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1.  Introduction
Sensitivity analysis (SA) is commonly used to ascertain the relative importance of input variables, x = {x1, …, 
xd}, in determining the simulated output, y = {y1, …, yn}, of some vector-valued function or model, f(x) (Saltelli 
et al., 2010). A closely related practice is uncertainty analysis, which is concerned with quantifying the confidence 
(prediction) limits of the simulated output, yt; t = (1, …, n). This usually involves the use of training data record, 

𝐴𝐴 𝐲̃𝐲 = {𝑦̃𝑦1, . . . , 𝑦̃𝑦𝑛𝑛} , and requires prior assumptions about the nature and distribution of the residuals, 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝑦̃𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡 , 
and the sources of modeling errors (Beven & Binley, 1992; Liu & Gupta, 2007; Vrugt et al., 2005). Thus, uncer-
tainty analysis quantifies the probability that a certain event (or range of events) will take place, whereas SA does 
not tell us anything about how likely a certain outcome of the model is. This essay is concerned with a general 
description of sensitivity across the confidence intervals of the simulated output. This so-called probabilistic SA 
(Oakley & O’Hagan, 2004) quantifies the sensitivity of simulated and/or forecasted event probabilities for a given 
multivariate probability distribution of the input variables. Our methodology relies on the analysis of covariance 
(ANCOVA) to preserve the multivariate character of the 𝐴𝐴 (𝐱𝐱, 𝐟𝐟 (𝐱𝐱)) -relationship.

SA is an essential step in model development, model calibration and quality assurance (Saltelli et al., 2020). In 
the past decades, many different SA methods have been developed and used in the mathematical and applied 
literature. Of these approaches, variance-based methods are particularly attractive because of their innate ability 
to characterize sensitivity over the entire prior ranges of the input variables and capacity to differentiate between 
the marginal, joint and total effects of x1, …, xd (Cukier et  al.,  1973; McKay, 1995; Razavi & Gupta,  2016; 
Sobol’, 1990). The prototype of this approach, Sobol’ (1990) method, was originally presented in Russian. In 
the English reprint, Sobol’ (1993) showed that the output, y = f(x), of a scalar-valued square-integrable function, 

𝐴𝐴 𝐴𝐴 ∈ 𝐿𝐿2

(

𝕂𝕂
𝑑𝑑
)

 , on the d-dimensional unit cube, 𝐴𝐴 𝕂𝕂
𝑑𝑑 = {𝐱𝐱|0 ≤ 𝑥𝑥𝑖𝑖 ≤ 1; 𝑖𝑖 = 1, . . . , 𝑑𝑑} , can be uniquely decomposed 

into summands of elementary functions, fi(xi), fij(xi, xj), …, f12…d(x1, x2, …, xd), under orthogonality constraints, 
to yield

Abstract  Variance-based analysis has emerged as method of choice for quantifying the sensitivity of the 
output, y, of a scalar-valued square-integrable function, f ∈ L 2(� ), to its d ≥ 1 input variables, x = {x1, …, xd}, 
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in a posterior parameter distribution. We use high-dimensional model representation (HDMR) of Li et al. 
(2010, https://doi.org/10.1021/jp9096919), Li and Rabitz (2012, https://doi.org/10.1007/s10910-011-9898-
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where f0 signifies the expected (mean) value, 𝐴𝐴 𝐴𝐴0 = 𝔼𝔼[𝑓𝑓 (𝐱𝐱)] , of the model output and ϵ is the residual. This resid-
ual is assumed to follow a normal distribution, 𝐴𝐴 𝐴𝐴 ∼ 

(

0, 𝜎𝜎2

𝜖𝜖

)

 , with constant (unexplained) variance, 𝐴𝐴 𝐴𝐴2
𝜖𝜖  . The 

first-order functions, fi(xi), characterize the individual effects of the input variables on the simulated model output. 
The second-, fij(xi, xj), third-, fijk(xi, xj, xk), up to dth-order effects, f12…d(x1, x2, …, xd), characterize the contribution 
of groups of two, three, up to all input variables combined to y. These functions account for interactions between 
the input variables that contribute partially to the model output. Equation 1 means that

𝑦𝑦 = 𝑓𝑓 (𝐱𝐱) = 𝑓𝑓0 +

𝑛𝑛1
∑

𝑖𝑖=1

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) +

𝑛𝑛2
∑

1≤𝑖𝑖𝑖𝑖𝑖≤𝑑𝑑

𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) +

𝑛𝑛3
∑

1≤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖≤𝑑𝑑

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑘𝑘) +⋯ + 𝑓𝑓12. . .𝑑𝑑(𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑑𝑑) + 𝜖𝜖𝜖� (2)

with n1 = d, main effects, n2 = d(d − 1)/2, second-order effects, n3 = d(d − 1)(d − 2)/6, third-order effects, and 
so forth. The total number of additive terms (summands) in the expression above equals 2 d.

Unknown to Sobol’ (1993) at the time, the decomposition of Equation 2 was derived decades earlier by Hoeffding (1948) 
as a generalization of the analysis of variance (ANOVA) to d > 2 independent variables. Functional decomposition 
of the variance of the model output, y, in Equation 2 produces the following identity (Hoeffding, 1948; Sobol’, 1990)

Var[�] =
�1
∑

�=1
Var[��(��)] +

�2
∑

1≤�<�≤�
Var

[

���(��, ��)
]

+
�3
∑

1≤�<�<�≤�
Var

[

����(��, �� , ��)
]

+⋯ + Var[�12. . .�(�1, �2, . . . , ��)] + �2
� ,

� (3)

If we divide all terms by Var[y], we yield Sobol’ sensitivity indices
𝑛𝑛1
∑

𝑖𝑖=1

𝑆𝑆𝑖𝑖(𝑥𝑥𝑖𝑖) +

𝑛𝑛2
∑

1≤𝑖𝑖𝑖𝑖𝑖≤𝑑𝑑

𝑆𝑆𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) +

𝑛𝑛3
∑

1≤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖≤𝑑𝑑

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑘𝑘) +⋯ + 𝑆𝑆12. . .𝑑𝑑(𝑥𝑥1, . . . , 𝑥𝑥𝑑𝑑) = 1,� (4)

pending the assumption that 𝐴𝐴 𝐴𝐴2
𝜖𝜖 ≪ Var[𝑦𝑦] . The Si's are the individual (main) effects of the input variables on the 

simulated output and the sensitivity indices with more than one subscript are the interactions. As the order of 
the indices in the subscript of the interaction terms is inconsequential, we follow convention and sort the indices 
from low to high.

A useful related measure is the total-order or total-effect sensitivity index (Homma & Saltelli, 1996)

𝑆𝑆T
𝑖𝑖 (𝑥𝑥𝑖𝑖) = 𝑆𝑆𝑖𝑖(𝑥𝑥𝑖𝑖) +

∑

𝑖𝑖≠𝑗𝑗

𝑆𝑆𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) +
∑

𝑖𝑖≠𝑗𝑗≠𝑘𝑘

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑘𝑘) +⋯ + 𝑆𝑆12. . .𝑑𝑑(𝑥𝑥1, . . . , 𝑥𝑥𝑑𝑑),� (5)

and includes all Sobol’ indices of Equation 4 with index i in the subscript. The total-order sensitivity index equals 
the fraction of variance that would remain on average if xi is left to vary over its prior range while all other input 
variables are fixed (Puy et al., 2021). Note that 𝐴𝐴

∑𝑑𝑑

𝑖𝑖=1
𝑆𝑆T

𝑖𝑖
(𝑥𝑥𝑖𝑖) ≥ 1 as interaction terms, say, Sij(xi, xj), count in both 

𝐴𝐴 𝐴𝐴T
𝑖𝑖
 and 𝐴𝐴 𝐴𝐴T

𝑗𝑗
 . Most mathematical functions do not admit a closed-form solution for the Sobol’ indices, and, there-

fore, we must resort to a numerical procedure to estimate the sensitivity indices of Equation 4. This includes the 
(quasi)-Monte Carlo approaches of Sobol’ (2001) and Owen (2005), Fourier amplitude sensitivity testing (Cukier 
et al., 1973), random balance designs (Tarantola et al., 2006) and variogram analysis of response surfaces (Razavi 
& Gupta, 2016) and involve repeated evaluation of the model output f(x) for x ∈ � . Note that the last three meth-
ods solve only for the main and/or total-order indices of the input factors.

Sobol's decomposition is unique only under orthogonality constraints. If u is a subset of selected dimensions of 
the input variables, u ⊆ {1, …, d}, then Equation 2 is synonymous to a d-way ANOVA-expansion of f(x) under 
one of two constraints (Chastaing et al., 2015)

∫ 1
0 ��(��)d�� = 0 for all � ∈ � (6a)

∫ 1
0 ��(��)��(��)d� = 0 for all �, � ⊆ {1, . . . , �}; � ≠ �, (6b)

�
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Thus, the expected value of fu(xu) with respect to each input variable of xu should be zero or, alterna-
tively, 𝐴𝐴 𝔼𝔼[𝑓𝑓𝑢𝑢(𝐱𝐱𝑢𝑢)𝑓𝑓𝑣𝑣(𝐱𝐱𝑣𝑣)] = 0 , thus the inner product, 〈fu(xu), fv(xv)〉 of pairwise elementary functions should 
be zero. Linear independence of two random variables, X and Y, implies that the variance of their sum, 
Var[X  +  Y]  =  Var[X]  +  Var[Y]. Thus, the orthogonality constraint of Equation  6 eliminates the covariances 
between the summands of elementary functions. Then Equations 3 and 4 are valid and unique.

The independence requirement of x1, …, xd is mathematically convenient but may not be borne out of the causal or 
correlational relationships between the input variables. Such association is not uncommon in hydrologic modeling 
and may be imposed by constraints on the input variables or by the fact that experimental data, 𝐴𝐴 𝐲̃𝐲 = {𝑦̃𝑦1, . . . , 𝑦̃𝑦𝑛𝑛} , 
and/or expert judgment are used (Mara et al., 2015). Indeed, correlation among x1, …, xd is almost guaranteed 
if the model output originates from the posterior probability density function, 𝐴𝐴 𝐴𝐴(𝐱𝐱|𝐲̃𝐲) , of the input variables 
(Gomes et al., 2017; Pan et al., 2009; Schoups et al., 2010; Song et al., 2015; Vrugt et al., 2008; H. Wang, Gong, 
et al., 2020). This induced structure in the 𝐴𝐴 (𝐱𝐱, 𝑓𝑓 (𝐱𝐱)) -relationship violates the expansion of Hoeffding (1948) or 
Sobol’ (1993) in Equation 2 and demands an ANCOVA-based model decomposition. Several publications have 
discussed the importance of parameter correlation in hydrologic SA (Song et al., 2015; Yuan et al., 2015), but 
most applications of global SA in hydrologic modeling continue to rely on parameter independence (A. Wang & 
Solomatine, 2019; A. Wang, Pianosi, et al., 2020; Zelelew & Alfredsen, 2013). A few studies have considered 
parameter correlation in hydrologic SA but the dependent parameters are (a) either lumped together (Khare 
et al., 2013) or (b) assumed to follow a convenient multivariate normal distribution (Ahn, 1996; Manache & 
Melching, 2008; Pan et al., 2011; Zhu, 2012) or isoprobabilistic Nataf transformation (Do & Razavi, 2020). The 
so-obtained sensitivity indices do not unify with Sobol’ indices in Equation 4 or in the case of the gSTAR-VARS 
method of Do and Razavi (2020) provide only total-order effects.

In this paper, we are concerned with variance-based SA of hydrologic models in the presence of correlated input 
variables, for example, multivariate dependencies among the parameters of a posterior distribution. We use high 
dimensional model representation or HDMR (Li & Rabitz, 2012; Li et al., 2010) and replace the elementary 
functions in Sobol's decomposition of Equation 2 by so-called component functions with linear expansion coeffi-
cients as unknown parameters. If the component functions satisfy hierarchical orthogonality, this meta-modeling 
approach disentangles exactly the structural and correlative contributions of individual and groups of input 
variables to the model output. The resulting sensitivity indices are a generalization of Sobol’ indices in Equa-
tion 4. The HDMR methodology has been used in earlier publications in the hydrologic literature to prioritize 
and/or rank input factors (Bennett & Fentie, 2017), quantify interaction terms of the input factors (Borgonovo 
et al., 2017) and assess the direction of change in model outputs (A. Wang, Pianosi, et al., 2020). But these studies 
are limited to independent input variables, do not necessarily satisfy hierarchical orthogonality of the component 
functions and/or use a first-order model decomposition only. We use first-, second- and third-order HDMR model 
decomposition and examine in detail how the structural, correlative and total sensitivity indices depend on soil 
and watershed wetness. Furthermore, we investigate the impact of parameter correlation on experimental design 
and demonstrate the use of the HDMR decomposition for model emulation.

The HDMR method arguably is one of the most advanced SA methods, but by no means the only variance-based 
approach that can handle correlation between the input factors. These approaches simplify ANCOVA-based 
function decomposition to a correlated and uncorrelated contribution (McKay,  1997; Xu,  2013; Xu & 
Gertner,  2008a,  2008b) or main effects and total sensitivity indices (Kucherenko et  al.,  2012,  2017), made 
possible in part by application of Sobol's method to orthogonalized input variables derived from grouping 
(Jacques et  al.,  2006; Saltelli & Tarantola,  2002), Gram-Schmidt projection (Chastaing et  al.,  2015; Mara & 
Tarantola, 2012) and isoprobabilistic transformation (Mara et al., 2015; Tarantola & Mara, 2017). HDMR decom-
poses the variance-covariance structure of the input-output relationship into a structural and correlative contri-
bution at first-, second-, and/or higher orders. This general-purpose method admits samples of the posterior 
distribution of the input variables for probabilistic SA of the 𝐴𝐴 (𝐱𝐱, 𝑓𝑓 (𝐱𝐱)) -relationship.

