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ABSTRACT
In this paper we present an algorithm that automatically cre-

ates the linkage loop equations for planar 1-DoF linkages of any
topology with rotating joints, demonstrated up to 8-bars. The
algorithm derives the linkage loop equations from the linkage
graph by establishing a cycle basis through a single common
edge. Divergent and convergent loops are identified and used to
establish the fixed angles of the ternary and higher links.

Results demonstrate the automated generation of the linkage
loop equations for the five distinct 6-bar mechanisms, Watt I-II
and Stephenson I-III, as well as the seventy one distinct 8-bar
mechanisms.

The resulting loop equations enable the automatic deriva-
tion of the Dixon determinant for linkage kinematic analysis of
the position of every possible assembly configuration. The loop
equations also enable the automatic derivation of the Jacobian
for singularity evaluation and tracking of a particular assembly
configuration over the desired range of input angles.

The methodology provides the foundation for the automated
configuration analysis of every topology and every assembly con-
figuration of 1-DoF linkages with rotating joints up to 8-bar. The
methodology also provides a foundation for automated configu-
ration analysis of 10-bar and higher linkages.

∗Address all correspondence to this author.

INTRODUCTION
Dimensional synthesis solves for the geometric features of a

linkage so that it is capable of moving the end-effector to each
of a given set of positional requirements. One type of synthe-
sis, task generation, solves the geometry to meet a set of task
positions that are specified by their global positions and angles,
Fig. 1. Synthesis, however, does not guarantee that the linkage
will move smoothly, continuously with an increasing input angle,
through all angles between the task positions.

A kinematic chain is an assembly of rigid bodies, links, con-
nected by joints. The topology of a kinematic chain is the spe-
cific interconnection of the links and can be represented by ei-
ther an adjacency matrix or an adjacency graph. A mechanism,
sometimes called an inversion, is a kinematic chain of a specific
topology where a link has been selected as ground. A linkage
is a mechanism with a particular link selected as the input link,
therefore, a linkage is a specific topology of a kinematic chain
where one link is selected as ground and another link is selected
as the input. The scope of this paper is limited to input links that
are adjacent to, connected to, ground.

The motivation for this paper is to automate the complete
configuration analysis of a synthesized linkage to ensure contin-
uous smooth movement through all input angles within the range
of interest. In this paper we present the first key step, an algo-
rithm that automatically constructs the linkage loop equations for
any topology of planar 1-DoF linkage with rotating joints up to
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FIGURE 1: EXAMPLE WATT I LINKAGE REACHING A
TASK POSITION.

8-bars.
To complete the automation of the configuration analysis the

Dixon determinant can be derived from the loop equations and
used to solve for all possible assembly configurations. Continu-
ous smooth movement can be determined from the linkage loop
equations by deriving and solving the Jacobian to identify singu-
larities for the configuration of interest within the range of de-
sired input angles. The form of the automatically constructed
linkage loop equations is sufficient for automated derivation of
both the Dixon determinant and the Jacobian but the details of
that automation are beyond the scope of this paper.

This algorithm has been verified on all 4, 6 and 8-bar topolo-
gies for all unique combinations of the ground link and the
ground-connected input link. The approach is general therefore
it also forms a basis for automating the analysis of 1-DoF kine-
matic chains of higher link counts.

LITERATURE REVIEW
The specific connectivity of a kinematic chain can be repre-

sented as an adjacency graph where the vertices represent links
and the edges represent joints between the links. Tsai [1] pub-
lished an atlas of the sixteen 1-DoF 8-bar, 10-joint kinematic
chains and represented them in a set of linkage adjacency graphs
and linkage sketches. A non-planar adjacency graph and a sketch
of the Double-Butterfly eight-bar linkage are shown in Fig. 2.

