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Abstract

Vision tasks, such as segmentation, grouping, recognition, and learning, have a “what-goes-
with-what” component. It can be formulated as partitioning an adjacency graph into a
number of subgraphs, each being a “coherent” visual pattern in the sense of optimizing
a Bayesian posterior probability or minimizing an energy functional. In this paper, we
generalize Swendsen-Wang (1987)— a well celebrated algorithm in statistical mechanics— for
general graph partition. Our objective is to design reversible Markov chain moves in the
space of all possible partitions to search for global optimum in the Bayesian framework.
We start with an adjacency graph whose vertices are image elements, such as pixels, edgels,
small regions, or image bases. For each edge in the graph, we compute a local discriminative
probability or probability ratio for how likely the two vertices belong to an underlying visual
pattern. These edge probabilities are computed in a bottom-up fashion through previous
supervised learning techniques. By turning on/off the edges independently according to
these edge probabilities, we obtain a partition of the graph into a number of connected
subgraphs. This procedure is in fact a sample from the space of graph partitions. We use
it as a proposal (hypothesis) in a probabilistic manner. Thus the algorithm picks up a
connected subgraph and flips the label of all its vertices in a single reversible Markov chain
jump. In comparison to the classic Gibbs sampler which flips a single vertex at a time, the
proposed method achieves: 1). Fast mixing rate — it can flip a large subgraph at a time
and the acceptance probability can be made to be one. 2). Short burn-in period — it can
walk at low temperature and does not need a long simulated annealing procedure. Thus
it is shown to be nearly 100 times faster than the Gibbs sampler and thus produce results
in about 1 minute on a PC for image segmentation and curve grouping experiments. The
algorithm is tested in image segmentation and curve grouping task, and it is general for
many problems in vision and beyond.

Keywords: graph partition, image segmentation, perceptual organization, Swendsen-

Wang method, clustering, data-driven Markov chain Monte Carlo.



1 Introduction

Computer vision problems, such as image segmentation, perceptual organization, object
recognition, and learning, have a “what goes with what” component. It is a sub-task
that groups image elements, such as pixels, edgelets, image bases and textons, into visual
patterns, such as regions, curves, objects, and data clusters respectively, so that some
grouping criterion is optimized. The problem can be represented in an adjacency graph
with the vertices being image elements and edges being spatial relationships. Thus it
becomes a graph partition or graph coloring problem. In the literature, graph partition
methods are divided in two categories according to the ways in which the optimization
criteria are formulated. One is discriminative and the other is called generative.

In a discriminative approach, one computes a similarity (or distance) measure for a
pair of adjacent vertices based on their features such as position, orientation, color, and
texture etc. This measure specifies how likely the two elements belong to an underlying
visual pattern, and is often treated as a weight of the graph edge. The task is to partition
the graph into a small number of “coherent” clusters or connected sub-graphs. A widely

used discriminative criterion for coherence is compactness:
“intra-cluster distances are relatively smaller than the inter-cluster distances.”

Both deterministic, stochastic, and graph theoretical approaches are studied for clustering
and partition with various choices of features, similarity measures, and criteria[9, 7, 21, 12,
31]. The discriminative methods are usually convenient to implement and computationally
attractive. But they have two serious representational problems which limit their general

applicability and robustness.

1. There is no single generally applicable criterion for clustering and graph partition[12].
Natural images contain a mixture of very diverse visual patterns which are “coher-
ent” in different ways. For example, a criterion that prefers compact regions will
break elongated curve patterns, and vice versa. Thus we need a set of diverse and

competing criteria and models for different patterns.

2. The discriminative methods measure pairwise similarity and it is extremely hard,
if not impossible, to capture global properties, for example, global shading effects,

perspective projection effects, contour closure etc.

In contrast, generative methods are formulated in a Bayesian framework, and can
incorporate a diverse set of models and global prior knowledge. A subgraph is said to be

a coherent pattern in the sense that

“all vertices in a subgraph fit to a chosen family of probability models.”



Each family of models explains how the pattern is generated and stands for a coherence
criterion. For example, seven families of models are used for texture, color, shading and
clutter regions in image segmentation[25] and three types of curve models are used in
perceptual grouping[26].

To achieve globally optimal solutions, generative methods with multiple models have
to simulate or maximize Bayesian posterior probabilities using Markov chain Monte Carlo
techniques, and thus are computationally intensive. The problem becomes severe if an
annealing procedure[17] is used. The main computational bottlenecks are those reversible

jumps[4] for the following two types of Markov chain moves[25].

1. Moves type I: the Markov chain should realize reversible model (coherence) selection

and switching for each subgraph.

2. Moves type 1I: the Markov chain must be ergodic in the space of all possible graph
partitions. The moves such as split-merge, grouping-ungrouping, and death-birth

are made to be reversible and well balanced.

The reversible jumps are implemented by Metropolis-Hastings method[19, 13] and are
bridges that connect subspaces (or sub-manifolds) of varying dimensions in the solution
(search) space. In this paper we focus on the graph partition (or coloring) moves — type
IT.

The literature of graph partition and coloring dates back to relaxation-labeling (see
[8] and ref therein) — a greedy algorithm that flips vertex label for local consistency. The
Gibbs sampler (or “heat bath” in physics) is a stochastic version of relaxation-labeling

which can achieve global optima if a simulated annealing procedure[17] is adopted.

IIIIIIIIIIIIIinnmiiﬁiiiiiiiiii

1/2

Figure 1: Difficulty in sampling the Ising and Potts models.

The difficulty of sampling the partition space is well reflected in a simple Ising and
Potts models[15, 20], which are sometimes used in vision as prior models to enforce region
compactness. Figure 1 shows a string of spins whose label I can be +1 (up) and —1
(down). The Ising/Potts model is

pD) ccexp{f Y 1L, =L)}, B>0. (1)

<8,t>

1() is an indicator function. 1(I, = I;) = 1 if I, = I; for two adjacent spins s, ¢t otherwise it

is zero. Obviously the highest probability is achieved when all vertices have the same label.



In a best visiting scheme, suppose the Gibbs sampler (or Metropolis) flips the —1 spins at
the two “cracks”. The probability for flipping each spin from —1 to +1 is p, = 1/2. Thus
to flip a string of n spins (n = 9 in Figure 1) from —1 to +1 successfully, the expected
number of steps is

1
expected steps = ———— = 2".

(1/po)™
This is exponential waiting and is typical in general graph partition and coloring !

A major speedup is achieved by a well celebrated Swendsen-Wang (1987) algorithm|[27]
in physics. The SW method forms a number of randomly connected subgraphs (i.e. a
partition of lattice) by connecting, with a probability p = 1 — e™#, each pair of adjacent
spins of the same label. Then it flips the label of a connected subgraph in a single step.
The acceptance probability for such big move is computed to be 1 (see later section for
details). For example, all —1 spins in Figure 1 can be flipped to +1 in one or a few steps
when § is high (low temperature). Thus the SW algorithm achieves fast mixing even at
critical temperature and thus does not need a long annealing procedure. * Unfortunately,
SW is limited to Ising/Potts models and it slows down in the presence of external field
(data) as it does not make use of the image (data) information in forming the connected
subgraphs.

In this paper, we present a stochastic graph partition algorithm which generalizes SW
to general posterior probabilities in vision tasks, such as segmentation and grouping. Our
method combines the representational advantages of the generative method and compu-
tational efficiency of discriminative models. It is shown to be about 100 times faster than
the single site Gibbs sampler, and thus the Markov chain can segment an image in the
speed of about 60 seconds.