The remainder of this paper is organized as follows. Section  2 summarizes the problem at hand. Section  3 
presents rationales and theory of HDMR and discusses its default implementation and a variant with extended 
bases, HDMRext. This is followed in Section 4 by application of both methods to four case studies of increasing 
complexity. The first two studies illustrate and benchmark the performance of HDMR and HDMRext for depend-
ent and independent input variables by application to a simple linear model and the well-known Ishigami function 
(Ishigami & Homma, 1990). The next two case studies demonstrate the power and usefulness of HDMRext in 
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hydrologic modeling using SA of the soil water characteristic of van Genuchten (1980) and the rainfall-discharge 
relationship using hmodel (Schoups et al., 2010). In these last two studies, we analyze traces of the structural 
and correlative sensitivity indices and examine in detail the performance of the HDMRext emulator as a cheap 
surrogate of the forward model. Finally, Section 5 concludes this paper with a summary and discussion of our 
main findings. Specifically, we address the strengths and weaknesses of the HDMR and HDMRext, and provide 
some suggestions for future developments.

2.  Problem Statement
Let's consider a real-world system, 𝐴𝐴 𝔖𝔖 , whose future state, behavior and regularities may be described with explan-
atory laws, for example, those most fundamental and celebrated in physics. Our model, Y ← f(x, Ω), scales up 
the physical laws to the domain of 𝐴𝐴 𝔖𝔖 , simulates its spatiotemporal evolution and returns a matrix, Y, of simulated 
values of different quantities of interest. The d-vector, x = {x1, …, xd}, specifies the system and/or material prop-
erties of 𝐴𝐴 𝔖𝔖 and the array, Ω, consists of all other variables (constant or not) believed to govern, by causality, the 
variables of Y using the evolution rules of nature expressed in mathematical form. Generally, f is not available in 
closed form but we assume that it can be evaluated at any point, � = {�1, . . . , ��} ∈ � ⊆ ℝ� .

As most real-world systems have an intractable complexity, the dimensionality of the input space, (x, Ω), may 
grow very large to accurately portray the spatiotemporal evolution of 𝐴𝐴 𝔖𝔖 . This large model complexity will cloud 
the relationship between model inputs and outputs. SA will help determine which input variables exert the largest 
control on the simulated output, y, and which variables (parameters) have a negligible impact, thus, is an essential 
ingredient of model building and quality assurance (Saltelli et al., 2020). This serves many different purposes 
among which model simplification, model development, model calibration and uncertainty analysis and/or reduc-
tion are the most important applications.

This paper addresses a critical limitation of commonly used SA methods in hydrology and is concerned with 
global SA in the presence of correlated input variables. Such linear and/or nonlinear dependencies violate the 
variance summation used in Sobol's method and necessitate application of a mathematically much more rigor-
ous but arguably more difficult ANCOVA-based model decomposition. Before doing so, we first clarify our 
mathematical notation. Without loss of generality, we focus in this paper on the vector of model parameters, 
x, and consider only a single output, y. Thus, we suppress the array Ω in our subsequent notation and write, 

𝐴𝐴 𝐴𝐴 = 𝑓𝑓 (𝐱𝐱) ∶ ℝ
𝑑𝑑
→ ℝ

1 , for the scalar-valued form of the model with respect to x. The entries of the d-vector, 
x = {x1, …, xd}, are referred to as input variables, input factors or parameters in the remainder of this paper. After 
computation of the model output, y = f(x), the input variables are normalized to the unit d-dimensional cube, 

𝐴𝐴 𝕂𝕂
𝑑𝑑 = {𝐱𝐱 | 0 ≤ 𝑥𝑥𝑖𝑖 ≤ 1 for all 𝑖𝑖 = 1, . . . , 𝑑𝑑} , prior to SA.

In this paper, we are concerned with a rigorous variance-based description of the structural and correlative contri-
bution of hydrologic input variables to the model output and not with computational efficiency. This is inconse-
quential for our current case studies, but can pose a major limitation for high-dimensional and/or CPU-intensive 
hydrologic models. We will address the computational requirements of the HDMR methodology in passing. 
Although we use Sobol's method as main reference, we reiterate that this paper is not about a comparison of 
variance-based methods but rather about (probabilistic) SA in the presence of dependent input variables.

3.  High Dimensional Model Representation
In this section, we present a brief review of the main theory and ingredients of the HDMR methodology of Li 
et al. (2010) and describe its most up to date implementation with extended bases, so-called HDMRext, from Li 
and Rabitz (2012).

3.1.  Main Theory

The HDMR method is an extension of Sobol's method to correlated input variables. HDMR is rooted in statistical 
theory and uses variance/covariance-based decomposition of the model output to determine the structural and 
correlative contributions of each input variable separately and combinations thereof. Projector operator theory 
simplifies the learning of the input-output relationships to polynomial complexity.

HDMR builds on the model output decomposition in Equation 2 and replaces the elementary functions, fi(xi), fij(xi, 
xj), …, f12…d(x1, x2, …, xd), with so-called component functions with linear expansion coefficients as unknown 
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parameters. Suppose that we have a total of n123 = n1 + n2 + n3 first-, second-, and third-order component func-
tions. We can simplify Equation 2 to read

𝑦𝑦 = 𝑓𝑓 (𝐱𝐱) = 𝑓𝑓0 +

𝑛𝑛123
∑

𝑢𝑢=1

𝑓𝑓𝑢𝑢 + 𝜖𝜖𝜖� (7)

where the subscript u signifies the index of the component function, rather than its order as in Equation 2. Thus, 
f1, …, fd, correspond to the first-order component functions, fd + 1, fd + 2, …, fd + d(d − 1)/2, signify the second-order 
component functions and, fd + d(d − 1)/2 + 1, …, fd + d(d − 1)/2 + d(d − 1)(d − 2)/6, equal the third-order component functions. 
According to the functional classification of Kucherenko et al. (2011), component functions up to the third-order 
will usually suffice for describing the 𝐴𝐴 (𝐱𝐱, 𝑓𝑓 (𝐱𝐱)) -relationship of systems with not equally important variables (type 
A) and systems with equally important variables and dominant low order terms (type B). Most physical systems 
are of these two types (e.g. Falchi et al., 2018; Li & Rabitz, 2012; Li et al., 2010; Rabitz & Aliş, 1999; Ratto 
et al., 2007; Shereena & Rao, 2019; H. Wang et al., 2017; Ziehn & Tomlin, 2008). The last class of functions with 
equally important variables and dominant interaction terms, type C identified by Kucherenko et al. (2011), may 
demand fourth and/or higher-order component functions. This may introduce problems with the well-posedness 
of the HDMR functional decomposition, unless a very large number of input-output samples is used. Note that the 
sum of the component functions at the right hand side of Equation 7 may serve as a cheap surrogate model (emula-
tor) of the original system model, f(x). The emulator provides an approximation of f(x) − f0 up to the residual, 

𝐴𝐴 𝐴𝐴 ∼ 
(

0, 𝜎𝜎2

𝜖𝜖

)

 . In practice, we approximate 𝐴𝐴 𝐴𝐴2
𝜖𝜖  by the sample variance, 𝐴𝐴 𝐴𝐴2𝜖𝜖 , of the residuals of the surrogate model.

The change in subscript notation of the component functions suits variance decomposition of the simulated output

Var[𝑦𝑦] = 𝔼𝔼
[

(𝑦𝑦 − 𝔼𝔼(𝑦𝑦))
2

]

=

∫
𝕂𝕂𝑑𝑑

𝑤𝑤(𝐱𝐱)(𝑦𝑦 − 𝑓𝑓0)
2

d𝐱𝐱,� (8)

where w(x) denotes the probability density function of the d-variate prior distribution of the input variables, x. If 
we substitute Equation 7 into Equation 8 we yield the following expression (Li et al., 2010)

Var[𝑦𝑦] =
∫
𝕂𝕂𝑑𝑑

𝑤𝑤(𝐱𝐱)

(

𝑛𝑛123
∑

𝑢𝑢=1

𝑓𝑓𝑢𝑢 + 𝜖𝜖

)2

d𝐱𝐱,� (9)

which is equivalent to

Var[𝑦𝑦] =
∫
𝕂𝕂𝑑𝑑

𝑤𝑤(𝐱𝐱)

(

𝑛𝑛123
∑

𝑢𝑢=1

𝑓𝑓𝑢𝑢

)2

d𝐱𝐱 + 2
∫
𝕂𝕂𝑑𝑑

𝑤𝑤(𝐱𝐱)

𝑛𝑛123
∑

𝑢𝑢=1

(𝑓𝑓𝑢𝑢 ⋅ 𝜖𝜖)d𝐱𝐱 + 𝔼𝔼
[

𝜖𝜖2
]

,� (10)

where 𝐴𝐴 𝕂𝕂
𝑑𝑑 equals the unit cube of the normalized input variables. Least squares determination of the different 

fu's enforces orthogonality between the component functions and residuals, 𝐴𝐴 𝐴𝐴 ∼ 
(

0, 𝜎𝜎2

𝜖𝜖

)

 . As a result, the inner 
product of each fu and ϵ equals zero. Thus, the second term dissipates

∫
𝕂𝕂𝑑𝑑

𝑤𝑤(𝐱𝐱)(𝑓𝑓𝑢𝑢 ⋅ 𝜖𝜖) d𝐱𝐱 = 0.� (11)

and Equation 10 simplifies to Li et al. (2010)

Var[𝑦𝑦] =
∫
𝕂𝕂𝑑𝑑

𝑤𝑤(𝐱𝐱)

(

𝑛𝑛123
∑

𝑢𝑢=1

𝑓𝑓𝑢𝑢

)2

d𝐱𝐱 + 𝔼𝔼
[

𝜖𝜖2
]

.� (12)

This results in the following formulation for the variance of the model output, y, in Equation 7

Var[𝑦𝑦] =

𝑛𝑛123
∑

𝑢𝑢=1

Var[𝑓𝑓𝑢𝑢] +

𝑛𝑛123
∑

𝑢𝑢=1

Cov

[

𝑓𝑓𝑢𝑢,
∑

𝑚𝑚≠𝑢𝑢

𝑓𝑓𝑚𝑚

]

+ 𝔼𝔼
[

𝜖𝜖2
]

.� (13)

The variance of the model output equals the sum of the variances and covariances of the component functions. 
If we normalize the variance and covariance contribution of each component function with the variance of the 
model output
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𝑆𝑆a
𝑢𝑢 =

Var[𝑓𝑓𝑢𝑢]

Var[𝑦𝑦]
and 𝑆𝑆b

𝑢𝑢 =

Cov

[

𝑓𝑓𝑢𝑢,
∑𝑛𝑛123

𝑚𝑚≠𝑢𝑢
𝑓𝑓𝑚𝑚

]

Var[𝑦𝑦]
,� (14)

we yield the structural, 𝐴𝐴 𝐴𝐴a
𝑢𝑢 , and correlative, 𝐴𝐴 𝐴𝐴b

𝑢𝑢 , sensitivity of each component function, fu, and, thus, input varia-
ble or combinations thereof. The total sensitivity index, Su, of the uth component function, fu, now simply equals 
the sum of its structural and correlative sensitivity indices to yield (Li et al., 2010)

𝑆𝑆𝑢𝑢 = 𝑆𝑆a
𝑢𝑢 + 𝑆𝑆b

𝑢𝑢 .� (15)

For a square-integrable function and proper component functions, Equation 7 should approximate well the simu-
lated output and the variance, 𝐴𝐴 𝐴𝐴2

𝜖𝜖  , of the residuals, should be small. Then, 𝐴𝐴 𝔼𝔼
[

𝜖𝜖2
]

≈ 0 and, thus
𝑛𝑛
123
∑

𝑢𝑢=1

𝑆𝑆𝑢𝑢 ≈
Var[𝑦𝑦]

Var[𝑦𝑦]
= 1,� (16)

the sum of the total sensitivity indices of the component functions should amount to one. When the input vari-
ables are independent, the correlative contribution of the component functions will be zero by definition and 
Equation 13 simplifies to Sobol’ variance decomposition

Var[𝑦𝑦] =

𝑛𝑛123
∑

𝑢𝑢=1

Var[𝑓𝑓𝑢𝑢] + 𝔼𝔼
[

𝜖𝜖2
]

,� (17)

and the total sensitivity index, Su, of each component function will then amount to its structural sensitivity index, 
𝐴𝐴 𝐴𝐴a

𝑢𝑢 , only. Thus, for independent input variables, HDMR reduces to Sobol's method.

We are left with the choice of the component functions of Equation 7. Unfortunately, the model decomposition 
in Equation 7 does not admit a convenient closed-form solution for the mathematical form of the component 
functions (Khorashadi Zadeh et al., 2017; Li et al., 2001). We must therefore prescribe a suitable functional form 
of the component functions. Li et al. (2010) used uniform cubic B-splines for the first-, second- and third-order 
component functions, fi(xi), fij(xi, xj), and fijk(xi, xj, xk), respectively, of Equation 2

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) =

𝑚𝑚+2
∑

𝑟𝑟=0

𝛼𝛼𝑖𝑖
𝑟𝑟𝐵𝐵𝑟𝑟𝑟3(𝑥𝑥𝑖𝑖)� (18a)

𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) =

𝑚𝑚+2
∑

𝑟𝑟=0

𝑚𝑚+2
∑

𝑠𝑠=0

𝛽𝛽
𝑖𝑖𝑖𝑖
𝑟𝑟𝑟𝑟𝐵𝐵𝑟𝑟𝑟3(𝑥𝑥𝑖𝑖)𝐵𝐵𝑠𝑠𝑠3(𝑥𝑥𝑗𝑗)� (18b)

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑘𝑘) =

𝑚𝑚+2
∑

𝑟𝑟=0

𝑚𝑚+2
∑

𝑠𝑠=0

𝑚𝑚+2
∑

𝑡𝑡=0

𝛾𝛾
𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟
𝐵𝐵𝑟𝑟𝑟3(𝑥𝑥𝑖𝑖)𝐵𝐵𝑠𝑠𝑠3(𝑥𝑥𝑗𝑗)𝐵𝐵𝑡𝑡𝑡3(𝑥𝑥𝑘𝑘),� (18c)

where m equals the number of so-called Bézier curves of each cubic B-spline, α, β, and γ are unknown expansion 
coefficients of the component functions and Br,3(xi), Bs,3(xj), and Bt,3(xk) are defined on the unit intervals of 𝐴𝐴 𝕂𝕂

𝑑𝑑 by 
recursion using the Cox-de Boor algorithm (Cox, 1972; De Boor, 1972). Thus, for m = 4, the number of control 
points of each cubic B-spline is equal to m + 3 = 7.

