UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
A Connectionist Treatment of Negation and Inconsistency

Permalink
https://escholarship.org/uc/item/7n711913
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 18(0)

Authors
Shastri, Lokendra
Grannes, Dean |.

Publication Date
1996

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7n711913
https://escholarship.org
http://www.cdlib.org/

A Connectionist Treatment of Negation and Inconsistency

Lokendra Shastri and Dean J. Grannes
International Computer Science Institute
1947 Center St., Ste. 600
Berkeley, CA 94704
shastri@icsi.berkeley.edu, grannes@icsi.berkeley.edu

Abstract

A connectionist model capable of encoding positive as well
as negated knowledge and using such knowledge during rapid
reasoning is described. The model explains how an agent
can hold inconsistent beliefs in its long-term memory with-
out being “aware” that its beliefs are inconsistent, but detect
a contradiction whenever inconsistent beliefs that are within a
certain inferential distance of each other become co-active dur-
ing an episode of reasoning. Thus the model is not logically
omniscient, but detects contradictions whenever it tries to use
inconsistent knowledge. The model also explains how limited
attentional focus or action under time pressure can lead an agent
to produce an erroneous response. A biologically significant
feature of the model is that it uses only local inhibition to en-
code negated knowledge. The model encodes and propagates
dynamic bindings using temporal synchrony.

Introduction

The ability to perform inferences in order to establish refer-
ential and causal coherence and generate expectations plays a
crucial role in understanding language (e.g., McKoon & Rat-
cliff, 1981). Given that we can understand language at the rate
of several hundred words per minute, it is also apparent that
we can perform the requisite inferences rapidly — as though
they were a reflex response of our cognitive apparatus. In view
of this, we have described such reasoning as reflexive (Shastri,
1991).! Certain types of negated knowledge also plays a role
in such reasoning. If we were told “John has been to Canada™
and “John has not been to Europe”, we could readily answer
the questions (i) “Has John been to North America?’, (ii)
“Has John been to France?” and (iii) “‘Has John been to Aus-
tralia?” with “yes”, “no”, and “don’t know”, respectively. We
can also reason reflexively with rules involving certain types
of negated conditions. So given “John is a bachelor”, we
can readily answer “no” to “Is John married to Susan?” Ob-
serve that answering this question involves the use of negated
knowledge that may be approximated as “A bachelor is not
married to anyone” (i.e., bachelor(x) = —~married(x,y)).2
Due to the complexity it adds to the inference process,
knowledge representation systems often do not deal explic-
itly with negation. Some models deal partially with negation

'A formal characterization of reflexive reasoning appears in
(Shastri, 1993).

2We are using the notation of first-order logic for convenience.
This does not mean that we view deduction to be the sole basis
of reflexive reasoning. All variables are assumed to be universally
quantified.
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by adopting the closed world assumption in Al. The intuition
behind this assumption is as follows: If an agent knows all
the relevant facts about some domain, then it may assume that
any fact it does not know is false! In view of this assumption,
the agent can treat “don’t know” answers as “no” answers.
The use of the closed world assumption, however, has lim-
ited applicability and cannot be a substitute for the ability
to explicitly deal with negated information and distinguish
between the epistemic states “don’t know" and “no”.

The encoding of negated knowledge raises the possibility
of inconsistencies in an agent’s long-term memory (LTM).
We often hold inconsistent beliefs in our LTM without being
explicitly aware of such inconsistencies. But at the same time,
we often recognize contradictions in our beliefs when we try
to bring inconsistent knowledge to bear on a particular task.
In view of this, a cognitively plausible model of memory
and reasoning should allow inconsistent facts and rules to
co-exist in its LTM, but it should be capable of detecting
contradictions whenever inconsistent beliefs that are within
a certain inferential distance of each other become co-active
during an episode of reasoning.

