearly summarized the typical power distri-

bution for each group. The blue curves in the center form the envelope of the 50% central
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Figure 2.8: Functional boxplots of Group 1 and Group 2 with a black curve representing the
median curve, the pink area denoting the 50% central region, the two inside blue curves indi-
cating the envelopes of 50% central region, the two outside blue curves representing for two
non-outlying extreme curves, and the red dashed curves illustrating the outlier candidates
detected by 1.5 times the 50% central region rule.

region. The blue curves outside of the 50% central region are the non-outlying minimum

and maximum curves. It is worth remarking that the envelope of group 1 is smaller than the

envelope of group 2, and therefore, we demonstrate that group 2 has more dispersion than

group 1. Moreover, the envelope of group 1 is in the middle of the non-outlying minimum

and maximum curves, while the envelope of group 2 tends to move upwards. This indicates

that group 2 shows more skewness than group 1. The red dashed curve in Figure 2.8 denotes

the outliers. We see that the curves from group 1 that are dominated by high frequencies

only are detected as outliers while the curves from group 2 that include both high and low

frequencies are detected as outliers.

In order to illustrate the usefulness of the functional boxplot compared to the pointwise

boxplot, we introduce a simulation study which randomly chooses 10 bias-corrected log

periodograms among 160 total periodograms. We simulate an outlying curve by adding ad-

ditional noise across the 0-100 Hz frequency range, and close to the center for the remaining

frequencies. Figure 2.9-a shows the simulation data including the 10 random bias-corrected

log periodograms (grey curves) and a simulated outlying curve (red curve). In Figure 2.9-b,

the functional boxplot successfully detects the simulated outlying curve and other outliers.
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Figure 2.9: (A) Simulation data with grey curves representing sample curves, a red curve
denoting the simulated outlying curve (B) Functional boxplots, (C) Pointwise boxplots with
black curve representing a mean curve, blue curves for the envelope of the 50% central region,
the green curves for the non-outlying minimum and maximum curves, and the red points
for outliers, and (D) two median curves obtaining by functional boxplots method (blue) and
pointwise boxplot method (red) are shown in the same plot.

However, Figure 2.9-c shows that the pointwise boxplot fails to detect the simulated outlying

curve, and provides some disconnected outlying curves across frequencies. We also notice

that the non-outlying maximum and minimum curves of pointwise boxplot are actually the

outlying curves detected by functional boxplot. Figure 2.9-d compares the two median curves

from these two methods, and by visual inspection, there is a slight difference between the

two median curves at low frequencies. Thus, functional boxplot can be a non-parametric

method to obtain the median curve and the variability around it for EEG data compared to

pointwise boxplot.
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2.3.2 Rank Sum Test Simulation Study

To investigate the performance of this nonparametric test, we simulated two sets of curves,

which are defined as below:

Y`,r(ωk) = f`(ωk) + arg(ωk) + hr(ωk),

where r = 50, ` = 1, 2, g(ωk) = 1 for all ωk, and ωk is defined as ωk = k/100, where

k = 1, . . . , 100. In the model, f1(ωk) and f2(ωk) are the mean functions; ar
iid∼ N(0, 5) and

hr(ωk)
iid∼ N(0, 2) represent the variation between and within the curves, respectively. Let

the function f1(ωk) be defined as

f1(ωk) = 5 ·
√

1000 · ωk,

and consider three different cases:

1. The two means are identical, let f2(ωk) = f1(ωk) for all ωk.

2. There is a slight deviation between the two means; define f2(ωk) = 5 ·
√

900 · ωk.

3. There is an appreciable deviation between the two means; let f2(ωk) = f1(ωk) + 2k/3.

We applied the kernel average smoother with window size 7 to smooth each curve from these

two families. Figure 2.10 illustrates the simulated curves (left panel) and the smoothed

curves (right panel). In order to investigate the rank sum test performance in each case, we

simulated two families of curves and obtain p-values of rank sum test; this procedure was

repeated 1000 times. Let the type I error α be 5%, we report the percentage of time that

the rank sum test rejects Ho : f1(ωk) = f2(ωk) for all ωk in Table 2.1. Overall, the rank sum

test method performed well in each case. When the two families are identical, this method

rejected the null hypothesis of equality only 44 times (4.4%) out of 1000 times, which is close
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Figure 2.10: The two families of simulated curves, Y1,r and Y2,r. The grey shaded area represents
the first family, and the yellow shaded area is for the second family. The red and blue lines are the
first and second mean functions, f1 and f2, respectively.

to the nominal α. When the two families are nearly identical, this method rejects 605 times

(the power is 60.5%), and when the two families are completely different, the power is 100%.

Thus this method demonstrates power and sensitivity to differences.
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First case Second case Third case
Percentage of time rejecting Ho 44 605 1000

Table 2.1: Rank Sum test study result.

2.4 Analysis of Resting-State EEGs Data

2.4.1 Data Description

In this chapter, we analyze EEG data from one participant in a resting-state EEG study

approved by the Institutional Review Board of the University of California, Irvine. The

over-arching aim of this study was to identify a pattern of EEG-derived coherence acquired

during rest-state that could predict subsequent response to training on a novel motor skill.

During EEG acquisition, subjects sat quietly with both feet flat on the floor, and were in-

structed to fixate their gaze to the center of a fixation cross. Each recording was 3 minutes

in duration. While the original EEG recording included 256 channels, only 194 were used in

subsequent analyses, as extra-brain artifacts, including cheek and neck muscle artifacts and

heart rhythms, are more likely to contaminate EEG signals recorded from electrodes overly-

ing cheek and neck regions. Following data acquisition, pre-processing steps included: 100 Hz

low pass filter; EEG segmentation into 1-second consecutive, non-overlapping epochs; mean

detrend; and EEG signal re-reference to mean signal across all 194 channels. In addition, a

combination of visual inspection and Infomax Independent Component Analysis decomposi-

tion were used to remove extra-brain artifacts, including eye blinks, eye movements, muscle

artifact, and heart rhythm artifacts. The final dataset consisted of 160 epochs, with each

epoch lasting 1 second, and T = 1000 time points for each epoch.

The goals of the present analysis are as follows: In Section 2.4.2, we closely examined a

representative channel in the pre-motor region (specifically channel 197 in this dataset).

Since EEGs are not well localized in space (as opposed to local field potentials), conclusions
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are constrained to the sensor space. However, electrical activity captured in channel 197

reflects activity roughly around the pre-motor area. Specifically, we estimated the (log)

spectrum for each epoch to identify any frequency bin or frequency band that accounts

for the majority of the power spectrum. Moreover, using the method of estimating the

functional medians, we obtained an estimate of the median curve from the log periodogram

curves obtained from several epochs. The median curve is interpreted as a “typical” (log)

spectral profile across several epochs. Using this method, we also identified outlier curves

which could also be interpreted as epochs with “unusual” EEG activity. In Section 2.4.3,

we investigated the possibility of non-stationarity across the 3 minute resting-state EEG

recording. Our specific goal was to compare the log spectrum during the early phase (first

60 epochs) of the recording with the log spectrum during the late phase (last 60 epochs) of

the recording, and identify frequency bands that exhibit any differences between the early

vs late phases. In Section 2.4.4, we studied the spatial variation of power, at each of the five

frequency bands: delta, theta, alpha, beta and gamma, across all 194 channels, with the goal

of identifying regions that exhibit relatively greater proportion of spectral power in each of

the five frequency bands of interest. Finally, we compared the spatial variation for each of

the five bands during the early vs late phases of the resting-state EEG recording.

2.4.2 Functional medians of the pre-motor log spectral curves

The log of the bias-corrected periodograms at the representative channel (channel 197) that

approximately overlies cortex of the pre-motor region recorded for several traces and the

functional boxplots are displayed in Figure 2.11-a. The functional median curve is repre-

sented by the black curve, which is located inside the 50% central region, shaded area. The

two blue curves outside of the shaded area are the non-outlying maximum and minimum

curves. Similar to a functional boxplot, we show in Figure 2.11-b the pointwise boxplot (per

frequency point), where the black curve is the median obtained by connecting the medians
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Figure 2.11: (A) The functional boxplots, (B) Pointwise boxplots of log bias-corrected peri-
odograms, and (C) Two median curves obtaining by functional boxplot method (blue) and
pointwise boxplot method (red) are shown in the same plot.

at each frequency point; the blue curves form the central region (50-th percentile region); the

green curves are two non-outlying extreme curves. We compared these two median curves

in Figure 2.11-c and noted a slight discrepancy between these median curves derived using

a functional boxplot and the pointwise boxplot, with an emphasis on the low frequency

range. The main difference between the functional median and the point-wise median curve

is in the interpretation. The former is one of the curves from a recorded epoch, whereas

the latter may not be an actual curve. Hence the latter cannot really be interpreted as a

“typical” curve from a family of curves formed from several epochs. Moreover, the functional

boxplots approach allows us to identify specific epochs that produce “unusual” or outlying

log bias-corrected periodogram curves. Note that in the plots, the grey curves are the log

bias-corrected periodograms of 160 epochs and the red curves are outliers. Figure 2.11-b
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also shows that these outlying curves are discontinuous around the frequency bin centered

at 100 Hz.

2.4.3 Testing for stationarity of EEG epochs across the entire

resting-state

In the previous section, the functional boxplot provided descriptive statistics for the log

bias-corrected periodograms of 160 epochs from the pre-motor region. Note that there were

originally 180 epochs but 20 had to be removed from further analysis due to extra-brain

artifact contamination. Our interest now is to test whether resting-state brain activity

evolved across the 3 minute EEG recording. While there are many ways to characterize such

an “evolution” of the underlying brain processes, here we will specifically look into changes

on the log spectral curves for early vs late phases of the resting-state EEG recording. In this

case, a change in the log spectral power in early vs late phases would indicate non-stationarity

of the EEG signal across the resting-state recording.

The null hypothesis of stationarity here is that the true median curves of the early and last

phrases are identical. We test this hypothesis using the rank sum test with the significance

level set to 0.05. We defined the early phase to include the first 60 epochs (60 seconds) of the

3 minute recording and the late phase to include the last 60 epochs. In Figure 2.12, we display

the functional boxplots and the other descriptive statistics for each phase. A visual inspection

suggests that the median curves are only slightly different from each other for electrodes

that approximately overlie the pre-motor region. More significant differences are noted for

electrodes that approximately overlie the prefrontal region (see Figure 2.12-c). Moreover, the

rank sum test failed to reject the null hypothesis, as the p-value is 0.56. Therefore, the two

median curves are not significantly different and the hypothesis of stationarity in the pre-

motor regions is not rejected. This is not entirely unexpected since the whole three-minute
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(a)Functional boxplots of epochs 1-60
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(b)Functional boxplots of epochs 101-160
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(c)The median curves of the early (blue) and last (red) phrases.

Figure 2.12: Comparing median curves of the early and last phrases from pre-motor region
and left pre-frontal region

recording was purely resting-state. There was no experimental stimulus and the time frame

was short.

Next, we use the same testing procedure at this particular channel in the pre-motor region

(channel 197) to test the same null hypothesis of non-evolution of the brain process at each

of the other channels across the 3 minute EEG recording. Among the 194 total channels, 18

channels were identified that demonstrated a significant difference in median curves during
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the early versus late phase at a significance level of 0.05. These channels are represented

by colored circles in Figure 2.13. Of these 18, channel 29 (approximately overlying the

supplementary motor area) has the lowest p-value at 10−4. Since we repeat the same test

for 194 channels, we used the Bonferroni correction so that the significance level for each

test was set to 0.05/194 = 2× 10−4. Indeed, only channel 29 (anterior supplementary motor

area) survived the stringent threshold after the Bonferroni correction.

Left Prefrontal

Anterior supplementary
motor area

Left Dorsolateral

Right Prefrontal

Posterior supplementary
motor area

Supplementary
motor area

Unspecific regions

Figure 2.13: Color circles represent channels, which have significant difference between the
median curve of first 60 epochs and the median curve of last 60 epochs at α = 0.05. Grey
circles represent channels which do not have significant difference between the median curve
of first 60 epochs and the median curve of last 60 epochs at α = 0.05.