Much of the work today is enumerating the unique kinematic
chains with high link counts. A key component of the enumera-
tion process is the detection and elimination of isomorphic kine-
matic chains. Isomorphic kinematic chains are not unique be-
cause they have topologies that can be transformed into a topol-
ogy that has already been enumerated by simply renumbering

FIGURE 2: DOUBLE BUTTERFLY 8-BAR ADJACENCY
MATRIX, GRAPH AND LINKAGE SKETCH

the vertices. Sunkari and Schmidt [2] apply a McKay-type algo-
rithm [3] to show that there are approximately 20 million non-
isomorphic topologies for the 16 bar, 22 joint, kinematic chain.
Ding and Huang [4] established a canonical representation of the
linkage graphs and published a method for isomorphism detec-
tion based on the largest perimeter loop and the degrees of the
vertices. Ding et al. [5] published the enumeration of graphs of
kinematic chains up to 14-bars and recently published work ex-
tending the development of linkage graphs to linkages that con-
tain multiple joints, joints on a common axis [6].

Tuttle [7] determined the number of distinct inversions,
mechanisms, of the 1, 2 and 3-DoF kinematic chains. The re-
sults show that for 1-DoF linkages there are five distinct 6-bar
mechanisms and 71 distinct 8-bar mechanisms.

Using Baranov trusses Manolescu [8] identifies the three
distinct Stephenson 6-bar mechanisms and the two distinct Watt
6-bar mechanisms, total of five, as well as 19 unique linkages.
Of those 19 unique linkages nine have a ground-connected in-
put. Verho [9] allows actuation through link pairs that are not
grounded and identifies 25 unique six-bar linkages using As-
sur groups and visual inspection. Of those 25 linkages nine
have a ground-connected input and match the nine identified by
Manolescu.

Linkage synthesis solves for the specific dimensions of the
links using one of the enumerated topologies. Soh and Mc-
Carthy [10] published a methodology specific to the 8-bar family
for synthesizing linkages that can be constructed from a pair of
constrained 3-R chains. Linkage synthesis approaches are pub-
lished for a variety of linkage topologies [11–13] but since all
possible topologies of 1-DoF linkages with rotating joints are
known for the 8-bar family, every synthesized linkage must be in
one of these topologies.

Linkage configuration analysis solves for the angles of all
of the output links. Approaches are typically shown for spe-
cific topologies. For example, the graph shown in Fig. 2 rep-
resents a Double Butterfly 8-bar linkage. Wampler [14] refer-
encing Dixon [15] analyzed a Double Butterfly linkage using the
Dixon determinant in a complex plane formulation. The same
linkage was also evaluated in rational formulation by Nielsen and
Roth [16]. Various other methods for solving the configuration
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of a linkage have been published such as the Gröbner-Sylvester
method by Dhingra et al. [17] and the linear relaxation method
by Porta et al. [18].

To determine if a particular assembly configuration is usable
the singular configurations must be avoided. Linkages that en-
counter a singularity within the range of motion of interest have
a branching defect. Several authors address the singularities of
linkages. Chase and Mirth [19] use the sign of the determinant of
the Jacobian to identify the branches of six-bar linkages. Myszka
et al. [20] identifies the singularities and plots the singular con-
figurations as curves that are a function of the length of one of
the links.

Kecskeméthy et al. [21] published work automating the gen-
eration of the equations of motion of multibody systems. The
method establishes a minimal cycle basis for the mechanism
graph, generates local dynamics solutions for each mechanism
loop, and then combines the local dynamics solutions into a
global solution.

A general method for automating configuration analysis for
all topologies of planar 1 DoF linkages has not been published.

Demonstrated up to the 8-bar family our contribution shows
a method to automatically produce the linkage loop equations for
any 1-DoF linkage with rotary joints. The loop equations are in
a form sufficient to complete the automation of the configuration
analysis by enabling automated derivation of the Dixon determi-
nant and the Jacobian.

LINKAGE GRAPH AND ADJACENCY MATRIX
The number of joints in a planar 1-DoF linkage is given as a

function of the number of links by the equation

j = 3n/2−2 (1)

The number of linkage loops is given by

L = j−n+1 (2)

Beginning with the 4-bar kinematic chain, the planar 1-DoF
kinematic chains are comprised of loops of links. The 8-bar 1-
DoF kinematic chains exist in three link assortment families. The
link assortment is the quantity of links in the kinematic chain that
connect to 2, 3, 4, 5, etc. adjacent links. The links are called
binary, ternary, quaternary, quintenary, etc. The planar one-DoF
link assortments and the quantity of topologies for each are listed
in Table 1 up to 8-bars, Tsai [1].

