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ABSTRACT

The permeability of a rock fracture is controlled primarily by the geometry of its
void space. One effect of void space geometry is to cause the fluid to follow a tortu-
ous path in order to flow around the asperities, which are regions where the two faces
of the fracture are in contact. In order to examine the tortuosity induced by the con-
tact area, we consider an idealized fracture consisting of two parallel plates propped
open by isolated asperities. Boundary-element calculations, analogue electrical con-
- ductivity measurements, and an effective medium approximation are used to study the
permeability of fractures with circular, elliptical, and irre_:gulai‘ aspeﬂty shapes. The
permeability is seen to depend not only on the amount of contact area, but also on the
shape of the asperities. For circular or elliptical asperities, Very accurate estimates are
found by using the effective medium theory proposed by Maxwell. |

P



INTRODUCTION
In ﬁlany geological formations with low matrix permeability, fluid flow takes
place pfedominéntly th'rough fréctures. Fractur_e:dominated flow has become .iricreas-
ingly impbrtant in various problems of geotechnical interest, particularly those invova
| ing undergfound w:;lste isolation. In some cases flow takes place through a particular
fracture or faﬁlt, while in other cases the ﬂéw is through a network of fractures. In |
either case, an understanding of the peﬁheability of singlé fracturevs_ is réquired.
' ~ The permeability of a naturally occurring rock fracture depends principally on the )
geometry of th.e void space. A typicél fracture contains isolated asperity regions where
the two rock surfaces are in cdntact: surrounded by open regions w.hcfe‘tvhe two sur-
faces are separated by an aperture 4 that may vary from point to poin't.. When fluid
flows through such a fracture, it not only must flow arouﬁd the contact areas,’ but also
has> a tendency to preferentially flow through the .channels with the largest apertures,
since hydraulic conductance is proportional to h3. In order to successfully model this
procéss, both effects must be taken into aécount. In this paper, however, attention will
be focused on vthc _tortuoéity induced by the contact .regions. (The effect of roughness'
in thé fracture’walls, ie., variatioﬁs in the aperturé, has béen studied by Brown (1987),
Pyrak-Nolte et al. (1988), and Zimmerman et al. (1991), ambng others). Here we con-
sider idealized fractures consistirig of two pérallel, surfaces, With isolated regions of
contact. These contact areas have the effect of ..dccreasing the permeability below the
value that would periain to unobstructed flow betWeen‘ parallel plétes.' Numerical and
analyticaI methods are used'tb relate this decrease in permeability to the amount of

’

‘contact area, and to the geometrical structure of the contact areas.

FORMULATION OF PROBLEM

The flow of a Newtonian fluid (such as water) through a fracture is governed by

. ~
the nonlinear Navier-Stokes equations. Exact solutions to these equations for specific
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geometries are usually very difficult to obtain. .The exact solution for flow between
two parallel plates under a uniform pressure gradient, however, is known (see Schlicht-
ing, 1968, p. 77). The velocity profile (across the fracture) for this flow is parabolic,
| with zero velocity at the uppér and lower surfaces to satisfy the no-slip boﬁndary con-
dition. The total fluid flux Q (per unit depth in the fracture plane in the direction nor-
ﬁ_xal to VP) is found by integrating the ‘velocity across the thickness of the channel.
This leads to the famiiiar cubic law Q = —h3VP /12, where VP is the pressure gra-
dient, and W is the viscosity of the fluid. In terms of Darcy’s law, which states. that
Q) = —kh VP /u, the parallel plate geometry has a permeability'k =h2/12. In ST units,
for mstance \V4 has units of [Pa/m], A has units of [m], and u has umts of [Pa-s]; the
flux vector Q will therefore have umts of [mzls] The total volumetric flux can be

found by multiplying this value by the fracture depth normal to VP.

For a fracture that is modeled as two parallel plates propped opeh by discrete
~ areas of contact (Fig. 1), the flow cannot be everywhere parallel to the overall pressure
gradient, since the fluid must follow a tortuous patﬁ as it circumvénts the obstacles. If
the flow rates are suitably low, and if the aperture h is small ;clativc vt.o the charac- -
teristic dimension a of the contact areas (Fig. 1), the flow can be well approximatéd
by ‘‘Hele-Shaw’’ flow (Schlichting, 1968, p. 114). The precise constraint on the velo-
city.is that Re* = pUh 2/;_121 <<. 1, where Re* is the reduced Reynolds number, and U
is the mean velocity magnitude. In Hele-Shaw flow, the fluid still has a parabolic
velocity profile, and the velocity vector % at each point is still parallel to the local
pressure gradlent but the local pressure gradlent is not necessarily equal to the overall