The basic ideas and contributions of our method are summarized in the following.

1. Given an adjacency graph, we compute a local probability at each edge for how likely
the two vertices belong to the same underlying pattern. This is borrowed from the
discriminative methods. Then given a current partition which has a number of sub-
graphs each being a coherent pattern. For each subgraph (pattern), we turn on and
off edges inside the subgraph at random according to their associated probabilities,
thus each subgraph is broken into a number of randomly connected components.
Each component is connected by edges that are turned on. Intuitively, vertices
within a component have strong ties and the weak connections (cracks) are broken.
This is done in a probabilistic way for reversibility. These connected components

are good candidates for re-grouping and re-labeling.

'In some worst case when the adjacency graph is a complete graph, the SW method can slow down
drastically, but we argue that this is not going to happen in vision as adjacency graphs in segmentation
and grouping are always very sparse.



2. Then we re-organize the components by flipping the label of each component at a
time. This is like SW, and the move observes the detailed balance equations in
general settings. For certain choice, the moves are always accepted with probability

1. Thus our method also be considered a generalized Gibbs sampler.

3. The algorithm “mixes” very fast even at low temperature and thus does not need
a long simulated annealing procedure. Therefore we can start from good initial
conditions to achieve very short “burn-in” period. In previous work[25], good ini-
tialization usually cannot be utilized as high temperature at the early stage brings

the Markov chain to random states.

Our method for graph partition is distinct from the various graph cut algorithms in
the vision literature.

First, it is distinct from the discriminative methods, such as graph cut and its numerous
variations[24, 31], though the ideas of adjacency graph are used as computational heuris-
tics. Our method incorporates many families of image models and global prior knowledge
in a generative model setting. The graph components proposed by the discriminative
models are coordinated by the Bayesian posterior probability.

Secondly, our method is very different from other recent graph theoretic algorithms for
energy minimization[22, 14, 18]. These graph cut algorithms use the maximum flow (or
minimum cut) algorithm to find global optima for a class of energy functions in polynomial
time. But one has to construct a highly specific graph for a given energy function so
that a minimum cut on the graph minimizes the energy. It is shown in [18] that only
very limited classes of energy functions are graph representable and thus solvable by such
method. In contrast, our algorithm can be applied to optimizing general forms of posterior
probabilities.

Our method is an addition to the recently proposed data-driven Markov chain Monte
Carlo (DDMCMC) paradigm[25, 26]. The DDMCMC algorithm takes the discriminative
methods, such as color and texture clustering, as computational heuristics, and expresses
the clustering results in the form of non-parametric probabilities in various spaces of image
models. Then these probabilities are used as importance proposal probabilities to guide
the reversible jumps, such as model selection, switching and fitting etc (moves type I in our
discussion above). In this paper, we add the graph clustering by the discriminative method
to expedite moves type II in the graph partition space. These moves are supplemented
by other small moves, such as model fitting and boundary diffusion etc in a continuous
representation, which are often much easier to compute.

The paper is organized in the following way: We start with a Bayesian (generative)
formulation in Section (2). Then we introduce the SW algorithm in Section (3) to set the

background. Section (4) presents the discriminative method for sampling the partition
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space. Section (5) integrates the discriminative method with Markov chain sampling and
proves the ergodicity and detailed balance. Then we show two groups of experiments
in Section (6): image segmentation and curve grouping organization. We discuss the

computational speed issues. Finally Section (7) concludes the paper with discussions.

2 Bayesian formulation of graph partition

2.1 Partition of graphs

Set partition. Suppose we are given a set of image elements V = {v1,v9,...,ux} such as
pixels, edgelets, and textons. The objective is to divide V into an unknown number of n
disjoint subsets,

V= UiV, Vi#0, VinVy=0fori#j.

Each subset Vi, k = 1,2...,n forms a coherent visual pattern in the sense that they fit to

a generative probability. We denote a partition with n subsets as 7y,
T ={V1, V2,0, Vi } € Qr,,, n=1,2,..,N.
The space of all possible partitions is denoted by
Q =ur 0,

This partition task is common to many vision problems. It is called (1). image seg-
mentation if V}, forms a homogeneous color or texture region, (2). perceptual organization

if Vi, is a smooth curve, and (3) object recognition if V}, forms an object.

Figure 2: The image segmentation of a cheetah image. (a). input image (b). a Canny edge
detection followed by edge tracing to form small “atomic regions”. Each atomic region is

treated as a vertex in G,. (c). a segmentation result.



In this paper, we focus on two cases. The first is segmentation and an example is
shown in Figure 2. For an input image in Figure 2.a and we can treat each pixel as
v;. but to reduce the number of elements N we first compute an over-segmentation in
Figure 2.b using a Canny edge detection followed by an edge tracing step. In this case
the elements v;,7 = 1,2,..., N are called “atomic regions” each having nearly constant
intensity. The second is curve grouping and an example is shown in Figure 3. The image
elements v;,7 = 1,2,..., N are the edgelets with positions, orientations and lengths. In

general, the elements can also be image wavelets and textons.

BR
=
.

.

ESRONIS Y 7y

Figure 3: An example of perceptual grouping. (a). An input image of trees, (b). A map
of edgelets by Canny edge detection. (c). A number of curves by grouping the edgelets.

Graph partition. In general, people introduce adjacency graphs G, =< V, E, > on the set
of image elements V. The edges introduce neighborhood structures and spatial constrains
on the partition and thus reduce the partition space. The selection of edges F, balances
computational complexity and robustness. In our paper, the edge set F, is defined as

follows.

e For the over-segmented atomic regions shown in Figure 2.b, e =< v;,v; >€ E, if

and only if two atomic regions v; and v; share boundaries.

e For the map of edgelets shown in Figure 2.c, e =< v;,v; >€ E, if and only if the
distance between two edgelets in position and orientation is smaller than certain
safe thresholds. The choice of threshold will balance robustness and graph sparsity.

when a curve is occluded by a large object, they may lose connection in G,.

Thus the problem becomes partitioning graph G, into subgraphs Gy =< Vi, Ey, >,k =
1,2,...,n. Each subgraph Gy =< Vi, E, > is a full subgraph of G,, i.e., it keeps all the



edges in GG, that connect two vertices in Vj:
Ey={e=(u,v) € E, |u,v €V}, k=1,2,...,n.

Note that a subgraph is usually connected but not always. For example, an object in the
background can be separated in several pieces due to occlusion. We still use 7, to denote
a graph partition as the edges are defined automatically within each subset V. The edges

between two sets V; and V; are denoted by a cut
C(Vi,V;) ={e=<s,t>ec E,secV,teV}, i#j.
To summarize, for a partition m,, the edges are divided as

E, = [Ug_1Ex] U [Ui;C(V;, Vj)]

2.2 Solution space and Markov chain jump steps

In the Bayesian framework, we use a mixture of M classes of models to interpret various
visual patterns, e.g. color, texture, shading, curve etc. These types of models are indexed
by ¢,

S {01,02, ...,CL} = Q¢.