Each topology can be represented in the form of an adja-
cency matrix where a “1” indicates a connection between ver-
tices and a “0” indicates no connection between the two vertices.
For planar 1-DoF linkages, the number of connections between

TABLE 1: PLANAR 1-DOF KINEMATIC CHAIN
TOPOLOGIES

Class Link Assortment Topology

Loops n j n2 n3 n4 n5 Quantity Total

1 4 4 4 0 0 0 1 1

2 6 7 4 2 0 0 2 2

3 8 10 4 4 0 0 9 16

5 2 1 0 5

6 0 2 0 2

two links is limited to one since a revolute joint only allows 1-
DoF. Having two joints between links forms a rigid structure. For
the Double Butterfly linkage the adjacency matrix and adjacency
graph are shown in Fig. 2.

DERIVING THE LINKAGE LOOPS
The process to automatically construct the linkage loops for

a particular linkage begins with the adjacency graph and the user
defined selection for the ground link and ground-connected input
link. The first step is to establish the smallest cycle basis for the
linkage through a common edge, the edge connecting the ground
vertex to the input vertex.

The planar 1-DoF linkages are in the family of graphs called
2-vertex connected. To divide the graph into two separate graphs
two vertices must be removed. Removing one vertex leaves a
connected graph. This graph property enables the automation of
the linkage loop equations.

2-vertex connected graphs have the property that the graph
can be decomposed into a set of ears, an ear decomposition. Per
Whitney [22] any non-separable graph based on a loop, or cir-
cuit, remains a non-separable graph with the addition of ears,
also called “suspended chains”. For an ear decomposition ap-
plied to linkage graphs the first ear is a loop, or cycle. The second
ear, and higher, are simple paths that have only the end joints in
common with a previous loop or loops. An independent loop can
be obtained by following the ear and the previous loop or loops
to a common vertex.

A set of independent loops for a graph is called a cycle basis.
Our system needs every loop of the basis to pass through the edge
connecting the grounded vertex to the input vertex. By using
ear decompositions we can show that a basis with this property
always exists.

To find this basis we do not find the ears directly, rather we
find the loops directly. The list of links along a loop from the
input vertex to the ground vertex is called a path and the length of
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the path is its number of links. We use a shortest path algorithm
to find loops that are of minimal length.

There are several means of identifying the shortest path be-
tween two vertices. Because all of the edges in these graphs rep-
resent joints they all have a positive distance therefore Dijkstra’s
shortest path algorithm [23] is sufficient for finding the short-
est distance between two vertices. Mathematica has a built-in
shortest path function that can be constrained to use the Dijkstra
algorithm but the default settings are also suitable.

The shortest paths can be visualized in levels. To generate
the loops the list of edges are produced for the entire graph and
the edge directly connecting the ground vertex to the input vertex
is eliminated. Through the remaining portion of the linkage the
shortest path back to ground is identified. This path is the first
level. To find the next level of paths an edge in the first level path
is eliminated along with the one edge elimination that created
that first path, the edge connecting ground and input. All edges
in the first level path are eliminated one at a time to produce the
second level of paths. To find the third level of paths an edge in
a second level path is eliminated along with all the edge elimina-
tions that created that second level path. This process continues
until no new paths are found and every edge elimination has been
attempted.

At any of these levels, if there are multiple paths of equal
length one of them may be selected arbitrarily. At the next level
the path not selected will still be the shortest path, therefore it
will not be overlooked.

Because these are 2-vertex connected graphs, elimination of
two edges can separate the graph into two components such that
there are no paths from the input vertex back to ground. When
this occurs the elimination is not valid and the algorithm tests the
elimination of the next candidate set of edges.

From all of the paths identified, all of the unique paths are
collected and formed into cycles by appending the edge between
ground and input. The direction along each cycle is consistently
defined such that the first vertex in each cycle is ground, the sec-
ond vertex is input, and the last vertex is ground.

Some of the cycles may not be independent. An independent
cycle will contain an edge that is not in any of the previous cy-
cles. The cycles are ordered by length and then by vertex degree
along the cycles. The smallest independent cycle set that con-
tains every edge of the graph is chosen as the cycle basis through
a common edge, the edge connecting ground to input.