' -macroscoplc pressure gradlent The velocity profile for this type of flow is given by

oo VP

2@ =h), | | M
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where z is the transverse coordinate measured from the' .bottom Waﬂ,' and VP is the
* local pressure gradient. “This local pressure gradient ié not always equal in magnitude -
~ or direction to the 6veréll- pressure | gra\ldient, which can be denoted by VP. When
integrated over the thickness of ﬁhe fracture, from z =0 fo z=h, this proﬁlé yields a

local version of the cubic law,

s h o . ' . : .
0 =-[®@)dz =-h*VP12p, - | | o @
0 . ’ .

in which the pressure gradient is allowed to vary from point to point in the plane of
the fracture. | |
The steady-state pressure field P (x,y) is 'found by solving the two—dimensiohal

‘Laplace equation in the region of the‘x—y plane cx'igrior to the obstacles, ';i.e.,
V2P (x,y)=0. | - N )

This condition (3). follo§vs from applying the law of conservation of mass to eqn. (2),
in the form div Q =0. Since there can be no flow into or out of the obstaclesn,l the
pressufe‘ﬁeld must .satisfy*aP /dn =0 along the obstacle boundaries, where n is meas-
ured along the outward unit normal ‘vector.. The external boundaries of the flow field
are typically either no;ﬂbw or constant-pressure boundaries (Fig. 2).

While the obstacles are correctly treated as being impermeable in the Hele-Shaw
approximatién, it is not possible to impbse the nb—slip boundary condition along these
surfaces. A well-posed boundary-value problem for Laplace’s equation that leads to a
unique solution requires only one boundafy condition at each point of the boundary

(Bers et al., 1964). The conditidn oP /on =0 seems seerris to be mandatory, since it
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reflects the fact tﬁat fluid cannot enter or leave the obstructions. Violating this condi-
tion would destroy the esseritial geometric features of the flow field. If we also
attempted to impose a condition corresponding to the fact that the tangential velocity
must vanish along the boundary, this would create an overdetermined system which
-would in general have no solution. Hence we must forego this additional condition,
which would be written as éP /ot =0, where ¢ is the direction tangéntial to the obsta-
cle boundary, even though it is physically cbrrect. The full Navier-Stokes equations,
on the other hand, do allow imposition of both the no-flow and two no-slip boundary
. conditions (in the two tangential directioné along each solid boundary surface). Since
the Navier-Stokes equations conSist of three Coupled second-order equations for -the
three velocity components, they are in effect sixth-order, and require the specification
‘of more boundary conditions. ‘A similar inability to sa'tisfy the no-slip condition arises
.when averaging the Navier-Stokes equations over a reﬁresentative elementary vblume
: (REV)I, yielding a Laplace equatidn for the macroscopic pressure, which is then infer—
preted as an average pressure over the REV (Béar, 1988). Although oﬁr'analysis leads
to the same mathematical équation, VP = 0, in the present case P represents the local

value of the pressure, and no averaging process is implied.

Since ‘the solutions ton the Hele-Shaw equations do hot satisfy the no-slip boun-
dary conditions on the sides of the obstacles, they will only be approximations to the
(physically exact) Navier-Stokes solutions. Based on his.method of reducing the
_ Navier-Stokes.equations to the Hele-Shaw equations, Stokes conjectured (sée Lee aﬁd
Fung, 1969) that the relative error of the Hele-Shaw apprpximationé would be on the
order of h/a. This a.’sscrtion ‘has been verified by Lee and Fung (1969) for the prob-
.lem of flow between two parallel plates that are propped open by a single cylindrical
posf of radius a. They used the full Navier-Stokes equations, and computed a
second-order correction to the Hele-Shaw solution. Their second-order correction to

the relationship between flowrate and pressure drop was in fact proportional to 4/a, as
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- Stokes had conjectured. Errors of vthis_ magnitude shouid be negligible for many appli- |
céitions to real fractures.v For example; typical average apertures of fracturés in crystal-
' lihe rock are on the ordér of 10-100 pm, while aspeﬁiy sizes (in the fracture plane)
are usually on the order of millimeters (Pyrak-Noite et al., 1987). The other assump-
tion of the Hele-Shaw model, that of a small reduced Reynolds .numlber., will also be
saﬁsﬁed in many céscs of interest. For example, if we. consider waterv with
1= 0001 Pa-s flowing in a fracture with 4 =100um and @ =10 mm, then the criterion
Re* < 0.1 implies that the pressure gradient should notvexcc'ed 10° Pa/m, or -about 1
bar/m (5 psi/ft). While natﬁrally occurring préssure g_fadients are usually not this large,
this criterion could be violated in situations df forced ﬂow, such as hydraulic fracturing

processes.