If we substitute Equations 18a–18c into Equation 2 we yield the following expression for the model output

� = � (�) = �0 +
�1
∑

�=1

{�+2
∑

�=0
��
���,3(��)

}

+
�2
∑

1≤�<�≤�

{�+2
∑

�=0

�+2
∑

�=0
���
����,3(��)��,3(��)

}

+
�3
∑

1≤�<�<�≤�

{�+2
∑

�=0

�+2
∑

�=0

�+2
∑

�=0
������� ��,3(��)��,3(��)��,3(��)

}

+ 
,
� (19)

which has a total of d(m + 3) unknown α-coefficients (first order), d(d − 1)(m + 3) 2/2 unknown β-coefficients 
(second order) and d(d − 1)(d − 2)(m + 3) 3/6 unknown γ-coefficients (third order). The total number of expansion 
coefficients, l, of the HDMR functional decomposition in Equation 19 is now equal to

𝑙𝑙 = 𝑑𝑑(𝑚𝑚 + 3) +

1

2

𝑑𝑑(𝑑𝑑 − 1)(𝑚𝑚 + 3)
2

+

1

6

𝑑𝑑(𝑑𝑑 − 1)(𝑑𝑑 − 2)(𝑚𝑚 + 3)
3

.� (20)
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and articulates a linear, quadratic and cubic growth of the number of expansion coefficients of the first-, second-, 
and third-order component functions, respectively, with the number of input variables d and control points, m + 3, 
of the B-splines. To guarantee a well-posed inverse problem, the number of input-output samples N should exceed 
the number of expansion coefficients, l. In general, the larger the quotient of N by l, the more robust the estimates 
of α, β, and γ will be and the smaller the confidence intervals of the HDMR sensitivity indices. In our case studies, 
the ratio N/l is at least equal to seven but often considerably larger.

As the variance decomposition of Equation 7 is additive and the basis functions of Equations 18a–18c are valid 
we can resort to regularized least squares to simultaneously determine the expansion coefficients, α, β, and γ, 
of all n123 component functions from a collection of N different (x, y)-data pairs. As the number of expansion 
coefficients grows rapidly with dimensionality, d, of the space, 𝐴𝐴 𝕂𝕂

𝑑𝑑 , of input variables, Li et al. (2010) recom-
mends using backfitting instead. This method starts at the first-order and determines sequentially (one after the 
next) the expansion coefficients of each component function. A F-test is used to discard insignificant compo-
nent functions of Equation 7 and reduce the required number of expansion coefficients, l, as much as possible. 
If RSS0 signifies the residual sum of squares of the emulator, 𝐴𝐴 𝐴𝐴 = 𝑓𝑓0 +

∑𝑑𝑑−1

𝑖𝑖=1
𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) , with l1 = (d − 1) (m + 3) 

unknown expansion coefficients according to Equation  18a and RSS1 is the same quantity for the surrogate 
model, 𝐴𝐴 𝐴𝐴 = 𝑓𝑓0 +

∑𝑑𝑑

𝑖𝑖=1
𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) , expanded with fd(xd) and l0 = d(m + 3) expansion coefficients, then the F-statistic

𝐹𝐹 =

(RSS0 − RSS1)∕(𝑙𝑙1 − 𝑙𝑙0)

RSS1∕(𝑁𝑁 − 𝑙𝑙1)
,� (21)

will determine whether the first-order component function of xd is significant or not. We must reject the null 
hypothesis, “𝐴𝐴 0 ∶ 𝑓𝑓𝑑𝑑(𝑥𝑥𝑑𝑑) is insignificant ,” if the F-statistic exceeds the critical value, 𝐴𝐴 𝐴𝐴 −1


(𝑝𝑝𝛼𝛼|𝑙𝑙1 − 𝑙𝑙0, 𝑁𝑁 − 𝑙𝑙1) , of 

the F-distribution at confidence level, pα ∈ (0, 1), and l1 − l0, and N − l1 degrees of freedom. One can use forward 
selection (starting from f0) or backward elimination (starting from 𝐴𝐴 𝐴𝐴0 +

∑𝑑𝑑

𝑖𝑖=1
𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ) to determine the significant 

first-order component functions. Then, a similar procedure can be used for the second-order component func-
tions, with significant first-order component functions fixed and so forth. Figure S1 in Supporting Information S1 
summarizes the different steps of the HDMR methodology of Li et al. (2010). Interested readers are referred to 
this publication for more information.

The model decomposition of Equation  2 considers all possible orders of the component functions up to  
f12…d(x1, …, xd). As the higher order component function usually contribute little to the simulated output, y, the 
HDMR functional decomposition in Equation 19 uses only first-, second- and third-order component functions. 
If deemed appropriate, we can discard the third-order component functions and work with a second- or possibly 
even first-order model decomposition instead. We can evaluate the overall performance of the HDMR decompo-
sition with different order component functions to determine a suitable maximum order 𝐴𝐴 𝐴𝐴 ∈ ℕ+ of the component 
functions. Unless stated differently, we use m = 2 Bézier curves for the cubic B-splines and implement forward 
selection of the HDMR component functions using pα = 0.99.

3.2.  Extended Bases

Sequential determination of the component functions of each given order with backfitting in the HDMR method 
may be computationally appealing but has important side effects that become more and more debilitating with 
increasing dimensionality, d, and degree of correlation of the input variables. Under those circumstances, backfit-
ting may suffer convergence problems in pursuit of the optimum values of the expansion coefficients and does not 
guarantee a minimum variance of the residuals. Then the total sensitivity indices, Su, of the n123 component func-
tions may not sum to one. A more profound problem with the HDMR implementation is that the cubic B-splines 
may not satisfy hierarchical orthogonality. This provokes further problems with the variance decomposition of 
the model output.

To guarantee an exact decomposition of the variance of the model output, y, Li and Rabitz (2012) introduced an 
alternate implementation of the HDMR methodology with extended bases. This method, abbreviated herein to 
HDMRext, enforces hierarchical orthogonality between the component functions. Furthermore, the coefficients, 
α, β, and γ of the first-, second-, and third-order component functions are simultaneously determined using least 
squares regression. These modifications guarantee an exact description of the structural and correlative sensitiv-
ity indices of the input variables, x1, …, xd.
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Hierarchical orthogonality of the component functions is guaranteed if we satisfy a so-called relaxed vanishing 
condition (Hooker, 2007)

∫

1

0

𝑤𝑤𝑢𝑢(𝐱𝐱𝑢𝑢)𝑓𝑓𝑢𝑢(𝐱𝐱𝑢𝑢)d𝑥𝑥𝑖𝑖 = 0 for all 𝑢𝑢 𝑢 {1, . . . , 𝑑𝑑} and 𝑖𝑖 ∈ 𝑢𝑢𝑢� (22)

where u is a subset of elements of the superset U  =  {1, …, d}, xu denote the dimensions u of the input 
vector and wu(xu) signifies the probability density function (pdf) of xu. For a second-order component func-
tion, the vanishing condition of Equation  22 dictates that fij(xi, xj) should be orthogonal to its lower order 
component functions, fi(xi) and fj(xj). With independent input variables, the multivariate pdf wu(xu) equals a 
|u|-variate uniform distribution with constant density for all 𝐴𝐴 𝐱𝐱𝑢𝑢 ∈ 𝕂𝕂

|𝑢𝑢| , and Equation 22 reduces to Equation 2 
of Sobol’ (2001).

To satisfy the vanishing condition of Equation 22, Li and Rabitz (2012) resort to the family of orthogonal poly-
nomial functions

�1(��) = �1�� + �0 degree � = 1 (23a)

�2(��) = �2�2
� + �1�1 + �0 degree � = 2 (23b)

�3(��) = �3�3
� + �2�2

� + �1�� + �0 degree � = 3, (23c)

�

where the coefficients, a, b, and c, are determined by applying Gram-Schmidt orthonormalization to the respec-
tive basis, x 3, x 2, x and 1 of the polynomials. This projection operator constructs an orthonormal basis for the 
polynomial functions on the unit interval of x with respect to an arbitrary weighting function. The component 
functions of Equation 7 are now equal to the sum of linear multiples of the orthonormalized polynomial functions 
of degrees 1 to p to yield

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) =

𝑝𝑝
∑

𝑟𝑟=1

𝛼𝛼
(𝑖𝑖)𝑖𝑖
𝑟𝑟 𝜙𝜙𝑟𝑟(𝑥𝑥𝑖𝑖)� (24a)

���(��, ��) =
�
∑

�=1

[

�(��)�
� ��(��) + �(��)�

� ��(��)
]

+
�
∑

�=1

�
∑

�=1
� (��)��
�� ��(��)��(��)

� (24b)

����(��, �� , ��) =
�
∑

�=1

[

�(���)�
� ��(��) + �(���)�

� ��(��) + �(���)�
� ��(��)

]

+
�
∑

�=1

�
∑

�=1

[

� (���)��
�� ��(��)��(��) + � (���)��

�� ��(��)��(��)

+� (���)��
�� ��(��)��(��)

]

+
�
∑

�=1

�
∑

�=1

�
∑

�=1
� (���)������ ��(��)��(��)��(��),

� (24c)

where the expansion coefficients, α, β, and γ, may be estimated from a large collection of (x, y)-data pairs using 
least squares regression. Unlike the cubic B-splines in HDMR, the component functions of HDMRext are writ-
ten as sum of linear multiples of orthonormalized polynomial functions of degrees 1 to p. This is what Li and 
Rabitz (2012) refers to as extended bases and is required to satisfy the vanishing condition of Equation 22. The 
use of extended bases has implications for our index notation of the coefficients. The symbol(s) in the parenthesis 
of each superscript of α, β and γ convey the component function. The symbols that are listed next in superscript 
correspond to the indices of the input vector.

Suppose that all component functions have the same polynomial degree, p. This is not a requirement of our 
MATLAB implementation of HDMRext but simplifies the mathematical description. Then, if we substitute Equa-
tions 24a–24c into Equation 2 we yield the following expression for the model output
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� = � (�) = �0 +
�
∑

�=1

�
∑

�=1
�(�)�
� ��(��)

+
∑

1≤�<�≤�

{ �
∑

�=1

[

�(��)�
� ��(��) + �(��)�

� ��(��)
]

+
�
∑

�=1

�
∑

�=1
� (��)��
�� ��(��)��(��)

}

+
∑

1≤�<�<�≤�

{ �
∑

�=1

[

�(���)�
� ��(��) + �(���)�

� ��(��) + �(���)�
� ��(��)

]

+
�
∑

�=1

�
∑

�=1

[

� (���)��
�� ��(��)��(��) + � (���)��

�� ��(��)��(��)

+ � (���)��
�� ��(��)��(��)

]

+
�
∑

�=1

�
∑

�=1

�
∑

�=1
� (���)������ ��(��)��(��)��(��)

}

+ �.

� (25)

According to Equation 24 we have d ⋅ p, d(d − 1)p, and d(d − 1) (d − 2)p/2 different α-coefficients in the first-, 
second-, and third-order component functions, respectively. Similarly, we have d(d − 1)p 2/2 + d(d − 1) (d − 2)p 2/2 
different β’s in the second- and third-order component functions. Furthermore, the third-order component functions 
also have d(d − 1) (d − 2)p 3/6 γ-coefficients. This brings the total number of expansion coefficients of Equation 25 to

𝑙𝑙 = 𝑑𝑑 ⋅ 𝑝𝑝
⎵⎵
𝛿𝛿=1

+

1

2

𝑑𝑑(𝑑𝑑 − 1)(2𝑝𝑝 + 𝑝𝑝2)

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵
𝛿𝛿=2

+

1

6

𝑑𝑑(𝑑𝑑 − 1)(𝑑𝑑 − 2)(3𝑝𝑝 + 3𝑝𝑝2 + 𝑝𝑝3)

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵
𝛿𝛿=3

,

� (26)

where δ signifies the maximum order of the HDMRext decomposition. Thus, the complexity of the HDMRext 
emulator is governed by the dimensionality, d, of the input space 𝐴𝐴 𝕂𝕂

𝑑𝑑 and the order δ and polynomial degree p of 
the component functions.