Finally, any agent with limited resources must sometimes
act with only limited attentional focus and often under time
pressure. This means that an agent may sometimes over-
look relevant information and act in an erroneous manner.
Extended evaluation or an appropriate cue, however, might
make the necessary information available and lead to a cor-
rect response. Several interesting aspects of such a situation
are captured in the following scenario (which we will refer to
as the Post Office Example):

John runs into Mary on the street. “Where are you go-
ing?” asks John. *“To the post office,” replies Mary. “But
isn’t today Presidents’ Day?” remarks John. “Oops! I
forgot that today was a federal holiday,” says Mary after
a momentary pause and heads back.

"

Clearly, Mary had sufficient knowledge to infer that “today’
was a postal holiday. But the fact that she was going to the
post office indicates that she had assumed that the post office
was open. So in a sense, Mary held inconsistent beliefs.
John's question served as a trigger and brought the relevant
information to the surface and made Mary realize her mistake.
A cognitively plausible model should be capable of modeling
such situations.

This paper describes a connectionist model that can encode
positive as well as negated rules and facts, rapidly perform a
class of inferences, and exhibit the desirable properties dis-
cussed above. This work extends our work on SHRUTI, a
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Figure 1: The structure of a predicate cluster.

connectionist model of reflexive reasoning (Ajjanagadde &
Shastri, 1991; Shastri & Ajjanagadde, 1993; Mani & Shastri
1993) and is partly influenced by (Cottrell, 1985). A de-
tailed description of the extended model appears in (Shastri
& Grannes, 1995).

System Overview

This section presents a brief summary of the system. Due to
limited space we will not describe the encoding of multiple
instantiations, type hierarchy, and context-sensitive rules.

General Representation

Figure 1 illustrates the representation of a predicate and en-
tities. A node such as John corresponds to a focal node of
the representation of the entity “John”. Information about the
various features of John and the roles he fills in various events
is encoded by linking the focal node to appropriate nodes
distributed throughout the network (see Shastri & Feldman,
1986; Feldman, 1989).

Encoding of Predicates: Predicate Clusters as
Convergence Zones

Consider the encoding of the binary predicate love with two
roles: lover and lovee. This predicate is encoded by a cluster
of nodes consisting of two role nodes depicted as circular
nodes and labeled lover and lovee; an enabler node depicted
as a pentagon pointing upwards and labeled e:love; and two
collector nodes depicted as pentagons pointing downwards
and labeled +c:love and —c:love respectively. In general,
the cluster for an n-ary predicate contains n role nodes, one
enabler node, and two collector nodes. The circular nodes
are p-btu nodes while the pentagon shaped nodes are T-and
nodes. The computational behavior of these nodes will be
described shortly.

The cluster of nodes described above act as an anchor for
the complete encoding of a predicate. All rules and facts that
involve a predicate converge on its cluster, and all rules and
facts involving a predicate can be accessed by fanning out
from the predicate’s cluster. This representation of a predi-
cate is closely related to the notion of “convergence zones”
(Damasio, 1989).

Let us examine the semantic import of the enabler and
collector nodes. Assume that the roles of a predicate P are
dynamically bound to some fillers thereby representing a dy-
namic instance of P (we will see how, shortly). The con-
comitant activation of the enabler e:P means that the system
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Figure 2: The rhythmic pattern of activation representing the
dynamic bindings love(Mary,Tom).

is trying to explain whether the currently active dynamic in-
stance of P is supported by the knowledge in the memory.
The request for such an explanation might be generated in-
ternally by the reasoning system, or be communicated to it
by some other subsystem (e.g., the planning module). The
semantic import of the two collectors +¢:P and —c:P is the
complement of that of the enabler node. The system activates
the positive collector +¢:P when the currently active dynamic
instance of P is supported by the knowledge encoded in the
system. In contrast, the system activates the negative collec-
tor —c: P when the negation of the active instance is supported
by the system’s knowledge. Neither collector becomes active
if the system does not have sufficient information about the
currently active dynamic instance. The collectors can also
be used by an external process. For example, the language
understanding process might activate c:love and establish the
bindings (lover=John, lovee=Mary) upon hearing the utter-
ance “John loves Mary”. Since the two collectors encode
mutually contradictory information they have mutually in-
hibitory links. Observe that this inhibition is local to the two
collectors within a predicate cluster.

