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PRINCIPAL COMPONENT ANALYSIS OF BINARY DATA.
APPLICATIONS TO ROLL-CALL ANALYSIS

JAN DE LEEUW

ABSTRACT. We compute the maximum likelihood estimates of a principal com-

ponent analysis on the logit or probit scalem using a majorization algorithm that

computes a sequence of singular value decompositions. The technique is applied

to 2001 house and senate roll call data and compared with other techniques for

roll call analysis.

1. INTRODUCTION

SupposeP = {pi j } is ann × m binary data matrix, i.e. a matrix with elements

equal to zero or one (or to yes/no, true/false, present/absent, agree/disagree). For

the moment we suppose thatP is complete, the case in which some elements are

missingis discussed in a later section.

There are many examples of such binary data in the sciences. We give a small

sample in the table below, many more could be added.

TABLE 1. Binary data

discipline rows columns

political science legislators roll-calls

education students test items

systematic zoology species characteristics

ecology plants transects

archeology artefacts graves

sociology interviewees questions

Date: August 24, 2003.

2000Mathematics Subject Classification.62H25,62H30,62P25.

Key words and phrases.Multivariate Analysis, Principal Components, Classification, Applica-

tions to social sciences.
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2 JAN DE LEEUW

In this paper we will concentrate on the analysis of roll call data, but it goes without

saying that our results can be applied to the other examples in Table 1 as well.

There are many different techniques that have been used to analyze data of this

form. One, important class arelatent structure techniques, which include latent

class analysis, latent trait analysis and various forms of factor analysis for binary

data. By recoding the data as a 2m table,log-linear decompositions and approxi-

mations of the multivariate distribution become available. There are also various

forms ofcluster analysiswhich can be applied to binary data, usually by first com-

puting some sort of similarity measure between rows and/or column. And then

there are variations ofprincipal component analysisfor binary data such as multi-

ple correspondence analysis.

We combine ideas of latent structure analysis, more particularlyprobabilistic un-

folding analysis, with principal component analysis and correspondence analysis.

This produces techniques with results that can be interpreted both in probabilistic

and in geometric terms. Moreover we propose algorithms that scale well, in the

sense that they can be fitted efficiently to large matrices.

2. PROBLEM

We fit an observed binary data matrixP to a predicted matrix5(X,Y). The pre-

dicted matrix, with elements in the open interval(0,1), is a function ofX, ann× r

matrix of row scores, and ofY, anm× r matrix ofcolumn scores. The parameterr

is thedimensionalityof the solution. The precise functional form of5 is specified

below.

The computational problem we study in this paper is to minimize the distance

betweenP and5(X,Y) over X andY, where distance is measured by the loss

function

(1) D(X,Y) = −
n∑

i=1

n∑
j=1

[pi j logπ(x′i y j )+ (1− pi j ) log(1− π(x′i y j ))],

We discuss two different ways to specify the functionπ that maps the parameters

in X andY to the zero-one scale of the outcomes. In thelogit caseπ(x) is

(2a) 9(x) =
∫ x

−∞

ψ(t)dt =
1

1+ exp{−x}
,
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where

(2b) ψ(x) =
exp{−x}

(1+ exp{−x})2

is thestandard logistic density function. In theprobit caseπ(x) is

(3a) 8(x) =
∫ x

−∞

φ(t)dt,

where

(3b) φ(x) =
1
√

2π
exp{−

1

2
t2
},

thestandard normal density function.

By defining a matrix3 = {λi j } with logits or probits, i.e. λi j = 9
−1(π(x′i y j )) or

λi j = 8
−1(π(x′i y j )), we can write the basic relationship we fit as3 = XY′. This

shows that we are dealing with a fixed rank approximation problem on the logit

or probit scale, a problem that is usually solved byprincipal component analysis

(PCA) or, equivalently,singular value decomposition (SVD)in the linear case in

which3 is observed directly.

2.1. Discussion.The usual way to motivate loss function (1) is to assume that the

zi j are outcomes of independent Bernoulli trials with expected successπ(x′i y j ).

ThenD , except for irrelevant constants, is thethe negative log-likelihoodand min-

imizing D producesmaximum likelihood estimates.