We can write Equation 25 as a vector inner product

ϕ(𝐱𝐱)
⊤
𝐜𝐜 = 𝑓𝑓 (𝐱𝐱) − 𝑓𝑓0� (27)

of a 1 × l design vector, 𝐴𝐴 ϕ(𝐱𝐱)
⊤ , with orthonormalized polynomial functions of Equation 23 (and products thereof) 

evaluated at their respective entries of x and arranged in order of their appearance in Equation 25

ϕ(𝐱𝐱) =
[

𝜙𝜙1(𝑥𝑥1) . . . 𝜙𝜙1(𝑥𝑥2) . . . 𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑) | 𝜙𝜙1(𝑥𝑥1) 𝜙𝜙1(𝑥𝑥2) . . . 𝜙𝜙𝑝𝑝(𝑥𝑥1) 𝜙𝜙𝑝𝑝(𝑥𝑥2) . . . 𝜙𝜙𝑝𝑝(𝑥𝑥1) 𝜙𝜙𝑝𝑝(𝑥𝑥3)

. . . 𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑−1) 𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑) 𝜙𝜙1(𝑥𝑥1)𝜙𝜙1(𝑥𝑥2) . . . 𝜙𝜙𝑝𝑝(𝑥𝑥1)𝜙𝜙𝑝𝑝(𝑥𝑥2) . . . 𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑−1)𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑) | 𝜙𝜙1(𝑥𝑥1) 𝜙𝜙1(𝑥𝑥2)

𝜙𝜙1(𝑥𝑥3) . . . 𝜙𝜙𝑝𝑝(𝑥𝑥1) 𝜙𝜙𝑝𝑝(𝑥𝑥2) 𝜙𝜙𝑝𝑝(𝑥𝑥3) . . . 𝜙𝜙𝑝𝑝(𝑥𝑥1) 𝜙𝜙𝑝𝑝(𝑥𝑥2) 𝜙𝜙𝑝𝑝(𝑥𝑥4) . . . 𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑−2) 𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑−1) 𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑)

𝜙𝜙1(𝑥𝑥1)𝜙𝜙1(𝑥𝑥2) 𝜙𝜙1(𝑥𝑥1)𝜙𝜙1(𝑥𝑥3) 𝜙𝜙1(𝑥𝑥2)𝜙𝜙1(𝑥𝑥3) . . . 𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑−2)𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑−1) 𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑−2)𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑) 𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑−1)𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑)

𝜙𝜙1(𝑥𝑥1)𝜙𝜙1(𝑥𝑥2)𝜙𝜙1(𝑥𝑥3) . . . 𝜙𝜙𝑝𝑝(𝑥𝑥1)𝜙𝜙𝑝𝑝(𝑥𝑥2)𝜙𝜙𝑝𝑝(𝑥𝑥3) . . . 𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑−2)𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑−1)𝜙𝜙𝑝𝑝(𝑥𝑥𝑑𝑑)

]⊤

� (28)

and l × 1 coefficient vector with the corresponding multiples, α, β, and γ, of each component function

𝐜𝐜 =

[

𝛼𝛼
(1)1

1

. . . 𝛼𝛼
(2)2

1

. . . 𝛼𝛼
(𝑑𝑑)𝑑𝑑
𝑝𝑝

|

|

|

𝛼𝛼
(12)1

1

𝛼𝛼
(12)2

1

. . . 𝛼𝛼
(12)1

𝑝𝑝 𝛼𝛼
(12)2

𝑝𝑝 . . . 𝛼𝛼
(13)1

𝑝𝑝 𝛼𝛼
(13)3

𝑝𝑝

. . . 𝛼𝛼
(𝑑𝑑−1,𝑑𝑑)𝑑𝑑−1
𝑝𝑝 𝛼𝛼

(𝑑𝑑−1,𝑑𝑑)𝑑𝑑
𝑝𝑝 𝛽𝛽

(12)12

11

. . . 𝛽𝛽
(12)12

𝑝𝑝𝑝𝑝 . . . 𝛽𝛽
(𝑑𝑑−1,𝑑𝑑)𝑑𝑑−1,𝑑𝑑
𝑝𝑝𝑝𝑝

|

|

|

𝛼𝛼
(123)1

1

𝛼𝛼
(123)2

1

𝛼𝛼
(123)3

1

. . . 𝛼𝛼
(123)1

𝑝𝑝 𝛼𝛼
(123)2

𝑝𝑝 𝛼𝛼
(123)3

𝑝𝑝 . . . 𝛼𝛼
(124)1

𝑝𝑝 𝛼𝛼
(124)2

𝑝𝑝 𝛼𝛼
(124)4

𝑝𝑝 . . .

𝛼𝛼
(𝑑𝑑−2,𝑑𝑑−1,𝑑𝑑)𝑑𝑑−2
𝑝𝑝 𝛼𝛼

(𝑑𝑑−2,𝑑𝑑−1,𝑑𝑑)𝑑𝑑−1
𝑝𝑝 𝛼𝛼

(𝑑𝑑−2,𝑑𝑑−1,𝑑𝑑)𝑑𝑑
𝑝𝑝 𝛽𝛽

(123)12

11

𝛽𝛽
(123)13

11

𝛽𝛽
(123)23

11

. . . 𝛽𝛽
(𝑑𝑑−2,𝑑𝑑−1,𝑑𝑑)𝑑𝑑−2,𝑑𝑑−1
𝑝𝑝𝑝𝑝 𝛽𝛽

(𝑑𝑑−2,𝑑𝑑−1,𝑑𝑑)𝑑𝑑−2,𝑑𝑑
𝑝𝑝𝑝𝑝 𝛽𝛽

(𝑑𝑑−2,𝑑𝑑−1,𝑑𝑑)𝑑𝑑−1,𝑑𝑑
𝑝𝑝𝑝𝑝

𝛾𝛾
(123)123

111

. . . 𝛾𝛾
(123)123

𝑝𝑝𝑝𝑝𝑝𝑝 . . . 𝛾𝛾
(𝑑𝑑−2,𝑑𝑑−1,𝑑𝑑)𝑑𝑑−2,𝑑𝑑−1,𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑝

]⊤
,

� (29)

where the symbol ⊤ denotes transpose. For a collection of N input vectors, {x (1), x (2), …, x (N)}, and corresponding 
function values, {f(x (1)), f(x (2)), …, f(x (N))}, we must repeat the vector inner product of Equation 27 a total of N 
times. This system of linear equations can be cast in matrix form

𝚽𝚽𝚽𝚽 = 𝐛𝐛,� (30)
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where the N × l design matrix, Φ, and N × 1 data vector, b, have the following entries

𝚽𝚽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ϕ

(

𝐱𝐱
(1)

)⊤

ϕ

(

𝐱𝐱
(2)

)⊤

⋮

ϕ

(

𝐱𝐱
(𝑁𝑁)

)⊤

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and 𝐛𝐛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓𝑓
(

𝐱𝐱
(1)

)

− 𝑓𝑓0

𝑓𝑓
(

𝐱𝐱
(2)

)

− 𝑓𝑓0

⋮

𝑓𝑓
(

𝐱𝐱
(𝑁𝑁)

)

− 𝑓𝑓0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.� (31)

Thus, the design matrix stores row-wise the design vectors of the collection of x's and the data vector equals the 
right-hand side of Equation 27 for each of these N input vectors.

The first-, second-, and third-order component functions of Equation 24 that enter into the model output decompo-
sition of Equation 25 are linear in their respective coefficients, α, β, and γ. The design matrix, Φ, thus, is comprised 
of valid basis functions and we can solve directly for the l-vector of unknown coefficients, c, using linear least 
squares. Yet, the matrix form of Equation 30 does not preserve hierarchical orthogonality of the component func-
tions. Furthermore, this default formulation does not offer any protection against underdetermined problems due to 
using either an insufficient number N < l of 𝐴𝐴 (𝐱𝐱, 𝑓𝑓 (𝐱𝐱)) -data pairs or a rank-deficient design matrix, Φ. Then, the linear 
system of algebraic Equations in Equation 30 will have infinite solutions, 𝐴𝐴 𝐜̂𝐜ls =

(

𝚽𝚽
⊤
𝚽𝚽
)
−1

𝚽𝚽
⊤
𝐛𝐛 , and the expansion 

coefficients of the function decomposition of Equation 25 may be ill-defined with poor an/or uncertain estimates of 
the sensitivity indices. Fortunately, if one looks carefully at the design vector in Equation 28 then one will notice that 
some of the (polynomial) basis functions appear more than once in ϕ(x). For example, ϕ1(x1) pops up in the entries 
of the first-, second-, and third-order component functions (separated by a vertical bar). This suggests that we can 
simplify the matrix form of Equation 30 to a reduced system of linear Equations which is easier to solve in practice.

Li and Rabitz (2012) introduced a solution method coined Diffeomorphic modulation under observable response 
preserving homotopy, or D-MORPH regression, which satisfies hierarchical orthogonality of the component 
functions and simplifies the search for the preferred optimum coefficient vector, 𝐴𝐴 𝐜̂𝐜dm , among the potentially 
infinite number of plausible solutions. We provide a brief step-by-step summary of D-MORPH regression and 
refer interested readers to Li and Rabitz  (2010) for a more exhaustive description. In short, the least squares 
values of the expansion coefficients may be computed as follows

𝐜̂𝐜ls =
(

𝚽𝚽
⊤
𝚽𝚽
)†
𝐝𝐝,� (32)

where the l × (l − d ⋅ p) matrix 𝐴𝐴
(

𝚽𝚽
⊤
𝚽𝚽
)† is the generalized pseudo inverse of the l × l Gramian matrix, G = Φ ⊤Φ, 

satisfying all four Moore-Penrose conditions (Golub & Van Loan, 1996; Penrose, 1955), whose redundant rows 
(the first d ⋅ p rows of first-order basis functions) are removed and d is the (l − d ⋅ p) × 1 vector Φ ⊤b without 
the first d ⋅ p rows. Whether unique or not, the least squares solution of Equation 32 does not enforce hierarchi-
cal orthogonality of the first-, second-, and third-order component functions. Therefore, Li and Rabitz (2010) 
introduce a square constrained matrix, B, which consists of the inner products of the orthonormalized polynomial 
basis functions of Equation 28 so as to satisfy the relaxed vanishing condition of Equation 22

∫

1

0
��(��)�0��(��)d�� = 0 (33a)

∫

1

0
���(��, ��)��(��)���(��, ��)d��d�� = 0 (33b)

∫

1

0
����(��, �� , ��)���(��, ��)����(��, �� , ��)d��d��d�� = 0. (33c)

�

The expansion coefficients, 𝐴𝐴 𝐜̂𝐜dm , derived from D-MORPH regression are now written as a linear combination of 
their values, 𝐴𝐴 𝐜̂𝐜ls , obtained from least-squares regression

𝐜̂𝐜dm = 𝐕𝐕𝑙𝑙−𝑟𝑟

(

𝐔𝐔
⊤

𝑙𝑙−𝑟𝑟
𝐕𝐕𝑙𝑙−𝑟𝑟

)

𝐔𝐔
⊤

𝑙𝑙−𝑟𝑟
𝐜̂𝐜ls,� (34)

where Ul−r and Vl−r equal the last l − r columns of the l × l matrices U and V determined from singular value 
decomposition (SVD) of the product of a l × l projection matrix P=(Il − G) and the l × l constrained matrix B
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𝐏𝐏𝐏𝐏 = 𝐔𝐔𝐔𝐔𝐔𝐔
⊤,� (35)

where Il signifies the l ×  l identity matrix and r denotes the number of nonzero singular values. Upon deter-
mination of the D-MORPH values of the expansion coefficients, 𝐴𝐴 𝐜̂𝐜dm , of the component functions, we resort to 
Equations 14 and 15 for the structural, 𝐴𝐴 𝐴𝐴a

𝑢𝑢 , correlative, 𝐴𝐴 𝐴𝐴b
𝑢𝑢 , and total, Su, sensitivity indices of each input variable 

and combinations thereof.

Hierarchical orthogonality of the component functions imposes a strong constraint on the expansion coefficients. This 
does not, however, relax the requirements of a sufficiently large sample N of 𝐴𝐴 (𝐱𝐱, 𝑓𝑓 (𝐱𝐱)) -data pairs. To guarantee robust 
estimates of the sensitivity indices with relatively small uncertainty, the number of input-output samples N must be 
substantially larger than the number of expansion coefficients l. In our case studies, the ratio N/l exceeds 10. Pending a 
sufficient order δ of the model decomposition, the use of orthonormalized polynomial functions with extended bases 
in conjunction with D-MORPH regression guarantees an exact variance decomposition of the model output.

The default implementation of HDMRext assumes the third-order approximation of Equation 25. If so desired, 
the user can specify a lower order expansion of the model output. For example, for δ = 2, the HDMRext model 
decomposition would use first- and/or second-order component functions only. This will involve substantially 
fewer expansion coefficients, l, and is particularly attractive for high-dimensional input spaces, 𝐴𝐴 𝕂𝕂

𝑑𝑑 . Of course, 
care should always be exercised that the HDMRext expansion of the model output is sufficiently accurate. Unless 
stated differently, we further assume that p = 3, thus, use the orthonormalized polynomial functions of first-, 
second- and third-degree of Equation 23. This amounts to the component functions of Equation 24.

Algorithm 1 and Figure S2 in Supporting Information S1 summarize the different steps of the HDMRext method. 
The user must specify the maximum order, 𝐴𝐴 1 ≤ 𝛿𝛿 ≤ 3; 𝛿𝛿 ∈ ℕ+ , of the HDMRext component functions and supply a 
collection, X = {x (1), …, x (N)}, of N samples of x = {x1, …, xd} with corresponding function values, y = {y (1), …, y (N)}. 
These d-vectors of input variables may be drawn from an arbitrary joint probability distribution, p(x), specified on the 
prior domain χ. In the context of probabilistic SA the samples of X amount to realizations of the posterior distribution, 

𝐴𝐴 𝐴𝐴(𝐱𝐱|𝐲̃𝐲) . Prior to computation of the design matrix, Φ, the samples of X are mapped to the unit hypercube, 𝐴𝐴 𝕂𝕂
𝑑𝑑 .