EXAMPLE AUTOMATED LOOP DERIVATION
We apply the automation to an example 8-bar linkage from

one the nine topologies in the 4400 link assortment group. The
adjacency graph and adjacency matrix for is shown in Fig. 3.
Vertex five is the selected ground link and vertex 2 is the selected
input link.

FIGURE 3: EXAMPLE EIGHT BAR ADJACENCY MATRIX
AND ADJACENCY GRAPH

FIGURE 4: IDENTIFYING THE FIRST SHORTEST PATH

FIGURE 5: IDENTIFYING THE SECOND SHORTEST PATH

The first elimination is the edge connecting ground to input,
(5–2), and the first level shortest path for the example 8-bar is
shown in Fig. 4

To find the shortest paths at the second level each of the
edges along the first shortest path is eliminated one at a time
along with the edge connecting ground to input. The next short-
est path back to ground is found through the rest of the link-
age. Elimination of the edge set (5–2) and (2–6) will eliminate
all connections to the input vertex, therefore the first valid edge
elimination set is (5–2) and (6–7), Fig. 5.

To find the third level paths, an edge in each of the second
level paths is eliminated along with the edge eliminations that
formed the second level path. The first valid elimination set is
the edges (5–2), (6–7), and (8–5). This elimination produces the
shortest path shown in Fig. 6.

The last unique third level path is found by eliminating the
edge set (5–2), (7–5), and (6–4). This elimination produces the
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FIGURE 6: IDENTIFYING THE THIRD SHORTEST PATH

FIGURE 7: IDENTIFYING THE FOURTH SHORTEST PATH

FIGURE 8: THE FOUR UNIQUE CYCLES

shortest path shown in Fig. 7.
The unique shortest paths are formed into cycles by adding

the edge connecting ground and input. The four unique cycles
are sorted by length and loop vertex degree and shown in Fig. 8.

The cycle basis is the first three cycles. The loops and the
vertex degrees are shown in Table. 2.

UNIQUE MECHANISMS AND UNIQUE LINKAGES
The automation must be able to analyze the configuration

of all unique linkages, specifically, all unique combinations of
topology, ground link and ground-connected input link. To

TABLE 2: EXAMPLE LINKAGE CYCLE BASIS AND
VERTEX DEGREE LIST

Loop Cycle Basis Vertex Degree List

1 {5,2,6,7,5} {3,2,3,3,3}

2 {5,2,6,4,3,8,5} {3,2,3,2,2,3,3}

3 {5,2,6,7,1,8,5} {3,2,3,3,2,3,3}

FIGURE 9: DOUBLE BUTTERFLY UNIQUE MECHANISMS

test the analysis routine we enumerated and analyzed all of the
unique linkages.

For each linkage there may be several choices for the ground
link that produce the same mechanism. Similar to the definition
of a graph isomorphism the same mechanism will have a graph
with a one-to-one correspondence of vertices that preserve the
incidence as well as the correspondence of the selected ground
link. For example, the Double Butterfly 8-bar mechanism has
only two choices for the ground vertex that are unique, Fig. 9.
Every other selection for the ground vertex can be made into one
of these two forms by renumbering the vertices.

Several selections of ground and ground-connected input
link may produce the same linkage. Similar to a graph isomor-
phism and a non-unique mechanism, the graph of a non-unique
linkage will have a one-to-one correspondence of vertices that
preserve the incidence as well as the correspondence of the se-
lected ground link and input link. For the Double Butterfly 8-bar
linkage there are only three choices for the ground and ground-
connected input vertex that are unique, Fig. 10. Every other
selection for the ground and ground-connected input vertices can
be made into one of these three forms by renumbering the ver-
tices.

To identify a non-unique linkage the algorithm compares the
incidence of the vertices along the cycles of the smallest cycle
basis through the common edge connecting ground and input.
The two cycle bases being compared have both been consistently
sorted by cycle length and consistently ordered within each cy-
cle such that the first vertex is ground, the second vertex is the
ground-connected input, and the last vertex is ground. The inci-
dence of each cycle is represented by the vertex degrees taken in
order along the loop. Eight-bar linkages that are not unique pre-
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FIGURE 10: DOUBLE BUTTERFLY UNIQUE LINKAGES

serve the incidence along the loops of the cycle basis, meaning,
they have the same set of three vertex degree lists in the same or-
der. Defined by the ground-input common edge cycle basis every
8-bar has a unique set of three vertex degree lists.