The tests for temporal stationarity at each channel (local spatial tests) revealed several

channels having a significant difference between the median curves of the early versus last

phases of the EEG recording. As a next step, we studied stationarity in each of 19 predefined

regions of the cortex. In this analysis, the representative EEG signal for each region was

obtained by averaging the EEG signal-epochs over all channels within each region. The

plots in Figure 2.14 suggest that the median curves for the early versus late phases of

the EEG recording are similar for EEG signals recorded from channels that approximately

overlie right pre-motor and anterior supplementary motor regions, but different in the right
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(A) Right pre-motor (B) Anterior supplementary motor

(C) Right pre-frontal (D) Left parietal

Figure 2.14: Median curves of the early phase (first 60 epochs, in blue) and the late phase
(last 60 epochs, in red) in the right pre-motor, anterior supplementary motor, right pre-
frontal and left parietal regions

Right Pre-Frontal

Left Parietal

Figure 2.15: Testing for difference between the early and late phases of the resting-state for
each region. The right pre-frontal regions (blue circles) and the left parietal regions (red
circles) exhibit significant non-stationarity at level 0.05.

pre-frontal and left parietal regions. Indeed, we conclude from the rank sum test that

there is significant difference between the early versus late phases in cluster of channels that

approximately overlie the right pre-frontal (p-value = 0.01) and the parietal regions (p-value
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= 0.029). We found that the right pre-frontal region is significantly non-stationary (i.e.,

early and late phases differ) at level 0.05 (see Figure 2.15). This result overlaps with the

channel-specific tests, in which several of the channels identified to be non-stationary in the

single channel tests are included in the predefined right pre-frontal region. In contrast, while

the cluster of electrodes that overlie the left parietal region was found to be non-stationary in

the region-by-region tests, none of the 18 channels that were identified to be non-stationary

in the single channel tests are part of the left parietal cluster. Therefore, the additional

averaging step across group of channels may improve signal-to-noise in this type of analysis.

A similar phenomenon was also noted for predefined clusters of electrodes overlying at the

left pre-frontal region.

(A) Delta (B) Theta

(C) Alpha (D) Beta

(E) Gamma

Figure 2.16: The median surfaces of five frequency bands.
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2.4.4 The variation of spectral power at each frequency band

across the entire cortex

Our goal here is to test whether the spectral power at each frequency band differed across

the cortical surface. We first computed the estimate of the spectral power for each channel

at each epoch. Starting with the delta band, for each epoch we construct a 2 − D surface

plot of the delta power across the entire cortical surface of 194 channels. These surfaces

were then grouped according to the early and late phases of the resting-state. We then

Anterior supplementary
motor area

Left medial parietal

(A) Theta (B) Beta

Left Pre-Frontal Right Pre-Frontal

Left Dorsolateral

Left Pre-Motor
Right Pre-Motor

Anterior Supplementary
Motor Area (SMA)

Posterior SMA

Right Anterior Parietal

Right Parietal

Left Anterior Parietal

Left Medial Parietal Right Medial Parietal

Left Parietal

(C) Gamma

Figure 2.17: Rank sum test results for regions. Color circles in a bounded curve represents a
region, which has a significant difference between the first 60 epochs and the last 60 epochs.

applied the surface boxplot method for each frequency band to obtain the median surfaces.
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In Figure 2.16, we present the median surface for five frequency bands in the early and late

phases. The color blue represents the low spectral power while red is for high power. In

Figure 2.16, it is interesting that even during resting-state there is relatively high spectral

power at the beta and gamma bands – which are both associated with higher cognitive

processing ([19]).

The next step is to test for differences between the early and late phases of the EEG recording

for each of the five frequency bands of interest. Using the rank sum test, the delta and alpha

bands do not have significant difference between the early and late phases. However, theta,

beta and gamma bands show significant differences. In Figure 2.17, the colored regions

indicate significant differences between the first and last phases while the gray color regions

indicate no significant differences between these two phases. For the theta band, the rank

sum test rejected the null hypothesis at only one region which is the cluster of electrodes

overlying anterior supplementary motor. For the beta band, the rank sum test identified

differences at the left medial parietal region. For the gamma band, there were 13 regions

(out of 19) with significant difference between the early and late phases. Since the gamma

band is wider than other bands, an estimated spectrum powers’ variation across channel

in gamma band is expected to be smaller than the estimated spectrum powers’ variation in

other bands. In Section 4.3, we tested the stationarity for each region. Figure 2.15 shows two

regions, namely, the right pre-fontal and left parietal, which are significantly non-stationary

across all frequencies between the early and late phases. Figure 2.17 shows that the cluster

of electrodes overlying the left parietal region exhibits significant non-stationarity in the

beta and gamma bands while the cluster of electrodes overlying the right pre-fontal region

is significantly non-stationary only in the gamma band.
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2.5 Conclusion

This study has extended the use of the classical boxplot to FBP, which is a new visualization

tool to analyze functional neuroimaging data, including EEG. The primary findings from

the current study demonstrate the functional boxplot is useful for both characterizing the

spectral distribution of both simulated and real EEG data and identifying potential outliers

in a continuous EEG signal.

In the current implementation of the FBP, ranked sample curves are used to characterize

the EEG spectrum by defining a 50% central region, a median curve, and maximum and

minimum non-outlying curves. Thus, the shape, size, and length of the functional boxplot

can be used to characterize the distribution of the dataset, including the skewedness and

degree of variability of the EEG recording. Therefore, potential application of the FBP in

this context includes comparing functional boxplots derived from EEG recordings before and

after an experimental intervention (e.g., across a period of motor skill training), comparing

mean functional boxplots derived from EEG recordings in healthy and diseased experimen-

tal groups, and comparing mean functional boxplots derived from EEG recordings during

resting-state versus task.

An additional use of the FBP, as demonstrated by the current results, is to identify potential

outliers of the EEG recording. Extra-brain artifacts, including eye blinks, eye movements,

heart rhythms measured at pulse points downstream, and muscle movements can cause large

deviations in the EEG signal, and represent a significant hurdle in EEG signal processing

([18]). As a method for identifying outliers in the EEG signal, the FBP could be used

to rapidly identify periods of an EEG recording that show high likelihood for contamina-

tion by artifacts. In clinical applications, the continuous EEG recording has demonstrated

promise as a method for monitoring neural function in patients who have compromised level

of consciousness ([27]) or changes in neural function in patients undergoing neurosurgical
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interventions ([17]). The use of FBP to identify outliers in the EEG recording represents a

novel method for determining periods of the EEG recording that represent changes in con-

sciousness in patients with a compromised level of consciousness, or for determining changes

in neural function across neurosurgical intervention.

The current study also presents an application of the FBP to examine resting-state EEG data

acquired from a single individual by comparing EEG signals acquired during early versus late

phases of the 3 minute EEG recording. This result has important implications for resting-

state studies of neural activity, as many neuroimaging studies that examine resting-state

brain function assume resting-state neural activity to be static. However, recent studies

that examine dynamic changes in resting-state neural activity suggest momentary change in

cognitive processes can cause non-stationarity in resting-state function ([12] and [32]). In

contrast, the current results show that the majority of channels demonstrate stationarity

across the recording period, and provide support for the assumption that the average EEG

signal is static across a 3 minute EEG recording. Combined with previous findings, the

current results suggest that while momentary changes in cognitive processes result in non-

stationary fluctuations of the time series, when averaged across a 60 second subset of the

complete 3 minute EEG recording, the EEG signal is relatively static. This is supported by

the current results that show channels which demonstrate non-stationarity of the EEG signal

when comparing early and late phases of the recording include electrodes that overlie the

right prefrontal region, which is associated with higher-order cognitive processes ([45]). Thus,

the assumption of stationarity in resting-state functional neuroimaging studies may be more

appropriate for non-cognitive networks, including the motor network. Regardless, further

work is needed to determine the minimal time-frame in which EEG signal demonstrate

stationarity.

Additional future work is focused on developing a new method for computing confidence

bands for the median curve. This method needs to consider the data as a whole. One possible
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approach is a re-sampling method, in which the notion of band depth is used to construct a

95% confidence band. A potential limitation of the re-sampling method is that there is the

potential for multiple curves demonstrating ties with respect to band depth, thus affecting the

resultant confidence band. One of the assumptions of the current smoothed periodogram

method is that the log bias-corrected periodogram is an unbiased estimator of spectrum.

Future work will provide further investigation of this assumption as the current method

includes several levels of periodogram manipulation, including smoothing with the gamma

generalized crossvalidation, log transformation, and correction by adding Euler Mascheroni

constant. In conclusion, the current study presents a novel implementation of the functional

boxplot and demonstrates promise as a method for exploratory analysis of complex, high-

dimensional neuroimaging datasets, including EEG data.
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Chapter 3

Geometric Surface Boxplot

3.1 Introduction

Infantile spasms (IS), also known as West syndrome, was one of the first epilepsy syndromes

described in children less than one year old ([78]). One ongoing challenge is to understand

and evaluate the underlying neuroanatomic and electrophysiologic mechanisms that cause

infantile spasms. Diagnosing infantile spasms is often based on an abnormal electroen-

cephalographic (EEG) pattern called hypsarrhythmia as shown in Figure 3.1. It is typically

described as high amplitude and chaotic, and it is associated with multifocal, independent

epileptiform discharges ([29, 35]). Since hypsarrhythmia does not occur in other epilepsy

syndromes, a unique functional neural network is widely believed to underlie hypsarrhyth-

mia. Previous work by [9] found that abnormally increased EEG coherence in long–distance

connections is associated with hypsarrhythmia. [35, 36]; and [54] also found abnormal brain

connectivity patterns as well as widely varying EEG patterns in IS patients with hypsar-

rhythmia.

Motivated by these several findings, our goal in this paper is to develop visualization tech-
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Figure 3.1: Example EEG traces from (A) a control subject containing no epileptic activity;
(B) Awake EEG from an infantile spasms patient with hypsarrhythmia.

niques for connectivity that may assist in identifying a differentiable pattern among patients

who have infantile spasms versus those who do not have spasms. Moreover, these visual-

ization techniques are an important part of data exploration and modeling. Even though

previous research suggests that hypsarrhythmia reflects aberrant brain connectivity, its rela-

tionship to treatment response has not been thoroughly evaluated. Thus, in this paper, we

develop visualization techniques and novel statistical methods to analyze brain physiologi-

cal data (in particular, multi–channel EEGs) to better understand the associations between

changes in between-channel connectivity during the seizure-free epochs and the response to

treatment.

In multichannel EEG studies, a common measure of functional brain connectivity is co-

herence which is essentially the squared cross–correlation between oscillations at different

frequency of a pair of time series, and it is one of the most common measures of such dy-

namics ([50, 51, 67, 23, 22]). Coherence between all channels at a specific frequency (or

frequency band) is represented by a matrix whose off–diagonal element is an estimate of

functional interactions between two brain regions in each frequency. One of the properties

of the coherence matrix is that it is symmetric positive definite (SPD), and thus we aim to

develop methods that respects this important property. Visualizing and extracting useful
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information from a sample of coherence matrices is challenging especially in high dimensions

because each coherence matrix must be considered as a whole information unit. There are

recent advances on analyzing SPD matrices, such as [70, 56, 26, 80, 13] and [33], but not

enough consideration has been given to visualization of such SPD matrices. [30] introduced

a surface boxplot for visualization and exploratory analysis of samples of images, but this

method does not take into account the non–Euclidean geometry of the space of SPD ma-

trices. The reasoning is that the SPD matrices do not live in a vector space, therefore,

commonly used Hilbert space based methods for functional data, such as the band depth are

not applicable.

To overcome this limitation, we propose a transformation approach, mapping the SPD ma-

trices to a Hilbert space of functions, and constructed a geometric surface boxplot (GSBox)

in the transformed space for samples of coherence matrices. By using the GSBox, we address

two primary objectives. The first objective is to determine the median coherence matrix by

ordering a sample of matrices based some depth measure. Here, the median matrix is that

which is the deepest (in a sense that it is ”covered” by the most number of pairs of matrices).

The second objective is to detect outlying matrices again based on the ordering of the depth

values of these matrices. These outliers are demonstrated by unusual connectivity between

pairs of signals and hence would warrant further investigation. Subsequently, confirmed out-

liers, if necessary, can be removed in subsequent analyses. Thus our method pinpoints those

epochs when these unusual coherence matrices were observed. In addition, the EEG signals

are very prone to artifacts, so detecting outliers is very helpful for application to EEG.

One can define a multivariate order statistic for sample of SPD matrices by ranking the data

points according to their depth. Then a matrix–valued object has a high rank when it is

near the center whereas point far from the center has lower rank. As studied in [43] and

[44] for functional data, the test ranks of data points of the second sample are computed

with respect to their depth in the first sample. Using this concept and notion of data
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depth, we develop two rank–based tests for two samples of matrix–valued objects under the

homogeneity hypothesis, i.e., the two samples of matrix–valued objects come from the same

distribution.

As previously noted, this work is motivated by our clinical collaborators’ interest to determine

if changes in between–channel connectivity (as measured by coherence) are associated with

the patients’ response to treatment. In particular, we investigate the difference between

pre– and post–treatment brain functional connectivity in an awake resting state for two

groups of patients: responders, whose hypsarrhythmia and spasms were both completely

resolved; and non–responders, patients that had persistent spasms or hypsarrhythmia or both

after treatment. Further, we compared the post–treatment connectivity of the completely

responders with the control subjects. Similar to the univariate case, when two samples are

paired or are repeated measurements (e.g., pre– and post–treatment from the same subject),

we propose a signed rank test based on data depth to assess whether two samples have

the same distribution. We also develop a rank sum test for two independent samples (e.g.,

complete–responders vs. control).