Detecting a Contradiction

The levels of activation of the positive and negative collectors
of a predicate measure the effective degree of support offered
by the system to the currently active predicate instance. These
levels of activation are the result of the activation incident on
the collectors from the rest of the network and the mutual in-
hibition between the two collectors. The two activation levels
encode a graded belief ranging continuously from “no” on the
one extreme — where only the negative predicate is active, to
“yes” on the other — where only the positive collector is ac-
tive, with “don’t know" in between — where neither collector
is very active. If both the collectors receive comparable and
strong activation then both collectors can be in a high state
of activity, in spite of the mutual inhibition between them.
When this happens, a contradiction is detected. In the current
implementation this is done by an additional node within each
predicate cluster (not shown in Figure 1) that has a threshold
of 1.5 and receives excitatory inputs from both the collectors.



Significance of Collector to Enabler Connections

The weighted links between the collectors and the enabler of
a predicate convert a dynamic assertion into a query about the
assertion. Thus the system can constantly evaluate (or seek
an explanation for) incoming knowledge in the context of
existing knowledge. The weights on links from collectors to
enablers can be viewed as a measure of the system's propensity
for seeking such evaluations. A system with a high weight
on these links can be viewed as a highly critical and skeptical
system, while one with very low weights can be viewed as a
credulous system — one which accepts incoming information
without actively seeking an explanation or determining how
well it coheres with prior knowledge.

The system’s ability to evaluate incoming information en-
ables it to detect inconsistencies between incoming informa-
tion and prior knowledge. This evaluation process is fast and
automatic but the scope of inconsistency detection is bounded
by the constraint on the maximum depth of reflexive reasoning
(Shastri & Ajjanagadde, 1993). Observe that here we are re-
ferring to a reflexive process of evaluation and not a deliberate
search for inconsistencies.

The links from the collectors of a predicate to its enabler
also serve to create positive feedback loops of spreading ac-
tivation and thereby create stable coalitions of active nodes
under appropriate circumstances. Assume that the system is
seeking an explanation about the currently active instance of
P, and therefore, the enabler of P is active. If the memory
supports this instance of P it will activate the positive collector
of P. This will create a feedback loop — or a stable coalition
— consisting of e P, the enablers of other predicates partic-
ipating in the explanation of P, the appropriate collectors of
these predicates, +¢:P, and e:P.

Computational Behavior of Idealized Nodes

If a p-btu node A is connected to another p-btu node B then the
activity of B synchronizes with the activity of A. In particular,
a periodic firing of A leads to a periodic and in-phase firing
of B.

A 7-and node becomes active on receiving a pulse (or a
burst of activity) exceeding a minimum duration, . Thus a
r-and node behaves like a remporal and node. On becoming
active, it produces an output pulse similar to the input pulse.

A threshold, n (default value 1), associated with a node
indicates that the node will fire upon receiving n or more
inputs simultaneously (see Shastri & Ajjanagadde, 1993).

Encoding Dynamic Bindings:

Dynamic bindings are represented by the synchronous firing
of appropriate role and filler nodes. With reference to Fig-
ure 1, the rhythmic pattern of activity shown in Figure 2 rep-
resents the dynamic bindings (lover=Mary,lovee=Tom) (i.e.,
the dynamic fact love(Mary,Tom)). Observe that Mary and
lover are firing in synchrony and Tom and lovee are firing in
synchrony. The absolute phase of firing of nodes is not sig-
nificant. Also since e:love is firing, the system is essentially
“asking" whether it believes that Mary loves Tom.

As discussed at length in (Shastri & Ajjanagadde, 1993),
there exists substantial neurophysiological evidence to sug-
gest that the propagation of synchronous activity is neurally
plausible. A detailed review of synchronous cortical activ-
ity appears in (Singer, 1993). The idea that synchronous
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Figure 3: love(John,Mary) and

The encoding of facts:
—love(Tom,Susan).

activity can bind features during visual processing had been
suggested by von der Malsburg (1986) (also see Bienenstock
& Geman, 1995), but SHRUTI is perhaps the first model to
demonstrate how synchronous activation can be harnessed to
solve complex problems in the representation and processing
of conceptual knowledge.

