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Abstract The integrated elliptic flow of charged particles
produced in Pb+Pb collisions at

√
sNN = 2.76 TeV has been

measured with the ATLAS detector using data collected at
the Large Hadron Collider. The anisotropy parameter, v2,
was measured in the pseudorapidity range |η| ≤ 2.5 with
the event-plane method. In order to include tracks with very
low transverse momentum pT, thus reducing the uncertainty
in v2 integrated over pT, a 1 μb−1 data sample recorded
without a magnetic field in the tracking detectors is used.
The centrality dependence of the integrated v2 is compared
to other measurements obtained with higher pT thresholds.
The integrated elliptic flow is weakly decreasing with |η|.
The integrated v2 transformed to the rest frame of one of the
colliding nuclei is compared to the lower-energy RHIC data.

1 Introduction

The anisotropy in the azimuthal angle distribution of parti-
cles produced in heavy-ion collisions has been studied exten-
sively due to its sensitivity to the properties of the produced
hadronic medium [1,2]. The final-state anisotropy arises
from the initial spatial asymmetry of the overlap zone in the
collision of two nuclei with non-zero impact parameter. The
initial spatial asymmetry induces asymmetric pressure gra-
dients that are stronger in the direction of the reaction plane
and, due to the collective expansion, lead to an azimuthally
asymmetric distribution of the ejected particles. The final-
state anisotropy is customarily characterized by the coeffi-
cients vn of the Fourier decomposition of the azimuthal angle
distribution of the emitted particles [3]. The second Fourier
coefficient v2 is related to the elliptical shape of the overlap
region in non-central heavy-ion collisions, and the higher
flow harmonics reflect fluctuations in the initial collision
geometry [4]. The first observation of elliptic flow, quantified
by measurements of v2, at RHIC [5–8] were found to be well

� e-mail: atlas.publications@cern.ch

described by predictions based on relativistic hydrodynam-
ics [9–11], providing compelling evidence that the created
matter is strongly coupled and behaves like an almost per-
fect, non-viscous, fluid. Later studies show small deviations
from ideal hydrodynamics, described in terms of the ratio of
shear viscosity to entropy density [12–15].

First results from Pb+Pb collisions at
√

sNN = 2.76 TeV
[16–21] from the Large Hadron Collider (LHC) showed
no change in the transverse momentum, pT, dependence
of elliptic flow from that measured at the highest RHIC
energy, while the elliptic flow integrated over pT [16,20]
was found to increase by about 30 % from the RHIC energy
of

√
sNN = 200 GeV1 to

√
sNN = 2.76 TeV at the LHC.

This increase in the integrated elliptic flow with energy is
therefore driven mostly by the increase in the mean pT of
the produced particles. The dependence of elliptic flow on
the geometry of the collision (the collision centrality) is of
particular importance, since the flow is thought to depend
strongly on the initial spatial anisotropy. Hydrodynamical
models are used to quantitatively relate the initial geometry
to the experimentally measured distributions. Furthermore,
recent hydrodynamical calculations [22,23] also include a
longitudinal dependence in the source shape, which can be
deduced from flow measurements over a wide pseudorapidity
range.

This article presents measurements of the centrality and
pseudorapidity dependence of the elliptic flow integrated
over the pT of charged particles produced in Pb+Pb colli-
sions at

√
sNN = 2.76 TeV recorded in 2010 by the ATLAS

detector.
In order to reduce the uncertainty in the pT-integrated

coefficient v2 by including tracks with pT lower than in
the measurements reported by the ALICE [16] and CMS
[20] experiments, a special track reconstruction procedure
was applied to “field-off” data taken without the solenoid’s
magnetic field in the tracking detectors. Other track recon-

1 ATLAS uses the system of units where c = h̄ = 1.
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struction methods, applicable at higher pT, were exploited in
cross-checks using “field-on” data taken with the solenoid’s
magnetic field.

2 The ATLAS detector

The ATLAS detector is a multi-purpose particle physics
apparatus and is described in detail elsewhere [24]. This
analysis uses the three-level trigger system to select Pb+Pb
collision events, the forward calorimeters (FCal) to measure
the collision centrality, and the inner detector (ID) to mea-
sure charged-particle tracks. The ID tracking system com-
prises silicon pixel and microstrip detectors and a transition
radiation tracker. It provides complete azimuthal coverage
and spans the pseudorapidity region |η| < 2.5.2 The pixel
detector consists of a three-layer barrel section and three
discs in each of the forward regions. The semiconductor
tracker has four double layers of microstrip sensors in its
barrel section and nine discs in each of the forward regions.
The ID is surrounded by a thin superconducting solenoid,
which produces a 2 T axial magnetic field for the field-on
data. The FCal measures both electromagnetic and hadronic
energy, using copper–tungsten/liquid-argon technology, and
provides complete azimuthal coverage for 3.2 < |η| < 4.9.
The hardware-based Level-1 trigger selected minimum-bias
Pb+Pb collisions by requiring either a coincidence of signals
recorded in the zero-degree calorimeters (ZDC) located sym-
metrically at z = ±140 m (|η| > 8.3) or a signal in at least
one side of the minimum-bias trigger scintillators (MBTS)
at z = ±3.6 m (2.1 < |η| < 3.9). To suppress beam back-
grounds, the Level-2 trigger demanded MBTS signals from
opposite sides of the interaction region and imposed a timing
requirement on them.