The second motivation, which seems more straightforward and natural in many

actual data analysis situations, is that we want to find an approximate solution to

the system of strict inequalities

x′i y j > 0 ∀pi j = 1,(4a)

x′i y j < 0 ∀pi j = 0.(4b)

It is easy to see that if the system (4) has a solution, then minimizingD will find

it, and the minimum ofD in that case will be zero. Conversely, we can only make

D converge to zero by lettingX andY converge to a solution of (4). In fact what

minimizingD is trying to achieve is

x′i y j →∞ ∀pi j = 1,(5a)

x′i y j →−∞ ∀pi j = 0,(5b)

although it will generally not succeed in its goal (only if the system (4) is solvable).
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It is worth emphasizing that our loss function is, by definition, non-robust. The

algorithm does not hesitate to move points to infinity if that makes loss smaller.

Thus we tend to create outliers, certainly in small datasets. This is not necessarily

a problem. Robustness is desirable if we are trying to estimate population charac-

teristics, but not necessarily when we are trying to describe salient characteristics

of a specific dataset. Thus our methods are very different from recent versions of

robust PCA, such as Hubert et al. [2002]; Pison et al. [2003]. In our algorithm we

identify X by settingX′X = I . This means that makingπi j as much likepi j will

tend to makeY large. Since we are mainly interested in the directions defined by

the rows ofY this is not really a problem.

3. ALGORITHM

We develop a majorization algorithm, based on bounding the second derivative of

the likelihood function. See B̈ohning and Lindsay [1988]; B̈ohning [1992]; Lange

et al. [2000] for other examples in a logistic context. The general theory of ma-

jorization algorithms is reviewed briefly in Appendix A, and the basic majorization

of the logit or probit log-likelihood is in Appendix B.

To treat both logit and probit cases simultaneously, we define

gi j (x) = −
∂[pi j logπ(x)+ (1− pi j ) log(1− π(x)]

∂x

and a matrixG(X,Y) with elementsgi j (x′i y j ). From Appendix B we see that for

the logit case

gi j (x
′

i y j ) = 9(x
′

i y j )− pi j ,

while for the probit case

gi j (x
′

i y j ) = −
pi j −8(x′i y j )

8(x′i y j )(1−8(x
′

i y j ))
φ(x′i y j ) =

=

−
φ(x′i y j )

8(x′i y j )
if pi j = 1,

φ(x′i y j )

1−8(x′i y j )
if pi j = 0.

Moreover we writeω for the reciprocal of the upper bound on the second deriva-

tives. For the logit caseω = 4 and for the probit caseω = 1.

Now for the algorithm. SupposeX(k) andY(k) are the current best solution. We

update them to find a better solution in two steps, similar to the E-step and the

M-step in the EM-algorithm.
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Algorithm 3.1 (Majorization). Start with some X(0) and Y(0).

Step k(1): Compute the matrix

H (k)
= X(k)

{Y(k)
}
′
− ωG(X(k),Y(k))

Step k(2): Solve the least squares matrix approximation problem

min
X,Y

tr (H (k)
− XY′)′(H (k)

− XY′)

by using the singular value decomposition (SVD).

Theorem 3.2. The majorization algorithm 3.1 produces a decreasing sequence

D(X(k),Y(k)) of loss function values, and all accumulation points of the sequence

(X(k),Y(k)) of iterates are stationary points.

Proof. By the results in Appendix B

(6) D(X,Y) ≤ D(X(k),Y(k))+
1

2ω
tr (H (k)

− XY′)′(H (k)
− XY′)

−
ω

2
tr G(X(k),Y(k))′G(X(k),Y(k)).

Only the middle term on the right hand side depends onX andY and thus we if

minimize this middle term to define(X(k+1),Y(k+1)) we decrease loss. Now apply

the general majorization results in Appendix A. �

4. IMPLEMENTATION DETAILS

4.1. Initial Estimate. In the R implementation, given in Appendix D, the ini-

tial estimate forX and Y is simply taken as zero. This will obviously not be

very good, and we may get some improvement by using homogeneity analysis De

Leeuw [2003a]. The SVD majorization algorithm converges very fast in the ini-

tial steps, and then slows down to its slow linear rate, so these improvements will

presumably be not very large.

Also observe that, both in the logit and in the probit case, starting withX andY

equal to zero, means that the first iteration computes the singular value decompo-

sition of a matrix with elementpi j −
1
2, and this will be already be close to the

homogeneity analysis solution.
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4.2. Main Effects. In some applications, for instance in random quadratic util-

ity roll call models, the first column ofX is restricted to consist of ones. More

generally, we can fit

λi j = µ+ αi + β j +

p∑
s=1

xisy js

which has both row and column main effects. In psychometrics this is sometimes

called FANOVA [Gollob, 1968]. It has been studied in considerable detail by

Gabriel and Gower in the context of biplot analysis [Gower and Hand, 1996].