Encoding Long-Term Facts: Memory as a
Temporal Pattern Matcher

A long-term fact behaves like a temporal pattern matcher
that becomes active whenever the static bindings it encodes
match the dynamic bindings represented in the system's state
of activation. Figure 3 illustrates the encoding of the long-
term facts love(John,Mary) and —love(Tom,Susan). Observe
that each long-term fact is encoded using a distinct 7-and node
which receives a link from the enabler node of the associated
predicate and sends a link to the positive or negative collector
of the predicate depending on whether the fact encodes a
positive or a negative fact. The link from the enabler to
the fact node is modified by inhibitory links from role nodes
of the associated predicate. If a role is bound to an entity,
the modifier input from this role node is in turn modified
by an inhibitory link from the appropriate entity. Given the
query love(John,Mary)? the fact node F2 will become active
and activate the collector +c:love indicating a “‘yes” answer.
Similarly, given the query love(Tom,Susan)?, the fact node F1
will become active and activates the —c:P collector indicating
a “no” answer. Finally, given the query love(John,Susan)?,
neither +c:love nor —c:love would become active, indicating
that the system can neither affirm nor deny whether John loves
Susan.



bachelor

O O

husband wife
married

Figure 4: Encoding of the rule: bachelor(x) = —~married(x,y)

Encoding of Rules

A rule is encoded by (i) linking the roles of the antecedent
and consequent predicates so as to reflect the correspondence
between these roles specified by the rule, (ii) connecting the
enabler of the consequent predicate to the enabler of the an-
tecedent predicate, and (iii) connecting the appropriate collec-
tors of the antecedent predicates to the appropriate collector
of the consequent predicate. The collector link originates
from the positive (negative) collector of an antecedent pred-
icate if the predicate appears in its positive (negated) form
in the antecedent. Similarly, the link terminates at the pos-
itive (negative) collector of the consequent predicate if the
predicate appears in a positive (negated) form in the conse-
quent, Figure 4 shows the encoding of the rule bachelor(x)
= —married(x,y). Observe that the system does not encode
the contrapositive of a rule by fiat. In our model, a rule and its
contrapositive are two distinct rules. Thus the contrapositive
form of a rule may, or may not, be present in the LTM.

The encoding of rules makes use of weighted links between
predicates. These weights distinguish categorical rules from
soft (default) rules and also lead to a gradual weakening of
activation along a chain of inference. Eventually the chain of
inference terminates when activation falls below a threshold.

The solution to the problem of negation and inconsistency
proposed above is simpler than the one suggested in (Cottrell,
1993). The latter suggests duplicating the entire predicate
bank for each predicate. In this scheme, each predicate P
would have two separate banks of role, enabler and collector
nodes: one for positive knowledge about P (+P), and another
for negative knowledge about P (~P). Such a scheme would
have required a mechanism for comparing bindings across the
+P and —P banks in order to detect a contradiction.

Three Examples

In this section we present three examples. These have been
greatly simplified in order to focus on the key properties of
the model.

First, assume that the system has the following rule and fact
inits LTM: bachelor(x) => —~married(x,y) and bachelor(John).
Now the system is told “John is married to Susan” by ac-
tivating +c:married and establishing the dynamic bindings

(husband=John,wife=Susan). Activation propagates from
+c:married 10 e;married, and because of the rule, from
e:married to e:bachelor. The husband role of married also
synchronizes with the role of bachelor (refer to Figure 4).
At this time, the fact bachelor(John) matches the dynamic
binding at bachelor and activates +c:bachelor (the fact is not
shown in Figure 4). The activation from +c:bachelor propa-
gates down to—c:married. Thus both the collectors of married
become active and signal a contradiction between the agent’s
existing beliefs and the new information. The system has
the option of rejecting the incoming information as spurious
or updating its existing beliefs about John. How the system
exercises its options is beyond the scope of this work.