The main contributions of this paper are the following: (1) a GSBox to visualization and

exploratory analysis for samples of SPD matrices; and (2) non–parametric hypothesis testing

procedures to test for difference between two populations or groups of SPD matrices. The

rest of the paper is organized as follows. In Section 2, we review the concept of coherence

for multivariate stationary signals. We present the space of SPD matrices and the GSBox

in Section 3. The non–parametric tests for two samples of SPD matrices are presented in

Section 4. We demonstrate our proposed methodology for simulation study in Section 5.

The EEG data analysis are reported in Section 6, and conclusions in Section 7.
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3.2 Background: Multitaper Coherence Analysis for

Stationary Signals

In this section, we first introduce some background material on spectral and coherence es-

timation for (second–order) stationary univariate and multivariate time series signals in the

frequency domain, and then we present multitaper coherence for stationary signals. Let

X(t) be a zero mean univariate stationary time series with the autocovariance function is

defined as γ(τ) = E (X(t)X(t+ τ)) (τ = . . . − 1, 0, 1, . . .) that is assumed to be absolutely

summable, i.e.,
∑∞

τ=−∞ |γ(τ)| < ∞. Then the spectrum of X(t) at frequency ω ∈
[
−1

2
, 1

2

]
is given by f(ω) =

∞∑
τ=−∞

γ(τ) e−i2πωτ , and the inverse transform of the spectral density is

the autocovariance function which has the representation γ(τ) =
∫ 1/2

−1/2
ei2πωτf(ω)dω. When

τ = 0, γ(0) = Var (X(t)) =
∫ 1/2

−1/2
f(ω)dω which expresses the total variance of X(t) as the

integrated spectral density. In our IS study, we are interested in the behavior of functional

connectivity at different frequency bands, such as delta (0–4 Hz), theta (4–8 Hz), alpha

(8–16Hz), beta (16–32 Hz), and gamma (32–50 Hz). These frequency bands are already es-

tablished in the clinical literature (see [11, 64, 77, 10] for a review of normal and pathological

oscillations).

For a finite sample of the stationary process X(1), X(2), . . . , X(T ) of length T , a non–

parametric estimate of f(ω) is the periodogram I(ωk) which is defined to be I(ωk) =

1
T

∣∣∣∣T−1∑
t=0

X(t) e−i2πωkt

∣∣∣∣2 , k = 1, . . . , [[T/2 − 1]], where [[A]] is the integer part of A. Mean–

squared consistent estimator can be derived by smoothing periodograms. A number of

nonparametric smoothing periodogram methods have been proposed including the kernel

smoother ([42, 52]), wavelet ([28]), smoothing spline ([76, 55]), or local polynomial ([20]).

Now we extend the spectrum background for univariate case to the multivariate. Let X(t) =

[X1(t), . . . , XP (t)]T be a zero–mean P–dimensional multivariate stationary signal with a

P × P autocovariance function Ψ(τ) = Cov (X(t),X(t− τ)) for τ = . . . − 1, 0, 1, . . .. If
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∑∞
τ=−∞ ||Ψ(τ)|| < ∞, the spectral density matrix of X(t) is f(ω) =

∑∞
τ=−∞Ψ(τ)e−i2πωτ ,

where ω ∈
[
−1

2
, 1

2

]
, and the inverse transform is Ψ(τ) =

∫ 1/2

−1/2
f(ω)ei2πωτdω, where τ =

. . . − 1, 0, 1, . . .. For each frequency ω ∈
[
−1

2
, 1

2

]
, f(ω) is a non–negative definite Hermitian

matrix, whose diagonal elements fpp(ω) are the autospectra and the off-diagonal element

fpq(ω) are the cross spectra. Throughout this paper, we assume that f(ω) is nonsingular for

all ω ∈
[
−1

2
, 1

2

]
. An important application of spectral analysis of multivariate time series is

to study the linear dependence between oscillatory activity in the different components. In

particular, coherence, at frequency ω, between the p–th component time series Xp(t) and

q–th component Xq(t) is defined as ρpq(ω) = |fpq(ω)|2
fpp(ω)fqq(ω)

, whose form is similar to that of

squared correlation. The magnitude of coherence lies between 0 and 1 so that a value that

is close to 1 indicates a strong linear association between Xp(t) and Xq(s) at frequency ω.

Thus, one could interpret this as two time series with ω-oscillatory activity that are highly

correlated. Moreover, if the coherence is zero at all frequencies, the time series Xp(t) and

Xq(s) are uncorrelated ([51]).

To estimate the coherence ρpq(ω), we first estimate the autospectra and cross spectrum via

the periodogram then smooth them to obtain a consistent estimator. For kernel smooth-

ing of the periodogram matrix, a common bandwidth is used for all components in order

to guarantee that the smoothed periodogram matrix (spectral matrix estimate) is positive

definite ([6]). The weakness of this approach is that it assumes uniform smoothness across

all elements of the spectral density matrix. To overcome this limitation, [15] proposed to es-

timate the multivariate spectrum by smoothing the Cholesky decomposition of a multitaper

spectral estimator which is defined as follows.

Suppose that we have M independent tapering functions `m(t) where m = 1, . . . ,M , the

P−dimensional tapered Fourier coefficient vector of a zero–mean P−dimensional multivari-

ate stationary signal X(t) at frequency ωk = k/T for (k = 1, . . . , [[T/2 − 1]]) is defined
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as

Dm(ωk) =
T∑
t=1

e−2πiωkt `m(t) X(t).

A particular choice of taper `m(t) is a sinusoidal taper, which is proposed by [62], for m =

0, . . . ,M where

`m(t) =

(
2

T + 1

)1/2

sin

(
πt(m+ 1)

T + 1

)
,

T∑
t=1

(`m(t))2 = 1,
T∑
t=1

`m(t)`m′(t) = 0 (m 6= m′).

Then the P × P multitaper periodogram at frequency ωk is

I(ωk) =
1

M

M∑
m=1

Dm(ωk)Dm(ωk)
∗,

where (∗) denotes the conjugate transpose. Let C(ωk) be the P ×P lower triangular matrix,

which is the complex Cholesky decomposition of I(ωk), such that C(ωk)C(ωk)
∗ = I(ωk)

where elements cjj′(ωk) = 0 for j′ > j. Note that C(ωk) is unique when the diagonal

elements cjj(ωk) are strictly positive. To obtain the unique C(ωk), we constrain the diagonal

elements cjj(ωk) to be positive.

Remark. The choice of tapers `m(t) do not significantly affect the final estimate of the

spectral matrix f(ωk) since the multitaper method provides an initial smoothing periodogram

I(ωk), and indeed we smooth the Cholesky decomposition C(ωk).

We use the kernel smoothing method for smoothing separately each Cholesky element, i.e.,

the diagonal elements cjj(ωk), the real part of cjj′(ωk), Re(cjj′(ωk)), and imagine part of

cjj′(ωk), Im(cjj′(ωk)), for j > j′ and j, j′ = 1, . . . , P . Denote c(ωk) to be a generic element

which is either cjj(ωk), Re(cjj′(ωk)) or Im(cjj′(ωk)), and ĉ(ωk) to be a smoothed estimator
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of c(ωk) which we define to be

ĉ(ωk) =
τ∑

q=−τ

Wτ,qc(ωk+q) k = 0, . . . , [[T/2− 1]], and q = −τ, . . . , τ

where 2τ+1 is the smoothing span and Wτ,q are nonnegative weights that satisfy the following

conditions for any fixed τ :

Wτ,q = Wτ,−q (q = 1, . . . , τ),
τ∑

q=−τ

Wτ,q = 1.

[60] shows that the choice of the weights Wτ,q is of secondary importance to the value of the

span or bandwidth, so for simplicity, we use the boxcar smoother with weights defined by

Wτ,q = 1/(2τ + 1) for all j = −τ, . . . , τ . Following [42], we select τ which minimizes the

generalized crossvalidated function defined as

GCV (τ) =

T −1
T −1∑
j=0

(c(ωj)− ĉτ (ωj))2

(1− tr(Hτ )/T )2
,

where T = T/2 + 1 and I is the indicator function. The Hτ is the smoother matrix with

smoothing parameter τ , and the term (1− tr(Hτ )/T )2 often referred to as the model degrees

of freedom, can be expressed in terms of the weight at the center of the smoothing window

(1−Wτ,0)2.

After obtaining the smoothed Ĉ(ωk), by Theorem 1 ([15]), we can reconstruct the multivari-

ate spectral C̃(ωk) from Ĉ(ωk), and the spectral estimator f̂(ωk) = C̃(ωk)C̃(ωk)
∗. Now we

can obtain the estimate of coherence between two series Xj(t) and Xj′(t) at frequency ωk

such as

ρ̂jj′(ωk) =

∣∣∣f̂jj′(ωk)∣∣∣2
f̂jj(ωk)f̂j′j′(ωk)

,
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where f̂··(ωk) is an individual component of f̂(ωk). Moreover, our study consider the coherence

between any pair of signals in five primary frequency bands that are mostly used in the

literature, namely, delta (0–4 Hz), theta (4–8 Hz), alpha (8–16Hz), beta (16–32 Hz), and

gamma (32–50 Hz). Since each frequency band is defined on a range of frequencies, we define

the estimated coherence power at the Ω band as

ρ̂jj′(Ω) =

∣∣∣∫ω∈Ω
f̂jj′(ω)dω

∣∣∣2∫
ω∈Ω

f̂jj(ω)dω
∫
ω∈Ω

f̂j′j′(ω)dω
.

For a P−dimensional multivariate stationary signal X(t), let Γ(Ω) be the P × P coherence

matrix whose elements are ρjj′(Ω) estimated by ρ̂jj′(Ω) for j, j′ = 1, . . . , P. Note that Γ(Ω)

is a symmetric (real–valued) positive definite (SPD) matrix.

In our IS dataset, the multivariate signals are often recorded in many epochs, so we denote

Γr(Ω) as the coherence matrix at epoch r for r = 1, . . . , R. Our goal is to characterize

variations of the sample of coherence matrices, such as obtaining the median, the first and

third quantile, and the non–outlying maximum and minimum coherence matrices. In order

to obtain the descriptive statistics in univariate setting, we compute the distance of all

observations, then order them according to their distance values. Therefore, in the next

section, we present some backgrounds on the space of SPD matrices, and Log–Euclidean

metric to compute the distance of all observed SPD matrices. Our proposed GSBox is

constructed by using the Log–Euclidean metric.

3.3 Geometric Surface Boxplot (GSBox)

When a sample of SPD matrices, i.e., sample coherence matrices are available, we wish to

compute descriptive statistics for this sample. Using the Euclidean metric is problematic

since SPD matrices do not lie in a vector space ([57] and [2]), so the ordinary arithmetic
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operations ’+’ or ’−’ may not be well–defined. For example, the subtraction of two SPD

matrices may not be SPD. Moreover, [2] found that the Euclidean averaging of SPD matrices

can lead to a swelling effect meaning that the determinant of the average can be greater

than the determinant of each matrix. In addition, [25] remarked that interpolation of SPD

matrices is possible, but extrapolation can produce indefinite matrices.

To overcome these problems, we transform the data by applying the matrix logarithm (one–

to–one correspondence with the original SPD matrices), and work on the matrix logarithms

of the SPD matrices. The matrix logarithm is defined in Appendix A.1. Since the Log-

transformed space has a vector space structure (and is a complete metric space), we can

apply our usual statistical methods on the transformed matrices. Essentially, what we are

doing is working in the space of SPD matrices equipped with the Log–Euclidean metric

instead of the usual Euclidean metric. There are other metrics available in the literature,

such as the affine-invariant ([57]), Cholesky or Procrustes metrics. However, working with

the Log–Euclidean metric is conceptually simple as we can apply usual Euclidean methods

on the Log–transformed matrices. In this section, we first introduce Log–Euclidean metric

in Section 3.1. In Section 3.2, we present our proposed GSBox to visualize the sample of

coherence matrices.

3.3.1 The Log–Euclidean Metric

The Log–Euclidean metric was proposed by [2], and the geodesic distance between two

SPD matrices based on Log–Euclidean metric is called Log–Euclidean distance. In order

to define the Log–Euclidean metric, we first introduce some notations. Let M(P ) be the

inner product space of P × P dimensional real matrices equipped with the Euclidean (i.e.,

Frobenius) inner product 〈Γ,Γ′〉F = tr
(
ΓTΓ′

)
for Γ,Γ′ ∈ M(P ). Let GL(P ) ∈ M(P ) be

a general linear group containing only nonsingular matrices. Then, the exponential of a
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matrix Γ in GL(P ) is defined as exp(Γ) =
∑∞

j=0
Γj

j!
. The matrix logarithm log(Γ) is defined

as the inverse of the exponential, and the calculation of log(Γ) is provided in Appendix A.1.

For a general nonsingular matrix, the existence and uniqueness of the logarithm may not be

valid, but it is well defined for a SPD matrix. Now we denote S(P ) =
{

Γ ∈M(P ),ΓT = Γ
}

as the subset of M(P ) consisting of all P × P symmetric matrices, and denote P(P ) ={
Γ ∈ S(P ), xTΓx > 0 for all x ∈ Rn \ {0}

}
as the subset of S(P ) consisting of all symmetric

positive-definite matrices. As showed in [57] and [2], P(P ) is a convex cone, i.e., if Γ,Γ′ ∈

P(P ), then Γ + jΓ′ ∈ P(P ) for any j > 0. For an example, we consider Γ ∈ P(2) such as

Γ =

a b

b c

 where ac− b2 > 0 and a, c > 0. Since the constraints can be plotted as a cone

in R3, the SPD matrix Γ can be viewed as a point in R3 and strictly lie inside this cone.