DEFINING THE LINKAGE DIMENSIONAL FEATURES
To automatically establish the linkage loop equations we ap-

ply a naming convention to the linkage loops to construct unique
names for the links, the joints, and the lines between joints along
a loop. We also define the name and location of the link angles
and the fixed angles representing divergence and convergence of
loops on ternary and higher links. When two loops diverge or
converge we only name the lines along the two loops and the an-
gle between them. This provides a complete geometric descrip-
tion of the triangle formed by the three joints. The only input
needed to construct the loop equations is the cycle basis.

The cycle basis provides an ordered list of vertices for each
loop. These vertices are also the names of the linkage links which
are joined in order along each loop. Following the cycle basis
along each loop we assign a unique name for the joints based
on the links being joined. Because there is only one joint be-
tween any two links these joint names are always unique. The
first character of the joint name is “ j”, followed by the number
of the first link being joined, followed by “t”, and finished with
the number of the second link being joined. For example, a joint
between link 1 and link 5 is called j1t5. The “t” enables unam-
biguous distinction between links even when the link number is
more than one digit.

Also following the order of the links as shown for each link-
age loop, the distance between two joints on the same link is
given a unique name based on the two end joints. The first char-
acter is “L”, followed by the name of the first joint (with the
“ j” omitted), followed by “t”, followed by the last digits of the
ending joint. For example, the dimension of the line on link 5 be-
tween the joints j1t5 and j5t2 is called L1t5t2. In a binary link
this dimension is intuitive, the distance between the two joints.
In a ternary link, this is the distance between two of the three
joints.

For evaluating angles we use the convention that all angles
are positive counter clockwise. The global angle of a link is de-

fined from a global reference to a feature on the link. The se-
lected global reference is the x axis. The selected feature on a bi-
nary link is intuitive, the line between the two joints. For ternary
and higher links there will be two or more features that could be
selected. We define the global angle of the link as the angle from
the global x axis to the line between the joints along the first loop
that contains the link. The origin of that angle is the first joint
of the link encountered along the loop. The name assigned to
this angle is “th” followed by the link number. For example if
dimension L1t5t2 is part of the first loop then the angle relative
to the global frame for L1t5t2 is called th5 and the origin of that
angle is at the joint j1t5.

The vertices where the loops diverge (or converge) represent
ternary or higher links. We need to define the angle for the line
along the divergent or convergent loop. We do this by defining a
fixed angle to describe the angle of the divergent (or convergent)
loop relative to the reference loop from which loop diverges (or
converges). This fixed angle is added to the angle defining the
line along the reference loop. The fixed angle is located at the
common joint and begins from the line along the reference loop
and ends at the line along the divergent (or convergent) loop.
The name of the fixed angle is based on the two lines. The name
is “ f ix” followed by the name of the line in the reference loop
(with the “L” omitted), followed by “tt”, followed by the name
of the line along the divergent (or convergent) loop (with the “L”
omitted). In quaternary links there will be three loops that pass
through the link. The third loop may diverge or converge relative
to a line that diverges or converges from the link angle. The same
naming convention applies in this case so the final angle of the
third loop will be a summation of the link angle and two fixed
angles.

We apply the naming convention to an example Stephenson
6-bar linkage in Fig. 11.

CONVERTING CYCLES TO LOOP EQUATIONS
To automate the process of developing the loop equations we

apply the naming convention by automating the construction of a
convention called FTLA. FTLA describes the line on each link,
e.g. L1t5t2, that is connected to the next link along each loop
with four terms {From Joint, To Joint, Link Dimension, Angle}.
Each loop is represented by a series of these four-term sets and
the first of the four term sets for each loop represents the line
between two joints on the ground link. To sufficiently define a
line between two joints only three of these four terms are needed
and the fourth can be derived, however, we choose to retain all
four terms for convenience. The only input needed to develop
the FTLA is the cycle basis.

To create the FTLA for a linkage, first the cycle basis is con-
verted to the series of joints it represents. The joints are then
paired to represent the end points of the lines on the links along
the linkage loops. The lines between the joints are named based
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FIGURE 11: NAMING CONVENTION, STEPHENSON
6-BAR

on the joints and ordered such that the first line in each FTLA
represents a line on the ground link.