With these trigger conditions, ATLAS recorded a sample
of Pb+Pb collisions corresponding to an integrated luminos-
ity of approximately 1 μb−1 taken with the field provided by
the solenoid turned off. In addition, approximately 0.5 μb−1

of field-on data was used in studies of track reconstruction
performance.

3 Event selection and centrality definition

The offline event selection required each event to have a ver-
tex formed by at least three charged-particle tracks recon-

2 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ)

are used in the transverse plane, φ being the azimuthal angle around the
beam pipe. The pseudorapidity is defined in terms of the polar angle θ

as η = − ln tan(θ/2).

structed in the ID. The data were recorded at low instanta-
neous luminosity where the probability of multiple collisions
per bunch crossing (pile-up) was negligible. The track recon-
struction algorithms therefore allowed only one collision ver-
tex (called the primary vertex) in each event, thereby reduc-
ing the processing time while maintaining efficiency. The
time difference between the MBTS signals from the oppo-
site sides of the interaction region was required to be less than
3 ns, and a coincidence of ZDC signals was also required.
These additional selection criteria efficiently remove beam-
gas and photo-nuclear interactions. As shown in previous
studies [18], the applied trigger and offline requirements pro-
vide a minimum-bias event sample in which the fraction of
inelastic Pb+Pb collisions is 98 ± 2 %.

Events satisfying the above criteria were also required to
have a primary vertex within 50 mm (100 mm) in the z-
direction of the nominal centre of the ATLAS detector for
the field-off (field-on) data subsample. After requiring all
relevant subdetectors to be performing normally, the sub-
samples used in the analysis of the field-off and field-on data
contained approximately 1.6 million and 3 million minimum-
bias events, respectively.

Monte Carlo (MC) event samples were used to determine
the tracking efficiencies and the rates of fake tracks. The
HIJING event generator [25] was used to produce minimum-
bias Pb+Pb collisions. Events were generated with the default
parameters except for jet quenching, which was turned off.
The effect of elliptic flow was implemented after event gen-
eration. The azimuthal angles of final-state particles were
redistributed at generator level to produce an elliptic flow
consistent with previous ATLAS measurements [18,19]. The
simulation of the ATLAS detector’s response [26] to the gen-
erated events is based on the GEANT4 package [27] and
included a detailed description of the detector geometry and
material in the 2010 Pb+Pb run. Two samples of 0.5 mil-
lion MC events were simulated, one with the solenoid field
switched off and the other with it switched on. Additional MC
samples consisting of 50,000 events simulated with 10–20 %
extra detector material were used to study systematic uncer-
tainties. The generated charged particles were reweighted
with pT- and centrality-dependent functions so that the pT

spectra in the MC samples matched the experimental ones
[28].

The centrality of the Pb+Pb collisions was characterized
by the summed transverse energy, Σ EFCal

T , measured in the
FCal [18]. The Σ EFCal

T distribution was divided into ten cen-
trality bins, each representing 10 % of the full distribution
after accounting for 2 % inefficiency in recording the most
peripheral collisions (the 0–10 % centrality interval corre-
sponds to the most central 10 % of collisions: those with
the largest Σ EFCal

T ). A small change in the overall record-
ing efficiency leads to large fluctuations in the population of
the most peripheral collisions. To avoid resulting large sys-
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tematic uncertainties, the 20 % of events with the smallest
Σ EFCal

T were not included in the analysis.

4 Elliptic-flow measurement

The final-state azimuthal anisotropy is quantified by the coef-
ficients in the Fourier expansion of the φ distribution of
charged particles [3],

dN/dφ ∝ 1 + 2
∞∑

n=1

vn cos (n[φ − Ψn]), (1)

where vn and Ψn are the magnitude and the azimuthal direc-
tion (called the event-plane angle) of the n-th flow harmonic,
respectively.

The second flow harmonic, v2, for a given collision cen-
trality is a function of pT and η, and is determined by

v2(η, pT) = 〈cos (2[φ − Ψ2])〉√
〈cos (2[Ψ N

2 − Ψ P
2 ])〉

, (2)

where the numerator denotes the average over charged-
particle tracks in a givenη and pT range, and the denominator,
averaged over events, is a correction accounting for the finite
experimental resolution in the determination of the event-
plane angle Ψ2. This resolution correction was obtained using
the sub-event technique [3] as described in Refs. [18,19]. The
two “sub-events” defined for each event cover two η ranges
of the same width in the positive and negative η hemispheres
(3.2 < |η| < 4.8) of the FCal detector. The sub-event-plane
angles are determined by

Ψ
N(P)
2 = 1

2
tan−1

⎛

⎜⎝

∑
i

E tower
Ti wi sin(2φi )

∑
i

E tower
Ti wi cos(2φi )

⎞

⎟⎠ , (3)

where the sums run over transverse energies, E tower
T , as mea-

sured in calorimeter towers located at negative (N) and pos-
itive (P) η in the first sampling layer of the FCal. The FCal
towers consist of cells grouped into projective regions in
Δη × Δφ of 0.1 × 0.1. The weights, wi (Δηi ,Δφi ) are
used to correct for any non-uniformity in the event-averaged
azimuthal angle distribution of E tower

T . They are determined
from the data in narrow Δηi and Δφi slices.