Identification analysis of FANOVA suggests that ifα is part of the specification,

then we require that the columns ofX sum to zero, and ifβ is part of the specifi-

cation, then the columns ofY sum to zero. Ifµ is in the specification, then we also

require that bothα andβ sum to zero.

In our algorithm, this amounts to centering the matrixZ̃ over rows and/or columns

before computing the SVD. Clearly this does not really make the algorithm any

more complicated.

It is perhaps worth saying here that the specification with only main effects and no

interaction terms is the Rasch model [Fischer and Molenaar, 1995]. Moreover, we

can easily implement the constrained forms of PCA discussed by Takane and his

co-workers [Takane and Shibayama, 1991; Takane et al., 1995; Takane and Hunter,

2001].

4.3. Inner Iterations for Missing Data. If there are missing data then the matrix

approximation problem becomes

min
X,Y

∑
{(h(k)i j − x′i y j )

2
| (i, j ) ∈ N},

whereN is the subset of non-missing index pairs.

We now use the familiar least squares augmentation trick, used in non-balanced

ANOVA by Yates and Wilkinson and in least squares factor analysis by Thom-

son and Harman. See De Leeuw [1994]; De Leeuw and Michailidis [1999] for

references and for further discussion of augmentation.



LOGIT AND PROBIT PCA 7

We define inner iterations in each iteration of our majorization algorithm to impute

the missing data. The inner iterations start withx(k,0)i = x(k)i andy(k,0)j = y(k)j .

h̃(k,`) =

h(k)i j if (i, j ) ∈ N,

{x(k,`)i }
′y(k,`)j if (i, j ) 6∈ N,

We then do an SVD to findX(k,`+1) andY(k,`+1), and continue the inner iterations.

Actually, in our R implementation in Appendix D we only perform a single inner

iteration, which basically means that we always perform a singular value decom-

position onH̃ (k,0) which is just our previousH (k) with missing elements imputed

by setting them to the corresponding elements of{X(k)
}
′Y(k).

4.4. Innermost Iterations for the SVD. It may not be a good idea to do a com-

plete SVD after computing a newH or H̃ , even if we use an SVD algorithm that

only computesp singular vectors. We could use an iterative SVD method such

as the simultaneous iteration method first proposed by Daugavet [1968], and only

perform one or a small number of innermost iterations before updatingH̃ . This

may ultimately lead to fewer computations. But observe that going this way is

probably mainly relevant if the algorithm is written in a compiled language such

as C, writing our own innermost iterations in a interpreted language such as R with

fast compiled SVD operators will most likely slow down the process.

Each Daugavet iteration

X← Z̃Y(Y′Y)−1,

Y← Z̃′X(X′X)−1,

basically requires two matrix multiplications, so even for big matrices it is quite

inexpensive. To identify along the way, the iterations are typically implemented as

X← orth(ZY),

Y← Z̃′X,

whereorth is an orthogonalization method such as Gram-Schmidt or QR. This

makes the method identical to the Bauer-Rütishauser simultaneous iteration method,

used in a similar context by Gifi [1990, page 98-99].

If an iterative SVD method is implemented, then we have to distinguish the outer

iterations of the majorization algorithm, the inner iterations of the augmentation



8 JAN DE LEEUW

method to impute missing values, and the innermost iterations to compute or im-

prove the SVD. The number of inner and innermost iterations will influence the

amount of computation in an outer iteration and the convergence speed of the al-

gortithm.

4.5. Factor Analysis. It is easy to adapt our algorithm to fitting factor analysis

instead of principal component analysis decompositions. We use the basic setup

of De Leeuw [2003b]. Thus, instead of fitting

3
n×m
≈ X

n×p
Y′

p×m

whereX′X = I , we fit

3
n×m
≈ X

n×p
Y′

p×m
+ E

n×m
D

m×m
.

whereX′X = I , X′E = 0, E′E = I andD is diagonal. In the roll-call context, this

means we distinguish a common space of roll calls and in addition a unique dimen-

sion for each roll call. In constructing combines the majorization method proposed

here with the alternating least squares inner iterations of De Leeuw [2003b] that

replace the SVD.