The model space is a union of the M models
Qp = UCEQCQE-

We denote by I, the observed image attributes for element v, such as pixel intensity, edge
position and orientation. We denote by Iy the image representation for the set V. Each
class of pattern ¢ is defined by a family of probability models p(Iy;c,6.) specified by a
vector valued parameter § € Q.. p(Iy;c,0,.) is either parametric or a non-parametric
depending on the length of 6. and can have different dimensions for different types of
models.

The inner representation for the observed image elements is
W = (n,mp, (c1,61), (c2,02), ..., (cn, On)) (2)
The solution space for W is denoted by
Q=UN_{Q, x QF}.

For a fixed n, it is a product of an n-partition space, and n model spaces. Furthermore

we can unfold the n model space, and

Q=0 {Qr, x Q% x Q x--- x Qg }



The factorization of the space corresponds to the necessary solution steps: (1). partition
the graph by finding a point in Q,; (2). select an image model for each subgraph in Q¢;
(3). fit the model within each model family Q,,i =1,2,...,n.

If we assume the patterns are mutually independent, then the whole image interpre-

tation is subject to a posterior probability,

n

W~ p(W|V) X Hp(IVi;ci’eci)p(W)' (3)
=1
The specific form for the prior model and image models will be selected in experiments
and learned off-line. In general these models can be Markov random field models or global
spline models, and are beyond what can be minimized by the graph cut with maximum
flow algorithms|[18].

Our goal is to design ergodic Markov chains which simulate random walks in the
solution space €2 and sample from the posterior p(W|Iy). Usually p(W|Iy) is very “cold”
and sampling from p(W|Iy) is all we need.

As we mentioned in Section (1), there are two types of jumps bridging the subspaces

of different dimensions in €.

e Type I is "what is what” — moves in the model space Q¢ x €., x --- x £, . For
example, switching of model class ¢ and diffusion of parameters 6, for each subset
Vi, k=1,2,....n.

e Type IT is “what goes with what” — moves in the partition space €2,. For example,

split-and-merge, region competition.

Obviously the two steps are tightly coupled.? They are reversible jumps[4] realized by
Metropolis-Hastings methods[19, 13].

Consider a pair of reversible moves between two states W = A and W = B which are
often points in two subspace of different dimensions. The Markov chain design involves two
proposal probabilities (A — dB) = q(B|A)dB — from A to B and ¢(B — dA) = q(A|B)dB
— from B to A. The proposed move from A to B is accepted with probability

q(B — dA) p(B|I)dB

a(A — B) = min(1, (A5 dB) .p(A\I)dA) = min(1,

q(A|B) p(B|I)
q(B|A) p(A[T)

) (4)
The Markov chain transition probability is

P(A — dB) = q(A - dB)a(A — B), for A+ B.

21t is interesting to note that human brain mapping study[29] shows that the recognition task (type I)

is handled by a dorsal stream and the spatial vision (type II) is processed by a ventral stream.



Then it is easy to check that the detailed balance equation is observed
p(A)dAP(A — dB) = p(B)dB P(B — dA).

When the Markov chain is ergodic and aperiodic in the solution space €2, then its states
follow the posterior p(W|I) after a burn-in period.

As we can see that the effectiveness of Markov chain depends on the design of the
proposal probabilities or its ratios ¢(A|B)/q(A|B). In the literature, many methods are
studied to improve Markov chain convergence, such as simulated tempering, dynamic
weighting, nevertheless these designs do not make use of the input data I and thus the
Markov chain is close to exhaustive search. The idea of a recent data-driven Markov
chain Monte Carlo (DDMCMC) paradigm [33, 25, 26] is to design the proposal probabil-
ities from images using bottom-up (or discriminative) methods. We denote by D(I) the
discriminative models (heuristics) from image I. The acceptance probability becomes

q(A|B, D(I)) _p(BII)) (5)
"q(BIA,D(I)) p(A[T)
The objective is to design proposal probabilities which approximate the posterior g(A|B, D(I)) ~
p(A|I) and ¢(B|A, D(I)) = p(B|I) and can be easily sampled, so that the acceptance rate

is close to one.

a(A — B) = min(1

For the type I moves, some data clustering methods[9] are used to compute clusters
from image I in each model space ., ¢ € Q¢. Then the clusters are represented in
non-parametric form using Parzen windows to make probabilistic proposals for selecting,
switching, and fitting models.

For the type II moves, similarly we need to compute graph clustering on the partition
space Q in a discriminative (data-driven) manner. These probabilities are used for de-
signing smart Markov chain moves in the partition space for fast convergence and mixing.

This is studied in the rest of the paper.

3 Background: Swendsen-Wang for Ising/Potts models

The idea of graph clustering is originated from Swendsen-Wang (1987)[27]- an algorithm in
statistical mechanics for sampling the Ising/Potts models. The SW method was originally
designed to overcome the difficulty that a Gibbs sampler had in sampling the Ising/Potts
models. See Figure 1 and discussions in Section (1).

Consider a Potts model in eqn (1) on a 2D lattice. Figure 4 shows two partition states
A and B which differ in the labels of the spins inside a box. The SW algorithm realizes a
reversible move between A and B in a single step.

Suppose the current Markov chain state is A, the SW algorithm proceeds in the fol-

lowing way according to one of the SW interpretations[30].



state A state B
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Figure 4: SW algorithm flips a patch of spins in one step for the Ising/Potts models.

1. It selects a vertex s at random, and initializes a set Vp = {s}.

2. For any vertex s € Vj, SW finds its neighbor ¢t ¢ Vy. If s and ¢ have the same
label, i.e. I; = I, then it turns “on” the edge e =< s,t > on with a probability
qo- Otherwise e is turned off. If e is turned on, then it adds ¢ to the set Vj, i.e.
Vo < Vo U{t}. The probability g, will be decided later.

3. It repeats the above two steps until all edges connecting Vj to the rest of the graph
are turned off. Thus V}) represents a connected component in Figure 4 (left). The

dark edges in V) are turned on, and other edges are turned off.

We denote the remaining black vertices as set V1, and denote the edges that are turned

off between V, and V; as a cut
Coi =C(Vp,Vi)={e=<z,y> z€W, yeVi}

The cut is illustrated by the crosses in Figure 4.

Obviously there are many ways to arrive at a connected component V, through the
random steps. But they must share a common cut C(Vp, V7).

Similarly if the Markov chain is currently at state B in Fig. 4 (right), it also has a
chance to select a connected component V, in white. We denote the remaining white

vertices as Vo, and the cut between Vj and V5 is
Coa =C(Vp, Vo) ={e=<z,y > ze€W, yec W}

So far, we have a pair of states A and B who are different in the labels of V,. A

Metropolis-Hastings method is used to realize a reversible move between them. Though
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it is difficult to compute the proposal probabilities g(A — B) and ¢(B — A), one can

compute their ratio easily through cancellation.

q(A— B)  (1—g,)/%l

(BA)  (1-g)0e 7 go)Cor/ ~1C2], ©)

In other words, the probabilities for selecting Vj in states A and B are the same, except
that the cuts are different. Remarkably the probability ratio for p(A)/p(B) is also decided
by the cuts through cancellation.

p(B)  e7FlCo]

—B|Co2
p(A) _ e (1ol Coal (7)

The acceptance probability for the move from A to B is,

. g(B—A) p(B), € | ci=Co
a(A—)B)—mln(l, q(A—)B)p(A))_(].—qo)‘C -lc | (8)

By a smart choice of the edge probability
Go=1-e",
then the proposal from A to B is always accepted with
a(A— B)=1.