In the sub-event approach, potential non-flow correlations
are minimized by using the reaction plane estimated from the
η side opposite to the tracks used for the v2 measurement;
this provides a separation of Δη > 3.2. This method was
previously applied [18] to measure v2 as a function of pT

using charged-particle tracks reconstructed in the ID tracking
system with a minimum pT of 0.5 GeV.

In order to perform the integration over pT, the differential
v2 measurements are weighted by the number of charged-
particle tracks N corr

i,k ,

v2 =
∑

i

∑

k

v2(ηi , pT,k)N corr
i,k /

∑

i

∑

k

N corr
i,k , (4)

and summed over bins in η (denoted by the index i) and pT

(index k). The number of charged-particle tracks is calculated
as N corr

i,k = Ni,k[1 − f (i, k)]/ε(i, k), where the Ni,k is the
observed number of tracks in a given η and pT bin, ε(i, k) is
the track reconstruction efficiency and f (i, k) is the estimated
rate of fake tracks. In the following sections, the lower limit
in the integration of v2 over pT is denoted by pT,0.

5 Track reconstruction

The ID was used to reconstruct charged-particle trajectories.
Three track reconstruction methods were applied in order to
exploit a large range in particle pT:

– the tracklet (TKT) method used for the field-off data in
order to reach charged-particle pT below 0.1 GeV [28],

– the pixel track (PXT) method used to reconstruct tracks
with pT ≥ 0.1 GeV using only the pixel detector in the
field-on data sample,

– the ID track (IDT) method for the field-on data sample,
the default ATLAS reconstruction method, for which all
ID sub-detectors are used and the track pT is limited to
pT ≥ 0.5 GeV [29].

In the TKT method for field-off data, tracks are formed from
the positions of hit clusters in the inner two layers of the pixel
detector and the position of the primary vertex reconstructed
using ID tracks. In the first step, the η0 and φ0 coordinates are
defined using the event’s vertex position and the hit recorded
in the first pixel layer. Then a search for a hit in the second
pixel layer (with η1 and φ1 coordinates defined with respect
to the vertex position) is performed and its consistency with a
straight-track hypothesis is checked. Candidate tracklets are
required to satisfy the condition

ΔR = 1√
2

√(
Δη

ση(η0)

)2

+
(

Δφ

σφ(η0))

)2

< Nσ , (5)

where Δη = η1 − η0 and Δφ = φ1 − φ0, and ση(η0) and
σφ(η0) are pseudorapidity-dependent widths of the Δη and
Δφ distributions, respectively. In this analysis, Nσ = 3 was
used as the default condition. Clusters located close to each
other in the second pixel layer are most likely to originate
from the same particle. Therefore, if more than one cluster
located in the second pixel layer fulfils the selection criteria,
the resulting tracklets are merged into a single tracklet. The
Δη and Δφ distributions in data and MC simulation are com-
pared in Fig. 1. The data and MC distributions agree well.
Candidates fulfilling the criterion in Eq. (5) were accepted
for further analysis with η = η0 and φ = φ0.
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Fig. 1 Comparison of the tracklets’ Δη (top) and Δφ (bottom) distri-
butions in data (open symbols) and MC simulation (filled histograms)
for tracklets measured within the pseudorapidity range |η| < 2, for
events in the 0–80 % centrality interval and ΔR < 4σ, 3σ and 2σ (see
Sect. 5 for details) as described in the legend

This method does not provide information about the
track’s pT; nevertheless, its performance can be checked
as a function of generator-level particle pT by applying
the same reconstruction procedure to the MC simulation
and using the pT of the generated particle corresponding
to the reconstructed tracklet whenever applicable. Figure 2
compares the pT spectra of stable charged particles at the
MC-generator level, Nprimary, to the spectra of reconstructed
tracklets matched to charged particles, Nmatched, for three
representative centrality bins and for |η| < 1. A parti-
cle was considered to be primary if it originated directly
from the collision or resulted from the decay of a particle
with cτ < 1 mm. The matching criterion required that the
two hits forming the tracklet be identical to the hits associ-
ated with a charged particle. The distributions show that the
TKT method is able to reconstruct particles with transverse
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Fig. 2 Monte Carlo evaluation of the tracklet reconstruction perfor-
mance in representative centrality bins 0–10, 40–50 and 70–80 %. Left
generator-level transverse momentum distributions of primary charged
particles, Nprimary (open circles), compared to the pT spectra of charged
particles matched to the reconstructed tracklets, Nmatched (red trian-
gles). Bottom panels show the ratios of the two distributions. Right
pseudorapidity, η, dependence of the ratio of all reconstructed track-
lets, Nreco (open circles), and Nmatched (red triangles) to all primary
charged particles. The ratio of fake tracklets, Nfake (grey diamonds), to
all reconstructed tracklets is also shown