5. ROLL CALLS

There have been very interesting recent developments in multidimensional roll call

analysis. Let us first outline the basic way of thinking in the field [Clinton et al.,

2003]. We work inRr . Each legislator has an ideal pointxi in this space and each

roll call has both a yes-pointu j and a no-pointv j . The utlities for legislatori to

vote “yes” or “no” on roll call j have both a fixed and a random component. We

use the Dutch Convention [Hemelrijk, 1966] to underline random variables. Thus

ξ1
i j
= 0(xi ,u j )+ ε

1
i j ,

ξ0
i j
= 0(xi , v j )+ ε

0
i j ,

where0 is some utility function defined on pairs of points. This means that the

legislator will vote “yes” ifξ1
i j
> ξ0

i j
, i.e. when

−(ε1
i j − ε

0
i j ) < 0(xi ,u j )− 0(xi , v j )
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If F is the cumumative probability distribution of−(ε1
i j − ε

0
i j ), thenπi j , the prob-

ability that legislatori will vote “yes” on roll call j is

πi j = F{0(xi ,u j )− 0(xi , v j )}.

Clearly we still have a lot of choices to make in this general setup, because we can

specify both0 andF in many ways.

Suppose, for instance, we use thebilinear utilities, with 0(x, y) = x′y. Then

0(xi ,u j )− 0(xi , v j ) = x′i (u j − v j ).

If we usequadratic utilities[Poole, 2001], then0(x, y) = −‖x − y‖2 and thus

0(xi ,u j )− 0(xi , v j ) = 2x′i (u j − v j )− (‖u j ‖
2
− ‖v j ‖

2).

Clearly the bilinear and quadratic specification cannot be distinguished [Böckenholt,

in press] and both can be written asπi j = F{x′i y j ).

In what has been, at least until recently, the most popular and most sophisticated

approach to multidimensional roll call modeling Poole and Rosenthal [1985, 1997]

assume that

0(x, y) = ζ exp{−0.125‖x − y‖2}

and thatF is the logistic cdf. Poole and Rosenthal argue for the advantages of this

Gaussian utility, but clearly it is more complicated than the quadratic form. The

Gaussian utility and the logistic distribution define the NOMINATE model, and the

parameters are fitted by a complicated but seemingly effective block relaxation [De

Leeuw, 1994] optimization of the likelihood function.

Of course quadratic utility goes back to at least unfolding theory, invented by

Coombs in the fifties and summarized in his book [Coombs, 1964]. In roll call anal-

ysis Poole [1999] has gone back recently to the Coombsian roots of the quadratic

utility model. He has designed a more geometrical and more heuristic procedure

to minimize the number of misclassifications resulting from fitting the quadratic

utility model.

Also recently, the basic quadratic roll call model has been cast in a Bayesian frame-

work and fitted with Markov Chain Monte Carlo (MCMC) methods [Jackman,

2001]. Since typically flat priors are used, estimates will tend to be similar to the

maximum likelihood estimates. We have no comparisons of the relative speed or

behavior of majorization and MCMC algorithms, but the general considerations
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can at least suggest some differences. Convergence of both procedures will be

slow, convergence of the majorization algorithm will be more regular and smooth,

and the Bayesian computations will more easily give information about stability.

The Bayesian framework clearly aims to produce more more than just a nice pic-

ture for data reduction [Jackman, 2000] and, if one believes the assumptions on

which the Bayesian computations and interpretations are build, indeed it does.

The approach taken by De Leeuw [2003a] is quite the opposite of the Bayes/M-

CMC tandem. Various measures of the size of a cloud of points inRr are consid-

ered, and a picture is constructed in such a way that the average of the sizes of the

yes-clouds and the no-clouds over issues is minimized. If cloud size is defined as

squared distance to the centroid of the cloud this leads to multiple correspondence

analysis [Greenacre, 1984; Gifi, 1990], a technique which is computationally a rel-

atively simple technique, because it requires computation of just one single SVD.

Clearly the technique in this paper combines aspects of the quadratic utility ap-

proach and the singular value approach. Our emphasis is on data reduction, not on

inference, although it is possible to use standard techniques to compute confidence

regions. All the needed derivatives of the likelihood function have been computed

by Rivers [2003].

6. EXAMPLES

6.1. Senate.We analyze 2001 senate votes on 20 issues selected by Americans

for Democratic Action [Ada, 2002]. Descriptions of the roll calls are given in

Appendix C. We use the logit function.

We start with setting all parameters equal to zero. The algorithm then takes 997

iterations to stabilize the negative log-likelihood to three decimal places. At the

solution the proportion of correctly classified votes is 0.9425. After one iteration

it is 0.9228, after 100 iterations it is 0.9384. The analysis illustrates that the ML

method tries to make as many fitted probabilitiesπ equal to zero and one (i.e. equal

to the correspondingp). In this example 75% is very close to either zero or one.