M(P )

log(Γ1)exp(L1)

log(Γr)exp(Lr)

Γ1

L1

Lr

Γr P(P )

Figure 3.2: An illustration of the Log–Euclidean distance. The red line represents for log
transformation while the blue line is for exponential transformation. The brown line con-
necting L1 and Lr is the Euclidean distance, and the green line connecting Γ1 and Γr is the
Riemannian distance. Notice that these two distances are not equal to each other.

The Log–Euclidean metric essentially corresponds to a Euclidean metric in the domain of

SPD matrix logarithms, so compared to other metrics, the Log–Euclidean metric requires

lower computational cost. Hence, we employ the Log–Euclidean distance to measure distance

between two SPD matrices, and the Log–Euclidean distance is defined as dist(Γ1,Γ2) =

49



‖log(Γ1) − log(Γ2)‖F . Note that the Log–Euclidean metric does not have affine–invariance

properties as the Riemannian metric. As discussed in [2], obtained results under the Log–

Euclidean and affine–invariant metric are usually quite similar. For instance, there is no

swelling effect when interpolating SPD matrices, and the Log–Euclidean metric satisfies

some invariance properties, in particular the Log–Euclidean distance between SPD matrices

is invariant under congruence transformations by permutation or rotation matrices, which

is useful in practice. Next we define the logarithmic and exponential maps associated with

the Log–Euclidean metric in the following theorem which will applied to simulated data in

Section 5.

Theorem 3.1. Suppose that Γ1,Γ2 ∈ P(P ), the logarithmic and exponential maps associ-

ated with the Log–Euclidean metric can be expressed as LogΓ1
(Γ2) = log(Γ2) − log(Γ1), and

ExpΓ1
(Γ2) = exp (log(Γ1) + log(Γ2)). Then ExpΓ1

(
LogΓ1

(Γ2)
)

= Γ2.

We prove Theorem 3.1 in Appendix A.2. Under the Log–Euclidean distance, the distance

between two SPD matrices on the SPD manifold is computed by transforming SPD matrices

onto the space M(P ) and obtaining the Frobenius norm. In addition, for the sample of

SPD matrices, it is necessary to discuss properties of unbiasedness. Suppose that Γr for

r = 1, . . . , R are identically and independently distributed from some distribution with

mean µ and variance Σ. Following [68]’s Definition 1 and 2, let M be an estimator of µ, and

we define the unbiasness of M under Log–Euclidean distance in Definition 3.1 below.

Definition 3.1. Let M be an estimator of µ ∈ P(P ), and 0P be the P × P matrix whose

elements are all 0’s. The bias of M relative to µ corresponding to the Log–Euclidean distance

is defined as b(M,µ) = E
[
Logµ(M)

]
= E [log(M)] − log(µ). An estimator M is said to be

unbiased if and only if b(M,µ) = 0P .

By using Log–Euclidean distance, we develop the GSBox approach to compute the median

SPD matrix which is robust to outlying matrices. The advantage of our approach is that
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it identifies outliers and provide the descriptive statistics, such as the 50% central regions,

the maximum and minimum non-outlying surfaces. Here we will consider a SPD matrix as

a surface and now proceed to introduce GSBox in the next section.

3.3.2 Geometric Surface Boxplot

In this section, we develop a GSBox for a sample of coherence matrices by using Log–

Euclidean metric. The GSBox is constructed in a similar manner to the classical boxplot.

Each observation will be sorted based on decreasing values of some depth measure (in this

paper, we will consider the band depth). For ease of teminology, we call each coherence

matrix as a surface, and in our study, let Γr(Ω), where r = 1, . . . , R, be the observed surface

at frequency band Ω and rth epoch. Then at frequency band Ω, a surface is said to be

“deeply situated” within a sample of R surfaces if it is covered by most bands from pairs of

surfaces. This idea is an extension of a classical boxplot where the median is also located

“deep” in a sample because it is situated in the middle of the boxplot and hence covered by

many pairs of points.

The first step to construct the GSBox is to compute the data depth of all the observations,

then order them according to decreasing depth values. Suppose that the observed sample

surfaces, such as Γ1(Ω), . . . , ΓR(Ω) from a region S in R2, and the information unit for such

dataset is the entire surface. To compute the data depth of each surface, [30] defined the

modified volume depth (MVD). Because the SPD matrices do not live in a vector space,

therefore, commonly used Hilbert space based methods for functional data, such as the

band depth and volume depth are not applicable. To solve this problem, we propose a

transformation approach, mapping the SPD matrices to a Hilbert space of functions, and

constructed a surface boxplot in the transformed space. Moreover, we employ the Log–

Euclidean metric to compute the geodesic distance between two SPD matrices. Fig 3.2
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illustrates the Log–Euclidean distance between Γ1 and Γr which is measured by Euclidean

metric between L1 and Lr in the SPD matrix logarithmic domain. Therefore, we define a

new sample geometric modified volume depth (GMVD) by applying MVD to the matrix

logarithms as following

GMVDR(Γ(Ω)) =

(
R

2

)−1 ∑
1≤i1≤i2≤R

λS (A (log (Γ(Ω)) ; log (Γi1(Ω)) , log (Γi2(Ω)))) ,

where A (log (Γ(Ω)) ; log (Γi1(Ω)) , log (Γi2(Ω))) ≡ minr=i1,i2 log (Γr(Ω)) ≤ log (Γ(Ω)) ≤

maxr=i1,i2 log (Γr(Ω)) and λS(log (Γ(Ω))) =
λ(A(log(Γ(Ω));log(Γi1

(Ω)),log(Γi2
(Ω))))

λ(S)
, where λ is the

Lebesgue measure on R3. A sample median surface is a surface from the sample with the

largest sample geometric modified volume depth value, designed by arg maxΓ∈Γ1,...,ΓR

GMVDR(Γ(Ω)). If there are ties, the median will be the average of the surfaces with the

largest sample GMVD.

Next based on the sample surfaces’ GMVD values, the sample surfaces are ordered from the

center outwards based on their GMVD values, inducing the order Γ[1](Ω) > Γ[2](Ω) > . . . >

Γ[R](Ω). The sample α central region is naturally defined as the volume delimited by the α

proportion (0 < α < 1) of the deepest surfaces. In particular, the sample 50% central region

is

C0.5 = {Ω : min
r=1,...,[R/2]

Γ[r](Ω) ≤ Γ(Ω) ≤ max
r=1,...,[R/2]

Γ[r](Ω)},

where [R/2] is the smallest integer not less than R/2. The border of the 50% central region

is defined as the inner envelope representing the box in a surface boxplot. This is the surface

analogue of the first and third quartiles of the classical boxplot. The median surface in the

box is the one with the largest depth value. Because the ordering is from the center outwards,

the volume of the central region increases as α increases. Hence, the maximum envelope, or

the outer envelope, is defined as the border of the maximum non-outlying central region. To
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determine this region, we propose to identify outlying surfaces by an empirical rule similar

to the 1.5 times the 50% central region rule in a functional boxplot. The fences (or the

upper and lower surface boundaries for flagging potential outliers) are obtained by inflating

the inner envelope (as defined above) by 1.5 times the height of the 50% central region.

Any surface crossing the fences are flagged as potential outliers. The factor 1.5 can be also

adjusted as in the adjusted functional boxplots to take into account spatial autocorrelation

and possible correlations between surfaces.

Remark on the applications of GSBox. In this paper, we will use the GSBox to explore

the structure of brain functional connectivity from EEG data (with coherence as the metric

for connectivity). However, these methods are general and can be applied to other types

of data, which contain many SPD matrices (such as covariance matrices, partial coherence

matrices, partial correlation matrices). For example, in medical imaging, SPD matrices

(covariance tensors) provide a powerful framework for modeling the variability of the brain

structure as shown in [24].

3.4 Non–Parametric Tests for Two Samples of SPD

Matrices

The primary objective of our study is to investigate the change of coherence matrices of IS

patients in response to treatment. In particular, for different frequency bands, we computed

the coherence matrices for pre– and post–treatment of each patient and each control sub-

ject. We wish to test the hypotheses of no difference between the distributions of coherence

matrices of the pre–treatment and post–treatment; and the distributions of matrices for the

post–treatment patients and the controls. Since we have multiple subjects and to avoid mul-

tiple testing, we used the GSBox to obtain the median coherence matrix over all epochs for
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each subject. Here the median coherence matrix is the most ”deeply situated” within a sam-

ple of coherence matrices and robust to outlying matrices. Note that the median coherence

matrix can be directly computed without using depth notion, but this median matrix is not

one of observed coherence matrices. Then we apply rank–based non–parametric approach to

decide whether the two samples, which includes median coherence matrices of each subject,

come from the sample population. When the two samples of coherence matrices are paired,

i.e. repeated measurements of the same subjects under pre–treatment and post–treatment,

we introduce the signed rank test in Section 4.1. When the two samples of coherence ma-

trices are independent, i.e. post–treatment versus control subjects, we present the rank sum

test in Section 4.2.

3.4.1 Wilcoxon Signed Rank Test

Here we present the Wilcoxon signed rank test for paired coherence matrices. Suppose that

Γ
(1)
1 , . . . ,Γ

(1)
n

iid∼ P(1)(P ) and Γ
(2)
1 , . . . ,Γ

(2)
n

iid∼ P(2)(P ) are paired sample SPD matrices, i.e.

Γ
(1)
j and Γ

(2)
j (j = 1, . . . , n) are repeated measurements of the j–th subject under two different

experimental conditions. Our null hypothesis is Ho : P(1)(P ) = P(2)(P ), which is equivalent

to the hypotheses that both samples come from the same population. To conduct this test,

we shall use the test statistic given by

W1;n =
n∑
j=1

sgn
(

diff(Γ
(1)
j ,Γ

(2)
j )
)

rank
(∣∣∣diff(Γ

(1)
j ,Γ

(2)
j )
∣∣∣) (3.1)

where diff(Γ
(1)
j ,Γ

(2)
j ) = Tr

[
log

{(
Γ

(1)
j

)−1

Γ
(2)
j

}]
, so when two SPD matrices Γ

(1)
j ,Γ

(2)
j are

identical, i.e. Γ
(1)
j = Γ

(2)
j , the distance between them diff(Γ

(1)
j ,Γ

(2)
j ) is 0. Moreover, it

is noticed that rank
(∣∣∣diff(Γ

(1)
j ,Γ

(2)
j )
∣∣∣) is the usual rank of

∣∣∣diff(Γ
(1)
j ,Γ

(2)
j )
∣∣∣ ∈ R+ in the

set ∪nj=1

∣∣∣diff(Γ
(1)
j ,Γ

(2)
j )
∣∣∣. Here it is implicitly assumed that diff(Γ

(1)
j ,Γ

(2)
j ) 6= 0 for each j,

otherwise we exclude the zero difference scores and reduce the sample size n. We now
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present some properties of test statistic W1;n in the following lemmas.

Lemma 3.4.1. Under the null H0, for each j = 1, . . . , n, the distribution of diff(Γ
(1)
j ,Γ

(2)
j )

is symmetric around zero.

The proof of Lemma 3.4.1 is provided in Appendix A.3. Since E
(

diff(Γ
(1)
j ,Γ

(2)
j )
)

= 0 under

the null hypothesis, the null distribution of W1;n follows in the same way as for the univariate

Wilcoxon signed rank test, with expectation zero and variance n(n + 1)(2n + 1)/6 (see [3],

Section 4.6).

Lemma 3.4.2. The test statistic W1;n is invariant under congruence transformation of the

observations, i.e.
(
aΓ

(1)
1 a∗, . . . , aΓ

(1)
n a∗

)
for any a ∈ GL(P ).

We provide the proof in Appendix A.4. Note that the test statistic only depends on the

difference scores for each j, so the invariance of the test statistic follows as well.

Remark on Wilcoxon signed rank test. We have previously mentioned that the Log–

Euclidean metric does not have full affine–invariance properties as the Riemannian metric.

However, by equation (3) in Appendix A.3, the test statistics of Wilcoxon signed rank test is

the same for both Log–Euclidean and Riemannian metric. If diff(Γ
(1)
j ,Γ

(2)
j ) is simply defined

based on the Log–Euclidean metric (without using trace of a matrix), its distribution is still

symmetric and around zero under the H0 but will not hold the invariance property.