As B « % is proportional to the inverse temperature, thus g, — 1 at low temperature
and SW flips a large patch at a time. So SW algorithm can mix very fast at even critical
temperature. Although some analysis shows that SW mixed slowly at a worst case when
G, is a complete graph, such case never happens in vision tasks such as image segmentation
and curve grouping where the adjacency graphs are very sparsely connected.

In fact, there are many ways to interpret the SW algorithm. Edwards and Sokal
(1988) interpreted SW algorithm from the perspective of auxiliary variables and slice
sampling[3], and this leads to the idea of partial decoupling in Higdon (1996)[6]. It was
applied to image analysis in Barker et al (1998)[2]. Our method bears similarity in spirit
to the partial decoupling idea but is different in formulation and is derived in a different
way. We should discuss the difference in the discussion section.

Despite the efficiency of SW algorithm, it is not directly applicable to vision tasks for

the following reasons:

1. Tt is limited to Ising and Potts models, while posterior probabilities in vision tasks

are of much more complex forms.

2. It is found to be inefficient in the present of external fields (data), as it does not

utilize data in the designing the probability g, for selecting the connected component.
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3. It assumes the number of labels n is fixed. The Markov chain does not create new
labels in cases where n is unknown.

These limitations will be overcome by our method.

4 Sampling the partition space with discriminative models

In this section, we extend the SW algorithm by incorporating the data information in
selecting connected components in general adjacency graph. In the next section, we study
the detail balance of the Markov chain design.

Suppose we are given an adjacency graph G, =< V, E, >. Following the discriminative
methods, we extract a number of features F(v) = (Fy(v), F»(v), ..., Fy(v)) at each vertex
v. Bach edge e =< s,t >€ E, is augmented with a binary random variable . € {on,off }
to indicate whether the edge is turned on or off. In contrast to a constant probability
for each edge in the SW algorithm, we compute a discriminative model for ¢. = q(p. =
on|F(s), F(t)) or a probability ratio based on local features F'(s) and F(t),

q(pe = on|F(s), F(t))
q(pe = oft|F(s), F(t))’

Such probability ratio can be estimated in a supervised learning stage[16, 5]. It was also

for e =< s,t >€ E,.

shown that techniques like Adaboost can combine a number of weak classifiers to approach
the true probability ratio as the number of weak classifiers increases[23].
The probabilities on the edges define a joint probability for any subset of edges £ C E,,

aB)=[la [I 1-g)- 9)

eckE ecE,—FE

Therefore E defines a sparse graph G =< V, E > which often consists of a number of n
disjoint connected components (subgraphs) g1, 92, -.-, gn-

We denote these connected components by
CP={V,Va,..,V}, Uj,V;=V. (10)

This CP is also an n-partition 7, = (V1, Vs, ..., V3,)
Later, we are only interested in turning on/off edges within a subgraph G; =< V;, E; >,
as it is in the previous SW example. Thus we obtain a CP for G;, and denote it by

Cf)l = {‘/ll,‘/l% "',‘/lnl}a U;lelvvl] = Vvl (11)

12
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Figure 5: Three samples at temperature 7" = 1,2, 4, 8 respectively for the discriminative

models in the partition space.
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Figure 6: Three samples at temperature T" = 0.5, 1, 2 respectively for the discriminative

models in the partition space.

As the local probabilities are well trained through supervised learning, C P is often a

good partition with each connected subgraph corresponding to a pattern. In other words,
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q(E) defines a probability ¢(7) on the partition space 2, in a factorized and bottom-up
fashion. Obviously the mapping from E to 7, is not one-to-one. Each partition 7 can be
realized by many different edge sets F.

Figure 5 shows some examples of random graph partitions CP for the cheetah image.
The adjacency graph is built from the atomic regions in Fig. 2.b. On each row, we show
three random partitions C' P sampled according to ¢(F) in equation (9). Each region with
the same grey level is a connected component consisting of a number of atomic regions.
The edge probability is controlled by a temperature 7. When the 7' < 1 is low, big regions
are formed for the background. When 7' is high, small regions are formed, as seen in row
4. At a reasonable temperature, various parts of the cheetah are obtained as component
candidates for moves.

Similarly, Figure 6 shows three random partitions of curves at three temperatures.
The input image and edge maps are shown in Figure 3. The edgels are the graph vertices
and each connected component consists of a number of edgels (dark segments) connected
by grey lines. We removed the subgraphs with only 1 edgel for clarity. So many edgels
are removed at T = 2.

As we can see, the discriminative models provide good heuristics for partition, however
these partitions are limited by the local features and discriminative models. Global gen-
erative models are needed to govern the final partition. In the following section, we show
how we may use the CPs as candidates to propose smart moves in the partition space for

Markov chain design.

5 Stochastic graph partition by Markov Chain Monte Carlo

1 i

2ry
S

b. G c.

Figure 7: Three typical graphs in our algorithm. a) An adjacency graph G, as the initial
graph, b) A partition of G, into a number of sub-graphs, this is the Markov chain state G
at a time step. c¢). A discriminative model sample C P obtained by turning on each edge
e € G with probability ge.
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The stochastic graph partition algorithm engages three types of graphs shown in Fig-
ure 7. It starts with an adjacency graph G, =<V, E, > (Fig.7.a). At each time step it has
a partitioned graph G which consists of a number of disjoint full subgraphs G; =< Vi, Ej >,
[ =1,2,...,n with edges between the subgraphs removed and each subgraph is colored dif-
ferently (Fig.7.b). Then during a move between two partition states, it generates some
connected components CP; by turning on/off the edges in each subgraph G;. We denote
them by CP = U CP, (see eqn (11). For example the C'P in Fig. 7.c has 7 connected
components.

We present two versions of the stochastic graph partition algorithm using Figure 8 for

illustration.

Stochastic graph partition: SGP-1

Input: G, =<V, E, >, discriminative probabilities g, Ve € E,, and generative
posterior probability p(W|I).

Output: Samples W ~ p(W|I).

1. Initialize a graph partition 7: G = U ;G;. Denote it state A

2. Repeat,

3. Repeat for each subgraph G; =<V, E; >, =1,2,...,nin A

For e € Ej, turn y, = on with probability ge.

Partition G; into n; connected components: {g; =< Vj;, Ej; >,i =1, ...,n;}.

S o

Collect all the connected components (see Fig.7.c) in
CP={Vj;:l=1,..,n,5=1,...,n}.

7. Select a connected component Vp € CP at random with prob ¢(V5 | CP)
(usually a uniform probability 1/|CP|) (Fig.8.a shows an example of Vp).

8. Propose to reassign V) to a subgraph Gy, I’ follows a probability ¢(I'|Vp, A, G,)
(we obtain state B in Fig.8.b if V,, is merged to an existing subgraph,
or state C in Fig.8.c if Vy is a “stand-alone” new subgraph).

9. Accept the move with probability a(4 — B) or a(A — C) in theorem 1.

In the above algorithm, we omit the parallel steps of model switching and fitting for
clarity.
The probability q(I'|Vy, A, G,),l' = 1,...,n + 1 depends on V;, the current state A and

the original graph structure G,. In a trivial design, we may choose

a if Gy is adjacent to Vy, nal

q(l'|Vo, A,G,) =< b ifl' =n+1, > q(l'|Vo,A,G,) = 1.