METHODS OF ANALYSIS

Various methods can be used to ﬁrid solutions to the Laplace equation in two
dimensibns, ‘among which are many numerical, analytical and analogue téchniques.
We usé a ‘boﬁndary element method as a general tool to study flow around asperities,
and to find the effective fracture conductivity. Analogue measurements are used to
| validate the code for simple geometries, such as circular aSpcrities. Finally, analytical
methods are used to develop expressions for the effective conductivity of a fracture

with randomly distributed aspeﬁties of elliptical planform. |

Boundary-element analysis

The boundary-value problem described above can be solved for general obstacle
shapes ﬁsing any of the numerical schemes that have been constructed to treat
Laplace’s equation. We .use a boundary-element method to solve Lapiace’s equation
in square regions containing contact areas of various shapes (Fig. 2). Fixed pressures

are maintained on two opposing edges of the region, while the other two sides are
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taken to be no-flow boundaries. The béundary-element method has certain advantages
. over finite-differences or finite-elements for this type of problem, since it requires
discretization only of the boundaries of the problem, instead of the entire flow region.
| Briefly described, the boundary-element method utilizes ‘point-source’ type solutions
to the partial differential equation, and superimposes them to satisfy the boundary con-
ditions in Some average or approximate sehse. Details of the method, and some com-

puter pfograrns, can be found in Brebbia (1978). The code used here, FLOW, is

described in detail by Chen (1990). The boundary-element caiculations’ yield the pres- |

sure distribution throughout the flow region. The local flowrate can be found from
“egn. (2), after which the total flux through the region is found by integratiﬁg the nor-
mal componen{ of the flowrate vector across one of 'thé constant-pressure boundén’es.
In the calculations, it is convenient to normalize the problem by setting h =1 and
p=1, in which case the effective permeability k* is found by dividing the ﬂdwrate

magnitude I0'| by the overall pressure gradient VP. -

Analogue measurements
Since the fluid flow is assumed to be described by Laplace’s equation, with the
contact areas serving as impermeable boundaries, this problem is analogous to the flow

of electrical current in a thin sheet with holes punched in it (cf., Bear, 1988; Tobo-

chnik et al., 1989). Since the holes obstruct the flow of electrical current, they are |

analogous to the aspérity obstacles. Experiments were therefore carried out on such
sheets to measure the overall electrical conductivity (which is the analogue of the frac-
ture_permeability), in order to validate the numerical code. For these experiments, a
thin. sheet of conductive paper is cut into a square, and a strip of metallic féint is
| applied to two opposing edges. Since the conductivity of the paint isr much higher
than that of the paper, these edges will be lines of constant potential. Holes which
“have the desired shépes, sizes and locations are cut out of the sheet, and the overall

conductance is measured with an ohm-meter. Since resistance measurements can be

\
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made very accurately, this method is limited only by the precision with which the
holes can be cut. We used a razor-knife to cut the holes, after outlining the shapes
with é pencil. This method is very precise for circular holes, or other holes with sim-

ple, smooth shapes. Precision was difficult to maintain when cutting shapes such as

thin ellipses, for example.

Eﬁ’ecti\(e-medium theory
The problem outlined‘ above is a typical one in the field of effective properties of
heterogeneous media. The, unobsfructed areas between the obstacles are regions with
some kﬁown permeability, k,, while the obstacles are regioné of zero permeability.
The aim of an effective medium theory. is tb determine an effecti_ve‘mzicroscopic per-
meability k* that can be used, in conjunction with Darcy’s law, to model flow through
tﬁe fracture on length scales large enough to encompass many asperities. Since this
problem is gbvemed by Laplace’s equation, the method introduced by Maxwell to
predict‘ the eléctﬁcal ‘conductivity of a three-dimensional conductor permeated with
inﬁnitely-_conductive spheres (see Carslav& and J:ieger, 1959, p; 425) can be used. :This
method ‘was used by Zimmerman (1989) to model the thermal conductivity of fluid-
saturated rocks, assuming the pores. to be oblate spheroids, and produced reasonably
_accurate results; In the terminélogy of the présent problém, Maxwell’s method con-.
sists of calculating the decrease in flow due fo a single obstacle of known size and
shape, averaging this effect over all shapes and oriehtations of the obstacles, and then
equating the resulting decrease in flow to that whic;h would be caused by a single cir- |
culai_ ““obstruction’” which has some cffective permeability &* . Walsh (1981) applied
this method to a fracture with ‘‘randomly”’ located circular obstructions; here we
' \

extend this method to cases where the obstacles are elliptical in shape, with random

orientations.