3.4.2 Wilcoxon Rank Sum Test

In the previous section, we developed the Wilcoxon signed rank test for two correlated coher-

ence matrices populations. Here, we will develop the non–parametric test for independent

samples of SPD matrices based on the Wilcoxon rank sum test. In this section, we propose

rank sum test method, which is generalized to rank sum test for two populations of curves
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proposed by [46]. By using GMVD, we can extend the idea of rank in the 2–D dimensional

curve to higher dimensions, i.e. SPD matrices. Using the same notations as previous section,

let Γ
(1)
1 , . . . ,Γ

(1)
n

iid∼ P(1)(P ) and Γ
(2)
1 , . . . ,Γ

(2)
m

iid∼ P(2)(P ), where Γ
(1)
i and Γ

(2)
j are independent

for all i = 1, . . . , n and j = 1, . . . ,m. Define the null hypothesis to be H0 : P1(p) = P2(P ).

Suppose that we have the reference sample Z1, . . . , Zk which is from one of the two observed

samples, with k ≥ max(n,m). The position of a particular Γ
(1)
i for i = 1, . . . , n, or Γ

(2)
j for

j = 1, . . . ,m with respect to the reference sample Z, is defined as

V (Γ
(1)
i ) =

1

n

n∑
l=1

I{GMVD(Zl) ≤ GMVD(Γ
(1)
i )},

V (Γ
(2)
j ) =

1

m

m∑
l=1

I{GMVD(Zl) ≤ GMVD(Γ
(2)
j )},

where GMVD is the modified volume depth defined in previous section, and I is the indi-

cator. Then we can order the values V (Γ
(1)
i ) and V (Γ

(2)
j ) from the smallest to the largest,

and their ranks are between 1 and n+m. The test statistic for the test is

W2;n,m =
m∑
l=1

rankV (Γ
(2)
j ), (3.2)

then under the null hypothesis H0, the distribution of W2;n,m is the distribution of the sum

of m numbers that are randomly chosen from 1, 2, . . . , n+m without replacement ([74]). We

reject the null hypothesis when W2;n,m is smaller than the critical value.

3.5 Simulation Study

In this section, we report results from two simulation studies with various experimental

settings. The first simulation study illustrates the GSBox in Section 5.1, and we demonstrate

the signed rank test (Equation 3.1) and rank sum test (Equation 3.2) in Section 5.2.
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3.5.1 Geometric Surface Boxplot Simulation Study

We set T = 200 which is the same as the number of time points in IS EEGs dataset (see

Section 6.1–6.3), the number of electrodes is P = 15, and R = 100 which is smaller number

of epochs to illustrate the performance of our GSBox. First, we obtain the median coherence

matrix of a control patient, named N001, at delta band Γ̂med, N001(Ωδ) with its corresponding

estimated spectrum density matrix f̂med, N001(Ωδ) and Cholesky decomposition Ĉmed, N001(Ωδ)

for the first 100 epochs. Note that we demonstrate our proposed method at only delta band

for illustration purpose. Then we generate the simulation data in two different settings:

Setting 1: In this setting, we generate a sample of coherence matrices without including

outlying matrices so that we can compare the median obtain from GSBox with the

Γ̂med, N001(Ωδ). For each epoch r = 1, . . . , R, we generate P− dimensional multivariate

time series X(r)(t) =
∫ 0.5

−0.5
A(r)(ω) expi2πωt dZ(r)(ω) by using Cramer representation,

where

E(dZ(r)(ω)dZ(r)(ω
′)∗) =


0, ω 6= ω′

Idω, ω = ω′,

and I is P × P identity matrix. The transfer function matrix A(r)(ω) at epoch r is

defined as A(r)(Ωδ) = Ĉmed, N001(Ωδ)+B(r), where B(r) is a lower triangle matrix whose

diagonal elements are 0 and off-diagonal elements are normally distributed N(0, 0.01).

For ω /∈ Ωδ, we set A(r)(ω) = Ĉmed, N001(ω). Under this setting, only the real part

of cross-spectrum slowly changed over epoch r at delta band while the auto-spectrum

remained the same. Thus, the coherence surfaces are also slowly changing over epochs.

Setting 2: With outlying surfaces. We used the same setting in previous simulation dataset,

and we added two outlying coherence matrices from a control patient N001 at epochs

101 and 102 of simulation data in Setting 1.
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For each simulation dataset, we compared our proposed method GSBox with the classical

surface boxplot (SB) proposed by [30]. Figure 3.3 showed that the median coherence matrices

obtained from both methods are similar to each other and to Γ̂med, N001(Ωδ) of normal subject

N001, and no outlying surface is detected for the Data 1.
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Figure 3.3: (A) The median coherence matrix Γ̂med, N001(Ωδ) at delta band Ωδ obtained from
normal subject N001 for the first 100 epochs. (B) The median coherence matrix using the
GSBox for the first simulation. (C) The median coherence matrix using SB.

For the second simulation data, Figure 3.4 shows the median coherence matrices obtaining

by our method (panel A) and [30]’s method (panel B). The median coherence matrices

obtained from both methods are similar as shown in Figure 3.3(A). For detecting outlying

coherence matrices, both methods correctly detect two outlying matrices at epochs 101 and

102. However, SB incorrectly detected other coherence matrix at epoch 53 as shown in

Figure 3.5(C). This demonstrates that our proposed method can be used as an exploratory

tool to visualize and explore the structure of the sample of coherence surfaces.

3.5.2 Non–parametric Rank test Simulation Study

In this section, we compare the signed rank test and rank sum test in the following setting.

Suppose that Γ
(x)
1 , . . . ,Γ

(x)
n

iid∼ P(x)(P ) and Γ
(y)
1 , . . . ,Γ

(y)
n

iid∼ P(y)(P ). We wish to test the null

hypothesis Ho : P(x)(P ) = P(y)(P ). First we present how each Γ
(x)
j and Γ

(y)
j are generated

then we compare the performance of the signed rank test and rank sum test under different
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Figure 3.4: (A) The median coherence matrix using GSBox for the second simulation. (B)
The median coherence matrix using SB.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
3

F
4

C
3

C
4

P
3

P
4

O
1

O
2

F
7

T
3

T
4

T
5

T
6

C
z

P
z

F3

F4

C3

C4

P3

P4

O1

O2

F7

T3

T4

T5

T6

Cz

Pz
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
3

F
4

C
3

C
4

P
3

P
4

O
1

O
2

F
7

T
3

T
4

T
5

T
6

C
z

P
z

F3

F4

C3

C4

P3

P4

O1

O2

F7

T3

T4

T5

T6

Cz

Pz
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
3

F
4

C
3

C
4

P
3

P
4

O
1

O
2

F
7

T
3

T
4

T
5

T
6

C
z

P
z

F3

F4

C3

C4

P3

P4

O1

O2

F7

T3

T4

T5

T6

Cz

Pz

(A) Epoch 101 (B) Epoch 102 (C) Epoch 53

Figure 3.5: The outlying coherence matrices. Our proposed method and SB detected outlying
coherence matrices (A) and (B). However, Epoch 53 (C) was incorrectly detected by SB as
an outlying matrix.

settings.

Furthermore, suppose that µx and µy are means of two population P(x)(P ) and P(y)(P )

respectively, (Zjx, Zjy) and (Rjx, Rjy) are independent random variables which are iden-

tically distributed to some distributions (0P ,ΣX) and (0P ,ΣR), respectively. Let Γ
(x)
j =

Expµjx (Rjx), where µjx = Expµx (Zjx) as showed in Figured 3.6. The population mean µx is

on the space P(P ), and is log transformed to Lx on M(P ). Then we add two independent

random variables Zjx and Rjx to Lx by using Log–Euclidean metric, and the exponential

transformation of the outcome back to P(P ) is Γxj . This setting can be viewed as a tradi-

tional linear mixed model in the way that each positive definite matrix Γ
(x)
j has the same

group–specific mean µx, the random effect Zjx for the jth subject which represents the varia-
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M(P )

log(µx)

exp(Lx + Zjx +Rjx)

Zjx Rjx

µx

Lx

Γxj

P(P )

Figure 3.6: Illustration of generating SPD matrix Γxj from a population mean µx. The
population mean µx is on the space P(P ), and the Log–transformed Lx on the vector space
TM(P ). Then we add two independent random variables Zjx and Rjx to Lx by using
Log–Euclidean metric, and the transformation of the outcome back to P(P ) is Γxj .

tion between subjects, and another random term Rjx taking into account of variation within

each subject. From Theorem 3.1 and using Log–Euclidean distance, Γ
(x)
j and Γ

(y)
j can be

expressed as

Γ
(x)
j = exp (log µx + Zjx +Rjx) ,

Γ
(y)
j = exp (log µy + Zjy +Rjy) , j = 1, . . . , n.

Following Definition 3.1, we can verify that the bias b(Γ
(x)
j , µx) = 0P since

E
(

LogµxΓ
(x)
j

)
= E

(
Log(Γ

(x)
j )− Log(µx)

)
= E (Log(µx) + Zjx +Rjx − Log(µx))

= E (Zjx +Rjx)

= 0P ,

thus it implies that Γ
(x)
j is an unbiased estimator of µx. The unbiasedness proof is similar

for Γ
(y)
j . Next we demonstrate the power of signed rank test and rank sum test in different
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scenarios.

Setting 3 : Location shift. Let µx = µy, Zjx = 0P and Zjy = βZjv where Zjv
iid∼ (0P ,ΣV ).

Under this setting, the sample mean µy move away from µx through the direction of

Zjv with the real–value weight β. Note that the two populations are independent, thus

the power of rank sum test should larger than the power of signed rank test.

Setting 4 : Dependence. This simulated data illustrates the signed rank test perform

better than rank sum test under dependence assumption between two populations.

Let µx = µy, Zjy = (1 − w)Zjv + wZjx for w ∈ [−1, 1]. Note that Rjx and Rjy are

always independent. However, the dependence between Zjx and Zjy are related to w.

When w = 0, both two samples are independent, and when |w| < 1 for w 6= 0, two

samples are more dependent when w is increasing. When w = 1, the two samples are

distributed from similar distribution.

Setting 5 : Similar to the setting in Data 4, but we set µx 6= µy. In particular, we observe

the rejection rate of the two rank tests when the Log–Euclidean distances between µx

and µy are dist(µx, µy) ≈ 0.01, dist(µx, µy) ≈ 0.03, and dist(µx, µy) ≈ 0.1.

To generate the simulation data 3–5, we set the number of channels P = 15, the sample

size n = 100, the location scale β ∈ [−4, 4], the dependence weight w = {0, 0.1, 0.2, . . . , 0.8}.

Moreover, the random component Zi· = zTi V , where zi ∼ N(~0p×1, D), D is a P × P identity

diagonal matrix, and V =
∑P

k=1 ek. Here, ek are the basis elements of an orthonormal

basis of the space of Hermitian matrices. Similarly, the error terms Ri· = rTi V , where

ri ∼ N(~0p×1, D). For each value of β and w, we run 500 replications. Finally, we use the

estimated median coherence matrix Γ̂med, N001(Ωδ) of normal subject N001 for the population

means µ·.

Figure 3.7(A) illustrates that when the distribution of two populations are the same, i.e. β =

0, the rank sum test and the signed rank test have similar rejection rate around significance
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Figure 3.7: Simulation results: (A) location shift β in Setting 3, and (B) dependence w
between two samples in Setting 4. Rejection rates of signed rank test (red line) and rank
sum test (green line) for two samples of 20× 20 dimensional matrices. There are 500 times
for each values of β. The horizontal dotted line indicates the level α = 0.05
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Figure 3.8: Setting 5 result. Rejection rates of signed rank test (red line) and rank sum test
(blue line) for two populations of 15×15 dimensional matrices. There are 500 times for each
values of w. The horizontal dotted line indicates an significance level α = 0.05.

level α = 0.05. However, when β increases and two populations are independent, the power

of the rank sum test is larger than the power of signed rank test. In addition, Figure 3.7(B)

shows that when two populations are independent, i.e. w = 0, the rank sum test and the

signed rank test have similar rejection rate around significance level α = 0.05. However,

when the dependence between two populations w increases, the the rank sum test tends to

reject the H0 more than the signed rank test.

In Figure 3.8, we investigate the reject rate of two rank tests for two populations whose
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means are different. When the Log–Euclidean distance between two distribution populations’

means is small, even though both test have low rejection rate, the rejection rate of signed

rank test is greater than rank sum test’s rate when w increases. When the distance between

two distribution populations’ means is moderate, the rejection rate of signed rank test is

increasing as the dependence w increases, whereas the rejection rate of rank sum test is higher

than signed rank test when w = 0, i.e. independent populations, and lower than signed rank

test when w increases. This indicates that when two populations are highly correlated, the

signed rank test is more appropriate than the rank sum test. In addition, when the distance

between two populations’ means is large, both tests have highly comparable rejection rate.

Through the simulation study, we shows that our GSBox can visualize the distribution of

sample of SPD matrices, and perform better than SB. Moreover, we demonstrate the power

of rank sum test and signed rank test for two samples of SPD matrices. It shows that

the signed rank test perform better than the rank sum test in the case that two samples

are dependent. Conversely, the rank sum test is an appropriate testing method when two

samples are independent in terms of type I error rate and power.

3.6 Visualization and Testing of Coherences of EEGs

in the IS Study.