momenta ∼0.07 GeV with 50 % efficiency, and that a plateau
at about 80 % is reached for pT > 0.1 GeV in all centrality
bins. For low pT, the efficiency decreases sharply, but the par-
ticle density is small in this region, as is v2; thus the contribu-
tion from this region to the integrated elliptic flow is expected
to be small. Figure 2 also shows the reconstruction efficiency,
Nmatched/Nprimary, as a function of η. Here, Nprimary denotes
all primary charged particles with pT ≥ 0.07 GeV, which
defines the low-pT limit for integrating v2 over pT. The
efficiency is found to be ∼80 % and depends weakly on
η. The rate of fake tracklets, Nfake, measured as the ratio
of the number of tracklets not matched to charged particles
to the total number of reconstructed tracklets, Nfake/Nreco,
increases with centrality and |η|, reaching about 35 % for
the most central collisions at |η| = 2. For field-on data,
the PXT method allows the transverse momentum range
pT > 0.1 GeV to be examined. Tracks were reconstructed
within the full acceptance of the pixel detector (|η| < 2.5).
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Fig. 3 Comparison of distributions of the transverse (top), and longi-
tudinal (bottom) impact parameter significances in data and MC simu-
lation for all reconstructed tracks and for the selected tracks (see text
for details)

To improve the track reconstruction’s performance in the
heavy-ion collision environment, the track-quality require-
ments were made more stringent than those for proton–proton
collisions [30]. Pixel tracks were required to have no missing
hits in the pixel layers, and the transverse and longitudinal
impact parameters, d0 and z0, with respect to the vertex were
required to have |d0| and |z0 sin(θ)| less than 1 mm and signif-
icances |d0/σd0 | and |z0 sin θ/σz0 sin θ | less than 3.0. Figure 3
shows good agreement between data and MC simulation in
the distributions of |d0/σd0 | and |z0 sin θ/σz0 sin θ |.

The pixel track method’s reconstruction efficiency was
evaluated in MC simulation by matching reconstructed tracks
to the generated charged particles. A track is matched to
a generated charged particle if it is reconstructed from at
least 69 % of the pixel hits originating from the latter. Fig-
ure 4 illustrates the dependence of the pixel track recon-
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Fig. 4 The transverse momentum, pT, dependence of the pixel track
reconstruction efficiency (left) and the fake rate (right) for three pseudo-
rapidity ranges and three centrality intervals as indicated in the legend

struction efficiency on pT in three pseudorapidity ranges and
for three selected centrality bins. The efficiency decreases
slightly from peripheral to central collisions and also dete-
riorates when moving away from mid-rapidity. A weak pT

dependence is observed above pT > 0.5 GeV for all colli-
sion centralities. At lower pT, the efficiency decreases with
decreasing pT and to about 20 % at the lowest accessible pT.

The fraction of fake tracks, defined as the ratio of recon-
structed tracks not matched to generated charged particles to
all reconstructed pixel tracks, was evaluated using MC sim-
ulation. Figure 4 shows the fake-rate dependence on pT in
three pseudorapidity ranges and for three centrality bins. The
fake rate is below 10 % for pT above 0.4 GeV and depends
very weakly on pT and η for peripheral collisions. In more
central collisions, the fake rate increases at low pT and shows
a similar increase with increasing |η|.

The performance of the PXT reconstruction method can
be compared with that of the IDT method. The track recon-
struction efficiency and rate of fake tracks from the IDT
method are shown in Fig. 5 (for reconstruction details see
Ref. [18]). The minimum pT reached is 0.5 GeV. A compar-
ison of Figs. 4 and 5 shows that the extension towards lower
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Fig. 5 The transverse momentum, pT, dependence of the ID track
reconstruction efficiency (left) and the fake rate (right) for three pseudo-
rapidity ranges and three centrality intervals as indicated in the legend

pT values for the PTX method is achieved at the expense of
much larger fake rates than observed for the IDT method,
whereas the reconstruction efficiencies are similar. The two
methods have different pT resolutions: it is very good for ID
tracks, the root mean square of (preco

T /ptrue
T − 1) being, in

|η| < 1, about 4 % and independent of the track pT in the
used range, whereas for pixel tracks it is about 10 % at the
lowest pT and increases to about 15 % at 5 GeV.

The performance of the MC simulation in describing the
fake rates in the data was checked by comparing the Δη, Δφ,
d0/σd0 and z0 sin θ/σz0 sin θ distributions, like the ones shown
in Figs. 1 and 3. Additionally, the distributions of the ratios of
the number of tracklets and pixel tracks to the number of ID
tracks in data and MC simulation were compared, as shown
in Fig. 6. It can be concluded that the MC description of the
TKT and PXT methods’ performance is adequate.

The elliptic flow depends on the particle type [31] as does
the reconstruction efficiency. Although the track reconstruc-
tion efficiency is averaged over all particle types in this analy-
sis, the reconstruction efficiencies for simulated pions, kaons
and protons are shown as a function of pT in the Appendix.
At low transverse momenta, which are the focus of this anal-
ysis, the measured v2 is dominated by pions with negligi-
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Fig. 6 Comparison of the distribution of multiplicity ratios of number
of tracklets, NTKT, (left) and pixel tracks, NPXT, (right) to the number
of ID tracks, NIDT, in data (red) and MC simulation (blue) in three
centrality bins as indicated on the plots

ble contributions from kaons and protons. Nevertheless, the
information on the particle type-dependent efficiencies can
be used for detailed comparison of the measurement to theo-
retical predictions of the elliptic flow for identified particles.