6.2. House. We also use the data for the 2001 House from Ada [2002], with

twenty different role calls. Now the algorithm needs 186 iterations to attain three

decimals precision. Again the logit function is fitted. The proportion of correct
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classifications is 0.9387, up just a tiny bit from 0.9322 after the first iteration. The

number of fitted probabilities which are indistinguishable from zero or one is 70%.

6.3. Results. Results are in the figure below, both for the Senate and the House.

The legislators in the legislator plots are labeled by name. The roll call plots have

both the legislators (now labeled by party) as points and the roll calls as directions.

Each roll call separates the legislators into two halfspaces, containing the “yes”

and “no” groups, and we can easily count the misclassification errors.



12 JAN DE LEEUW

−0.3 −0.2 −0.1 0.0 0.1 0.2

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

Ideal point plot for senate

dimension 1

di
m

en
si

on
 2

Sessions

Shelby

Murkowski

Stevens

Kyl

McCain
Hutchinson

Lincoln

Boxer

Feinstein

Allard

Campbell

Dodd

Lieberman

Biden

Carper
Graham

Nelson

Cleland

Miller

Akaka

Inouye

Craig

Crapo

Durbin

Fitzgerald

Bayh

Lugar

Grassley

Harkin

Brownback

Roberts
Bunning

McConnell Breaux

Landrieu

Collins

Snowe

Mikulski

Sarbanes

Kennedy
Kerry

Levin

Stabenow

Dayton
Wellstone

Cochran

Lott

Bond

Carnahan

Baucus

Burns

Hagel

Nelson1

Ensign

Reid

Gregg

Smith1

Corzine

Torricelli

Bingaman

Domenici

Clinton

Schumer

Edwards

Helms
ConradDorgan

DeWineVoinovich
Inhofe

Nickles

Smith

WydenSantorum

Specter

Chafee

Reed

Hollings

Thurmond
Daschle

Johnson
Frist

Thompson

Gramm

Hutchison

Bennett
Hatch

Jeffords

Leahy

Allen Warner

Cantwell

Murray

Byrd

Rockefeller

Feingold

Kohl

Enzi

Thomas

−0.3 −0.2 −0.1 0.0 0.1 0.2

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

Roll call plot for senate

dimension 1

di
m

en
si

on
 2

(R)

(R)

(R)

(R)

(R)

(R)
(R)

(D)

(D)

(D)

(R)

(R)

(D)

(D)

(D)

(D)
(D)

(D)

(D)

(D)

(D)

(D)

(R)

(R)

(D)

(R)

(D)

(R)

(R)

(D)

(R)

(R)
(R)

(R) (D)

(D)

(R)

(R)

(D)

(D)

(D)
(D)

(D)

(D)

(D)
(D)

(R)

(R)

(R)

(D)

(D)

(R)

(R)

(D)

(R)

(D)

(R)

(R)

(D)

(D)

(D)

(R)

(D)

(D)

(D)

(R)
(D) (D)(R)(R)

(R)

(R)

(R)

(D)(R)

(R)

(R)

(D)

(D)

(R)
(D)

(D)
(R)

(R)

(R)

(R)

(R)
(R)

(I)

(D)

(R) (R)

(D)

(D)

(D)

(D)

(D)

(D)

(R)

(R)

1

1

2

2

3

3

4

4

5

56

6

7

7

8

8

9

910

10

11

1112

12

13

13

14

1415

1516

16

17

17

18

18

19

1920

20



LOGIT AND PROBIT PCA 13

−0.10 −0.05 0.00 0.05

−
0.

1
0.

0
0.

1
0.

2
0.