3.6.1 Experimental Design

This is a case–control study conducted by our co–author Dr. Shrey at the Children’s Hospital

of Orange County (CHOC). The IS patients were retrospectively identified with new-onset

infantile spasms between August 2011 and December 2014 who exhibited hypsarrhythmia

and immediately received initial treatment of infantile spasms with ACTH and/or vigabatrin.

The video–EEG was recorded for each patients at diagnosis and after at least 10 days of
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treatment. Here, twenty one controls were retrospectively identified as the patients without

any known neurological diagnoses or EEG abnormalities. Control subjects were selected such

that the group’s overall distribution of ages was similar to the IS cohort (similar median value

and IQR).

3.6.2 EEG Acquisition

Relevant clinical and demographic data were abstracted from the medical records. For each

patient, digital scalp EEG recordings were retrospectively collected. All studies were acquired

using the Nihon Kohden EEG acquisition system, with electrodes placed according to the

international 10-20 standard as shown in Figure 3.9. All but four studies were originally

F3 F4

C3 C4

P3 P4

O1 O2

F7

T3 T4

T5 T6

Cz

Pz

Figure 3.9: Map of channels on the scalp. There are total 19 cortical scalp electrodes for each
subject. Electrode placement followed the 10-20 international recording system. M1 and M2
were referential electrodes applied to the left and right mastoid processes, respectively. FPz
and Oz were not utilized in these recordings.

recorded with 200Hz sampling rate; the remaining four studies were originally recorded

at 500 Hz and downsampled to 200Hz. For the IS patients, two separate epochs during

wakefulness, each lasting twenty minutes or longer, were extracted; the first was isolated

from the study performed at the time of the infantile spasms diagnosis (prior to treatment)

and the second was from the subsequent follow-up EEG. The selection of EEG data segments
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was performed without reviewer knowledge of treatment status or outcome, as each specific

EEG study was de-identified and assigned a code prior to epoch abstraction. Epochs of

awake EEG data were similarly extracted from the control subjects’ recordings. Approval

for this study was obtained from the Institutional Review Board of the Children’s Hospital

Orange County, and the requirement for informed consent was waived.

While hypsarrhythmia can sometimes be more prominent during sleep, all pre–treatment

IS subjects in this study exhibited hypsarrhythmia during wakefulness. We analyzed awake

EEG data for two methodological reasons. First, wakefulness is easily recorded in nearly

every routine clinical EEG performed on infants, whereas sleep cannot be consistently cap-

tured without long epochs and relies upon extended EEG monitoring. This is particularly

true of IS patients, who sleep less than healthy infants of the same age [34]. Second, the

features of hypsarrhythmic EEG vary with stage of sleep [40], necessitating accurate sleep

staging prior to quantitative analysis. Moreover, IS and hypsarrhythmia are associated with

altered structure and progression of sleep stages, with notably diminished/absent REM sleep

[34] and sleep spindles in stage 2 sleep [1]. Furthermore, these characteristics change during

the course of treatment, making it infeasible to employ standard sleep staging procedures.

3.6.3 EEG Preprocessing

EEG preprocessing was performed on Matlab (R2017b, MathWorks, Inc.). The continu-

ous EEG signal was re–referenced to the common average [14], low-pass filtered (3rd order

Butterworth) at 0.5–55 Hz, removed 60–Hz noise, and segmented into non-overlapping one

second epochs. Artifacts, which were caused by eye blinks, muscle activity, movement, and

poor electrode contact and marked by a board-certified pediatric epileptologist, were re-

moved from analysis. Moreover, EEG channels with constant artifact were also excluded

dataset (one channel for control group and four channels for spasms group), which has been
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published in [69].

We used the GSBox to visualization and exploratory analysis the samples of coherence matri-

ces for all subjects, including control subjects, IS patients in which both spasms resolved and

IS patients in which spasms did not resolve after treatment. We present the analysis in two

stages. First, in Section 6.4, we closely examined the sample of coherence matrices of control

subjects at five frequency bands used in clinical studies. By using our proposed GSBox

method, we obtained subject–specific median coherence matrices (a large number of epochs

R > 1000). The median coherence matrix is interpreted as the representative functional con-

nectivity for each subject. In addition, we also identified outlying coherence matrices which

could also be interpreted as epochs with abnormal EEG connectivity. Similarly, we continue

investigating the sample of coherence matrices from IS patient before and after treatment.

In Section 6.5, we used the median coherence matrices of each subject to compare the pre–

and post–treatment coherence matrices for IS patients, and we also tested the differences

between post–treatment from IS patients with the baseline from normal infants.

3.6.4 Visualizing Functional Connectivities

We illustrated the GSBox of samples of coherence matrices for a control infant N001 in

Figure 3.10. It showed the first quartile coherence matrix (left), the median matrix (center)

and the third quartile matrix (right) at gamma band. Similar to a classical boxplot, the

median matrix is located between the first and third quartiles, which form the 50% central

region. The median coherence matrix is one of the matrices from a recorded epoch, so it can

be interpreted as the representative coherence matrix from a sample of coherence matrices

formed from several epochs. Moreover, our GSBox identified specific epochs that produce

abnormal or outlying coherence matrices which is illustrated in Figure 3.11. Compared to the

median coherence matrix in Figure 3.10, the outlying coherence matrices exhibited stronger
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Figure 3.10: GSBox for control subject. We illustrate the 50% central region of sample of
coherence matrices at gamma band. The top panel showed the coherence matrices with
the functional connectivity on the scalp shown in the bottom by using 0.4 threshold for the
median, Q1 and Q3 matrices. The left matrix is the first quartile coherence matrix, middle
is the median matrix, and right is the third quartile matrix.

functional connectivities in many pairs of channels such as (C3, P3), (C3, Fz), (F3, Cz) and

(P3, Cz). It showed that great variability across epochs may be expected in neuroimaging

studies because cognitive processes can vary for individual subjects. Therefore, our proposed

GSBox was able to provide insights into features of EEG such as similarities and variability of

the brain functional connectivity across epochs to facilitate the statistical model. Moreover,

Figure 3.12 showed the median coherence matrices in other frequency bands. A number

of functional connectivities were greater in delta, theta and alpha bands than in beta and

gamma bands. It means that for an awake control subject, he/she had more slow brain

oscillation (delta, theta and alpha) activity than beta and gamma oscillations.

Our interest now is to investigate the sample of coherence matrices from two IS patients

with hypsarrhythmia. Figure 3.13 illustrated the median coherence matrices of pre– and

post–treatment for IS patient in which hypsarrhythmia was resolved. Compared between
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Figure 3.11: Several outlying coherence matrices for control subject at gamma band. We
applied 0.4 threshold for the functional connectivity on the scalp shown in the bottom panel.
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Figure 3.12: Median coherence matrices of control subject at delta, theta, alpha and beta
bands. We applied 0.4 threshold for the functional connectivity on the scalp.

pre– and post–treatment, the method suggests that the functional connectivity in the theta

and alpha bands is weaker at post–treatment than at pre–treatment. Furthermore, we notice

that on average, the the strength and pattern of connectivity of post–treatment are similar
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Figure 3.13: A comparison of the median coherence matrices between pre– and post–
treatment for an IS patient whose spasms was resolved after treatment. The corresponding
functional connectivity with 0.4 threshold on the scalp were shown next to each median
coherence matrix.

to the control subject at each frequency band. For IS patient whose hypsarrhythmia did not

resolve (a non–responder), the median coherence matrices for the pre– and post–treatment

are give in Figure 3.14. We found that the strength and number of functional connectivities

in delta, theta, beta and gamma bands became stronger after treatment. It also showed that
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Figure 3.14: A comparison of the median coherence matrices between pre– and post–
treatment for an IS patient whose spasms was not resolved. The corresponding functional
connectivity with 0.4 threshold on the scalp were shown next to each median coherence
matrix.

the median coherence matrices at delta, theta and gamma bands are different with median

coherence matrices of control subject. Here we demonstrated our GSBox for three different

subjects to obtain descriptive statistics for the sample of coherence matrices across epochs.

Next, we tested the hypothesis for difference between the populations of coherence matrices
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before and after treatment for all IS patients, and between the population of coherence

matrices of IS patients after treatment with control subjects in the next section.

3.6.5 Testing for Association Between Treatment Response and

Functional Connectivity

To investigate the change of functional connectivities in response to treatment, subjects are

grouped according to their response to treatment: responders (Resp = 11), non–responders

(NResp = 10), and control subjects (Normal = 21). Notice that non–responders post–

treatment have persistent spasms, with or without hypsarrhythmia. We first applied the

GSBox for each subject to obtain the median coherence matrix, which is represented the

most centering or deepest matrix among sample of coherence matrices according their depth.

Then we employed the signed rank test to test the difference between two dependent samples

of coherence matrices for all subjects.

Delta Theta Alpha Beta Gamma

Pre v.s. Post (NResp) 0.106 (33) 0.28 (48) 0.625 (16) 0.431 (23) 0.92 (4)
Pre v.s. Post (Resp) 0.2 (48) 0.042 (50) 0.007 (61) 0.174 (31) 0.464 (24)

Table 3.1: Signed rank test result of testing difference between pre–treatment coherence ma-
trices with post–treatment coherence matrices of resolved and non–resolved IS patients. We
reported p–values with corresponding test statistics inside parenthesis and the significance
level 0.05.

Table 3.1 shows the result of signed rank test for two samples of coherence matrices pre–

and post–treatment. We found that there is no significant difference in non–responders for

all frequency bands. However, among responders, functional connectivity at post–treatment

is significantly different from pre–treatment at the theta and alpha bands. Our conclusion

is that the non-responders are not significantly different after treatment, but the responders

have different connectivity patterns in the theta and alpha bands. This implies that theta
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and alpha are the most informative frequency bands for functional networks associated with

IS.

Delta Theta Alpha Beta Gamma

Post (NResp)
v.s. Normal

3 × 10−4

(-3.5)
0.001
(-3.1)

0.004
(-2.8)

0.007
(-2.7)

0.53
(-0.6)

Post (Resp) v.s.
Normal

0.002
(-3.1)

0.03
(-2.1)

0.059
(-0.1)

10−4

(-3.88)
0.002
(-3.1)

Table 3.2: Rank sum test result of testing difference between post–treatment coherence
matrices of resolved and non–resolved IS patients with coherence matrices of control subjects
(Normal). We reported p–values with corresponding test statistics inside parenthesis and
the significance level 0.05.

To investigate whether the post–treatment functional connectivities of IS patients are similar

to control subjects’ functional connectivities, Table 3.2 summarizes the result of rank sum

test for two independent samples. The results show that the non-responders are significantly

different than the control subjects in all except the gamma band. The results in the gamma

band are not particularly relevant, as scalp–EEG gamma activity is not currently employed

during standard clinical EEG analysis. Additionally, the gamma amplitude is very low,

and it overlaps with the frequencies associated with muscle activity (artifact). Furthermore,

Table 3.2 also shows that the responders are different than the controls in every band except

alpha. It is noticed that theta has the second largest p–value. The results found here

are consistent with Table 3.1 in the sense that Table 3.1 implies theta and alpha are most

informative, and in Table 3.2 we see that, in responders, the functional networks in the theta

and alpha bands look the most like the control subjects.

Remark. We did not take into account of the effects of volume conduction. The reasoning

was that volume conduction should affect each subject approximately equally, so it should not

preclude us from comparing the different subject groups. However, the spurious connections

due to volume conduction happen so frequently that they can mask more subtle differences

between groups. Note also that volume conduction affects the coherence measure but not
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the GSBox and rank–based non–parametric methods that are the main focus of this paper.

3.7 Discussion

This study introduces a novel approach to visualization and exploratory analysis for the sam-

ples of SPD matrices (coherence matrices) which are observed from multiple subjects under

different experimental settings. A new GSBox is introduced based on the surface boxplot.

A rank sum test is developed for testing the differences between two families of matrices.

The method were motivated by an IS with hypsarrhythmia study whose goal is to relate per-

sistent hypsarrhythmia following treatment with adverse neuropsychological outcomes that

have not been well understood. For the implementation of our proposed method, ranked

sample coherence matrices are used to characterize the functional connectivity by defining

a 50% central region, a median coherence matrix and also detecting outlying coherence ma-

trices. Thus, it can be used to characterize the distribution of the dataset, including the

skewness and degree of variability of the sample of matrices over EEG recording.

As illustrating in this study, the potential application of our proposed method is to compar-

ing the sample of SPD matrices (e.g., coherence matrices, covariance matrices and diffusion

tensor) in healthy and diseased experimental groups, or under different experimental set-

tings. Moreover, an extension of GSBox is to measure the likelihood that a given matrix

belongs to a distribution of matrices. For instance, we could develop GSBox to measure

the distance between the post–treatment coherence matrix (for a single subject) with the

median coherence matrix of the control population. This would provide a measure of the

amount of improvement in an individual subject.