The angle for a given line is defined in two steps. First we
establish the global angle from the x axis to the link, specifically
to the line between the joints along the first loop that contains the
link. Second we establish the fixed angle that must be added to
the reference line to properly define the divergent or convergent
line. When two loops converge the “To Joint” will match, when
two loops diverge the “From Joint” will match. Subtracting the
“From Joint” and “To Joint” terms of each previous loop from
the same terms in the current loop reveals the locations where the
current loop converges or diverges from a previous loop. These
fit the form of Eqn. 3.

Convergent Loop Form : {Joint2− Joint1,0},
Divergent Loop Form : {0,Joint2− Joint1}. (3)

Because we know which entries in the FTLA lists are sub-
tracted, we know the locations of the loop divergences and con-
vergences so we map the fixed angles to the appropriate loca-
tion in the FTLA and the appropriate name for the fixed angle is
added to the angle defining the reference line.

We convert from the FTLA form to the final loop equations

by taking the sum along each loop of the product

X : (Link Dimension)∗Cos(Angle)

Y : (Link Dimension)∗Sin(Angle) (4)

EXAMPLE, CREATING THE LOOP EQUATIONS

Using the 8-bar shown in Fig. 3 as our example, the first
step uses text manipulation of the cycle basis to define the terms
{From Joint, To Joint, Link Dimension, Link Angle}. At this first
step the link angle does not account for the fixed angles between
divergent or convergent loops. The pairs of joints along the loops
are shown in Eqn. 5.

Loop 1 : { j7t5, j5t2},{ j5t2, j2t6},{ j2t6, j6t7},{ j6t7, j7t5}
Loop 2 : { j8t5, j5t2},{ j5t2, j2t6},{ j2t6, j6t4},{ j6t4, j4t3},

{ j4t3, j3t8},{ j3t8, j8t5}
Loop 3 : { j8t5, j5t2},{ j5t2, j2t6},{ j2t6, j6t7},{ j6t7, j7t1},

{ j7t1, j1t8},{ j1t8, j8t5}
(5)

Using Eqn. 5 we subtract each term in Loop 1 from each
term in Loop 2 to reveal where the loops diverge and converge.
Loop 2 and Loop 1 converge at j5t2 and diverge at j2t6. The
difference between the two loops fit the desired pattern at these
joints, Eqn. 6.

{ j8t5, j5t2}−{ j7t5, j5t2} = { j8t5− j7t5,0}
{ j2t6, j6t4}−{ j2t6, j6t7} = {0, j6t4− j6t7}. (6)

The same process is applied to Loop 3 relative to Loop 1 and
Loop 2. Loop 3 converges to Loop 1 at j5t2 following the same
path along L8t5t2 as Loop 2 therefore the fixed angle about j5t2
is the same for both Loop 2 and Loop 3. Loop 3 also converges
to Loop 2 at j8t5 and diverges from Loop 1 at j6t7.

The locations of the loop divergences and convergences are
mapped to the appropriate location in the loops and the appropri-
ate name for the fixed angle is assigned. The final angle of the
linkage feature is the sum of the fixed angle and the link angle.
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The final FTLA convention is shown in Eqn. 7.

Loop 1{ j7t5, j5t2,L7t5t2, th5},{ j5t2, j2t6,L5t2t6, th2},
{ j2t6, j6t7,L2t6t7, th6},{ j6t7, j7t5,L6t7t5, th7}

Loop 2{ j8t5, j5t2,L8t5t2, f ix7t5t2tt8t5t2+ th5},
{ j5t2, j2t6,L5t2t6, th2},
{ j2t6, j6t4,L2t6t4, f ix2t6t7tt2t6t4+ th6},
{ j6t4, j4t3,L6t4t3, th4},{ j4t3, j3t8,L4t3t8, th3},
{ j3t8, j8t5,L3t8t5, th8}

Loop 3{ j8t5, j5t2,L8t5t2, f ix7t5t2tt8t5t2+ th5},
{ j5t2, j2t6,L5t2t6, th2},{ j2t6, j6t7,L2t6t7, th6},
{ j6t7, j7t1,L6t7t1, f ix6t7t5tt6t7t1+ th7},
{ j7t1, j1t8,L7t1t8, th1},
{ j1t8, j8t5,L1t8t5, f ix3t8t5tt1t8t5+ th8} (7)

The final loop equations are shown in Eqn. 8.