4.  Case Studies
We illustrate the HDMR and HDMRext methods by application to variance-based SA of the parameters of four 
different models with increasing complexity. The first two studies serve as illustration of both methods and 
benchmark the performance of HDMR and HDMRext against known sensitivity indices of the parameters. The last 
two studies present the application of variance/covariance-based SA to hydrologic modeling. As a reminder, in 
each study, the input variables are normalized/rescaled to the unit interval of the cubic B-splines and orthogonal 
polynomial functions prior to application of HDMR and HDMRext. The structural and correlative sensitivity 
indices, 𝐴𝐴 𝐴𝐴a

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴b

𝑖𝑖
 , are color coded in our figures using “apple green” and “blue” as mnemonic of the superscripts 

Algorithm 1.  Main steps of HDMRext
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“a” and “b”, respectively. Table S1 in Supporting Information S1 specifies the values of d and N for each case 
study along with our settings for the algorithmic variables of HDMR and HDMRext. These tabulated values 
confirm that (a) the ratio N/l is at least equal to 7 and (b) the number of expansion coefficients of HDMR exceeds 
that of HDMRext. As this paper has a methodological focus we chose rather common hydrologic case studies of 
variance-based SA. This should make it easier to digest the results. As these cases involve the use of relatively 
simple functions and models, computational efficiency is not a key consideration.

4.1.  A Linear Function

We follow Li et al. (2010) and consider a simple additive function

𝑦𝑦 = 𝑓𝑓 (𝐱𝐱) =

4
∑

𝑖𝑖=1

𝑥𝑥𝑖𝑖 + 𝑒𝑒𝑒� (36)

where the d = 4 input variables, x1, x2, x3, and x4 are drawn jointly from a multivariate normal distribution, 
𝐴𝐴 𝐱𝐱 ∼ 4(μ,𝚺𝚺) with unit mean μ = [1 1 1 1 ] ⊤ and 4 × 4 covariance matrix, Σ, and the noise term, 𝐴𝐴 𝐴𝐴 ∼ 

(

0, 𝜎𝜎2

𝑒𝑒

)

 
with 𝐴𝐴 𝐴𝐴2

𝑒𝑒 ≪ Var[𝑦𝑦] . We evaluate the function for two different collections of five-thousand samples, X1 and X2, 
that differ in their covariance matrix

𝚺𝚺1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝚺𝚺2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.0 0.6 0.2 0.0

0.6 1.0 0.2 0.0

0.2 0.2 1.0 0.0

0.0 0.0 0.0 1.0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,� (37)

As the off-diagonal entries of Σ1 are zero, the entries of x in the first collection of N samples, X1, are uncor-
related. The samples of collection X2, on the contrary, are dependent with Pearson correlation coefficient of 
0.6 (x1 and x2), 0.2 (x1 and x3) and 0.2 (x2 and x3), respectively. We implement the bootstrap method (Efron & 
Tibshirani, 1994; Storlie et al., 2009) and execute HDMR and HDMRext a total of M = 100 different times with 
each trial using a different selection of N = 3,000 samples (drawn without replacement) from the original collec-
tions, X1 and X2, of five-thousand parameter vectors. The linear function in Equation 36 does not have interaction 
terms, thus, a maximum order, δ = 1, will suffice for HDMR and HDMRext.

Table 1 reports mean values of the structural, 𝐴𝐴 𝐴𝐴a
𝑖𝑖
 , correlative, 𝐴𝐴 𝐴𝐴b

𝑖𝑖
 , and total, Si, sensitivity indices of the four 

input variables (parameters) of the linear function in Equation 36 for the collection of independent input vectors, 
X1, using HDMR (left-side) and HDMRext (right-side). The values between parenthesis document the 99% 
confidence intervals of the bootstrap trials. The results of HDMR and HDMRext are almost indistinguishable, as 
is to be expected when the input variables are independent. The structural sensitivity indices confirm that all four 
input variables have an equal contribution to the model output, y. The correlative sensitivity indices of about zero 
testify to the independence of the input variables. The 99% confidence intervals of the sensitivity indices appear 
very small as a result of using a relatively large number of samples N in each bootstrap trial relative to the number 
of unknown coefficients. Thus, the component functions are very well defined in each separate bootstrap trial.

We now move on to the collection X2 of dependent input variables and present in Table 2 mean values and asso-
ciated 99% confidence intervals (between parenthesis) of the structural, correlative and total sensitivity indices 
of HDMR and HDMRext derived from the bootstrap method using hundred different trials. The results of HDMR 
and HDMRext are again in close agreement but the presence of correlation among the input variables has a 
noticeable impact on the sensitivity indices of HDMR and HDMRext. The direct contributions of x1, x2, x3, and 
x4 to the simulated output of the linear model has lowered somewhat with structural sensitivity indices of about 
0.17. The correlative sensitivity indices of all input variables but x4 have changed from zero to values of about 
0.13 for x1 and x2 and 0.06 for x3. The magnitude of these values is in agreement with the covariance matrix, Σ2, 
of the samples. Indeed, if we take the sum of the covariances in each row then we observe a 2:1 ratio in the total 
covariance of x1 (or x2) and x3. This simple back of the envelope calculation confirms that the correlative contri-
bution of x1 and x2 should be about twice that of x3. Per the covariance matrix, Σ2, the fourth input variable, x4, 
is independent of the other three inputs. Hence, its correlative sensitivity index should be zero. Note that Sobol's 
method would only provide estimates of the structural sensitivity.
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We conclude that HDMR and HDMRext yield similar results for a simple additive function with dependent or 
independent input variables. The values of the structural, correlative and total sensitivity indices are in agreement 
with prior expectations. Given the nature of the linear function, in HDMR and HDMRext we used a first-order 
approximation only of the simulated output. One can expand the emulator with second- and third-order component 
functions, but this would not change the results as these terms should/will not contribute to the model output. One 
reviewer alerted to the smaller confidence intervals of 𝐴𝐴 𝐴𝐴a

𝑖𝑖
 , 𝐴𝐴 𝐴𝐴b

𝑖𝑖
 and Si for the dependent input variables. Albeit in 

agreement with Li et al. (2010), this result may not be intuitive. The covariance matrix Σ2 enlarges the variance of 
the model output, which, in turn reduces the uncertainty of the structural, correlative and total sensitivity indices.

4.2.  The Ishigami Function

As our second case study, we consider the somewhat more complex Ishigami function. This function is a recur-
ring test case for SA methods due to its non-linear and non-monotonic behavior and presence of interaction 
effects between the input variables. The Ishigami function is given by Ishigami and Homma (1990)

𝑦𝑦 = 𝑓𝑓 (𝐱𝐱) = sin(𝑥𝑥1) + 𝑎𝑎sin
2
(𝑥𝑥2) + 𝑏𝑏𝑏𝑏4

3
sin(𝑥𝑥1),� (38)

where x = {x1, x2, x3} ∈ [−π, π] 3 signify the input variables and a and b are constants set to 7 and 0.1, respectively 
(Marrel et  al.,  2009). The non-monotonic behavior of the Ishigami function warrants use of a larger number 
of knots and polynomial degree for the component functions of HDMR and HDMRext, respectively. Based on 
convergence analysis (see Figure S3 in Supporting Information S1) of the sample variance 𝐴𝐴 𝐴𝐴2𝜖𝜖 of the functional 
decomposition of Equations 19 and 25, we use m = 5 Bézier curves (HDMR) and a sixth-order polynomial p = 6 
(HDMRext) instead (e.g., Table S1 in Supporting Information S1).

In our first experiment, we draw N = 8,000 realizations, X = {x (1), x (2), …, x (N)} from the trivariate uniform 
prior distribution, 𝐴𝐴 𝐱𝐱 ∼ 3(−π, π) between −π and π using Latin hypercube sampling. If computational efficiency 
is of key importance, then one can use Sobol’ (1967) sequences instead as method for quasi-random sampling 
(Kucherenko et al., 2011, 2015; Zuniga et al., 2013). For each sample, we evaluate the Ishigami function and 
admit the collection of N = 8,000 different (x, y)-data pairs to HDMR and HDMRext. We use δ = 2, thus, discard 
the third-order component functions in our function approximation with HDMR and HDMRext.

Table 1 
Structural, Correlative, and Total Sensitivity Indices of High-Dimensional Model Representation (HDMR) and HDMRext 
for a Linear Model With Independent Input Variables

Term

HDMR HDMRext

𝐴𝐴 𝐴𝐴a
𝑖𝑖
  𝐴𝐴 𝐴𝐴b

𝑖𝑖
  Si 𝐴𝐴 𝐴𝐴a

𝑖𝑖
  𝐴𝐴 𝐴𝐴b

𝑖𝑖
  Si

x1 0.251 (±0.010) −0.001 (±0.011) 0.251 (±0.011) 0.244 (±0.010) −0.002 (±0.009) 0.242 (±0.010)

x2 0.252 (±0.010) 0.001 (±0.009) 0.253 (±0.009) 0.251 (±0.010) −0.000 (±0.009) 0.251 (±0.009)

x3 0.248 (±0.011) 0.000 (±0.010) 0.248 (±0.011) 0.251 (±0.010) 0.003 (±0.009) 0.254 (±0.009)

x4 0.246 (±0.009) 0.002 (±0.011) 0.248 (±0.010) 0.247 (±0.009) 0.005 (±0.010) 0.253 (±0.009)

Sum 0.998 (±0.029) 0.002 (±0.029) 1.000 (±0.000) 0.994 (±0.028) 0.006 (±0.028) 1.000 (±0.000)

Table 2 
Structural, Correlative, and Total Sensitivity Indices of High-Dimensional Model Representation and HDMRext for a Linear 
Model With Dependent Input Variables

Term

HDMR HDMRext

𝐴𝐴 𝐴𝐴a
𝑖𝑖
  𝐴𝐴 𝐴𝐴b

𝑖𝑖
  Si 𝐴𝐴 𝐴𝐴a

𝑖𝑖
  𝐴𝐴 𝐴𝐴b

𝑖𝑖
  Si

x1 0.164 (±0.006) 0.135 (±0.004) 0.299 (±0.007) 0.171 (±0.006) 0.136 (±0.004) 0.307 (±0.006)

x2 0.169 (±0.004) 0.132 (±0.004) 0.301 (±0.006) 0.167 (±0.005) 0.132 (±0.004) 0.300 (±0.006)

x3 0.172 (±0.007) 0.064 (±0.007) 0.235 (±0.008) 0.169 (±0.007) 0.067 (±0.006) 0.236 (±0.007)

x4 0.165 (±0.007) −0.004 (±0.009) 0.161 (±0.009) 0.165 (±0.006) −0.009 (±0.010) 0.157 (±0.008)

Sum 0.671 (±0.014) 0.329 (±0.014) 1.000 (±0.000) 0.673 (±0.017) 0.327 (±0.017) 1.000 (±0.000)
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Figure 1 presents bar charts of the (a) total sensitivity index, Si/Sij, of Equation 15 and (b) total-effect, 𝐴𝐴 𝐴𝐴T
𝑖𝑖
 of Equa-

tion 5, of the three input variables of the Ishigami function derived from Sobol's method, HDMR and HDMRext 
using the collection of N = 8,000 independent samples from the uniform prior distribution. The left bar chart also 
display the sensitivity index of x1 and x3 combined (in yellow). The total sensitivity indices and total effects of 
HDMR and HDMRext are not only in excellent mutual agreement (as expected) but are also an excellent approx-
imation to the analytic sensitivity estimates of the Ishigami function articulated by Sobol's method (Homma & 
Saltelli, 1996). The third input variable, x3, does not have a first-order contribution to the output of the Ishigami 
function. Hence, its total sensitivity index, S3, is zero in Figure 1a. This is also true for the total sensitivity indices, 
S12, S23, and S123, which do not contribute to the model output as is evident from the mathematical definition of the 
Ishigami function. The only interaction that counts originates from x1 and x3. We do not tabulate the uncertainty 
estimates of the sensitivity indices. The 99% confidence intervals of the total sensitivity indices of HDMR and 
HDMRext are very small and on the order of ±0.01 for bootstrapping with 4,000 input-output samples.

We now turn our attention to the collection X2 of correlated input vectors. The bottom panel of Figure 1 presents 
the same indices as in the top panel for (modified) Sobol's method, HDMR and HDMRext but using a collection 
of N = 8,000 samples of x with correlation coefficient of 0.5 between the values of x1 and x3. The modified 
Sobol method of Kucherenko et al. (2012) is a generalization of the variance-based sensitivity indices of Sobol to 
dependent input variables. Notice again the excellent agreement between the three different methods. The corre-
lation between x1 and x3 increases the first-order contribution of x3 from zero to about 0.12. This in turn reduces 
the first-order effect of x1 and the second-order effect of (x1, x3). This changes the ranking of the total-effects of 
the three input variables from 𝐴𝐴 𝐴𝐴T

1
> 𝑆𝑆T

2
> 𝑆𝑆T

3
 with independent inputs to 𝐴𝐴 𝐴𝐴T

2
> 𝑆𝑆T

1
> 𝑆𝑆T

3
 with correlation among 

x1 and x3. Thus, correlation between the input factors of a model can profoundly change the relative importance of 
each input variable. The 99% confidence intervals of the HDMR/HDMRext sensitivity indices have only margin-
ally increased compared to the case with independent variables to an average of about ±0.012 for S1, S2, S3, S13.

Figure 1.  Comparison of sensitivity indices (total indices of individual terms or combinations thereof, Si/Sij and total-effect, 
𝐴𝐴 𝐴𝐴T

𝑖𝑖
 ) of Ishigami function derived from different GSA methods, where we consider uncorrelated inputs for graph (a) and (b) 

while correlated inputs (ρ(x1, x3) = 0.5) for graph (c) and (d). Note that in graph (a), the third entry of the bar plot corresponds 
to the interaction between x1 and x3 because there is not individual contribution of x3 to the model (i.e., S3 = 0).
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This second study confirms the ability and robustness of HDMR and HDMRext to decompose the variance of 
a simple nonlinear function with interaction between some of its input variables. From hereon, we focus our 
attention on more practical problems using examples from hydrologic modeling. In these studies we use rela-
tively large values of the ratio N/l and, consequently, the 99% confidence intervals of the sensitivity indices will 
be small. As a result, we do not report the bootstrap uncertainty estimates. Furthermore, as our interest is in a 
rigorous variance-based decomposition of the input-output relationship at first-, second- and higher orders, we 
do not further consider the modified Sobol method of Kucherenko et al. (2012). In fact, in reference to this and 
the modified FAST method of Xu (2013), Song et al. (2015) even goes on to say (p. 751) that there “…have been 
very few successful applications in hydrological modeling.”