6 Corrections to measured v2

The event-plane method [3] is applied to measure the differ-
ential elliptic flow harmonic v2(η) in small η bins with the
TKT method, and v2(η, pT) in small η and pT bins with the
PXT and IDT methods. The differential v2 measurements are
then corrected for detector-related effects.

The first correction is associated with the variation in
tracking efficiency induced by the flow itself. It is applied
only to the PXT method, which is found to be sensitive to the
detector occupancy. Such sensitivity is not observed for the
IDT method. Since the flow phenomenon is a modulation
of the multiplicity, it may induce a variation of the track-
ing efficiency in an event. Higher occupancy causes lower
efficiency, and the number of tracks observed in the event
plane is reduced more strongly than the number of tracks
observed in other directions. As a consequence, the observed
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v2 is smaller. In order to correct for this effect, an appropri-
ate weight was applied to the tracks in the calculation of the
numerator of Eq. (2). This weight, the inverted efficiency
parameterized as a function of detector occupancy in the
vicinity of the track, was derived from MC simulation. In
the data, the occupancy was determined for each track from
the number of hits near the track in the first layer of the pixel
detector. The corrected v2(pT) was compared to the mea-
surement obtained from the IDT method in the same data.
In the MC simulation, the comparison was made to v2(pT)

determined using generated particles. The relative increases
in the value of v2(pT) in data and in simulation were found
to be compatible for pT > 0.5 GeV, the range in which the
comparison could be performed.

The occupancy correction results in an increase of about
12 % in the integrated v2 for the 0–20 % centrality inter-
val while it amounts to only 1 % for the most periph-
eral collisions, when using a lower pT integration limit of
pT,0 = 0.1 GeV. For higher values of pT,0 the correction
gradually becomes smaller. For pT,0 = 0.5 GeV it decreases
to about 7 % for the most central collisions.

An additional correction, applied to the differential mea-
surement of v2, accounts for the difference between v2 mea-
sured only with fake tracks and v2 measured with charged-
particle tracks from the primary vertex. The corrected v2 is
calculated as

v2 = v2,m − f v2, f

1 − f
, (6)

where v2,m is the elliptic flow measured with all tracks, v2, f

is the flow of fake tracks, and f is the fake-track rate. This
correction was applied to the differential v2 measured with
the TKT, PXT and IDT methods with the corresponding fake
rates and v2, f values. The rate and v2, f of the fake tracks
were derived from MC simulation and then cross-checked in
the data with a sample, obtained with inverted track selection
criteria, in which fake tracks dominate. Differences between
the MC simulation and the data of up to 20 % were observed
and included in the systematic uncertainties.

The fake tracks reduce the values of v2 integrated over
the pT ranges considered in this analysis. The correction is
a function of the fake-track rate and accordingly exhibits a
dependence on centrality, pT and η. For |η| < 1, the largest
correction, about 15 %, was obtained for the PXT method
with pT,0 = 0.1 GeV. For peripheral collisions in the same
kinematic range, it decreases to about 11 %. The correction
is smaller for higher values of pT,0. It decreases to about 2 %
for pT,0 = 0.5 GeV for the 0–10 % centrality interval and
gradually drops to zero for the most peripheral collisions.
The fake-track flow correction for the integrated v2 obtained
with the IDT method (pT,0 = 0.5 GeV) is less than 2 %
for the most central collisions and even smaller for the more

peripheral ones. For the TKT method, the correction is about
1 % for the most central collisions.

The limited pT resolution for tracks reconstructed in the
pixel detector and the rapidly changing dNch/d pT distribu-
tion lead to a significant bin-to-bin migration in pT. As a
consequence of the variation of v2 with pT, v2 measured
in a given pT bin is contaminated by v2 values of particles
from the neighbouring bins. In order to compensate for this
effect, a correction derived from MC simulation was applied
to the v2(pT) values. This correction was determined, using
pixel tracks matched to generated particles, by comparing
the v2(pT) distribution as a function of reconstructed pT to
v2(pT) as a function of generated pT. In order to validate the
correction derived from the MC simulation, the same proce-
dure was applied in the data and in the simulation in the region
of pT > 0.5 GeV , where the ID tracks were used instead
of the generated particles. The ID tracks were matched by
requiring an angular separation

√
(Δη)2 + (Δφ)2 < 0.02.

A comparison between the corrections obtained in the data
and in the MC simulation, as a function of measured pT,
showed a good agreement.

The correction for pT-bin migration of the reconstructed
tracks was found to be small compared to the occupancy and
fake-track flow corrections, and to depend only on the value
of pT,0. It increases the integrated v2 value by 1 % (1.5 %)
for pT,0 = 0.1 GeV (pT,0 = 0.5 GeV) independently of
collision centrality.

7 Uncertainties in the v2 determination

The systematic uncertainties include those common to dif-
ferent tracking methods, as well as method-specific ones.

The uncertainty which originates from the statistics of the
MC samples is treated as a source of systematic uncertainty.