3

Ideal point plot for house

dimension 1

di
m

en
si

on
 2

Abercrombie

Ackerman

Aderholt

Akin

Allen
Andrews

Armey

Baca
Bachus

Baird

Baker

BaldacciBaldwin

Ballenger

Barcia

Barr

Barrett

Bartlett
Barton

Bass

Becerra

Bentsen

BereuterBerkley

Berman

Berry

Biggert

Bilirakis

Bishop

Blagojevich

Blumenauer

Blunt

Boehlert

BoehnerBonilla

Bonior

Bono

Boozman

Borski

Boswell

Boucher

Boyd

Brady

Brady1

BrownBrown1

Brown2Bryant

Burr

Burton

BuyerCallahanCalvertCampCannonCantor

Capito

Capps

CapuanoCardin
Carson

Carson1 Castle

Chabot
Chambliss

ClayClayton

Clement
Clyburn

Coble

Collins

CombestCondit

Conyers

Cooksey

Costello

Cox

Coyne Cramer
Crane

Crenshaw
Crowley

Cubin

Culberson

Cummings
Cunningham

Davis

Davis1

Davis2

Davis3

Davis4

DeFazio

DeGetteDeLauro

DeLay

DeMint

Deal

Delahunt

Deutsch

Diaz−Balart

Dicks

Dingell

Doggett

Dooley

Doolittle

Doyle

Dreier

Duncan

Dunn

Edwards
Ehlers

Ehrlich

Emerson

Engel

English

Eshoo

Etheridge

Evans

Everett

Farr

Fattah

FergusonFilner

Flake Fletcher

Foley

Forbes

Ford

Fossella

Frank

Frelinghuysen

Frost

Gallegly

Ganske

Gekas

Gephardt

Gibbons

Gilchrest

Gillmor
Gilman

Gonzalez

Goode

Goodlatte

Gordon

Goss

Graham

Granger

Graves

Green

Green1

Greenwood

Grucci
Gutierrez

Gutknecht

Hall

Hall1

Hansen

Harman

Hart

Hastert

Hastings

Hastings1

Hayes
HayworthHefley

Herger

Hill

Hilleary

HilliardHinchey

Hinojosa

HobsonHoeffel
Hoekstra

Holden

Holt

Honda

Hooley

Horn

Hostettler

Houghton

Hoyer

Hulshof

Hunter

Hutchinson

Hyde

Inslee

Isakson

Israel
Issa

Istook

JacksonJackson−Lee

Jefferson

Jenkins

John

Johnson

Johnson1

Johnson2 Johnson3

Jones

Jones1

Kanjorski
Kaptur

Keller

Kelly

Kennedy

Kennedy2

Kerns

Kildee

Kilpatrick

Kind

King

Kingston

Kirk

Kleczka

Knollenberg

Kolbe

Kucinich

LaFalce
LaHood

LaTourette

Lampson

Langevin

Lantos

Largent

Larsen

Larson

Latham

Leach

Lee

Levin

Lewis

Lewis1

Lewis2Linder

Lipinski

LoBiondo

Lofgren

Lowey

Lucas

Lucas1

Luther

Lynch

Maloney

Maloney1

Manzullo

Markey

Mascara

Matheson

MatsuiMcCarthy

McCarthy1

McCollum

McCrery

McDermottMcGovern

McHugh McInnis

McIntyre

McKeonMcKinney

McNulty

MeehanMeekMeeks

Menendez

Mica

Millender−McDonaldMiller

Miller1

Miller2

Miller3

Mink

Moakley

Mollohan

Moore

Moran

Moran1

Morella

Murtha
Myrick

Nadler

Napolitano

Neal Nethercutt

Ney

Northup

Norwood

Nussle

Oberstar

Obey

Olver

Ortiz

Osborne

Ose

Otter
Owens

Oxley
Pallone

PascrellPastor
PaulPaynePelosi

Pence

Peterson

Peterson1
Petri

Phelps Pickering

Pitts

Platts

Pombo

Pomeroy Portman

Price

Pryce

PutnamQuinn

Radanovich

Rahall

Ramstad
Rangel

Regula

Rehberg

Reyes

Reynolds

Riley

Rivers

Rodriguez

Roemer

Rogers

Rogers1

RohrabacherRos−LehtinenRoss
Rothman

Roukema

Roybal−Allard

Royce

Rush
Ryan

Ryun

Sabo
SanchezSanders

Sandlin

Sawyer

Saxton

Scarborough

Schaffer

Schakowsky

Schiff

Schrock

Scott Sensenbrenner

Serrano

SessionsShadegg

Shaw

Shays

Sherman

Sherwood

Shimkus

Shows

Shuster
Simmons

Simpson

Sisisky

SkeenSkelton

Slaughter Smith

Smith1

Smith2 Smith3

Snyder

Solis Souder
Spence

Spratt
Stark

Stearns

StenholmStrickland

Stump

Stupak

Sununu

Sweeney

Tancredo

Tanner

Tauscher

Tauzin

Taylor

Taylor1

Terry

Thomas

Thompson

Thompson1
ThornberryThuneThurman TiahrtTiberi

Tierney

Toomey

Towns

Traficant

Turner

UdallUdall1

Upton

Velazquez Visclosky

Vitter

Walden

Walsh

WampWaters

Watkins

Watson

Watt
Watts

WaxmanWeiner

Weldon

Weldon1

Weller

Wexler

WhitfieldWicker

Wilson

WolfWoolseyWu
Wynn

Young

Young1

−0.10 −0.05 0.00 0.05

−
0.