4.3.  The Water Retention Function

4.3.1.  Model Description

The third case study considers a common problem in vadose zone hydrology and involves the characterization 
of the hydraulic properties of variably saturated soils. This study serves to demonstrate the ability of HDMR 
and HDMRext to guide experimental design and help determine measurement collection. We use the capillary 
pressure-saturation function of van Genuchten (1980) which describes the relationship between the volumetric 
soil moisture content, θ [L 3  L −3], and soil water pressure head, h [L], as follows

𝜃𝜃(ℎ) = 𝜃𝜃r + (𝜃𝜃s − 𝜃𝜃r )
[

1 +

(

𝛼𝛼vg|ℎ|
)𝑛𝑛vg

]
1∕𝑛𝑛vg−1

,� (39)

where θs and θr [L 3  L −3] denote the saturated and residual moisture contents, respectively, αvg [L −1] is an estimate of 
the reciprocal of the air-entry value and nvg is a dimensionless scalar. The soil hydraulic parameters are considered 
input factors in our present analysis, thus, x = {θr, θs, αvg, nvg}. To investigate the relative importance of each hydrau-
lic parameter to the model output, θ, we generate a vector of two-hundred logarithmically equally spaced points of 
the soil water pressure head between decades −10 6 and −10 −1 cm. Next, we create the N × d matrices, X1 and X2, 
by drawing N = 5,000 parameter vectors from a multivariate normal distribution, 𝐴𝐴 𝐱𝐱 ∼ 4(μ,𝚺𝚺) , with mean, μ, d × 1 
vector of standard deviations, σ, and d × d covariance matrices, Σ1 = R1(σσ ⊤) and Σ2 = R2(σσ ⊤), specified in Table 
S2 in Supporting Information S1. These listed statistics are taken from a study by Gomes et al. (2017) on the stability 
of a variably-saturated slope in Rio de Janeiro, Brazil. Thus, the input factors of X1 are independent, whereas corre-
lation is present between the input variables of X2. We consider a third-order approximation of the model output, 
δ = 3, and execute the HDMR and HDMRext methods for each discretized soil water pressure head, h. This produces 
two-hundred values of the structural, correlative and total sensitivity indices, 𝐴𝐴 𝐴𝐴a

𝑖𝑖
 , 𝐴𝐴 𝐴𝐴b

𝑖𝑖
 , and Si, respectively, for individ-

ual input variables and combinations thereof. We separately also compute the total-effect, 𝐴𝐴 𝐴𝐴T
𝑖𝑖
 , of each input factor.

After a careful inspection of the results of both SA methods, we decided to discard the results of HDMR and focus 
exclusively on HDMRext in this case study. The sensitivity indices derived from HDMR reveal a problem with 
the variance decomposition of Equation 39 in the face of correlated input variables (see Figure S4 in Support-
ing Information S1). The total sensitivity indices of the n123 component functions of HDMR do not sum to one. 
This cannot be resolved by using a larger sample size N but is simply a consequence of backfitting and failure of 
HDMR to satisfy hierarchical orthogonality of the component functions. A larger number of control points (or 
Bézier curves, m) may sometimes help to relieve this problem but this is not a permanent remedy. The deviation 
of the sum of the total sensitivity indices from unity is small at volumetric moisture contents close to residual 
saturation (left-side) but increases substantially at some of the soil water pressure heads in the wet range of the 
WRF. This inexact variance/covariance decomposition will corrupt and/or bias the structural, correlative and 
total sensitivity indices of the input factors. The third-order function approximation in Equation 25 does not suffer 
this problem. The total sensitivity indices computed by HDMRext consistently sum up to one for all soil water 
pressure heads. This is a testament to the hierarchical orthogonality of the component functions.

4.3.2.  Uncorrelated Input Variables

Figure 2 displays the structural, 𝐴𝐴 𝐴𝐴a
𝑖𝑖
 , and correlative, 𝐴𝐴 𝐴𝐴b

𝑖𝑖
 , sensitivity indices and total-effect, 𝐴𝐴 𝐴𝐴T

𝑖𝑖
 , of (a) θr, (b) θs, 

(c) αvg, and (d) nvg as function of the soil water pressure head, h, using dashed apple green, dashed blue and solid 
orange lines, respectively. For completeness, the solid black lines depict the absolute values of the first-order partial 
derivatives, ∂θj/∂xi, for all i = (1, …, 4), of the discretized model input, hj, at x = μ, where j = (1, …, 200). These 
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analytic values portray the instantaneous rate of change of the soil water pressure head and quantify the local sensi-
tivity of each hydraulic parameter. Note that the values of ∂θj/∂xi make up the entries of the well-known Jacobian 
(or sensitivity) matrix at x = μ. The structural sensitivity indices exhibit a (a, b) sigmoidal and (c, d) bell-shaped 
relationship with the soil water pressure head. As expected, the correlative sensitivity indices are constant at zero. 
This is a result of using uncorrelated input factors in the variance/covariance decomposition of Equation 25.

The graphs of the structural sensitivity indices bear a close resemblance to the local sensitivities (solid black 
lines) of the hydraulic parameters. This is not an uncommon finding and corroborated by the theoretical treatise 
of Kucherenko and Song (2016) which links global derivative-based measures of sensitivity to Sobol’ total-effect 
index 𝐴𝐴 𝐴𝐴T

𝑖𝑖
 in Equation  5. For independent input variables, derivative-based sensitivities can offer a valuable 

CPU-efficient alternative to variance-based methods for computationally costly and/or highly-parameterized 
nonlinear dynamic models (Kiparissides et al., 2009). But we may not compare the values of the two sensitivity 
measures as they have different units and interpretations. The variance-based sensitivity indices of HDMRext are 
normalized, thus, dimensionless, and characterize the mean sensitivity of the input factors in the neighborhood 
of their mean values. The first-order partial derivatives have units of cm or cm 3 cm −3 and quantify only the local 
sensitivity of the model output, θ, with respect to each input factor. These local sensitivities are intimately related 
to the Fisher information matrix and serve an important purpose in experimental design. For functions that are 
nonlinear in their parameters, the global variance-based indices of HDMRext will not match perfectly with the 
local sensitivity estimates of θr, θs, αvg, and nvg unless we confine the sample of input vectors of HDMRext to a 
small space immediately surrounding their mean values of Table S2 in Supporting Information S1.

The moisture content of the soil exerts a large control on the structural sensitivity of the hydraulic parameters. The 
most informative (θ, h)-data pairs for θr, θs, αvg, and nvg are beyond the soil's wilting point (𝐴𝐴 𝐴 ∈

[

−∞,−1.5 × 10
4

]

  cm), 
close to saturation (𝐴𝐴 𝐴 ∈ [−10, 0]  cm), near the air-entry value (𝐴𝐴 𝐴 ∈ [−300,−200]  cm) and around the inflection 
point (𝐴𝐴 𝐴 ∈ [−1, 200,−1, 000] cm) of the WRF, respectively. This confirms earlier findings of Vrugt et al. (2002) 
and Vrugt and ter Braak (2011). Note that the listed ranges of the soil water pressure head, h, are not particularly 
meaningful as they are soil dependent. The total-effect of θr, θs, αvg, and nvg is indistinguishable from the structural 
sensitivity of each hydraulic parameter. Thus, the second- and third-order component functions of the HDMRext 
emulator must have a negligible contribution to the model output, θ. This is not uncommon for simple functions 
and/or uncorrelated input factors.

4.3.3.  Correlated Input Variables

The use of independent input variables does not do justice to the strong correlations found among the hydraulic 
parameters in laboratory and field experiments. Based on our results for the Ishigami function, we can only 

Figure 2.  Uncorrelated soil hydraulic parameters: Structural, 𝐴𝐴 𝐴𝐴a
𝑖𝑖
 , and correlative, 𝐴𝐴 𝐴𝐴b

𝑖𝑖
 , sensitivity indices and total-effect, 𝐴𝐴 𝐴𝐴T

𝑖𝑖
 , 

of (a) θr, (b) θs, (c) αvg, and (d) nvg as function of the soil water pressure head. The solid black lines display the first-order 
partial derivatives, ∂θj/∂xi, of the soil moisture content, θ, with respect to each individual input factor.
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posit that this correlation will impact the structural sensitivities of the WRF parameters, θr, θs, αvg, and nvg, and 
govern their total effects. This may have implications for experimental design and the precise location of the most 
informative (θ, h)-data points along the WRF.

Figure 3 presents the structural sensitivity, 𝐴𝐴 𝐴𝐴a
𝑖𝑖
 , correlative sensitivity, 𝐴𝐴 𝐴𝐴b

𝑖𝑖
 , and total-effect, 𝐴𝐴 𝐴𝐴T

𝑖𝑖
 , of (a) θr, (b) θs, (c) 

αvg, and (d) nvg as function of the soil water pressure head, h, using dashed apple green, dashed blue, and solid 
orange lines, respectively. We also display the higher-order effect, ∑Sij + ∑Sijk, using dash-dotted black lines. 
The correlation among the four soil hydraulic parameters manifests itself in non-zero values of the correlative 
sensitivity indices, 𝐴𝐴 𝐴𝐴b

𝑖𝑖
 . As a result of this, the structural sensitivities 𝐴𝐴 𝐴𝐴a

𝑖𝑖
 of θs, θr, αvg, and nvg do not equal their 

total-effects 𝐴𝐴 𝐴𝐴T
𝑖𝑖
 . The correlation, however, does not impact the parameters' total-effects across the entire range 

of soil water pressure heads. Rather, the correlative contribution of the soil hydraulic parameters to the model 
output, θ, is limited to h ∈ [−10 6, −10 2] cm. In this interval, the soil's volumetric water content decreases from 
near saturation to residual moisture content. Outside this range, the correlative contribution of θr, θs, αvg, and nvg 
to the model output is near zero. The magnitude of the correlative sensitivity indices is commensurate with the 
matrix of correlation coefficients, R2, of Table S2 in Supporting Information S1.

The negative values of the correlative sensitivity indices of αvg and nvg are debit to their negative total-effects in 
the range of h ∈ [−10 5, −10 3] and h ∈ [−600, −70] cm, respectively. Negative 𝐴𝐴 𝐴𝐴T

𝑖𝑖
 ’s are not possible with Sobol's 

method and, thus, may seem odd at first sight. But covariances among the input variables can suppress variations 
in model output, hence decrease their total influence on the model output. This result is confirmed by a simple 
analytic example in Text S1 in Supporting Information S1.

The strong negative correlation, 𝐴𝐴 𝐴𝐴𝛼𝛼vg ,𝑛𝑛vg
= −0.86 , between αvg and nvg is not only responsible for the negative 

total-effects of αvg and nvg over the documented range of soil water pressure heads but, in turn, also increases the 
magnitude of the structural sensitivities of αvg and nvg. Nevertheless, the graphs of Figures 2 and 3 are in sufficient 
agreement not to alter much our earlier conclusions with respect to experimental design, where one should pay atten-
tion to only the sensitive domain of correlated parameters for the appropriate selection of informative θ(h) data pairs.

The secondary and third-order component functions again have a negligible contribution to the total effect of 
the hydraulic parameters. A first-order approximation suffices to accurately describe the θ(h) relationship of the 
WRF of van Genuchten (1980) in the presence of correlated and uncorrelated hydraulic parameters. This supports 
earlier conclusions of Rabitz and Aliş (1999) that most physical systems are adequately characterized by only 
low-order input-output relationships. Altogether, we conclude that the correlation between the soil hydraulic 
parameters of the WRF does not fundamentally change our earlier findings with independent input factors.

Figure 3.  Correlated soil hydraulic parameters: The structural, 𝐴𝐴 𝐴𝐴a
𝑖𝑖
 , and correlative, 𝐴𝐴 𝐴𝐴b

𝑖𝑖
 , sensitivity indices and total-effect, 𝐴𝐴 𝐴𝐴T

𝑖𝑖
 , 

of (a) θr, (b) θs, (c) αvg, and (d) nvg as function of the soil water pressure head. The dashed-dotted black line plots the sum of 
total sensitivity indices of the second and third-order interactions (component functions).
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Thus far we have focused our attention on the structural and correlative sensitivity indices and total-effect of the 
hydraulic parameters. But the model output decomposition of HDMRext may serve another important role, and that 
is as an emulator of the input-output relationship. Figure S5 in Supporting Information S1 compares the third-order 
approximation of Equation 25 with expansion coefficients derived from D-MORPH regression against the WRF of 
van Genuchten (1980) using hydraulic parameter values of 12 USDA soils from Carsel and Parrish (1988).

The HDMRext emulators provide an excellent description of the WRF's of the different soil types. The surrogate 
WRF's (solid lines) pass exactly through the one-hundred θ(h)-data pairs of each soil. This inspires confidence in 
the ability of HDMRext to provide an accurate assessment of the structural and/or correlative sensitivity indices of 
the soil hydraulic parameters and combinations thereof. Results demonstrate that the function decomposition of 
Equation 25 may serve as surrogate of the WRF of Equation 39.