RESULTS
Circular obstructions

In general, the effective fracture_pgrmeability' will depend on both the shape of
the obstructions, and their location and orientation. The simplest case to consider is
that of circular obstructions, for whiéh the issue of orientation is not relevant. Walsh
_(l1981) used Maxwell’s effective medium approaéh, along with the solutions for. the
potentiai fields surrounding circular inclusions (Carslaw and Jaeger .1959, p. 426), to

derive the following expression for the effective permeability of such a system:

K _1-c | | @

wheré c is the fractional contact area of the fracture. Walsh interpreted this result as
applying to ‘‘randomly locatéd” obstructions. However, the Maxwell formalism cannot
account for conelat?ons in the locations of the asperities. Flirthermore, any déviatibn
from randomness would introduce a higher-order effect that will not be important at
the low va1uch of c found in naturally occurring fractures, which are usually less than
0.25 (Tséng and Withefspoon, 1981). For example, the numericél calculations of
' Tzadka and Schulgasser (1983) for the related problem of the transverse thermal con-
ductivity of a material containing highly-conducting cylindricél fibers show that corre-
lations between the locations of the inclusions do not become important until ¢ reaches
| about 0.50. Hénce, for 0<c <0.25, Walsh’s result should apply eqﬁ.ally well to r;an-
dom or ordered arrays.' of obstacles, a's long as the ordered arrays lead to isotropié per-
meability tensors. | |
Boundary-element calculations were carried out for fractures with circular
obsfructions arranged in square arrays (see Fig. 3), for values of ¢ ranging_ from O to

0.25. When the obstructions are arranged in a periodic array, the calculations need
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oﬁly be carried out in a ‘‘unit cell’” formed by the imaginary grid of intersecting no-
flow and constant pressure. lines. A frgcture in which the circular ob‘strucﬁons are
arranged in a square (or an héXagonal) grid will exhibit an isotropic two-_dimcnsional
permeability tensor (Nye, 1985, p. 23), despite the fact that the details of the velocity
field will vary with direction. This seeming discrepancy is related to the fact that the
vélocity_ﬁeld is a local property, wheréas the perineability is an integrﬁfed \propcrty.
Hence a single calculation of _the effective . permeability in any convenient direction
will in fact yield the permeability in all directions. With these facts in mind, we note
* that (éee Fig. 3) the bo.undary'-elern‘ent calculations for the square array agreéd v_éfy
closely with the predictions of the Maxwell-Walsh expression. As an additional check
on the accuracy of tﬁc boundary-element célculatidns,'analogue eléctrical conductivity
measurements w.ere‘also carried out. The measured conductivities (see Fig. 3) Wefe in
close agreement with both the MaxWell-Walsh predictions and the boundary-elérﬁent -

calculations.

Elliptical obstructions

- Since the Maxwell effective medium theory wbrks very well for circular'obsfruc-
tions, it seems feésonable to extend it to more general shapes. One shape tﬁét isv often
used in mbdeling various phySiéal properties of focks is the ellipse (cf., Seeburger and
Nur, 1984), which has been used to model the shapes of both pores and grains in sedi-
mentary .rocks. In our problem we use the ellipse to model the planform of the frac-
ture asperities. Although it'might be thought that the ellipse, as weli as the circle, are
both too idealized to represent real asperities, the ellipse has the advantége that by

varying the aspect ratio, one can achieve different values of the perimeter-to-area ratio.

The basic problem that must be solved in order to apply this approach to elliptical
obstructions is Laplace’s equation in the region exterior to an ellipse, with a uniform

potential gradient at infinity, and no flow across the boundary of the ellipse. Since the
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ellipse has an arbitrary angular orientation with respect to the imposed potential gra-
dient, the effect on the flow must be averaged over all (equally likely) orientations.