Inconsistencies in existing knowledge are also detected in
an analogous manner when inconsistent knowledge is acti-
vated. This can happen during the processing of a query or
during the assimilation of new information. For example, as-
sume that the following (inconsistent) knowledge resides in
the LTM:

1. P(xy) = R(xy)
2. Q(xy) = -R(xy)
3. P(a,b)

4. Q(a,b)

Now assume that the execution of some cognitive task results
in the query R(a,b)? to the memory and reasoning system.
As aresult of rules (1) and (2), this query leads to the queries
P(a,b)? and Q(a,b)?. The facts (3) and (4) match the two
queries, respectively, and activate +c:P and +c:Q. These col-
lectors in turn activate +c:R and -c:R respectively. The acti-
vation of the positive and negative collectors of R leads to the
detection of a contradiction. Thus the proposed encoding al-
lows inconsistent knowledge to reside in the agent’s memory,
but detects an inconsistency whenever the agent tries to bring
some inconsistent knowledge to bear on a particular task.

Next, we describe a simulation of the Post Office Example
introduced earlier to illustrate how an agent may overlook rel-
evant information and act in an erroneous manner. Extended
evaluation — or an appropriate cue, however, can make the
relevant information accessible and lead to the correct re-
sponse. We model the agent’s knowledge as follows (refer to
Figure 5):

(i) presidents-day(day) => federal-holiday(day)

(ii) 3rd-Mon-Feb(day) => presidents-day(day),

(iii) 3rd-Mon-Feb(20-Feb-95)

(iv) ~3rd-Mon-Feb(21-Feb-95)

(v) weekday(day) A post-office(x) = open(x,day) (with a
medium weight)

(vi) weekend(day) A post-office(x) = —open(x,day)

(vii) federal-holiday(day) A post-office(x) = —~open(x,day)

(viii) post-office( PO)

The significance of items (i), (v), (vi), and (vii) is fairly
obvious. Item (ii) specifies that third Mondays in February
arc Presidents’ Days. Ideally 3rd-Mon-Feb would be realized
as a mental process. We are indirectly simulating such a
procedure by assuming that such a mental process is accessed
via the predicate 3rd-Mon-Feb in order to determine whether
the day bound to its role is a third Monday in February. In this
example, this mental “calendar’ consists of two facts stated in
items (iii) and (iv). Item (viii) states that PO is a particular post
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Figure 5: The network representation of the Post Office Ex-
ample. Links between roles, detailed encoding of facts, the
relation weekend and the encoding of rule (vi) is not shown.
Rules (v) and (vii) are multiple antecedent rules. Thresholds
other than 1 are shown inside nodes.

office. Items (i), (ii), (vi), and (vii) are categorical rules about
the domain and have a high weight, but item (v) corresponds
to default and defeasible information and hence, has a medium
weight. In the current implementation, default rules have a
weight of 0.70 while categorical rules have a weight of 1.
We assume that “Today” is a concept which is bound each
day to the appropriate date and to “weekday” or “weekend”
depending on the day. These bindings are assumed to be
available as facts in the agent’s memory.

Imagine it is 20-Feb-95, which is Presidents’ Day, and
Mary is planning a trip to the post office (PO). Her “go-to-
post-office” schema has the precondition that the post office
must be open so it poses the query open(PO,Today)? Assume
that after posing the query the schema monitors the activity
of +c:open and —c:open and accepts an answer based on the
criterion: Accept a “yes” (“no”) answer if the positive (neg-
ative) collector stays ahead and exceeds a threshold, Oaccept,
for some minimum length of time, A;. Once the schema ac-
cepts an answer, it terminates the query and proceeds with its
execution.