Loop 1
X : L5t2t6cos(th2)+L7t5t2cos(th5)
+L2t6t7cos(th6)+L6t7t5cos(th7) = 0

Y : L5t2t6sin(th2)+L7t5t2sin(th5)
+L2t6t7sin(th6)+L6t7t5sin(th7) = 0

Loop 2
X : L5t2t6cos(th2)+L4t3t8cos(th3)
+L6t4t3cos(th4)+L8t5t2cos( f ix7t5t2tt8t5t2+ th5)
+L2t6t4cos( f ix2t6t7tt2t6t4+ th6)
+L3t8t5cos(th8) = 0

Y : L5t2t6sin(th2)+L4t3t8sin(th3)
+L6t4t3sin(th4)+L8t5t2sin( f ix7t5t2tt8t5t2+ th5)
+L2t6t4sin( f ix2t6t7tt2t6t4+ th6)
+L3t8t5sin(th8) = 0

Loop 3
X : L7t1t8cos(th1)+L5t2t6cos(th2)
+L8t5t2cos( f ix7t5t2tt8t5t2+ th5)+L2t6t7cos(th6)
+L6t7t1cos( f ix6t7t5tt6t7t1+ th7)
+L1t8t5cos( f ix3t8t5tt1t8t5+ th8) = 0

Y : L7t1t8sin(th1)+L5t2t6sin(th2)
+L8t5t2sin( f ix7t5t2tt8t5t2+ th5)+L2t6t7sin(th6)
+L6t7t1sin( f ix6t7t5tt6t7t1+ th7)
+L1t8t5sin( f ix3t8t5tt1t8t5+ th8) = 0 (8)

DIXON DETERMINANT DERIVATION
To solve for the angles of all of the links we solve the Dixon

determinant using the complex plane formulation as shown by
Wampler [14]. To convert the loop equations to complex form
we treat the Y direction as along the imaginary plane. Multiply
the Y equations by i where i2 = −1 and sum the X and Y equa-
tions. We apply trigonometric identities and exponential iden-
tities to transform the loop equations into imaginary form. To
solve for the unknown link angles the conjugates of the complex
loop equations are used to provide the full equation set.

The Dixon determinant method requires the selection of one
unknown angle to be used as a generalized eigenvalue while the
remaining angles are solved as a generalized eigenvector. The
Dixon determinant form is

[MΘn−N] t = 0, (9)

where M and N are matrices with constant coefficients comprised
of the linkage dimensions, the ground angle, the input angle and
the complex conjugate of the input angle. θn is the unknown
angle selected to be the eigenvalue and the vector t is the set of
monomials representing the remaining unknown link angles.

Some unknown angles are poor choices for the eigenvalue
θn because the resulting eigenvector t cannot be used to solve for
all of the remaining link angles. To cancel any scaling factors
that may exist, the final step of the solution process takes the ra-
tio of two elements of t to determine the true numerical value of
each angle. With a poor selection of θn there is no combination
of elements in t whose ratio defines one or more of the unknown
angles. To automate this aspect of the procedure we simply test
each unknown angle as a candidate eigenvalue, derive the eigen-
vector t and verify, symbolically, that there exists a monomial
ratio that will produce every unknown angle. The first candidate
θn that meets this criteria is selected as the eigenvalue.

Some linkages cannot be solved as a whole linkage using
the Dixon determinant process, not because of a flaw in the pro-
cess but because there is no valid selection of the eigenvalue Θn.
These linkages partition and should be able to be solved as inde-
pendent sub-linkages.

When a valid eliminant is found, numerical values for the
link features are determined from the linkage synthesis and the
Dixon determinant is numerically solved for a given input angle.
The output provides all of the possible linkage assembly config-
urations for that input angle.