4.4.  A Conceptual Rainfall-Runoff Model

4.4.1.  Model Description

As fourth and last case study, we turn our attention to hmodel, a parsimonious conceptual watershed model 
originally developed by Schoups et al. (2010). The hmodel transforms rainfall into runoff at the watershed outlet 
using an interception, unsaturated zone, fast and slow flow reservoir, respectively, which simulate interception, 
throughfall, evaporation, surface runoff, percolation, fast streamflow and baseflow (see Figure S6 in Supporting 
Information S1). In this study, we focus our attention on the parameters of the hmodel. Table S3 in Supporting 
Information S1 presents a description of each parameter and lists the corresponding symbol, unit, lower and upper 
bounds. These bounds define a d = 7-dimensional (hyper)cube, 𝐴𝐴 ℍ0 ⊆ ℝ

𝑑𝑑 , in which the input factors, x = {Imax, 
Ru,max, Qs,max, αe, αf, Kf, Ks}, are allowed to vary freely.

Many different studies have appeared in the hydrologic literature on the quantification and analysis of parameter 
sensitivity in conceptual watershed models (Borgonovo et  al.,  2017; Mockler et  al.,  2016; A. Wang, Pianosi, 
et al., 2020; A. Wang & Solomatine, 2019; Zelelew & Alfredsen, 2013). With a few exceptions, these published 
studies almost always use some form of uniform sampling within the hypercube, 𝐴𝐴 ℍ0 , to satisfy the require-
ments of the d-way ANOVA decomposition in Sobol's method and quantify the first-, and/or second-, third- and 
higher-order parameter sensitivities and/or interactions. We are concerned with the impact of parameter correlation 
on variance-based estimates of parameter sensitivity and how the structural, correlative and total sensitivity indices 
depend on the simulated discharge and state (e.g., wetness) of the watershed. As we will show next, the HDMRext 
methodology admits the characterization of parameter sensitivity throughout the posterior parameter distribution.

4.4.2.  Model Training and Description of Multivariate Parameter Distribution

We estimate the posterior distribution of the hmodel parameters by application to a 9-year record (1 October 
1999–30 September 2008) of daily discharge measurements from the Leaf River near Collins, MS (USGS 
02472000). This medium-sized watershed of about 1,990 km 2 exhibits a strong winter regime according to the 
functional classification of Brunner et al. (2020) and has been studied extensively in the hydrologic literature. 
Daily time series of streamflow, precipitation, and surface temperature are taken from the CAMELS data set 
(Newman et al., 2014). We impose a uniform prior distribution over the ranges specified in Table S3 in Support-
ing Information S1 and use the generalized likelihood function of Schoups and Vrugt (2010) to infer the poste-
rior distribution of the hmodel parameters using Markov chain Monte Carlo simulation with the DREAM(ZS) 
algorithm (Vrugt,  2016). The transition kernel of DREAM creates multiple different sequences (chains) of 
parameter vectors that are stationary and ergodic and have as a joint distribution the posterior target distribution 
(ter Braak, 2006; Vrugt, ter Braak, et al., 2009). Convergence of the joint chains to a stationary distribution is 
monitored using single chain and multi-chain diagnostics, among the univariate and multivariate scale-reduction 
factors of Gelman and Rubin (1992) and Brooks and Gelman (1998), respectively.

Figure 4 presents a scatter plot matrix of the N = 10,000 posterior realizations of the hmodel parameters sampled 
with the DREAM(ZS) algorithm. The diagonal entries correspond to the parameters' marginal distributions, whereas 
the off-diagonal graphs present bivariate scatter plots of the different parameter pairs. The Maximum APosteriori 
(MAP) hmodel parameter values are separately indicated in each graph with a red cross. The dotted rectangles make 
up a closed hypercube, 𝐴𝐴 ℍ1 ⊆ ℍ0 , interior to the prior hypercube, 𝐴𝐴 ℍ0 . This posterior hypercube will be populated 
with independent samples so as to compare the sensitivity indices of the posterior realizations of the DREAM(ZS) 
algorithm. The hmodel parameters appear well defined by the measured daily discharge data. The histograms of 
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the marginal posterior parameter distributions are generally well described by a Gaussian distribution with small 
dispersion relative to the prior parameter ranges. The two-dimensional dotty plots reveal the presence of correla-
tion between the bivariate samples of the posterior distribution. The hmodel parameter pairs (αe, αf) and (Ru,max, 
Qs,max) exhibit a particularly strong positive and negative correlation, respectively. This violates Sobol's method 
and necessitates the application of the variance/covariance-based model output decomposition of Equation 7.

The bivariate scatter plots confirm the presence of parameter correlation among the samples of the posterior 
distribution. What is less evident, however, is that the chain samples may also exhibit autocorrelation as the 
state of the Markov chain is duplicated each time a candidate point is rejected. Chain thinning hardly affects 
the results of our analysis and so did the use of only the unique posterior samples of the joint Markov chains. 
Thus, our findings are nearly invariant to the degree of autocorrelation and frequentness (=weight) of the poste-
rior samples. Based on these grounds we use as input to probabilistic SA the DREAM(ZS)-sampled posterior 
realizations.

Figure 4.  Matrix plot of the DREAM(ZS)-derived posterior realizations of the hmodel parameters. Histograms (main diagonal) of the marginal posterior hmodel 
parameter distributions and two-dimensional scatter plots (off-diagonal) of the bivariate posterior samples of hmodel parameter pairs. The solid dashed lines portray the 
least squares fit of a simple regression function to the sampled values. The red crosses correspond to the Maximum APosteriori solution of the hmodel parameters. The 
red dotted lines depict the smallest rectangles that enclose the bivariate posterior samples of the DREAM(ZS) algorithm.
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4.4.3.  State/Time-Dependent Probabilistic Sensitivity Analysis

Figure 5 summarizes the results of HDMRext and presents the evolution of the first-order structural, 𝐴𝐴 𝐴𝐴a
𝑖𝑖
 , and 

correlative, 𝐴𝐴 𝐴𝐴b
𝑖𝑖
 , sensitivity indices of (d) Ru,max, (e) Qs,max, (f) αe, (g) αf, and (h) Kf during the period of 1 Octo-

ber 2000–30 September 2001. To understand the temporal dynamics of the indices, the parameter panels are 
preceded by time series plots of (a) rainfall and MAP simulated discharge, and the state of the (b) unsaturated 
and (c) fast reservoirs, respectively. The other hmodel parameters and state variables are displayed in Figure S8 
in Supporting Information S1. We present only the first-order sensitivity indices as the higher-order terms exert 
only a minor control on the model output, y. This finding is supported by the values in Table S4 in Supporting 
Information S1 of the first- and second-order structural, correlative and total posterior sensitivity indices of the 
hmodel parameters on dry, moist and wet days.

The results in Figure 5 highlight several important findings. In the first place, notice that the structural (green) 
and correlative (blue) sensitivity indices exhibit considerable variations during the WY 2001. The temporal 
dynamics are particularly large for the structural sensitivity indices, 𝐴𝐴 𝐴𝐴a

𝑖𝑖
 , with sudden and substantial fluctuations 

from one discharge value to the next. The traces of the correlative sensitivity indices appear smoother and more 

Figure 5.  Precipitation, simulated discharge, hmodel state variables and HDMRext estimates of structural and correlative 
sensitivity indices of hmodel parameters as function of time, where Ru and Rf are unsaturated zone and fast reservoir storage, 
respectively, the subscripts for the sensitivity indices, {2, 3, 4, 6, 7}, follow the same order of the parameters as they are 
presented in Table S3 in Supporting Information S1.
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compressed. Second, the magnitude of the structural sensitivity indices exceeds the correlative sensitivity indices. 
This is generally the case as the total main effect, 𝐴𝐴 𝐴𝐴a

𝑖𝑖
+ 𝑆𝑆b

𝑖𝑖
 , is strictly positive, at least in theory. In fact, the  correl-

ative sensitivity indices are near zero for large portions of the 1-year discharge record. This is particularly true 
for (e) Qs,max, (f) αe, (g) αf, and (h) Kf. Third, the structural and correlative sensitivity indices not only differ 
in magnitude and temporal dynamics but also in sign. The structural indices are strictly positive, whereas the 
correlative contribution usually takes on negative values. Thus, the correlative indices can substantially decrease 
the total sensitivity indices, 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑆𝑆a

𝑖𝑖
+ 𝑆𝑆b

𝑖𝑖
 , of the input factors and, thus, main effects of the hmodel parameters. 

This is the reason so as to why the structural sensitivity indices of (e) Qs,max, (f) αe, and (g) αf exceed unity for 
certain parts of the simulated hydrograph. This guarantees an exact variance decomposition with sum of the 
total sensitivity indices, 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑆𝑆a

𝑖𝑖
+ 𝑆𝑆b

𝑖𝑖
 that always amounts to unity for each successive discharge data point. 

Fourthly, the temporal behavior of the structural and/or correlative main effects does not seem to relate in an 
obvious manner  to  the hyetograph, hmodel simulated flow levels and/or wetness of the watershed as expressed in 
the state of the unsaturated and/or fast reservoir respectively. Altogether, the results demonstrate that parameter 
sensitivity is not an invariant property but rather varies dynamically depending on the model input, dominant 
processes, parameter values and state of the watershed. This is the underlying premise of AMALGAM (Vrugt & 
Robinson, 2007; Vrugt, Robinson, & Hyman, 2009).

The temporal behavior of the structural and correlative main effects of the hmodel parameters do not seem to 
correlate well with the hyetograph, simulated flow level and the watershed state. To investigate this in more 
detail, please consider Figure 6 which presents bivariate scatter plots of the first-order total sensitivity indices 
of the hmodel parameters and the cumulative rainfall amounts of the five preceding days, and simulated state 
of the interception, unsaturated zone, fast and slow reservoirs, respectively. The total main effects demonstrate 
a complex dependency on the cumulative rainfall and/or state of the watershed (Garambois et al., 2013; Herman 
et al., 2013; Huang et al., 2021; Pianosi & Wagener, 2016). This dependency is poorly characterized by a linear 
regression function and follows instead a more parabolic (dc, de, fc, fe) or hyperbolic (aa, ad, ca, cd, gd) relation-
ship. The large data scatter confirms, however, that even such nonlinear relationships do not suffice to capture 
the temporal dynamics of the main effects. As a result, we resort to a more qualitative interpretation of the dotty 
plots. In doing so, we shall refer back to Figure S6 in Supporting Information S1 and the ensuing caption which 
summarizes the process equations of hmodel. The product-moment correlation coefficients and regression func-
tions display a positive correlation between the states of the interception, unsaturated zone and fast reservoirs 
and the magnitude of the main effects of (ab) Imax, (bc) Ru,max, and (fd) Kf, respectively. This positive relationship 
is induced by the hmodel Equations which confirm that the impact of the parameters on the simulated discharge 
grows with the state of their respective reservoirs. The opposite is true for Qs,max and αe, hence why we see a 
negative correlation in graph (cc) between the magnitude of the main effect of Qs,max and the state of the unsatu-
rated zone reservoir. Furthermore, as the slow reservoir exerts only a minor control on the simulated discharge, 
the main effect of its recession constant, Ks, is close to zero during the 1-year discharge record in the bottom-right 
panel. Further research should explore the usefulness of the HDMR/HDMRext derived probabilistic sensitivity 
indices for improving hydrologic process representation.

4.4.4.  Comparison of Prior and Posterior Sensitivity Indices With (In)dependent Samples

We investigate the impact of hmodel parameter correlation on the sensitivity indices derived from variance-based 
analysis of the simulated rainfall-discharge relationships. Figure 7 presents traces of the main-effects of each 
hmodel parameter derived from uniform (=independent) sampling of the prior, 𝐴𝐴 ℍ0 , and posterior, 𝐴𝐴 ℍ1 , hypercubes 
and the DREAM(ZS) collection of dependent samples of the posterior distribution, 𝐴𝐴 𝐴𝐴(𝐱𝐱|𝐲̃𝐲) (dash-dot green). In 
Figure S7 in Supporting Information S1 we display the corresponding ranges of the simulated discharge records. 
We use bullet points to discuss our main findings.

1.	 �The first-order total sensitivity indices of the hmodel parameters derived from the dependent samples of the 
DREAM(ZS) algorithm are generally in good agreement with the main effects of the independent samples of 
the posterior hypercube, 𝐴𝐴 ℍ1 . For most hmodel parameters, Imax, Qs,max, αf, Kf, and Ks, the traces are markedly 
similar and typically only show differences in the magnitude of the sensitivity indices. This cannot be said for 
Ru,max and αe whose traces differ substantially, particularly during the second-half of the water year. This is a 
result of the relative strong correlation between (Ru,max, Qs,max) and (αe, αf) so evidently visible in the scatter 
plots of Figure 4. Apparently, this correlation does not affect much the traces of Qs,max and αf as it does Ru,max 
and αe.
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2.	 �A comparison of the main effects of the hmodel parameters in the posterior hypercube, 𝐴𝐴 ℍ1 , and posterior 
distribution, 𝐴𝐴 𝐴𝐴(𝐱𝐱|𝐲̃𝐲) , reiterates that even mild correlation can change the order of input variable importance. 
This affects the classification of hmodel parameters into categories of having a very strong, mild, low and 
negligible impact on the simulated discharge.