1 —
c else =1

We shall discuss a more sophisticated probability ¢(I'|Vy, A, G,) shortly so that the
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acceptance probability a(A — B) is always 1 and thus SGP becomes a generalized Gibbs
sampler.
The move between states A and B is a typical split-merge operation. It includes the

birth and death operations as two special cases.

1. If I' = n+ 1, Vj becomes a new pattern. So the move between A and C is a birth

operation.

2. Suppose Vj is a component in subgraph G;. If Vj = V}, the whole subgraph G;
is merged into Gp. The number of patterns is reduced by one. So it is a death

operation.

The second version is different only in the way it selects the set Vj. Instead of sampling
all the edges in a current partition, it starts from a single vertex v and grows into a

connected component Vj with a subgraph G; as we showed for the SW algorithm.

Stochastic graph partition: SGP-2
1. Initialize a graph partition 7: G = U, G;. Denote it state A.

2. Repeat

3. Select a vertex v € V at random, e.g. from subgraph G;. Set Vj = {v}
4. Repeat until C(Vy, V; — Vo) N {e, pe = on} =10

5. Find e =< s,t >€ C(V,V, — V). Let s € W,

6. Turn g, = on with probability ¢, else p, = off

7. If pe = on, then Vj + Vy U {t}.

8. Propose to merge Vj to subgraph Gy by sampling from ¢(I'|Vp, A, G,).-

(we obtain state B in Fig.8.b if Vi is merged to an existing subgraph,
or state C in Fig.8.c if Vy is a new subgraph).
9. accept the move with probability a(A — B) or a(A — C) in theorem 1.

At each step, both SGP-1 and SGP-2 flip a set of vertices V5. As we showed in the
cheetah (Fig.5) and tree (Fig.6) examples, these sets are often meaningful parts of a big
visual pattern suggested by the discriminative models.

In what follows, we show that the acceptance probabilities can be computed easily
through cancellation, and they can be made to be 1 through a smart choice of ¢(I'|Vy, 4, G,)

so that the proposals are always accepted. These are stated in the two theorems below.

Theorem 1 In the above notation, consider a candidate component Vy selected by SGP-

1-2. If the proposed move to reassign Vy from Gy to Gy is accepted with probability

Meecvo,v-v0)( —4e)  q(1|Vo, B,Go) p(BIT)
a(A — B) = min(1, 0 . 1 oL, )
( ) ( HeEC(Vg,Vl—VO)(l — qe) Q(l'|Vb,A, Go) P(A|I))

then the Markov chain is ergodic and observes the detailed balance equations.
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In the special case, when I’ = n+ 1, V; is proposed to be a new subgraph, V;y — V = 0.
So C(Vo, Vi — Vp) = 0, and HeEC(VO,Vl,—Vo)(l —¢e) = 1. a(A — B) becomes a(A — C).

1 1 . Q(l‘VO,C, GO) p(Cll)
eecvo,vi-ve) X —e)  a(l'[Vo, 4,Go)  p(A[T)

The cuts C(Vy, Vi — Vi) are often empty or small so the product probabilities are easy to

a(A — C) = min(

).

compute.
Proof.

The proof is rather long but the basic ideas are simple. Our objective is to calculate
the proposal probabilities (A — B) and ¢(B — A) for choosing a particular V) among all
possible combinations in turning on/off the edges in G,. Although the two probabilities are
very complicated, their ratio ¢(B — A)/q(A — B) is extremely simple through miraculous
cancellation. Once this ratio is computed, the conclusion follows straight-forward from
the Metropolis-Hastings equation (5).

Firstly, we calculate the proposal probability ¢(A — B) in SGP-1, assuming state A
has n subgraphs G; =< Vi, E; >,1 = 1,2,...,n. In the canonical case when V # V; and
Vi # 0, it is a conditional probability which consists of two steps: (1) choosing V4 and (2)
choosing ['.

4(A - B) = q(B|A, D)) = (V| 4, D(1)q(¥'| Vo, 4, o), (12)

where D(I) denotes the discriminative models on the edges. For clarity, we discuss the
exceptional cases later.

Before a move occurs, each subgraph Gj is broken into a number of connected compo-
nents C'P; by turning off some edges in F; at random. We denote the set of all connected

components
CP(A) = UlCPl = {WZ 1l = 1, ceey T 1= 1, ...,’)’I,l}.

For example, Figure 8.a shows 6 connected components. For a C'P of state A, we denote
by Eon(A,CP) the edges that are turned on (see the thick edges in Figure 8.a)

Eon(Aa CP) = U?:l{U;i1Eki}-

The rest of the edges, which are turned off, are the cuts between a connected component

Vi; and the rest of subgraph, i.e. vertices in V; — V};,
Eog(A,CP) = U {UiL,Cu},  Ci = C(Vig, Vi — Viy).

Note that the edges between subgraphs had been turned off before entering state A. The
probability for choosing a C'P is conditional on state A and D(I),

g(CPIADM))= [ e JI @Q-q)-

e€EFon(A,CP) e€Eyg(A,CP)
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a. A CP of state A

b. A CP of state B !

c. A CP of state C

Figure 8: A reversible move between three partition states m = A, B, C that are different
by a set of vertices V. The vertices in the same color belong to a subgraph. The vertices
connected by the thick edge form a connected component. A subgraph may have a few

connected components.

We denote by Qcp(A) the set of all possible CP’s at state A. We are interested in a
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subset where 1} is among the connected components Vy € CP, and denote the subset by
0%5(A) = {CP(A) : V; € CP}.

Without loss of generality, we assume that V{ is a component from subgraph G; =<
V1, E1 >. We denote the cut between Vi and Vi — V) by

COI = C(‘/Oa 1/'1 - W))

This is illustrated in Figure 8.a by the crosses.

To clarify, all CPs in Q¥ (A) must observe two properties.

1. Vy must be one connected component in CP. There are usually many ways to make

Vo a connected component.
2. The cut between Vy and Vi — V) must be the same for all CP. That is,
Cor C Eog(A,CP), YCP € Q%p(A).
These edges must be turned off, otherwise 1} is connected to other vertices.

For each CP € Q%p(A), the set Vj is picked by sampling from ¢(Vp|C'P). Now we are
ready to compute the probability for selecting V| at state A,

q(Vol4,D@) = >  ¢(V|CP)q(CP|A,D(1)) (13)
CPeNY ,(A)
= [[a-el > awlcp) I[ @ II (1-ge)]- (14)
e€Co1 CPeQd ,(A) e€Fon(A,CP) e€Eyg(A,CP)—Co1

We can switch the order of the summation and the product [[.c¢,, (1 — ¢e) because of
property 2 above. We will show that all these terms are canceled out except this product
HeEC(n (1 —ge)-

Secondly we calculate the proposal probability ¢(B — A) in algorithm SGP-1. In the
canonical case, the only way one can get from state B to state A is by selecting Vj as a
connected component and re-assigning it to Gj.

In state B, we have the same partition as in state A except that Vj belongs to Gy
(see Fig. 8.b). Let CP(B) denote all possible CPs in state B by turning on and off the
edges in the n subgraphs at random. Again, we are only interested in those C P(B)s that

include Vj as a component,

Q%,(B) = {CP(B):V, € CP(B)}.
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Without loss of generality, we assume that 1} is a component from the subgraph
Gy =< V5, Ey >. All the CPs in Q%P(B) must share a common cut between V; and
Vo — Vp, denoted by

Cop = C(Vo, Vo — Vo).