The v2 values determined for samples enriched in fake
tracks in data and MC simulation were compared and dif-
ferences of up to 20 % for both the PXT and IDT methods
were observed. For the PXT method, this difference resulted
in a change of v2, integrated from pT,0 = 0.1 GeV, for the
most central (0–10 %) collisions of 3 % at mid-rapidity and
of 15 % at |η| ∼ 2. The impact on the integrated v2 decreases
with increasing centrality. For higher pT,0 values, the change
was found to be negligible. For the IDT method, the uncer-
tainty on the v2 value of fake tracks induces a systematic
uncertainty in the integrated v2 for central collisions of less
than 4 % at mid-rapidity and of 9 % at |η| ∼ 2; for peripheral
collisions the uncertainty is smaller.

The variation of the fake tracklets’ v2, at the level of 10 %,
obtained from the comparison of data and MC simulation,
results in an uncertainty at the level of 2 % in the integrated
v2 across the centrality range 0–40 %.
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Fig. 7 Contributions to the
relative systematic uncertainty
on the elliptic flow, Δv2/〈v2〉, as
a function of centrality for
|η| < 1 with the TKT (left),
PXT (centre) and IDT (right)
methods. The integration limits
for the three methods are 0.07,
0.1, 0.5 GeV, respectively. The
total uncertainty is indicated by
the shaded area. The individual
contributions, are described in
the legend and explained in the
text

Centrality [%]

0 20 40 60 80

[%
]

〉 2v〈
 / 2vΔ

-10

-5

0

5

10 ATLAS
Pb+Pb

=2.76 TeVNNs

-1bμ = 1 intL

TKT method

Centrality [%]

0 20 40 60 80

-1bμ = 0.5 intL

PXT method

Centrality [%]

0 20 40 60 80

-1bμ = 0.5 intL

IDT method

Total sys.

All methods
Fake
Centrality bins
N-P hemispheres

Sine term
Closure

PXT & IDT
Charge +/-
Trk selection

PXT only
 resolution

T
p

TKT only
R selectionΔ

A comparison of v2 values obtained with the TKT method
for a MC sample with the nominal detector geometry to that
with 10 % more active material and 15–20 % more inactive
material shows agreement to better than 2 %. Therefore it
was assumed that possible inaccuracies in the description
of the detector material in the GEANT4 simulation have a
negligible effect on the final results. The same holds for the
measurements with the PXT and IDT methods.

An overall scale uncertainty on v2 originates from the
uncertainty on the fraction of the total inelastic cross section
accepted by the trigger as well as from the event selection
criteria, which affects the population of the centrality bins.
It is negligibly small (below 1 %) for central collisions and
increases to about 6 % for the most peripheral collisions for
the TKT method and to about 5 % for both the PXT and IDT
methods.

The influence of the detector nonuniformities on the mea-
sured v2 was checked by comparing the v2 values obtained
for positive and negative η. This led to a typical uncertainty
of 1 % except for the most peripheral collisions where it
increased to about 2 %.

Deviations of 〈sin 2[φ − Ψ2]〉 from zero point to detector
non-uniformities and biases in the event-plane determination.
The magnitude of the sine term relative to the cosine term
is included in the systematic uncertainty of v2. For the TKT
method, its contribution to the relative systematic uncertainty
is negligibly small. For the PXT and IDT methods, it is small
for most centrality bins, and increases to 2 % only for the
most peripheral collisions.

The analysis procedure was checked with MC studies in
which the generated elliptic flow signal was compared to the
v2 values obtained with the same analysis chain as used for
the data. In this MC closure test, relative differences of up
to 2 % in central collisions and of up to 5 % in peripheral
collisions were observed for the TKT method. For the IDT
method, the relative difference reaches 2 %; for the PXT
method, it remains within 2 % except for the most peripheral

collisions where it increases to 5 %. The relative difference
between the expected and measured values is included in the
total systematic uncertainty.

The ΔR parameter used in the tracklet reconstruction was
varied by ±1σ from the nominal value. The resulting varia-
tion in the value of v2 at the level of 1 % is included in the
systematic uncertainty. For the PXT and IDT methods, differ-
ences between v2 determined from tracks of negatively and
positively charged particles as well as between the baselinev2

and that obtained with tighter or looser tracking requirements
(in which the transverse and longitudinal impact parameter
significance criteria are changed by ±1) also contribute to
the systematic uncertainty at the level of a few percent.

For the PXT method, the corrections due to the limited pT

resolution were varied within their statistical uncertainties
and the resulting variation was found to be at the level of
0.5 %, independently of the centrality.

The pT spectrum of charged particles in the MC simula-
tion was reweighted so that the expected detector-level dis-
tribution agrees with that observed in the data. This changes
the effective fake-track rate and therefore the weights used
in the calculation of v2. A variation of these weights by up
to 10 % has a negligible effect on the determination of v2.

The different contributions to the total systematic uncer-
tainty on the integrated v2 for |η| < 1 are shown in Fig. 7
and summarized in Table 1 for the three tracking methods.
The total systematic uncertainties are determined by adding
in quadrature all the individual contributions and are treated
as ±1σ uncertainties.