The perturbation in the flow field far from the obstacle is then equated to the perturba-

~ tion that would be caused by an equivalent circular obstacle with some finite conduc-

tivity k*, which leads to an equation for k* in terms of the number density and aspect
ratio of the obstacles. This basic boundary-value problem is a special case of the more
general problem solved by Obdam and Veling (1987), in which the elliptical obsiacle
has a finite conducﬁ;rity. The details of the utilization of their solution for the compﬁ~
tation of the effective permeability of a fracture éontaining a random dism’bution of

elliptical asperities are described in Appendix A. The resulting expression for the

effective permeability is similar in form to eqn. (4) for circular obstructions, but with -

the percentage contact area ¢ multiplied by a factor that depends on the shape of the

ellipse:

(1 + )2
40,

1-Bc

= 1+Bc ’

k* : o

—_— where B = , . : _ &)
k, » | _

and the aspect ratio of the ellipse, a., is defined as the ratio of the minor to major axis.
For ciréular obstructions, o = 1, and B = 1, and so expréssion (5) reduces to Walsh’s

expression, eqn. (4).

The factor B defined in eqn. (5) is always greater than unity, and monotonically

increases as the ellipse becomes more elongated. Since (1—Bc)/(1+PBc) is less than |

(I1-c)/(1+c) for all 0<c <1 when B>1, as can be shown by cross-multiplying and
- expanding out the terins, the k*/k, curves for 'elliptical obstrucﬁons will always lie
below Walsh’s curve. This is consistent With the fact that Walsh’s expression coin-
cides with the upper bound on k*/k, that was derived by McCoy (1982) using yéria-

tional principles. The predictions of the effective medium theory for 0.=0.2 are shown
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" in Fig. 4, where they are compared to boundary-element calculations. The ’ell‘ipticalb
obstacles were generatéd by centering thcm on alternate squares_ in a squarcv array
(such as the black squares on a checkerboard) and then assigning fo each ellipsé a ran-
' dotnljr chdsé'n angular orientation (see Fig. 4). Grids encompaésing varying number of
square cells were used, and it was found that grids of 30x 30 cells were sufficient to-
eliminate the significance of _edge effects. Ovef the range of cdntact areas showh in
the figure, 0<c¢ <0.05, the estimétes of the effective medium theory érc very accurétc.
I—ﬁgher contact areas could have been achieved by placing aspéﬁties in éach cell, rather'
‘than in every other cell. With ellipses of aspect ratib 0.2, the obstacles would begin to .
6ver1ap each other when ¢ reach.ed about 0.15. However, since higher contact areé
concentrations require a much larger number of computational nodes, we did not use,.

values of ¢ greater than 0.05.

" Due to the laborious and painstaking procedure required to cut out the elliptical
“holes in the conductive sheet, only one analogue measurement was made for the ellipt- -
ical case. The one conductivity value measured was in fairly close agreement (see Fig.

4) with the predictions of eqn. (5).

Irr_egulqr obstructions

The shapes of asperity obstructions found in reai rock fractures are of course
‘more irregular than circles or ellipses. We have therefore also used our boundary-
element code to study flow around irregularly shaped obstacles such as those shown.in
| the inset of Fig. 5. Thése fatterns areb generated by breaking up a square flow region
into a.30x30 re_ctanvgular | grid, and assighing each grid block to be either an obstruc-
tion zone or a ﬂov;' zone. This assiénmen_t process, which'is described in detail by
.Coakley (1989) and Chen (1990), is discussed briefly in Appendix B Exaihples of
such simul'atiohs, using the value 0.75 for the correlation parametér A (defined in
Appendix B), are shown in Fig. 5. Thé computed permeabilities all lie below. Walsh’s

curve, as indeed they must, since eqn. (4) is an upper bound with respect to all
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possible obstruction geometries that generate isotropic permeability tensors.

In order to draw general cbnclusiohs from results such as those shown in Fig. 5,
it would be useful to have some way to quantify the obstruction geometry. One possi-
bility,.vs.'hich would make use of the previously—discﬁsscd analyt.ical expressions for a .
fracture with elliptical obstructions, would be to assign to each fracture geometry a
suitably chosen’ “eqjlivalent aspect ratio”’. In analogy with the Carman-Kozeny equa-
tion (Scheidegger, 1974) for the permeability of three-dimensional porous media, for
example, an aspect ratio could be chosen based on the total area and total perimeter of
the actual asperities. As a test of this conjecture, consider the géomctry shown in the
inset of Fig. 5. Using a lchgth scale in which each small square is of unit length, this
»geome'try has 21 obstacles with average area of 8.57, and average perimeter of 14.0.
If we "‘replac;:” these obstacllcs by 21 ellipses, each of area 8.57, the aspect_ratio
would have to be 0.258 in order to maintain the same average obstacle perimeter.
With this value of o used for all values of ¢ in the suite of data shown in Fig. 5, the
normalized permeabilities predicted by eqn. (5) are shown by the solid line. The
agreement between these predictions and the numerically computed values is fairly
good, suggesting thét the conductivity of a fracture with an irregular contact-area
géometry can be modeled by eqn. (5),vwith the aspect ratio chosen so as to give the
correct values for the average perimeter and average area of the individual obstacles.
Use of this rule-of-thumb for other asperity geometries generated by the algorithm
described in Appendix B (see Chen, 1990 for édditional examples) leads to the same
reasonably close agreement between computed and predicted perme’abilities as shown

in Fig. 5.