The cut is illustrated in Figure 8.b by the crosses. Similarly, the probability for selecting
V, at state B is,

g(Vo|B,D()) = Y q(Vo|CP)q(CP|B,D(I)) (15)
CcPeQl, ,(B)
= JI0-a) > aWlCP) JI II (1—g)]. (16)
e€Co2 CPeN?, ,(B) e€Eon(B,CP) e€E.g(B,CP)—Co2

Once V} is selected, it is assigned to G; with probability ¢(I|Vp, B, G,), the same for all
CP € Q2 5(B). Therefore, the proposal probability from B to A is,

q(B = A) = q(A|B, D(I)) = ¢(Vo| B, D(T))q(I|Vo, B, G,)- (17)

Observation 1. For each CP € Q% (A), then CP € Q2 p(B) and vice versa. There-
fore we have

Qep(4) = Qgp(B) (18)

That is, for any CP above, the set of edges turned on are the same,
Exn(A,CP) = Eo(B,CP) (19)

Observation 2. The set of edges turned off are also the same except the cut Cpy

occurs in state A and Cys occurs in state B. So
Eyg(A,CP) —Co1 = Eo(B,CP) — Copa. (20)

Plug in equations (19) and (20) into equations (14) and (16), we have the probability

ratio by cancellation,
q(Vo|B,D(T)) _ Tleeco, (1 — ge)

q(VolA,D(T)) [Teecy, (1 —ge) (21)

Therefore,
q(B — A) _ HeGCoz(]‘ - qe) . Q(”‘/OaBaGo)

(A= B)  Tleec (1 —¢) a(l'IVo, 4, Go)’
By equation (5), we obtain (A — B) as the theorem states. Thus the move between

A and B observe the detailed balance equations.
The above proof is for the canonical case when there is only one way to go from state

A to state B, or from state B to state A, namely by reassigning Vj.
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Figure 9: State A has two subgraphs V; and V5 which are merged in state B. There are

two paths between A and B. One is to choose Vy = V7 and the other is to choose V = V5.

There is an exception to the canonical case when there are two paths between states
A and B. It occurs when a whole subgraph G; or Gy is chosen as Vj in state A, and thus
two subgraphs are merged in state B. Without loss of generality, we only consider two

subgraphs V1, V5 in state A and one subgraph Vi U V5 in state B.

e Path 1. Choose Vy = V4. In state A, choose I' = 2, i.e. merge it to V5, and reversely

in state B, choose I’ = 1, i.e. split it from V5.

e Path 2. Choose Vy = V5. In state A, choose I’ = 1, i.e. merge it to V7, and reversely
in state B, choose I’ = 2, i.e. split it from V].

Thus the proposal probability (A — B) is the sum of the probabilities for the two paths.

q(A — B) = q(I' = 2|V1, A,Go)q(Vo = V1| A, D(T)) + q(I' = 1|V3, 4, Go)q(Vo = V2|4, D(I))
(22)

Similarly, we have

q(B — A) = q(I' = 1|1, B, G,)q(Vo = V1| B, D(I)) +q(I' = 2|V2, B, Go)q(Vo = V2| B, D(I))
(23)
In state A, the cut is C(Vp, V) — Vi) = C(Vo,0) = 0 for both paths, and in state B the
cut is C(Vp, Vi — Vo) = C(V1, Vo) = Cy2 for both paths.
Following previous calculation, we have the proposal probability ratio for choosing
Vo = Vi in path 1,

g(Vo = Vi|B,D(T)) _ Meecqs,vo)(1 — de) _ . 9
oV =VAIADD) ~ Teccpnn—a) ~ L0~ (24)

Similarly, we have the probability ratio for choosing Vy = V5 in path 2,
Q(‘/O = ‘/Q‘BaD(I)) . HeEC(VQ,Vl)(]‘ - qe) o H (1

— —ge)- 25
Q(VO = V2|A, D(I)) HeEC(V%w)(l o Qe) e€Cia ) ( )
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Plug in the above equations, we obtain the ratio,

9(B—>4) q(l" = 1|1, B,G,)q(Vi|A, D(T)) + q(I' = 2|V3, B, Go)q(V2|4, D(I))
- H (1—¢e) r— I —
o(A—B) o, q(l' =2|V1, A, Go)q(V1|A, D(I)) + q(I' = 1|V, A, Go)q(V2|4, D(I))
(26)
The proposal probabilities for I’ must be designed in such a way that:
Q(ll = 1|V17B7 GO) _ Q(ll = 2|Vv27B7 GO) (27)
Q(ll = 2|‘/1’A7G0) B Q(l, = 1‘V2’Aa Go)
This is easily satisfied in general. Then (26) becomes,
9(B = A) q(l' =1|V1, B, G,)
= 1—qe)- 28
I =) o =am, 1.6, )

q(A - B) eEC(Vo,Vl/*VO)

In general notation, it is

g(B—A)  Tleccwovi—vo)y(I —ae) ¢(I|Vo, B, G,)

q(A = B)  Tleectvovi-ve)(1 — 2)  a(l'Vo, A, Go)
Thus we have proved the exception case.

To prove ergodicity of the Markov chain, observe that there is a non-zero probability
that any given node is chosen as a connected component Vy. Since this node can then
be assigned any other subgraph with non-zero probability, and this is true for all nodes
independently, we see that we can get from any partition to any other partition with
non-zero probability.

End of Proof.
. : I o P(BI) p(C[T) ; -

In practice, the posterior probability ratios 2(AT) and 2AT) only involve local com

putation. For example, in Figure 9 ;" ((f'%)) only engages model fitting and comparison for

p(V1 U WI), versus p(V1|I)p(V2|I), as all other regions are not involved in the current
move.

In a similar way, one can prove that the same conclusion is true for SGP — 2. The
differences between SGP-1 and SGP-2 are

1. As SGP-2 has a uniform probability to select the initial vertex and thus large vertex

set will have a high probability of being selected.

2. SGP-2 reduces the computation slightly as it does not have to sample all edges
in the adjacency graph. However, in case when G, is sparse, the computational

improvement is minor.

Now we shall discuss how we choose probability ¢(I'|Vj, A, G,) in such a way to obtain

acceptance probability 1. Then our algorithm becomes a generalized Gibbs sampler.
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Suppose the Markov chain is at a partition state A = (V1, V5, ..., V},), and a connected
component Vy C V] is selected by SGP-1 or SGP-2 as a candidate set. We have n + 1

choices for state B by assigning Vj to one of the following vertex sets:
{Sl = Vl, SQ = ‘/'2’ '",Sl = Vvl - VvOa ey Sn = V’n.aSn—f—l = @}

We denote the states as By, Bs, ..., By4+1 respectively. Clearly B; = A and in By41, Vp
is a new subgraph. In the exceptional case when Vj = Vj, then the state B,+1 = A is
redundant, so one of them should be eliminated.

We denote the cuts between Vy and Sj,5 = 1,2,...,n + 1 by

C; = C(%,Sj),j =1,2,..,n+1, with C(Vp,0) =0.
Cj is empty unless S; is adjacent to Vp in G,,. Define the weights of the cuts as,

wj = H(l—qe), and w; =1 if C; =0.
e€C;
Theorem 2 In the above notation, suppose Vy is a candidate vertex set selected by SGP-1
or SGP-2. Denote the current partition state A. If the probabilities for merging Vi to Vp
are chosen to be

q(ll‘Vo, A, Go) X wy - p(BlI | I) (29)

then the proposed move is always accepted with probability one.