We conclude this section by discussing several limitations and plans for future work. First,

our study characterized functional connectivity via coherence between each pair of signals,
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but coherence does not provide a measure of the direct linear relationship between two

components. The alternative approaches are partial coherence ([23]) Second, our proposed

method does not compute the confidence surfaces for the median SPD matrix. One possible

approach is a re–sampling method, in which the notion of band depth can be used to construct

a 95% confidence surface. A potential limitation of the re–sampling scheme is that there is

possible for multiple surfaces with tied depth, thus affecting the confidence surface.
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Chapter 4

Other time–frequency and spike train

models

In this chapter, I present other time–frequency and spike train models that were explored

as part of my dissertation. These will be developed into two papers in the near future. An

extension of my work in Chapter 2 is to investigate dependence between oscillatory activity

in a pair of brain regions, and I propose a time frequency vector autoregressive model in

Section 4.1. Another future work is modeling stochastic spiking neural networks in Section

4.2.
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4.1 A time frequency vector autoregressive model (TF-

VAR)

4.1.1 Motivation

In time series analysis, there is a need for rigorous approaches to measure the temporal

dependence structure between time series. The autocorrelation function (ACF), which mea-

sures the linear dependencies in time series, has been widely used for exploring and testing

dependence between time series. More precisely, the ACF measures correlation at all avail-

able time lags between each pair of components of the multivariate time series, and thus the

ACF equals 0 when there is no linearly dependence between observed time series, and ACF

equals to maximum absolute value 1 if observations are perfectly linearly related. In neu-

roscience, brain signals, such as electroencephalograms (EEGs), functional fMRI and local

field potential (LFP), are used to study brain activity. Of key interest are the oscillations at

different frequency bands. While correlation (and partial correlation) measure dependence

between a pair of time series, these do not precisely reflect how oscillatory activity on one

region may be associated with oscillatory activity in another.

Another popular measures of dependence between time series is coherence and partial co-

herence, which is essentially the cross–correlation and partial cross–correlation respectively,

between oscillations at different frequency bands of each time series. An advantage of par-

tial coherence is that it provides a measure of the direct linear relationship between two

signals by removing the linear effects of other observed signals. Figure 4.1 demonstrates an

advantage of partial coherence over correlation. In this figure, F1(t) and F2(t) are the latent

sources which are low and high frequency AR(1) time series respectively, M is an indicator

matrix, and N(t) is noise. Then X1(t) is a mixture of low frequency component F1(t) and

high frequency component F2(t), while X2(t) and X3(t) contains only low frequency com-
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ponent F1(t) and high frequency component F2(t) respectively. Clearly, X2(t) and X3(t)

are indirectly linked through X1(t), so correlation between X2(t) and X3(t) is non-zero, but

partial coherence between X1(t) and X2(t) is non-zero at low frequency, and it is zero at

high frequency. Here, we address two limitations of partial coherence. First, it captures

dependence between time series oscillating only at the same frequency bands, and thus it

does not take into account the interactions between oscillations at different frequency bands.

Second, partial coherence measures the time-series dependence at the same time block, so the

disadvantage is that it does not take into account potential non-stationarity (e.g., evolution

of the dependence structure).
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Figure 4.1: A comparison of the dependence measures. Left: X2(t) and X3(t) are indirectly
dependent via X1(t). Middle: X1(t) and X2(t) are directly dependent via the low frequency
component F1(t). Right: X1(t) and X3(t) are directly dependent via the high frequency
component F2(t).

To overcome these limitations we propose a time frequency vector autoregressive model

(TF-VAR). The proposed TFVAR model is different from the classical VAR model because

it directly examines lead-lag dependence between the oscillatory features rather than the

raw time series themselves. Consider a multivariate time series with components X1(t) and

X2(t). Our proposed model will be utilized to address whether or not oscillatory activity
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as measured by the periodograms for {X1(t− 1), X2(t− 1)} at previous time t− 1 leads to

increased or decreased particular frequency band activity in time series X1(t) at the current

time t. The methods presented is motivated by a motor skill acquisition study at the Neuro-

rehabilitation laboratory at the University of California, Irvine (Principal Investigator: Dr.

Steven C. Cramer). In the previous study, EEG was recorded from 17 subjects both during

resting-state prior to motor skill training and during motor skill training using dense-array

EEG (256 electrodes).

Our goals are (1) to develop a dimension reduction method to extract the best ”represen-

tative” signals for multivariate time series ; (2) investigate dependence between oscillatory

activity in a pair of brain regions. To achieve our goals, first, we introduce the spectral

principal component analysis (Spec–PCA) to obtain the univariate signal from EEG signals

in the same brain region. Second, we develop the time-frequency vector autoregressive model

(TF–VAR) to examine dependence between brain wave oscillations in a pair of brain regions

during the motor-learning state. In the preliminary studies, we shall look into dependence

between the pre-frontal and supplementary motor regions of a single subject during the

motor-learning experiment. First, we apply the spectral PCA to compute a univariate signal

which summarizes multivariate time series in each regions in Section 4.1.2. Then we define

the spectrum of the first component time series obtained from spectral PCA in Section 4.1.3,

and we introduce a TF–VAR model in Section 4.1.4. Finally, we report preliminary analysis

results in Section 4.1.5 and discuss our future work in Section 4.1.6.

4.1.2 Computing Signal Summary to Multivariate Time Series by

Using Spectral Domain Principal Component Analysis

Since each brain region includes a large number of EEG signals, we apply the spectral prin-

cipal component analysis to extract the best ”representative” patterns for each brain region.
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The principal components in frequency domain was introduced in [7] (Chapter 9). Here, we

develop the idea from [67]. Let X(t) be a p–dimensional stationary zero–mean multivari-

ate time series, and U(t) be the univariate time series. Suppose that we are interested in

representing X(t) by a summary signal U(t) defined as

U(t) =
∞∑

j=−∞

a(t− j) ∗X(j). (4.1)

Indeed, U(t) in Equation 4.1 is a process obtained from X(t) by linear filter with a p × 1

vector filter a(j) such that the coefficients are absolutely summable, i.e.,
∑∞

j=−∞ |a(j)| <∞.

To reconstruct X(t) from U(t), we can form a process X̂(t) as an estimate of X(t) such as

X̂(t) =
∞∑

j=−∞

b(t− j)U(j), (4.2)

where b(j) is an absolutely summable p× 1 filter. In this paper, we choose a(j) and b(j) so

that the mean square error of reconstruction between X̂(t) and X(t) is minimized, i.e.

E
{

(X(t)− X̂(t))∗(X(t)− X̂(t))
}

(4.3)

is minimized. Let Σ(h) be the auto–covariance of X(t), and S(ω) is the spectral density

matrix whose element Spp(ω) is the auto–spectrum of the p-th component of X(t) and Spq(ω)

is the cross-spectrum between the p-th and q-th components. Furthermore, let a(ω) be the

Fourier transform of a(j), such that

a(ω) =
∞∑

j=−∞

a(j) exp(−2πijω) (4.4)

According to [7] (Theorem 9.3.1), the solution is obtained in the spectral domain with a(ω)

to be the eigenvector e1(ω) associated with the largest eigenvalue values λ1(ω), and b(ω) to
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be a(ω). Thus, the filter values a(j) can be computed such as

a(j) =

∫ 1/2

−1/2

e1(ω) exp(2πijω)dω, (4.5)

and the first principal component U(t) can be formed by Equation 4.1.

4.1.3 Spectrum of the First Summary Time Series U(t)

The spectrum of an univariate time series U(t) (which is assumed to be stationary) can

give the amount of variance contributed by oscillatory components (from delta to beta band

activity). Let U(t), t = . . . ,−1, 0, 1, . . . be a zero-mean stationary time series with auto–

covariance function γ(τ) = E (U(t)U(t+ τ)) (τ = . . . − 1, 0, 1, . . .) that is assumed to be

absolutely summable, i.e.,
∑∞

τ=−∞ |γ(τ)| < ∞. The spectrum of U(t), denoted f(ω), is

defined to be

f(ω) =
∞∑

τ=−∞

γ(τ) e−i2πωτ , ω ∈
[
−1

2
,
1

2

]
. (4.6)

Moreover, the spectrum of U(t) is actually the largest eigenvalue of the spectral matrix

so that f(ω) = λ1(ω). To characterize the spectra of the EEG signals through the first

component U(t), which is the representative time series, we classify the oscillatory patterns

of spectrum into four primary frequency bands: delta (0-4 Hz), theta (4-8 Hz), alpha (8-16

Hz), beta (16-32 Hz) and gamma (32-50 Hz) as shown in Figure 2.2. The plots on the left are

the true spectra at each of the frequency band, and the plots on the right are corresponding

observed time series. The starting point for estimating f(ω) is the periodogram of the first

component time series U(t). Denote I(ωk) to be the periodogram computed from a finite

sample of the stationary process U(0), U(1), . . . , U(T − 1) at frequency ωk = k/T which is
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defined to be

I(ωk) =
1

T

∣∣∣∣∣
T−1∑
t=0

U(t) e−i2πωkt

∣∣∣∣∣
2

, k = −[[T/2]]− 1, . . . , [[T/2]], (4.7)

where [[T/2]] is the quotient of T/2. Note that

I(ωk) ∼


f(ωk)

2
X 2

2 k = 1, . . . , T/2− 1

f(ωk)X 2
1 k = 0, T/2

(4.8)

where X 2
ν is a chi–square random variable with ν degree of freedom. Since the distribution of

I(ωk) is a multiple of the spectral density, its variance (which depends on f(ωk)) also changes

across the frequencies ωk. To stabilize the variance across frequencies, we will use the log

transformed periodograms. It is convenient then, that the variance of the log periodograms

at each frequency is constant and takes the approximate value of π2

6
. Moreover, while the

periodogram is approximately unbiased for the spectrum, the log periodogram is no longer

(approximately) unbiased for the log spectrum due to Jensen’s inequality. This is easily

fixed by adding the Euler Mascheroni constant 0.57721 to log transformed periodograms to

obtain the log bias-corrected periodograms ([76]). Let g(ωk) be the true log spectrum, then

Y (r)(ωk), the bias corrected log periodogram at each trial r, is defined as

Y (r)(ωk) = g(ωk) + 0.57721, k = 0, 1, . . . , T/2. (4.9)

Since each frequency band is defined by a range, we define Q
(r)
` (Ω) to be the spectral power

of the Ω band in region ` at trial r to be

Q
(r)
` (Ω) =

∫
ω∈Ω

log f
(r)
` (ω)dω. (4.10)

where f
(r)
` is the spectrum of the representative signal of region ` at trial r. The data
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analogue for Q
(r)
` (Ω) is the band-averaged bias-corrected log periodograms defined as

P
(r)
` (Ω) = ave ωk∈Ω

{
Y

(r)
` (ωk)

}
. (4.11)

4.1.4 Time–Frequency Vector Auto–Regression (TF–VAR) Model

Follow the Equation 4.1, let U
(r)
1 (t) and U

(r)
2 (t) be the summary signals from two brain

regions with observed signals X1(t) and X2(t), respectively, recorded during trial r. Let

P
(r)
1 (Ω) and P

(r)
2 (Ω) be band-averaged bias-corrected log periodograms of U

(r)
1 (t) and U

(r)
2 (t)

at frequency band Ω respectively. In particular, P
(r)
1 (δ) is the band-averaged bias-corrected

log periodograms at the delta band of the first component U
(r)
1 (t) at trial r. To illustrate

our notation we consider the TF–VAR model for P
(r)
1 (δ) at delta band and single trial r to

be

P
(r)
1 (δ) = ξ0 + ξ11(δ, δ)P

(r−1)
1 (δ) + ξ11(δ, θ)P

(r−1)
1 (θ) + ξ11(δ, α)P

(r−1)
1 (α)

+ ξ11(δ, β)P
(r−1)
1 (β) + ξ11(δ, γ)P

(r−1)
1 (γ) + ξ12(δ, δ)P

(r−1)
2 (δ) + ξ12(δ, θ)P

(r−1)
2 (θ)

+ ξ12(δ, α)P
(r−1)
2 (α) + ξ12(δ, β)P

(r−1)
2 (β) + ξ12(δ, γ)P

(r−1)
2 (γ) + ε

(r)
1 (δ) (4.12)

where ξij(Ω,Ω
′) is coefficient of P

(r−1)
j (Ω′) at frequency Ω′, and we assume that ε

(r)
1 (δ) ∼

N (0, σ2). In the next step, we will consider the situation where the ε’s are correlated across

trials. Figure 4.2 illustrates our proposed model.

Remarks Here we give interpretations of some coefficients in the model. The coeffiient

ξij(Ω,Ω
′) measures the effect on the Ω activity in region i at the current trial r by the Ω′

activity in region j from the previous trial r − 1.

For multiple trials such as r = 1, . . . , R, the TF–VAR model in 4.12 can be generalized such
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Figure 4.2: TF-VAR model illustration to study the association between the delta spectral
power on region 1 during trial r with the spectral power at the different bands at the previous
trial r − 1

as

P1(δ) = Mξ + E (4.13)

where P1(δ) =
(
P

(1)
1 (δ), P

(2)
1 (δ), . . . , P

(R)
1 (δ)

)T
, M is a (R− 1)× 11 matrix defined as


1 P

(0)
1 (δ) P

(0)
1 (θ) . . . P

(0)
1 (γ) P

(0)
2 (δ) P

(0)
2 (θ) . . . P

(0)
2 (γ)

1 P
(2)
1 (δ) P

(2)
1 (θ) . . . P

(2)
1 (γ) P

(2)
2 (δ) P

(1)
2 (θ) . . . P

(1)
2 (γ)

...
...