CONCLUSIONS

Numerical, anzilogue and analytical methods have been used to investigate the

effect of contact area geometry on the permeability of a fracture. To isolate the effect
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“of contact area, the fracture apertufe has been vass_umed constantv in the regions between
the aspentles For obstacles/that are circular in tne plane of the fracmfe eqn. (4)
“derived by Walsh (1981) using the Maxwell effective medium approximation was
found to be very accurate for contact areas up to at least 25%. The Maxwell-Walsh
approach was extended to randomly oriented obstacles of ellipticél -shape (eqn..(5)),
with the results veriﬁed.‘nur'nerically for a=0.2, ¢ <£0.05. Fractures with more irregu-
lar contact area geometnes were also studled using the boundary- element method.
Such fractures had permeabilities that were lower, by as much as 30%, than would be
predlcted_by.Walsh s expression, but which could be fit fairly well by the effective
medium approximation if an eqﬁivélent aspeet ratio is used. This equivalent aspect.
ratio can be chosen by imagining the actual asperities to be replaced by an equal

number of ellipses with the same total area and the same total perimeter.
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APPENDIX A

In this appendix, we present the derivation of eqn. (5) for the effective permeabil-
ity of a fracture that. is partialiy obstructed by randomly-oriented and randomly-located
elliptical asperities. We use the method originally devised by Maxwell to find the
effective conductivity of a three-di‘mensional body containing a dispersion of
inﬁnitely-cénduétive sphefes. Since this method entails the calculation of the perturba-
tive effect thét a single obstruction has on the flow field, but does not consider the
intefactive effects of pair§ (or triples, etc.) of obstructions, it is generally considered to
be rigorously correct only to first order in the-inclusion concentration. However, evi-
dence from furfher analysis of the three-dimensional spherical inclusion problem
(Zuzovsky and Brenner, 1977) implies that this method is actually correct up to at
least second order, with a range of accuracy extending to inclusion concentrations of at

least 0.25.

Consider now an elliptical obstacle, with semi-major and semi-minor axes @ and
‘aa, placed in a uniform flow field, with the direction of the free-stream velocity vector
(of magnitude Q) oriented at an angle & to the major axis of the el_lipse:(Fig. Al).
Let the coordinate axes of a complex plane z =x+ iy be centered on the eilipse, and
aligned so that the free-stream vvelocity’is in the x direction. (This complex variable z
should not be confused with the Cartesian coordinate z that is perpendicular to the
x=y plane, as in Fig. 1). Obdam and Veling (1987) found the  complex velocity
potential in the general case where there is an arbitrary ratio of the permeability inside
the obstacle to the permeability outside of the obstacle.  The solution to our problem is
found by sétting this ratio equal to zero, in.which case the complex velocity potential

exterior to the ellipse is given by

Ce"'s} a’(1+ o)(oicosd + i sind) ’ o o @y

- L+ —a?(1-0d)

Qe)=-0,
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where {=ze‘3. Note that Obdam and Veling .(1987) aligned their coordinate akes with
the ellipse; since we want to consider a distribution of ellipses randoinly oriented with
respept to a fixed macfoscopic ﬂdw ﬁéld; we find it convenient to align fhe axes with .
the free—stfeé.m velocity vecto'r. This requires rotaﬁng their coordinate system by .an
émgle 5, i.e., letting z — ze'®.