Proof. We have
1
! =—— wp -p(By|I.
q(l |‘/E)7A7 GO) 7 A) Wi p( l | ) (30)
where Z(A) is a normalization constant, Z(A) = Y771 wy, - p(By | I). We get

. oowr Z(Br)wp(AI)  p(Br[I) .. Z(Br)

a(A — By) = min(1, — - . = min(1, 31

= Be) =il 2Bty plam) ~ 0 ) GV

In order to obtain a(A — By) = 1 we just need to prove that Z(A) = Z(By) for I' =
1,2,...,n+1. In the canonical case, it is trivial to show that Z(A) and Z(By) are identical

being the sum of the same n 4+ 1 terms.

In the exceptional case, Z(A) and Z(By) are the same, each having the same n terms,
and it is easy to show that this choice of ¢(I'|Vp, 4, G,) also satisfies condition (27) so that
theorem 1 applies.

End of Proof.

Intuitively, we merge Vi with Sy according to the posterior probability which measures
how well they fit to a coherent pattern, modified by a cut factor wy to insure reversibility.
In practice, the posteriors p(By | I) only involve local computation.

Thus we have the third version of the SGP algorithm which is a generalized Gibbs

sampler.
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Stochastic graph partition: SGP-3
1. Initialize a graph partition G = UjLG|.
2. Repeat, for a current Markov chain state A.

3. Select a candidate set V4 as in SGP-1 or SGP-2
4. Draw a random sample I’ with probability ¢(I'|Vy, 4, G,) from (29)
5 Merge Vy to Sy

In contrast to the classic single point Gibbs sampler [11], SGP-3 has the following

properties:

1. Tt flips a large patch of the graph proposed by discriminative models D(I), thus it
mixes very rapidly

2. Like SW, it can walk effectively even at low temperature. Thus it does not need a

slow annealing procedure and achieves a short burn-in period.

6 Experiments — segmentation and grouping

In this section, we apply SGP-1 to two classical vision problems: image segmentation
and curve grouping. We show that the SGP algorithms are about 100 times faster than
the Gibbs sampler and the Markov chains converge at about 60 second in segmentation.

SGP-2 and SGP-3 have similar performance.

6.1 Experiment I: image segmentation

To reduce the size of the adjacency graph, we use a Canny edge detector and edge tracing
to divide the image into ”atomic regions” with almost constant intensities. Depending on
image size and texture, there are N € [500, 1500] atomic regions in an image, each being
a vertex in G,.

For an atomic region v;, we fit its intensity to a Gaussian p; = N(u1,0?). The dis-

criminative probability g. for an edge e between two atomic regions v; and v; is
ge = 0.1 4+ 0.9exp{—(KL(p1||p2) + KL(p2||p1))/2. e=<wv;,v; > (32)

where K L() is the Kullback-Leibler divergence between the probabilities. In general, this
ge can be learned through supervised learning. We adopt three simple image models
denoted by {C1,Cs,C3}, and more sophisticated models can be easily added as in [25].
Let x,y be the coordinates of a pixel. The first model C; assumes constant intensity with

additive noise modeled by a non-parametric histogram H.
Ji(z,y;0) =p+n, n~H, 0= (uH). (33)
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The second model Cy assumes a linear function with additive noise. A linear model:
Jo(z,y;0) =p+ax+by+mn, n~H, 0= (u,a,b,H). (34)
The third model C3 assumes a quadratic function with additive noise,
J3(z,y;0) = p+ax+by+ca® +dey+ ey’ +1, n~H,03=(ua,bcdeM). (35

The selection of model was studied in previous DDMCMC work (Tu and Zhu, 2002). Such
models are found to be useful for fitting smoothness regions with global shading effects.
The texture is modeled by the non-parametric histogram 7. In practice, the discretized
‘H is represented by a vector (Hy, ..., Hp). Let R be a region which is fit by a model ¢ with
parameter 6. Let n; be the number of pixels of R that fall into bin j of the histogram.
Then the likelihood probability is

(36)

a b C

Figure 10: The image segmentation of an artificial image. a. input image b. atomic

regions. c. segmentation result.

Like[25], we use the prior p(W) to encourage large and connected regions. Let n be
the number of regions, each region may consist of more than one connected sub-regions.
That is, several sub-regions may be labeled the same and fit to a shared model. We denote

these connected components by 71,7, ...,7, m > n. The prior is
7 m 0.9
p(W) o e e 7™ H e~ Mrea(r;)" (37)
i=1

We fix v = 35,7 = 15 in our experiments.
The model parameters for the regions are computed deterministically at each step as the
best least square fit. This could be replaced by separate steps of model fitting and model
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a
We show the five results in Figures 2,10,11

results obtained from the SGP-1 algorithm are smoothed slightly by a few steps of the
be discussed shortly.

Figure 13: The image segmentation of a satellite image. a. input image b. atomic regions.
switching, but this is beyond the purpose of our experiments. The image segmentation

region competition equation[32].

c. segmentation result.



C

Figure 14: The image segmentation of a coast image. a. input image b. atomic regions.

c. segmentation result.

a b c

Figure 15: The image segmentation of an airplane image. a. input image b. atomic

regions. c. segmentation result.

6.2 Experiment II: curve grouping

In this experiment we are given an edge map with a number of n edgels. These edgels
are obtained using the Canny edge detector followed by fitting long curves by many line
segments. Usually we have n € [500 — 2000] short line segments (edgels of 3-6 pixels long)
as vertices V in G,. We denote them by v; = (x},x§),i = 1,2,..., N with x}, x¢ being the
starting and ending points.

Our goal is to group these edgels into an unknown number n subgraphs V;,i = 1,2, ..., n,
each being a chain of edgels. By filling in the gaps between consecutive edgels in V; we
obtain a smooth and continuous curve T;.

Now we choose the likelihood model. In discrete form, the edgel set V' in G, consists

of pixels on the edges, denoted by
D = {(i,5) : (i,§) onv € V'}
The n continuous curves also contain a set of pixels on curves

D ={(i,j) : (i,j) on Ty, k =1,2,...,n}
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We choose the likelihood to be

PO W) [ m [ pi=e PMRENDDM (g
(i,j)€Dbs—D  (i,j)€ D—Dobs

where pyg = e € [0,1] is the probability for detecting a false edge, and penalizes re-

moving too many edges. In contrast, p; = e ™ is the probability for missing an edge

and penalizes the gaps in the curves. Each curve is then represented by a list of points

L'j = (xj1,%j2, -, X;n; ). The prior model for a curve group is

p(W) o exp{—n} [[ p(T).
=1

Each curve follows a 2nd order Markov chain model.
k

p(T3) = p(xir, xi2) [] p(xjlxj1,%j2)- (39)
j=3

The probability p(x;1, X;2) is assumed uniform, while p(x;|x;_1,x;_2) is a two gram repre-
sented by a 2-way joint histogram. We compute it by supervised learning from a number

of manually parsed images, e.g. from [10].

Figure 16: The joint histograms of p(x;|x;_1,X;_2) contain 6 bins for dy and 36 bins for

«. There are 6 such histograms, for different values of d;.