...
...

...
...

...
...

...

1 P
(R−1)
1 (δ) P

(R−1)
1 (θ) . . . P

(R−1)
1 (γ) P

(R−1)
2 (δ) P

(R−1)
2 (θ) . . . P

(R−1)
2 (γ)


and the coefficient 11×1 vector ξ = (ξ0, ξ11(δ, δ), ξ11(δ, θ), . . . , ξ12(δ, β), ξ11(δ, γ))T . More-

over, we assume that E =
(
ε

(2)
1 , . . . , ε

(R)
1

)T
, where ε

(j)
1 ∼ N (0, σ2

j ) for j = 2, . . . , R. We denote

Φ̂ as the least square estimation of Φ, and Φ̂ =
(
MTM

)−1
MTP1(δ).

83



4.1.5 Preliminary Analysis

In this section, we analyze EEG data from one participant in the first testing-state (Test

1) EEG study approved by the Institutional Review Board of the University of California,

Irvine. The over-arching aim of this study was to identify a pattern of EEG-derived coherence

acquired during rest-state that could predict subsequent response to training on a novel motor

skill. During EEG acquisition, subjects sat quietly with both feet flat on the floor, and were

instructed to fixate their gaze to the center of a fixation cross (Figure 4.3B). Each recording

was 3 minutes in duration. While the original EEG recording included 256 channels, only

194 were used in subsequent analyses, as extra-brain artifacts, including cheek and neck

muscle artifacts and heart rhythms, are more likely to contaminate EEG signals recorded

from electrodes overlying cheek and neck regions. Following data acquisition, pre-processing

steps included: 100 Hz low pass filter; EEG segmentation into 1-second consecutive, non-

overlapping trials; mean detrend; and EEG signal re-reference to mean signal across all

194 channels. In addition, a combination of visual inspection and Infomax Independent

Component Analysis decomposition were used to remove extra-brain artifacts, including

eye blinks, eye movements, muscle artifact, and heart rhythm artifacts. The final dataset

consisted of 160 trials (resting state) and 73 trials (motor-learning state), with each trial

lasting 1 second, and T = 1000 time points for each trial.

The goals of the present analysis are as follows: First, we closely examine the dependence

of delta oscillations in supplementary motor area (SMA) for single trial r, denoted P
(r)
1 (δ),

with other frequency bands oscillations in the same region (P
(r−1)
1 (δ), . . . , P

(r−1)
1 (γ)) and

pre–frontal region (P
(r−1)
2 (δ), . . . , P

(r−1)
2 (γ)) at previous trial r − 1. Second, we extend the

analysis for multiple trials, and we report the results of other frequency bands.

Here, we investigate the dependence of brain oscillations in SMA and left pre–frontal re-

gions. The location of two brain regions are shown in Figure 4.4. We illustrate the workflow
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Figure 4.3: Motor learning experiment. Source: [79]

to obtain the bias-corrected log periodogram of the first component U(t) across trials in

Figure 4.5 From Equation 4.13, we define P1(δ) as a band-averaged bias-corrected log pe-

LEFT
RIGHT

Pre-frontal

Supplementary motor area

Figure 4.4: Location of SMA and left pre–frontal regions on the skull

riodogram the first component U1(t) of SMA region at delta band. In the matrix M, each

element P
(r−1)
i (Ω), for r = 1, . . . , R, is a band-averaged bias-corrected log periodogram of

the first component Ui(t) of i region at Ω band from the previous trial r − 1, where i = 1, 2

represents for SMA and left pre-frontal regions respectively.

The estimates of coefficient matrix ξ are summarized in Table 4.1. We found that the beta

oscillations of the first component signal of left pre–frontal region at the previous trial are
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Figure 4.5: Illustration of workflow to obtain the first bias-corrected log periodogram of the
first component across trials.

Coefficients Estimate Std t statistics p–values
ξ0 -3.18 1.72 -1.84 0.07

ξ11(δ, δ) 0.09 0.138 0.67 0.51
ξ11(δ, θ) 0.31 0.21 1.49 0.14
ξ11(δ, α) 50.20 0.28 0.72 0.47
ξ11(δ, β) -0.52 0.35 -1.49 0.14
ξ11(δ, γ) 0.12 0.32 0.39 0.69
ξ12(δ, δ) 0.009 0.13 0.07 0.94
ξ12(δ, θ) -0.2 0.22 -0.91 0.37
ξ12(δ, α) -0.12 0.34 -0.35 0.73
ξ12(δ, β) 0.69 0.31 2.25 0.03
ξ12(δ, γ) -0.41 0.25 -1.63 0.11

Table 4.1: Estimates of coefficient matrix Φ

significantly (p–value= 0.03) related to delta oscillations of the first component signal of

a SMA at the current trial. The interpretation of ξ12(δ, β) is when the power spectrum of
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Figure 4.6: (A) The residual plot across trials, (B) A histogram plot of residuals (C) The
residual ACF plot.

beta band in left pre–frontal region increase 1 unit at previous trial, on average, the power

spectrum of delta band in SMA will increase 0.69 unit at current trial where other power

spectra are fixed. The residual and ACF plots are shown in Figure 4.6. The residual plot

shows that linear regression is an appropriate approach for this data, and from the ACF

plot, the εli(δ) and εki (δ) are uncorrelated for l, k = 1, . . . , R− 1.
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Next, we investigate the dependence of SMA and left pre–frontal regions at different fre-

quency bands. The analysis is summarized in Figure 4.7. It is interesting that the cross–

dependence between the delta activity in SMA at current trial and the beta activity in

pre–frontal region at a pass trial. Similarly, there is cross–dependence between the beta

activity in SMA at current trial and the gamma activity in pre–frontal region at a pass trial.
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Figure 4.7: The p–values of coefficients. Each cell represents the p-value of coefficient
ξij(Ω.Ω
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variable P
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j (Ω′)
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4.1.6 Future Work

We proposed a TF–VAR to examine the dependence between two brain regions at different

frequency bands during the testing state of experiment. Our future works are

• Apply the proposed model to specific brain regions of interest and compare the analysis

results of different experiment conditions.

• Find ways to simplify the analysis (reduce the number of parameters and increase

power) by combining frequency bands. For example, instead of using five different

bands, we combine δ and θ bands to form (δθ) band and similar to (αβγ) band.

• Incorporate subject-specific random effects to model variation across subjects.

• Investigate using procedures for correcting for multiple testing (e.g., Bonferroni, False

Discovery Rate).

4.2 Modeling Stochastic Spiking Neural Networks

In brain–inspired (neuromorphic) computing, one of the challenges is to develop models that

are compliant with the spatial and temporal constraints of the brain and whose parameters

are easily interpretable. In an ongoing project led by Neuromorphic Machine Intelligence Lab

led by Professor Emre Neftci (Department of Cognitive Sciences, University of California,

Irvine), we focus on modeling the stochastic spiking which is produced by an insulator–

metal–transition (IMT) device based on electrically induced phase–transition in series with

a tunable resistance. The stochastic spiking in an IMT neuron are explained by threshold

fluctuations and thermal noise. The neuron’s membrane potential below firing threshold can

be described by an Ornstein–Uhlenbeck process ([53]), where spikes can occur at anytime

with a probability density which depends on the momentary distance between the membrane
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potential and the threshold. When this probability density is assumed to be the exponential,

the spikes can be formulated from a smooth underlying time-dependent function, i.e. firing

rate. Point processes has been often used to describe and analyze spike trains ([31]). A

common limitation of point process is that a spike train commonly assumed following a

Poisson process, which is the simplest form of point process. Some alternative methods are

to use inhomogeneous Poisson process or Bayesian nonparametric methods.

Another approach is using Gaussian process method for neural decoding, proposed by [65].It

is often discretized the time to obtain at most one spike with each time interval. If a

spike is active, a response will be recorded as 1; otherwise, it will be 0. Since the response

variables are only 0 or 1, the marginal probability of firing within an interval can be modeled

by the logistic function. For the firing rate, [65] used a continuous latent variable with

Gaussian process prior. The advantages of Gaussian processes (GPs) are that GPs are

powerful nonparametric distributions over continuous functions, and the covariance function

can be modified to model the time-varying and history-dependent for each neuron’s firing

rate. However, a drawback of GPs is its expensively computation for large datasets due

to an inversion of an N × N covariance matrix, where N is the number of data points.

Another limitation of GPs is that the covariance function is assumed to be stationary over

the experiment. In our case, the waveform of an IMT spiking neuron is not stationary for

various input of the threshold fluctuations and thermal noise as show in Figure 4.8, where

a high voltage produced more spikes than lower one. Hence, GPs can limit the modeling

flexibility.

To overcome GPs’ limitations, an alternative approach is to use infinite mixtures of GP

experts proposed by [61], where the number of components of GP experts is automatically

determined from dataset by using a Dirichlet process prior on the mixture component. As

showed in [61], the mixture of GPs resolved the first limitation of a single GPs by inversing

multiple smaller matrices instead of a large covariance matrix. In addition, mixture of GPs
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Figure 4.8: Experimental waveforms (red line) of an IMT spiking neuron for different input
threshold fluctuations (blue line) at (A) 2.06V and (B) 1.9V.

composes multiple GPs which can overcome the second limitation of a single GPs. However,

a drawback of this method is that it employs Monte Carlo Markov Chain (MCMC) sampling

methods, which can be slow to converge. In addition, it is also difficult to diagnose the

convergence of MCMC. Another approach is deep GPs (DGPs) proposed by [16] which is

multi–layer neural networks, where each layer is modelled as a GP. As demonstrated in [16],

DGPs is able to handle data with multi–modality (e.g., non-stationarity). Thus, my future

work is to explore DGPs method on IMT spiking neurons and compare DGPs with other

methods such as infinite mixtures of GP experts and neural networks.
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Appendix A

Appendix Title

A.1 The matrix logarithm log(Γ)

For a P–dimensional SPD matrix Γ, let Λ = diag (λ1, . . . , λP ) be a P×P diagonal matrix with

λj’s as the eigenvalues of Γ, and U = (~u1, . . . , ~uP ) where ~uj’s is corresponding orthonormal

eigenvector for λj. A matrix logarithm log(Γ) can be calculated in three steps. First, we

obtain the spectral decomposition of Γ, i.e. Γ = UTΛU . Second, we take natural logarithm

for each element of Λ to get Λ̃ = diag (log(λ1), . . . , log(λP )). Finally, the matrix logarithm

log(Γ) can be computed as log(Γ) = UT Λ̃U . Note that the matrix exponential of Γ can be

obtain by using the scalar exponential each eigenvector λj’s; therefore, this is an one–to–one

transformation for a SPD matrix.
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A.2 Proof of Theorem 3.1

We want to show that ExpΓ1

(
LogΓ1

(Γ2)
)

= Γ2. By using the Log and Exp definitions in

Theorem 3.1, we have

ExpΓ1

(
LogΓ1

(Γ2)
)

= ExpΓ1
(log(Γ2)− log(Γ1))

= exp(log(Γ1) + log(Γ2)− log(Γ1))

= Γ2.

A.3 Proof of Lemma 3.4.1

Under the null Ho : P(1)(P ) = P(2)(P ), we have

diff(Γ
(1)
j ,Γ

(2)
j ) = Tr

[
log

{(
Γ

(1)
j

)−1

Γ
(2)
j

}]
d
= Tr

[
log

{(
Γ

(2)
j

)−1

Γ
(1)
j

}]
(Under H0)

d
= Tr

[
log(Γ

(1)
j )− log(Γ

(2)
j )
]

(1)

d
= −Tr

[
log

{(
Γ

(1)
j

)−1

Γ
(2)
j

}]
(2),

where (1) and (2) hold because the identities Tr(log(AB)) = Tr(log(A)) + Tr(log(B)) and

Tr(log(At)) = tTr(log(A)) for anyA,B ∈ P(P ) and t ∈ R. It implies that E
(

diff(Γ
(1)
j ,Γ

(2)
j )
)

=

0 under the null hypothesis.
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A.4 Proof of Lemma 3.4.2

For any a ∈ GL(P ), we have

Tr

[
log

{(
aΓ

(1)
j a∗

)−1 (
aΓ

(2)
j a∗

)}]
= Tr

[
log
(
aΓ

(2)
j a∗

)]
− Tr

[
log
(
aΓ

(1)
j a∗

)]
(3)

= Tr
[
log
(

Γ
(2)
j

)]
− Tr

[
log
(

Γ
(1)
j

)]
+ Tr [log (a∗a)]− Tr [log (a∗a)] (4)

= Tr

[
log

{(
Γ

(1)
j

)−1

Γ
(2)
j

}]
(5)
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