3.	 �The prior and posterior parameter sensitivities are very different from each other, not only in temporal vari-
ability but also in magnitude. Indeed, the prior main effects of (a) Imax, (b) Ru,max, (c) Qs,max, (d) αe, (e) αf, 

Figure 6.  Dotty plots of the total main effect, 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑆𝑆a
𝑖𝑖
+ 𝑆𝑆b

𝑖𝑖
 , of (a) Imax, (b) Ru,max, (c) Qs,max, (d) αe, (e) αf, (g) Kf (vertical axis) and (a) cumulative rainfall of the five 

preceding days and state of the (b) interception, (c) unsaturated zone, (d) fast, and (e) slow reservoirs (horizontal axis). In each graph we list Pearson's correlation 
coefficient of the data scatter and display the least squares fit of a regression function with slope and intercept.
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and (f) Kf are much smaller than their posterior counterparts. In fact, their prior main effects are so small 
that one could classify these six parameters as insensitive. An opposite trend between the prior and posterior 
main-effect is found for the recession constant, Ks, of the slow reservoir. This parameter exerts a large and 
overarching control on the variance of the simulated discharges in the prior distribution but has a negligible 
impact on the discharge records of the posterior hypercube, 𝐴𝐴 ℍ1 , with its main-effect, S7, reduced to almost 
zero. Thus, the Sobol’  estimates of the main effects demonstrate a large change in parameter sensitivity when 
transitioning between the prior and posterior distribution. In this process, the contribution to the model output 
increases for all parameters but the recession constant Ks. These dynamic changes in parameter sensitivity will 
help guide search and optimization methods in pursuit of the optimum solution and/or posterior parameter 
distribution and determine the order of iterative refinement of the parameters. This impact of scale in SA is 
explored more explicitly by the VARS method of Razavi et al. (2019), Razavi and Gupta (2016) but obscures 
and/or clouds the ranking of input factor importance (Puy et al., 2021).

4.	 �The total first-order sensitivity indices of Ru,max, αe, and αf across the posterior distribution 𝐴𝐴 𝐴𝐴(𝐱𝐱|𝐲̃𝐲) take on 
negative values on certain days of the water year. We have witnessed this before in the third case study and 
eluded to a simple analytic example in Text S1 in Supporting Information S1. Apparently, the correlative 
contributions of Ru,max, αe, and αf to the simulated discharge are negative and larger in magnitude than their 

Figure 7.  First-order total sensitivity indices, Si, of (a) Imax, (b) Ru,max, (c) Qs,max, (d) αe, (e) αf, (g) Kf, and (h) Ks, for the 
365-day discharge record using N = 10,000 independent samples of 𝐴𝐴 ℍ0 (dotted purple) and 𝐴𝐴 ℍ1 (solid orange) and ten-thousand 
posterior realizations of the DREAM(ZS) algorithm (dash-dotted green).
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respective structural contributions. Thus, on certain days these three parameters suppress the model output 
variance. We will revisit this finding in Section 5.

4.4.5.  Surrogate Model Evaluation

To verify the accuracy of the HDMRext model output decomposition in Equation  25, for emulation of the 
rainfall-discharge relationship, we apply Algorithm  1 to the simulated discharge records of the N  =  10,000 
independent samples of the posterior hypercube, 𝐴𝐴 ℍ1 . Figure 8a presents a frequency distribution of the sample 
variances, 𝐴𝐴 𝐴𝐴2𝜖𝜖 =

1

𝑁𝑁 − 𝑙𝑙

∑𝑁𝑁

𝑖𝑖=1
𝜖𝜖2
𝑖𝑖
 , of the N residuals of the daily surrogate models. A second-order decomposition 

was deemed sufficient to describe the data. As a result, δ = 2, and the number of unknown expansion coeffi-
cients estimated with D-MORPH regression equals l = 336. The residual variances appear rather small. The 
median value of 𝐴𝐴 𝐴𝐴2𝜖𝜖 of about 2.1 × 10 −7 mm 2/d 2 is substantially smaller than the average within-day variance of 
2.2 × 10 −3 mm 2/d 2 of the N discharges of the training samples. Thus, the variance decomposition should be close 
to exact. This inspires confidence in the sensitivity indices and surrogate model of HDMRext.

Next, we evaluate the accuracy of the surrogate models of Equation 25 for samples of x that have not been used for 
D-MORPH coefficient estimation. Figure 8b displays a histogram of the variance of the surrogate model residuals 
computed for the ten-thousand posterior realizations of the DREAM(ZS) algorithm. The use of dependent samples 
increases the median value of 𝐴𝐴 𝐴𝐴2𝜖𝜖 to about 1.1 × 10 −4 mm 2/d 2, about 20 times smaller than the average within-day 
variance of the discharges. Thus, within the hypercube, 𝐴𝐴 ℍ1 , of the posterior parameter distribution, the second-order 
expansion of HDMRext accurately describes the rainfall-discharge relationship of the hmodel. Further research is 
warranted to determine the performance of the surrogate model over the domain, χ, of the prior hypercube, 𝐴𝐴 ℍ0 .

5.  Discussion and Conclusions
This paper has focused attention on probabilistic and/or variance-based SA with correlated input variables. 
We used the methodology of Li et al. (2010), called high dimensional model representation or HDMR, which 
is a generalization of ANOVA to dependent input factors and replaces the elementary functions of Sobol’ by 
component functions with linear expansion coefficients. Under strict regularity conditions, the HDMR superposi-
tion of linear multiples of component functions will exactly decompose the variance of the model output and parse 
out the structural and correlative contributions of the input variables at first-, second-, third-, and higher-orders. 
We considered two different implementations of HDMR with variance/covariance decomposition of the model 
output up to the third-order. The default implementation of Li et al. (2010) uses cubic B-spline component func-
tions and determines the expansion coefficients of each order sequentially through backfitting. A more powerful 
variant, HDMRext of Li and Rabitz (2012), implements orthonormalized polynomial component functions with 
extended bases and simultaneously infers the expansion coefficients of all orders using D-MORPH regression. 
This latter method guarantees hierarchical orthogonality of the component functions. The bootstrap method is 

implemented in both HDMR implementations to provide confidence inter-
vals of the structural and correlative sensitivity indices at first, second- and 
third-order.

The power and usefulness of covariance-based SA was demonstrated 
by application of HDMR and HDMRext to a simple linear model and the 
well-known Ishigami function. These two studies confirmed that both meth-
ods can accurately decompose the variance of the model output and back out 
the structural and correlative contributions  at first-, second-, and/or higher 
orders of the input factors. For independent input variables, the sensitivity 
indices of HDMR and HDMRext matched exactly their counterparts derived 
from Sobol’. For correlated input variables, the sum of the structural and 
correlative indices were in excellent agreement with the total sensitivity indi-
ces of modified Sobol’ (Kucherenko et al., 2012).

The third case study considered application of HDMR to covariance-based 
SA of the water retention, θ(h), function of van Genuchten (1980). As the 
B-spline component functions in the default HDMR implementation did 
not guarantee an exact variance decomposition (as anticipated), we focused 

Figure 8.  Histogram of the sample variances, 𝐴𝐴 𝐴𝐴2𝜖𝜖 , of the HDMRext surrogate 
model derived from (a) the training discharge records of N = 10,000 
independent samples drawn from the posterior hypercube, 𝐴𝐴 ℍ1 , and (b) 
evaluation discharge records of the collection of N = 10,000 posterior 
realizations of the DREAM(ZS) algorithm.
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our attention on HDMRext. The total effects of θs, θr, αvg, and nvg, appeared relatively unaffected by correla-
tion and were in close agreement with the partial derivatives, ∂θ/∂θs, ∂θ/∂θr, ∂θ/∂αvg, and ∂θ/∂nvg of the van 
Genuchten (1980) soil water characteristic. Our results confirmed earlier findings of Vrugt et al. (2002) and Vrugt 
and ter Braak (2011) with respect to optimal experimental design of the hanging-column method.

Our fourth and last study considered probabilistic SA of the seven-parameter hmodel using the rainfall-discharge 
transformation of the Leaf River watershed in Mississippi. Posterior realizations sampled with the DREAM(ZS) 
algorithm served as input to HDMRext to quantify sensitivity across the posterior distribution. The structural and 
correlative main effects of the hmodel parameters varied considerably during the water year in a manner that 
did not obviously relate to simulated flow level, catchment wetness, rainfall and potential evaporation. The total 
main effects of the posterior parameter distribution 𝐴𝐴 𝐴𝐴(𝐱𝐱|𝐲̃𝐲) compared generally well with their Sobol’ counterparts 
obtained from independent samples of the posterior hypercube, 𝐴𝐴 ℍ1 . The main effects of two hmodel parameters 
changed considerably as a result of correlation. This affects the ranking of the main effects, and, thus, assessment 
of parameter importance.

The results of probabilistic SA of the hmodel appeared unaffected by the degree of autocorrelation among 
the posterior realizations and their frequency of appearance in the sampled Markov chains. Duplicate chain 
samples do not carry new information about the input-output relationship for the expansion coefficients, but 
do increase the weight that is attached to these samples in D-MORPH regression. Our results confirmed (not 
shown) that subsampling (thinning) of the Markov chains and/or the use of unique posterior samples only, did 
not change much the results of HDMRext. Thus, our covariance-based estimates of probabilistic sensitivity across 
the posterior hmodel parameter distribution appeared invariant to the exact distribution of the samples within 
this high-probability density region of the parameter space. If deemed necessary, one can fit a Gaussian mixture 
distribution to the posterior realizations using the methods presented in Volpi et  al.  (2017) and draw a large 
collection of samples from this distribution as input to probabilistic SA.

With only mild correlation among the hmodel parameters, the fourth and last case study did not do justice to 
the HDMRext methodology. When multivariate parameter dependencies are weak, the independence assumption 
of Sobol’ will generally suffice to approximate the parameters' main effects across the posterior distribution. 
But then the posterior hypercube 𝐴𝐴 ℍ1 must be delineated first from the samples of the posterior distribution. This 
two-step procedure will break down when multivariate parameter dependencies are strong and we must resort to 
covariance-based model decomposition with HDMRext to obtain robust variance-based estimates of the structural 

𝐴𝐴 𝐴𝐴a
𝑖𝑖
 correlative 𝐴𝐴 𝐴𝐴b

𝑖𝑖
 and total Si contributions of each input factor to the model output.

One can envision many other case studies for which an exact variance-covariance decomposition at first-, second- 
and higher-orders with HDMRext is a must for deriving sensical sensitivity indices. One can think of applications 
wherein input variables must satisfy a certain hierarchy, spatial arrangement or organization so as to not to violate 
system physics and/or modeling assumptions. For example, in surface hydrology one may wish to evaluate model 
sensitivity to spatiotemporal rainfall structure. In soil hydrology, one may want to determine the sensitivity of soil 
evaporation and/or root water uptake to surface temperature, humidity, wind-velocity and solar radiation. These 
meteorological variables are intimately related (Cascone et al., 2019) and treating them as independent would violate 
process physics and yield rather meaningless estimates of sensitivity. In all these cases, HDMRext can provide assis-
tance in screening, model development and input prioritization. Furthermore, the HDMRext functional decomposi-
tion into linear multiples of component functions has application beyond (co)variance-based SA. This decomposition 
can serve as surrogate model in two-stage MCMC simulation to accelerate posterior exploration (Laloy et al., 2013; 
Paun & Husmeier, 2021). The total main effects of the parameters can also serve as guiding principle to continuously 
adapt search subspace in DREAM Suite (Vrugt, 2016) in pursuit of the posterior parameter distribution.

While HDMRext is a powerful addition to the hydrologists' arsenal of SA methods, this method can pose consider-
able computational challenges. The number of expansion coefficients l and, thus, number of columns of the design 
matrix Φ in Equation 32 increases polynomially with the number of input variables d, polynomial degree p of the 
component functions and order δ of the functional decomposition in Equation 25. This complicates the application 
of HDMRext to parameter-rich models. For example, if d = 10, p = 3, and δ = 2, we have l = 705 unknown expan-
sion coefficients. For a third-order decomposition δ = 3 this value increases to l = 8,265. The rapid growth of the 
number of expansion coefficients with d, p, and/or δ can pose problems with the storage of the design matrix Φ in 
random-access memory (RAM). Suppose, for example, we use a ratio N/l = 5, then a stand-alone PC with 16 giga-
bytes of RAM can handle a maximum of l = 20,000 expansion coefficients before depleting the memory. If we 
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assume default settings of p = 3, then a second-order model decomposition would reach this number of expansion 
coefficients for d = 51. For δ = 3 the maximum number of input variables is limited only to d = 13. Thus, there 
are significant advantages to keeping the order δ of the HDMR model decomposition and polynomial degree p of 
the component functions as low as possible. Fortunately, most physics-based models are of type A or B according 
to the functional classification of Kucherenko et al., 2011 and, thus, support a second-order model decomposition 
(Falchi et al., 2018; Rabitz & Aliş, 1999; Ratto et al., 2007; Shereena & Rao, 2019). If the input-output rela-
tionship warrants use of a higher-order decomposition (e.g., Huang et al., 2021) then distributed-memory and/
or multi-core computer system is required to implement ANCOVA-based model decomposition with HDMRext.

As closing remark we comment on the negative values of the total- and main effect sensitivity indices, 𝐴𝐴 𝐴𝐴T
𝑖𝑖
 and 

Si, respectively, in case studies three and four. This non-intuitive finding is not a numerical artifact but the result 
of applying the total law of covariance as is demonstrated in Text S1 and Table S5 in Supporting Information S1 
with a simple analytic example. This study confirms that a parameter's negative correlative contribution can 
exceed in magnitude its structural contribution. Thus, some input variables can suppress the model output vari-
ance by promoting, for example, negative feed backs in the model and driving the output to an equilibrium.

Data Availability Statement
Our general-purpose MATLAB toolboxes of HDMR and HDMRext (V. 1.0, executable files), “MATLAB_
code_HDMR_V1.0” and “MATLAB_code_HDMR_EXT_V1.0,” along with the case studies of this paper 
can be downloaded from Zenodo at https://doi.org/10.5281/zenodo.7478901 (Vrugt et  al.,  2022) with Crea-
tive Commons Attribution 4.0 International license. The toolboxes are also available from GitHub at https://
github.com/jaspervrugt/HDMR licensed under MIT. The CAMELS data set used in the last study is described 
in Newman et al. (2015) and available at https://dx.doi.org/10.5065/D6MW2F4D (Newman et al., 2014) with 
Creative Commons Attribution 4.0 International license.
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