8 Results

Figure 8 shows the centrality dependence of v2 integrated
over |η| < 1. For the TKT method, v2 is integrated over pT >

0.07 GeV. For the PXT method, v2 is integrated over pT,0 <

pT < 5 GeV and pT,0 is varied from 0.1 to 0.5 GeV in steps
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Table 1 Summary of the
systematic uncertainties as
percentages of the integrated v2
value for charged particles with
|η| < 1 and different collision
centrality bins

Source Centrality bin

0–10 % 10–20 % 20–60 % 60–70 % 70–80 %

TKT pT > 0.07 GeV

MC Statistics 0.1 0.1 <0.2 0.3 1

Fake tracks 2 2 1–2 1 1

Centrality bins 1 1.5 <1 2 6

N-P η regions 2 1 <1.5 1 2.5

Sine term 1.5 1 1 1 1

Closure 1.5 1 <2 3.5 5

ΔR 1 0.5 <1 0.5 1

Total 3.5 3.2 <3.2 4 8

PXT pT > 0.1 GeV

MC Statistics 0.1 0.1 <0.2 0.3 1

Fake tracks 3 2 <1.5 0.5 0.5

Centrality bins 1 1.5 <1 1.5 5

N-P η regions 0.5 0.5 <0.5 1 3

Sine term 0.5 0 <0.5 1 4

Closure 1 1 <2 0 5

Charge ± 0.5 0.5 <1 1 1.5

Track selection 0.5 0.5 <0.5 1 1

pT resolution 0.5 0.5 0.5 0.5 0.5

Total 3 2 <2 2 8

IDT pT > 0.5 GeV

MC Statistics 0.1 0.1 <0.2 0.3 1

Fake tracks 3.5 1.5 <1 0.2 0.2

Centrality bins 1 1.5 <1 1 5

N-P η regions 1.2 1 <1.5 0.5 0.5

Sine term 0.5 0.5 0.5 0.5 1.5

Closure 1.5 0.5 <1 0.5 0.5

Charge ± 0.2 0.2 0.2 0.2 2.2

Track selection 0.5 0 <0.5 0.2 1

Total 3.5 2 <1.5 1 5.5

of 0.1 GeV. Also shown is the v2 value obtained from the IDT
method integrated over 0.5 < pT < 5 GeV. The TKT method
with pT,0 = 0.07 GeV gives results consistent with the v2

values obtained with the PXT method with pT,0 = 0.1 GeV,
as could be expected due to the very low charged-particle
density and small v2 signal in the momentum range below
0.1 GeV. This indicates that there is no need to extrapolate
the measurements obtained with tracklets down to pT = 0
in order to obtain a reliable estimate of v2 integrated over
the whole kinematic range in pT. Furthermore, for the PXT
method such an extrapolation would result in a very small
correction to the measured integrated flow, well within the
uncertainties of the measurement. This is in contrast to the
integrated v2 with pT,0 chosen at higher values, as also shown

in Fig. 8. It can be seen that the integrated v2 increases almost
linearly with pT,0 for pT,0 > 0.1 GeV. Good agreement
between the PXT and IDT methods is observed at pT,0 =
0.5 GeV. In Fig. 9, the results of this analysis are compared
to the integrated v2 measured by CMS [20] with pT,0 =
0.3 GeV. In this comparison, the sensitivity to pT,0 is clearly
visible. A systematically larger v2 is observed for the higher
value of pT,0 as a consequence of the strong increase of v2

with increasing pT.
The η dependence of the pT-integrated v2 provides use-

ful constraints on the initial conditions of heavy-ion colli-
sions used in model descriptions of the system’s evolution
(see, e.g., Refs. [1,2]). Figure 10 shows the η dependence of
the pT-integrated v2. As already shown in Fig. 9, the differ-
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Fig. 9 Centrality dependence of elliptic flow, v2, measured for |η| <
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particle reconstruction methods as described in the legend. Also shown
are v2 measurements by CMS integrated over 0.3 < pT < 5 GeV and
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ence between the results obtained with pT,0 values of 0.07
and 0.1 GeV is very small and the two measurements agree
within uncertainties. The results obtained using the PXT and
IDT methods for the same pT,0 are also consistent. The η

dependence of the integrated v2 is very weak. A decrease
with increasing |η| of about 5–10 % is seen. A comparison
with the results from the CMS experiment [20] is shown in
Fig. 11 for the 40–50 % centrality interval. The ATLAS mea-
surements performed with the PXT method were integrated
over pT for different pT,0 values, including one adjusted to
match that used by CMS. The results agree, within uncer-
tainties, provided the same pT,0 is used.

The different upper limits in the pT integration, 3 GeV for
CMS and 5 GeV for ATLAS, have negligible effect on the
integrated v2 value. A systematic decrease in v2 with decreas-
ing pT,0 is observed as expected from the linear dependence
of v2 on pT for pT ≈ 0. The decreasing value of pT,0 together
with that of v2 makes the integration over the full pT range
less sensitive to the uncertainties in the extrapolation down
to pT = 0.