1
0.

0
0.

1
0.

2
0.

3

Roll call plot for house

dimension 1

di
m

en
si

on
 2

(D)

(D)

(R)

(R)

(D)
(D)

(R)

(D)
(R)

(D)

(R)

(D)(D)

(R)

(D)

(R)

(D)

(R)
(R)

(R)

(D)

(D)

(R)
(D)

(D)

(D)

(R)

(R)

(D)

(D)

(D)

(R)

(R)

(R)(R)

(D)

(R)

(R)

(D)

(D)

(D)

(D)

(D)

(R)

(D)(D)

(R)(R)

(R)

(R)

(R)(R)(R)(R)(R)(R)

(R)

(D)

(D)(D)
(D)

(D) (R)

(R)
(R)

(D)(D)

(D)
(D)

(R)

(R)

(R)(D)

(D)

(R)

(D)

(R)

(D) (D)
(R)

(R)
(D)

(R)

(R)

(D)
(R)

(D)

(D)

(D)

(R)

(R)

(D)

(D)(D)

(R)

(R)

(R)

(D)

(D)

(R)

(D)

(D)

(D)

(D)

(R)

(D)

(R)

(R)

(R)

(D)
(R)

(R)

(R)

(D)

(R)

(D)

(D)

(D)

(R)

(D)

(D)

(R)(D)

(R) (R)

(R)

(R)

(D)

(R)

(D)

(R)

(D)

(R)

(R)

(R)

(D)

(R)

(R)

(R)
(R)

(D)

(I)

(R)

(D)

(R)

(R)

(R)

(R)

(D)

(R)

(R)

(R)
(D)

(R)

(D)

(D)

(R)

(D)

(R)

(R)

(D)

(R)

(R)
(R)(R)

(R)

(D)

(R)

(D)(D)

(D)

(R)(D)
(R)

(D)

(D)

(D)

(D)

(R)

(R)

(R)

(D)

(R)

(R)

(R)

(R)

(D)

(R)

(D)
(R)

(R)

(D)(D)

(D)

(R)

(D)

(D)

(R)

(R) (R)

(D)

(R)

(D)
(D)

(R)

(R)

(D)

(R)

(R)

(D)

(D)

(D)

(R)

(R)

(R)

(D)

(R)

(R)

(D)

(D)
(R)

(R)

(D)

(D)

(D)

(R)

(D)

(D)

(R)

(R)

(D)

(D)

(D)

(R)

(R)(R)

(D)

(R)

(D)

(D)

(D)

(R)

(D)

(D)

(D)

(D)

(R)

(D)

(D)

(D)

(D)(D)

(D)

(D)

(R)

(D) (D)

(R) (R)

(D)

(R)(D)

(D)

(D) (D)(D)

(D)

(R)

(D)(D)

(R)

(R)

(R)

(D)

(D)

(D)

(D)

(D)

(R)

(R)

(D)
(R)

(D)

(D)

(D) (R)

(R)

(R)

(R)

(R)

(D)

(D)

(D)

(D)

(R)

(R)

(R)
(D)

(R)
(D)

(D)(D)
(R)(D) (D)

(R)

(D)

(R)
(R)

(D) (R)

(R)

(R)

(R)

(D) (R)

(D)

(R)

(R)(R)

(R)

(D)

(R)
(D)

(R)

(R)

(D)

(R)

(R)

(D)

(D)
(D)

(R)

(R)

(R)(R)(D)
(D)

(R)

(D)

(R)

(D)
(R)

(R)

(D)
(D)(I)

(D)

(D)

(R)

(R)

(R)

(D)

(D)

(R)

(D) (R)

(D)

(R)(R)

(R)

(R)

(D)

(R)

(R)

(D)

(R)
(R)

(R)

(D)

(R)(D)

(D) (D)

(R)

(R) (R)

(D)

(D) (R)
(R)

(D)
(D)

(R)

(D)(D)

(R)

(D)

(R)

(R)

(R)

(D)

(D)

(R)

(D)

(R)

(R)

(R)

(D)

(D)
(R)(R)(D) (R)(R)

(D)

(R)

(D)