As Figure 16.a shows, we compute three variables: (1). distance d; = |x;_1 —x;_2| (2).
distance dy = |x; —x;_1|, and (3). the angle a.. There are 6 histograms, one for the values
of dy in each of the intervals [0, 2),[2,4), [4, 8), [8, 16),[16, 32),[32, 64]. Each histogram has
6 bins for ds, in the same range as di, and 36 bins for «, each of size 10°. Thus we have 6
histograms with 6 x 36 bins each and represent p(x;|x;_1,x;_2) by p(da, a|di). To avoid
empty bins we will start with each bin having one sample in it. There are some details,
such as ordering the edgels in a set and computing the relative angle etc. We resolve them
in a deterministic way.

To construct G, we start with a complete graph on the edgels, and compute an edge
strength for any pair e = (v;,v;) (see Fig.16.b), based on the gap d;; between the two
edgels, and the two gram learned for the prior

ge = 0.99 - p(z3|2f, z7) - p(x§| 25, zF) - e~ A*di (40)
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where A is the gap penalty used in the likelihood equation.

If g < 0.01 then edge e is removed. We assume this is a very safe threshold to reduce
the graph complexity.

a b C

Figure 17: The curve grouping example: banana. a. input edgel map b. grouping result
1. c. grouping result 2.

Figure 18: The curve grouping for a stone carving. a. input image, b. edgel map c.

grouping result for a number of curves.

Figure 19: The curve grouping for a low resolution satellite image. a. input image, b.

edgel map c. grouping result for a number of curves for the road.

We display four examples SGP-1 in Fig. 3,17, 18,19. The results are not ideal, mainly
because of the simple curve model that we used. In future work, we should introduce more
advanced curve models. In fact, most recently we applied the SGP method to grouping

parallel curves and trees and more advanced results are in a paper[26].
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6.3 Computational speed and comparison

To demonstrate the speedup of the SGP algorithms, we show a speed comparison in
Figure 20. We run the SGP-1 algorithm 5 times on the cheetah image in Figure 2 starting
with a random partition. We simply assign each atomic region to a subgraph G;,[ €
{1,2,3,4,5}.
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Figure 20: Convergence comparison with Gibbs sampler (upper curve). Vertical axis is
the energy of the Markov chain state, and the horizontal axis is the number of sweeps
for a and b, and running time in seconds for ¢ and d. b is a zoom-in view of the first 25

sweeps and d. is the zoom-in view for the first 100 seconds.

In order to achieve the same low energy level, the Gibbs Sampler has to start with a
high temperature T' = 200 and use an exponential annealing schedule to T" = 0.05 after
5000 sweeps. Otherwise it can remain stuck at a certain higher energy level. In contrast,
the SGP-1 starts at temperature 7' = 5 and decreases to T' = 0.05 in 20 sweeps. We
plot the energy for each run as a function of the number of sweeps in Figure 20.a, and of

seconds that elapsed in Figure 20.c.d. As SGP-1 converges much faster, we plot a zoom-in
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view of the first 25 sweeps in Figure 20.b, and first 100 seconds in Figure 20.d.
The five SGP-1 runs converge in about 40 — 50 seconds in a 1.5GHz PC while the
Gibbs Sampler converged in 6000 seconds. This is a more than 100 times speed-up!

x10° x10°
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Figure 21: Convergence comparison with SGP1 without discriminative models (edge
weights ge = 0.2,0.4,0.6, dotted curves). Vertical axis is the energy of the Markov chain
state, and the horizontal axis is the running time in seconds.

To study the effect of the discriminative models on convergence, we compare the pre-
formance of our algorithm with and without discriminative models. We made 3 runs of
the algorithm without discriminative models, all edges being assigned the same weight,
ge = 0.2,0.4,0.6 respectively. Observe that the Gibbs sampler is equivalent to SGP with
ge = 0. In order to obtain approximately the same final energy, we had to start from a
higher temperature and decrease the temperature slowly in these three runs. In Figure
21.a we plotted the energy of the Gibbs sampler starting from random labels, and the
energies of 5 SGP1 runs with discriminative models, and the three runs without discrim-
inative models described above (dotted lines), all on the cheetah image in Figure 2. In
Figure 21.b we plotted the three runs without discriminative models (dotted lines) and
one run of the SGP1, on the airplane image in Figure 15, starting again from a single
graph m = {G,}. We could not compare with the original SW algorithm because it cannot
be applied in the general case.

To show the fact that an initial segmentation is useful in obtaining better performance,
we started the SGP1 runs from a single graph @ = {G,}. The energy of this initial state
is much lower than that of a random partition. We see from in Figure 21.a that all 5 runs
of the SGP1 algorithm converge to the same energy level in about 15 seconds, compared
with 50 seconds when starting from a random partition as in Figure 20.

Compared with the DDMCMC algorithm from [25], our algorithm is about 20-40 times

faster. Our model fitting and switching steps are quite simple, but we observed that the
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full-featured model fitting and switching steps take much less time than the split-merge
steps which are the focus of our algorithm. By incorporating full-featured model fitting
and switching steps in our algorithm, it will still be 20-40 times faster than the DDMCMC
from [25].

We also studied the effect of the discriminative model temperature. We modify the
edge weights g = ¢! by raising them to a power T. We call it edge temperature.
Then we ran 5 runs of the SGP-1 algorithm for each of the following temperatures
T = 0.5,1,2,4,8,16,32,64 and computed the energy E after 20 sweeps for each run.
We compute the average energy E over the 5 runs for each T, as a measure of the con-
vergence rate of the algorithm. We plotted the log, E as a function of the log,(T') above.
If T is too small, then too big clusters are being formed and they will be rejected. If
T is too big, then too small clusters are being formed and the algorithm is not efficient.
This idea was discussed in Figures 5 and 6. Observe though that the best convergence is
obtained for 7" € [0.5,1]. This is because all the runs started from random partitions, and
the grouping happens more often than the ungrouping. If one started with a single-graph
partition m = {G,}, then the best convergence is attained at temperatures T € [1,1.5]

because now it is more important to split than to merge.

log(energy)

18.34]

18.33[

18.32F

1831

2
log(edge temp)

Figure 22: The effects of edge temperature. The average energy level the Markov chains

reach after 20 sweeps for a chosen edge temperature, averaged over 5 runs.

7 Discussion

The SW algorithm was very brief (2 pages in Physical Review Letters 1987)[27]. Af-
ter it was published, a few different views are developed to explain it. One interesting
perspective is the auxiliary random variables by (Edward and Sokal, 1988). Each edge
e =< v;,v; > in G, is assigned a random variable u;;. Thus one obtains a field of auxiliary

variables U = {u;; :< v;,v; >}. Then one augments the posterior to a joint distribution
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p(W,U|I). So the Markov chain samples W and U iteratively. This leads to the idea of
slice sampling and especially partial decoupling[6]. Barker et al (1998) applied the par-
tial decoupling ideas to image analysis. The SGP algorithms in this paper is related to
the partial decoupling idea, but is different in many aspects. First, we derive the SW
and SGP from Metropolis-Hastings method with reversible jumps, instead of auxiliary
variables. Secondly, we adopt edge probabilities and ratios that should be learned from
supervised learning. Thirdly, the SGP algorithm can automatically change the number of
partitions n.

The SGP algorithm is an extension to the recent DDMCMC framework[33, 25, 26] by
introducing graph clustering in the partition/labeling space. This is combined with the

clustering in model space to achieve fast convergence and mixing.
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