Fig. 10 Pseudorapidity, η,
dependence of elliptic flow, v2,
integrated over transverse
momentum, pT, for different
charged particle reconstruction
methods and different low-pT
thresholds in different centrality
intervals as indicated in the
legend. Error bars show
statistical and systematic
uncertainties added in
quadrature
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The large acceptance in η of the ATLAS and CMS exper-
iments makes it possible to study whether the observation
of the extended longitudinal scaling of v2, when viewed in
the rest frame of one of the colliding nuclei, reported by
the PHOBOS experiment at RHIC [6,32], holds at the much
higher LHC energy. The PHOBOS measurements of ellip-
tic flow over a range of Au+Au collision energies,

√
sNN =

19.6, 62.4, 130 and 200 GeV, showed energy independence
of the integrated v2 as a function of |η| − ybeam, where
ybeam = ln (

√
sNN/m) is the beam rapidity and m is the

proton mass. A similar effect was also observed in charged-
particle densities [6] and is known as limiting fragmentation
[33]. In Fig. 12, the integrated v2 is plotted as a function of
|η| − ybeam and compared to the PHOBOS results for three
centrality bins matching those used by PHOBOS. The PHO-
BOS results are obtained with the event-plane method for

charged particles with a low-pT limit of 0.035 GeV at mid-
rapidity and of 0.004 GeV around the beam rapidity [34].
The CMS data [20] obtained with the event-plane method are
also shown. The CMS measurement represents v2 integrated
over pT from 0 to 3 GeV. This measurement was obtained by
extrapolating v2(pT) measured for pT > 0.3 GeV and the
charged-particle spectra down to pT = 0 under the assump-
tion that v2(pT = 0) = 0 and with the charged-particle
yield constrained by the measured dNch/dη distribution [35].
The ATLAS and CMS results agree within the uncertainties,
although the CMS v2 is systematically smaller by about 5 %
than the ATLAS measurement. This small systematic differ-
ence can be attributed to the uncertainty in the CMS extrap-
olation to pT = 0 or the pT threshold of 0.07 GeV for the
ATLAS measurement, or the combination of both.

As can be seen from the figure, there is no overlap in
|η| − ybeam between the PHOBOS and LHC data, so a direct
comparison with the low-energy data is not possible. Nev-
ertheless, it can be concluded, keeping in mind the rela-
tively large uncertainties in the low-energy results, that the
extrapolation of the trend observed at RHIC to the LHC
energy appears to be consistent with the LHC measurements,
although the dependence on |η| − ybeam may be weaker at
the LHC energy.

9 Summary and conclusions

Measurements of the integrated elliptic flow of charged par-
ticles in Pb+Pb collisions at

√
sNN = 2.76 TeV are presented

by the ATLAS experiment at the LHC. The elliptic anisotropy
parameter v2 is measured with the event-plane method over
a broad range of collision centralities (0–80 %). The kine-
matic range in pseudorapidity extends out to |η| = 2.5, and
in pT down to 0.07 GeV. This low-pT region is reached by
using a tracklet reconstruction algorithm to analyze about
1 μb−1 of data taken with the solenoid field turned off. Other

Fig. 12 Integrated elliptic flow,
v2, as a function of |η| − ybeam
for three centrality intervals
indicated in the legend,
measured by the ATLAS and
CMS experiments for Pb+Pb
collisions at 2.76 TeV and by
the PHOBOS experiment for
Au+Au collisions at 200 GeV.
The CMS result is obtained by
averaging the v2(pT) with the
charged particle spectra over the
range 0 < pT < 3 GeV. Error
bars show statistical and
systematic uncertainties added
in quadrature -8 -6 -4 -2 0
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track reconstruction methods with low-pT thresholds of 0.1
and 0.5 GeV respectively, are exploited in order to verify the
tracklet measurement and provide results that can be directly
compared to other LHC measurements. The value of v2 inte-
grated from pT = 0.07 GeV provides a reliable estimate of
the elliptic flow measured over the range pT ≥ 0.

The pT-integrated elliptic flow as a function of collision
centrality shows a clear dependence on pT,0, both within the
present measurements and in comparison to the CMS results
obtained with higher low-pT limits. The integrated elliptic
flow increases with centrality, reaching a maximum of 0.08
for mid-central collisions (40–50 %) and then decreases to
about 0.02 for the most central collisions.

The pseudorapidity dependence of the pT-integrated v2

is very weak, with a slight decrease in v2 as |η| increases.
The results are in agreement with the CMS measurements
covering the same η range, provided the same low-pT cutoff
is used. The integrated v2 transformed to the rest frame of
one of the colliding nuclei is compared to the lower-energy
RHIC data. Although a direct comparison is not possible due
to the non-overlapping kinematic regions, the general trend
observed in the RHIC energy regime seems consistent with
the LHC measurements, while the latter may have a weaker
dependence on pseudorapidity.
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Appendix

In the low-pT region, the track reconstruction efficiency
depends strongly on the particle type. This information is
important for comparison of measurements with theory pre-
dictions in which the elliptic flow depends on the particle
type.

The efficiency of the PXT and TKT methods in recon-
structing tracks with |η| < 1 generated as π±, K ±, p, and
p̄ in MC simulation is shown in Fig. 13 as a function of
pT. Large differences in efficiency are observed for the PXT
method at pT below about 1 GeV and for the TKT method at
pT below about 0.4 GeV. Above these values, the reconstruc-
tion efficiency is independent of particle type. The efficiency
is lowest for p and p̄. For the TKT method, which is most
relevant at low pT, the efficiency for reconstructing protons
drops to zero below 0.2 GeV.
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Fig. 13 The transverse momentum, pT, dependence of the TKT (left)
and PXT (right) track reconstruction efficiency for π±, K ± and p±
in the pseudorapidity range |η| < 1 for three centrality intervals, as
indicated in the legend
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