BLOCK DIAGONAL JACOBIAN DERIVATION
Because the Dixon determinant provides all of the possible

real assembly configurations a means of identifying a particular
assembly configuration within the solutions is needed. McCarthy
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FIGURE 12: DETERMINANT PRESERVING TRANSFORM

and Soh [13] show a numerical method to track a particular so-
lution through the range of input angles. The present research
identifies a particular linkage assembly by the sign of the deter-
minant of the Jacobian of each loop. The Jacobian is the deriva-
tive of each of the six loop equations, Eqn. 8, with respect to each
unknown angle. We convert the Jacobian to block upper triangu-
lar form through a determinant preserving transform as shown
by Silvester [24], Fig. 12. This factors the determinant of the Ja-
cobian into the determinant of the individual 2x2 block matrices
along the diagonal.

Since the transform involves an inverse of sub-matrix D the
columns of the Jacobian are first sorted so that the blocks along
the diagonal are full rank to ensure that D is full rank. For the
8-bar family the Jacobian is a 6x6 matrix and we apply the trans-
form twice, the first transform treats the last 2x2 along the diag-
onal as D, the second transform treats the middle 2x2 as D.

The example linkage, Fig. 3, has the input link and the
ground link within a 4-bar sub-linkage therefore singularities
should occur when the following features are collinear: L2t6t7
and L6t7t5, L6t4t3 and L4t3t8, or L7t1t8 and L1t8t5. Taking the
determinant of each 2x2 block along the diagonal produces the
three Jacobian factors expected, Eqn. 10. One of these factors is
zero when one of the expected link pairs is collinear.

J1 :−L2t6t7 L6t7t5(cos(th7)sin(th6)− cos(th6)sin(th7))
J2 :−L4t3t8 L6t4t3(cos(th4)sin(th3)− cos(th3)sin(th4))
J3 :−L1t8t5 L7t1t8(cos( f ix3t8t5tt1t8t5+ th8)sin(th1)
− cos(th1)sin( f ix3t8t5tt1t8t5+ th8)). (10)

For many linkages the sign combination of the Jacobian fac-
tors uniquely identifies the configuration of interest among the
solutions of the Dixon determinant. However, there may be ex-
ceptions such as the Stephenson III 6-bar linkage that could con-
tain a link that rotates more than 360 degrees before encountering
a singularity [19]. For such linkages the factored Jacobian alone
may not be sufficient.

RESULTS
Following this procedure we have automatically derived

loop equations for the entire family of 4-bar, 6-bar, and 8-bar
1-DoF linkages with rotating joints. Four 10-bar linkages have

TABLE 3: COUNT OF UNIQUE MECHANISMS AND
LINKAGES, 6-BAR AND 8-BAR

Links Assort. Topologies Mechanisms Linkages

6 4200 2 5 9

8 4400 9 35 76

5210 5 31 68

6020 2 5 9

Total 16 71 153

also been successfully automated including two with non-planar
graphs and one with a quintenary link.

The quantity of unique linkages identified by this process,
Table 3, matches published results. The process identified the
five unique six-bar mechanisms, Watt I-II and Stephenson I-III,
as well as the nine unique six-bar linkages with a ground con-
nected input, matching the known Watt and Stephenson families.
The quantity of 71 unique mechanisms for the eight-bar family
matches the result published by Tuttle [7]. The process also pro-
vided a new result showing 153 unique eight-bar linkages with a
ground-connected input.

The algorithm also identified the Watt IIb linkage uniquely
as the one six-bar linkage that partitions. Like the Watt IIb, the al-
gorithm identified 24 linkages in the 8-bar family that do not have
an acceptable selection for the eigenvalue angle Θn and cannot be
solved as a whole linkage using the Dixon determinant. Inspec-
tion of these 24 linkages, and the Watt IIb, shows that the ground
and input links are driving two one-DoF sub-linkages whose as-
sembly configurations are independent.

CONCLUSIONS
In this paper we present a procedure to automatically create

the linkage loop equations for the entire family of 1-DoF linkages
with rotating joints up to 8-bars. The process provides equations
in a format suitable for automation of the complete configura-
tion analysis for any topology, ground selection, and ground-
connected input selection of planar 1-DoF 8-bar linkages. The
method is also general and forms the basis for automation of 10-
bar and higher linkages.

Extensions of the work are expected to include planar multi-
degree of freedom linkages, 10 bar and higher linkages, prismatic
joints, inputs not connected to ground, and spherical linkages.
We also expect to incorporate improvements in the algorithm for
computational efficiency.
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