- At distances far from the ellipse, the denominator in the term on the righi side of

eqn. (A1) reduces to 2, and the velocity potential takes the form

Q@)= -0,z + a (1+a)(ac9§8+151n8) - (A2)
_ ‘ 2ze'! .
The complex velocity 'vector Q, +iQ, is Telated to the potential by

0, —iQ, =—Q'(z), so that we find, for large Iz!, -

2 vcosS — i sinS)eid | | | |
0, +iQy = Q,|1 -2 (““)(“‘;‘ff isind)e -, | (A3)
) . L2

where z” denotes the complex conjugate x —iy. Using the polar representation for z on

the right side, we have z =re'®, and 72=r2%~i2, 5o

o 201 s ey B i20
0, +i0, = 0, l_q (. +(x)((xcqs2821s1n8)e e . , | (Ad)
r

Now imaginé that there are N ellipses, each with the same aspect ratio o, but with a
random distribution of orientation angles 8. Neglecting the (higher-order) effect of -

flow-field perturbations due to pairs, triples, etc., of nearby obstacles, the total velocity
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field far from the obstacles is given by

2 L icin®eid>,i20 |
Na (1+0L)<(oucozsr82 isind)e%>e¢ : , (AS)

Qx+iQy = Qo .1_

where the brackets denote an average taken over all pos31ble onentatlons, from
8=—1t/2 to 3= +1t/2 Note that 6 is measured with respect to the fixed coordinate sys-
tem, and does not vary with the orientation of the elliptical obstacle. The bracketed

,

average in eqn. (AS) can be evaluated as follows:

<(ocosd—isind)e 8> = <(occos8 —isind)(cosd +isind)>

= <(owcos?d + sin?8) —i (1 — o)(sincosd)>

™ ‘ - ™2
= -7;- J (ocos®d+ s1n28)d8 —i(l- a)—- 'f (sindcosd)d &
-2
1+0 - | e
= — ) A
> o A - ( 6)_

The far-field velocity vector is therefore giveri by

' Naz(1+a)2 eizeJ . (A7)

Qx + le = Qo [1 - 4r2
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The solution of Obdam a'nd'Veling (1987) can also be used to find the velocity
field that would exist around a circular obstacle of radius A and permeability k* that
perturbs- a uniform flow field in a medium with permeability k,. This solution is -

found by putting a=1 and ki /ko% = k* Ik, in their general solution, yielding

(k, —k*)A?

O i20 o
Ox +iQy = 0,1 (ko+k*)r2e : | (AS)

if the ensemble of N obstacles can be replacéd by an equivalent homogeneous region
with permeability k*, then the two velocity fields giveh‘ by eqns. (A7) and (A8) must

be equal, implying that

—k* : ‘ '
k, 3 (1+oc)2c (A9)

k, +k* — 4o

where ¢ =Nna’o/mA? is the area fraction of the elliptical obstacles. When solved for
the ratio k* /K, , eqn. (A9) yields eqn. (5). |

As partial checks on the correctness of these calculations, ﬁist' note that for circu-
lar ihclusions, o=1, and -éqn. (A9) reduces to Walsh’s expression, eqn. (4). In the
‘other iirfxiting case of small aspecf ratio, eqn. (A9) agrees to ﬁfst order, in ¢ with the

first-order calculations of Tobochnik et al. (1989), who found k* /k, = t—c /2.
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APPENDIX B

vIn this appendix we describe briefly the procedure used to generate irregular obs-
tacle patterns, such as shov_s)n in the insert of Fig. 5. A more detailed discussion of
this procedure is gian by Coakley (1989). First, we break up a square region that
represenis a fracture plane into a grid of, say, 30 %30 squares. These squares can be
labeled with 'th“e indiceé {i,j}, reading left to right, starting in the upper lcft_éomer,'as
would be done in labeling the elements of a matrix. Next, each square is assigned an
independent, log-normally distributed random van'ablé, X;j .v We then convolute X;;
 with a moving-éverage filter, H,;,; to get a spatially-correlated, log-normally distributed

random variable, Y;;, as follows:

D D ’ .
Yi= Y X (i-kyj-1Hu - ’ ' (B1)
k=-DI=D v _ : _

The filter wei.ghts Hy, are radially-symmetric, and decay exponentially according to . .
Hy = expaNk2+1%) for Vi2+12<D, o (B2)

and Hy =0 for Nk2+125D , where D is a_parametér thz;t determines the spatial size of
the filter, and A is.a. damping factor which determines the rate at which the filter
weights decay to zero. Thc variable Y;; can be fhought of as the apefture, h, of a
rough-wailed fracture. Finally, we chose a clipping level Y, and designate all squares
 with Y;i2Y, ‘lto be open void areas, which are assigned an aperture of 2. All squares
with Y;; <Y, are designated to be closed contact regions. The clipping level Y, can

be varied until the desired contact area percentage is achieved. This algorithm was

used in a larger study in which the mechanical closure of ronigh-walled’ fractures was
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also modeled numerically; for these pui'poses the apertures would not be clipped off
above Y,-]-=Yo. | | -