Since “Today” is bound to 20-Feb-95, the fact weekday(20-
Feb-95) is present in Mary’s memory. When the schema
asks the query open(PO,Today)?, the default rule about post
offices remaining open on weekdays becomes active first and
activates the positive collector +c:open (refer to Figures 5 and
6). If we assume f,.ccp¢ to be 0.5, the activation of +c:open
exceeds fgecept after 12 cycles and stays above threshold for
about 20 cycles. During this time, the negative collector does
not receive any activation and stays at 0. If we assume that A;
is 10 cycles, the schema will accept +c:open as an answer and
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withdraw the query. So Mary will set off to the post office.’

~¢:open siays at 0

+C.open

é 'Ili’J 15 ?ID 2l5 a0
Figure 6: The activation trace for the query open(PO,Today)?,
where today is 20-Feb-95. The vertical axis denotes activation
level and has a scale factor of 1000. The horizontal axis

denotes number of simulation steps.

Had the query remained active, the inference process would
have eventually inferred that the post office is not open to-
day. The result of the inferential process, if the query
open(PO,Today)? had not been terminated by the schema,
is shown in Figure 7. The dark lines show the activation of
the collectors of open while the dotted lines show the activa-
tion of the collectors of some other relevant predicates. First
it is inferred that today is a weekday. Next it is inferred that
today is the third Monday in February. As a result, the in-
ference that today is Presidents’ Day, and hence, a federal
holiday, follows. This in turn leads to the inference that the
post office is not open today.

T T
+C:weekday
+C3rd-Mgn-Feb . tC:presidents—day

+c;federal-holiday

310 410 5:0 EID 70
Figure 7: The activation trace for the query open(PO,Today)?

— today being 20-Feb-95 — allowed to run its full course.

Subsequently, John asks Mary: “Isn’t today Presidents’
Day?'. This causes the language process to activate
e:Presidents-day and bind the role of Presidents’ Day to 20-
Feb-95. This leads to the activation of e:3rd-Mon-Feb and
then +c¢:3rd-Mon- Feb (via the fact 3rd-Mon- Feb(20-Feb-95)).
The activation from +c:3rd-Mon- Feb works its way back and
activates —c:open. Since this activation is due to categorical
rules (rules ii, i, and vii), it is stronger than that arriving at
+c:open from the default rule (item v). The mutual inhibition
between the highly activated —c:open and the moderately acti-
vated +c:open results in the suppression of +c:open, making
Mary realize that the post office is not open (see Figure 8).

*The values of faccept and A, cited above are the ones used in
the simulation.



+cprasidents-day

+c-fedaral-holiday

50 60 70
Figure 8: The activation trace for the query “Isn’t today Presi-
dents’ Day?” posed to Mary on 20-Feb-95 long after her “go-
to-post-office” schema has posed the query open(PO, Today)?

and accepted a yes answer.

Conclusion

This paper describes an extension of the structured connec-
tionist model SHRUTI that can deal with positive as well as
negated forms of facts and rules. The model explains how an
agent can hold inconsistent beliefs without being “aware” that
its beliefs are inconsistent, but detect a contradiction when
two contradictory beliefs that are within a small inferential
distance of each other become co-active during an episode
of reasoning. The model also shows how limited attentional
focus or action under time pressure may lead to an erroneous
response.

The significance of this work extends beyond reasoning.
In essence, SHRUTI demonstrates how connectionist networks
can represent relational structures and perform certain types of
computations over such structures in an efficient manner. This
involves the representation of static as well as dynamic bind-
ings, interactions between these two types of bindings, and
the systematic but context sensitive propagation of dynamic
bindings from one relational structure to another. Hence the
significance of the representational and inferential mecha-
nisms developed in SHRUTI extends to any cognitive task that
involve computations over relational structures such as frames
and schemas. For example, Henderson (1994) has shown that
the SHRUTI architecture is also appropriate for supportingreal-
time parsing of English.

In future work we plan a detailed investigation of the in-
teractions between default and categorical rules. In doing so
we will draw upon earlier work on connectionist treatment
of exceptions, multiple inheritance, and default information
(Cottrell, 1985; Shastri, 1988).
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