'This' procedure gcneratés a sim_uiaited fracture plane that contains v'ivrregularily-
- shaped islands of asperity contact. If we had not convoluted the variables X;j vﬁth thé '
\ﬁlter wéights Hk_j, the clipping procedure would have led, in general, to a very large
number of small contact areas, many of which were only one square in s}i_zév.' The con- |
~ volution process introduces spatial correlation intd the randofh aperture field. In our
simulations, the filter radiils D was always chosen to be 7.5, while the darﬁping 'factof ‘
A was varied from 0.25 10 3.0. Sir_xce the exponentialiy-deéreaging filter weights H,d.
decay to O as k and / increase, the ﬁse of a finite cﬁtdff value D in eqn. (B2) is
rherely a numéricai convenience that has little effect on the results. ‘Larger values of A
lead to contaét ‘islands that are more dispersed, whereas smaller vﬁers of A lead to.
fewer but larger.islands of contact. Since the permeability of a fracture modeled by
. the Hele-Shan.equations (which are valid as long as the typical diameter of an island‘
‘a is much Iargcr than the aperture h) should not depend on the size of the contact |
islands, but only on their planform, the valué of A .turns out to have little influence on
the resulting permeabilities, provided t_hét it is not so large that all-correlation'diés off
within a distancé less than one Qnii square. The results i)resented in Fig. 5 wcré for -

the case of X=O.75; results for other values of ‘7\. can be found in Chen (1990). -
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~ FIGURE CAPTIONS

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1. Side view of a rock fracture (top); idealizgd fracture with parallel walls and iso-
lated asperities (middle and bottom). The aperture is h, ‘and the characteristic
asperity dimension is a. ' | |

2. Schematic diagram of the basic computational problem, showing two asiaerities,
the no-flow and constant-pressure boundaries, and the discrete nodal points used

in the boundary-element calculations.

3. Normalized permeability of a fracture | with circular asperities. Asperity
geometry (for ¢ =0.15) is shown in the inset. Calculations and measurements
were performed on' a unit cell consisting of one circular obstacl_e centered within
a square region. |

4. Normalized permeability of a fracture with elliptical 'asperities of aspect ratio
0.2. Asperity geometry (one quadrant; for ¢ =0.05) is éhown in the inset. Calcu-
lations were carried out on a 30x30 grid, containing 450 ellipses. To illustrate
the sensiﬁvity of the effective medium theory (eqn. (5)) to the aspect ratio, curves

are shown for (x=0v.1, 0.2, and 0.3.

3

5. Normalized permeability of a fracture with irregular asperities, generated by the
algorithm described in Appendix B. Example of asperity geometry used in simu-
lations (for ¢ =0.20, on a 30x30 grid) is shown in the inset. Equivalent aspect
ratio of 0.258 corresponds to an ellipse having the same average area and average

&

perimeter as do the irregular asperities.

Al. Elliptical obstacle of aspect ratio ¢, with its major axis oriented at an angle &

to the free stream velocity of magnitude Q, .
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Fig. 1. Side view of a rock fracture (top); idealized fracture with parallel walls and iso-

lated aépen'tics (middle ‘and bottom). The aperture is &, and. the characteristic

asperity dimension is a.
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Fig. 2. Schematic diagram of the basic computational problem, showing two asperities,
the no-flow and constant-pressure boundaries, and the discrete nodal points used

in the boundary-element calculations.
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‘Fig. 3. Normalized permeability of a fracture with circular asperities. Asperity
geometry (for ¢ =0.15) is shown in the inset. Calculations and measurements
were performed on a unit cell consisting of one circular obstacle centered within

a square region.
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Fig. 4. Normalized permeability of a fracture with elliptical asperities of aspect ratio
0.2. Asperity geometry (one quadrant; for ¢ =0.05) is shown in the inset. Calcu- .
lations were carried out on a 30x30 grid, containing 450 ellipses. To illustrate

the sensitivity of the effective medium theory (eqn. (5)) to the aspect ratio, curves

are shown for a=0.1, 0.2, and 0.3.
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Fig. 5. Normalized permeability of ‘avfracture with irreguiar asperities, generated by the
algorithm described in Appenc/lix B. Example of asperity geometry used in simu-
lations (for ¢ =0.20, on a 30x30 grid) is shown in the inset. Equivalent aspect
ratio of 0.258 corrésponds to an ellipse having the same average area and average

- perimeter as do the irregular asperities.
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z=X+iy = re®

Fig. Al Elliptical obstacle of aspect ratio a, with its major axis oriented at an angle &

“to the free stream velocity of magnitude Q.
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