(D)

(D)

(D)(D)

(R)

(D) (D)

(R)

(R)

(R)

(R)(D)

(R)

(D)

(D)
(R)

(D)(D)

(R)

(R)

(R)

(D)

(R)(R)

(R)

(R)(D)(D)
(D)

(R)

(R)

1

1

2

2

3

3

4

45

5

6

6

7

78

89

9

10

10

11

11

12
12

13

13

14

1415

1516

16

17

17
18

1819

19
20

20



14 JAN DE LEEUW

APPENDIX A. M AJORIZATION METHODS

A.1. General Principles. The algorithms proposed in this paper are all of the

majorization type. Majorization is discussed in general terms in De Leeuw [1994];

Heiser [1995]; Lange et al. [2000].

In a majorization algorithm the goal is to minimize a functionφ(θ) over θ ∈ 2,

with 2 ⊆ Rp. Suppose that a functionψ(θ, ξ) defined on2×2 satisfies

φ(θ) ≤ ψ(θ, ξ) for all θ, ξ ∈ 2,(7a)

φ(θ) = ψ(θ, θ) for all θ ∈ 2.(7b)

Thus, for a fixedξ , ψ(•, ξ) is aboveφ, and it touchesφ at the point(ξ, φ(ξ)). We

then say thatψ(θ, ξ) majorizesφ(θ) at ξ .

There are two key theorems associated with these definitions.

Theorem A.1. If φ attains its minimum on2 at θ̂ , thenψ(•, θ̂ ) also attains its

minimum on2 at θ̂ .

Proof. Supposeψ(θ̃, θ̂ ) < ψ(θ̂, θ̂ ) for someθ̃ ∈ 2. Then, by (7a) and (7b),

φ(θ̃) ≤ ψ(θ̃, θ̂ ) < ψ(θ̂, θ̂ ) = φ(θ̂), which contradicts the definition of̂θ as the

minimizer ofφ on2. �

Theorem A.2. If θ̃ ∈ 2 and θ̂ minimizesψ(•, θ̃ ) over2, thenφ(θ̂) ≤ φ(θ̃).

Proof. By (7a) we haveφ(θ̂) ≤ ψ(θ̂, θ̃ ). By the definition ofθ̂ we haveψ(θ̂, θ̃ ) ≤

ψ(θ̃, θ̃ ). And by (7b) we haveψ(θ̃, θ̃ ) = φ(θ̃). Combining these three results we

get the result. �

These two results suggest the following iterative algorithm for minimizingφ(θ).

Suppose we are at stepk.

Step 1:: Given a valueθ (k) construct a majorizing functionψ(θ (k), ξ).

Step 2:: Minimizeψ(θ (k), ξ) with respect toξ . Setθ (k+1)
= ξmax.

Step 3:: If |φ(θ (k+1)
− φ(θ (k)| < ε for some predeterminedε > 0 stop; else

go to Step 1.

In order for this algorithm to be of practical use, the majorizing functionψ needs

to be easy to minimize, otherwise nothing substantial is gained by following this
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route. Notice, that in case we are interested to maximizeφ, we have to find a

minorizing functionψ that needs to be maximized in Step 2.

We demonstrate next how the idea behind majorization works with a simple exam-

ple.

Figure 1: Majorization

1

ExampleA.1. This is an artificial example, chosen for its simplicity. Consider

φ(θ) = θ4
− 10θ2, θ ∈ R. Becauseθ2

≥ ξ2
+ 2ξ(θ − ξ) = 2ξθ − ξ2 we see that

ψ(θ, ξ) = θ4
− 20ξθ + 10ξ2 is a suitable majorization function. The majorization

algorithm isθ+ = 3
√

5ξ .

The algorithm is illustrated in Figure A.1. We start withθ(0) = 5. Thenψ(θ,5)

is the dashed function. It is minimized atθ (1) ≈ 2.924, whereψ(θ (1),5) ≈ 30.70,

andφ(θ (1)) ≈ −12.56. We then majorize by using the dotted functionψ(θ, θ (1)),
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which has its minimum at about 2.44, equal to about−21.79. The corresponding

value ofφ at this point is about−24.1. Thus we are rapidly getting close to the

local minimum at
√

5, with value 25. The linear convergence rate at this point is1
3.

We briefly address next some convergence issues (for a general discussion see the

book by Zangwill [1969] and also Meyer [1976]). Ifφ is bounded above (below) on

2, then the algorithm generates a bounded increasing sequence of function values

φ(θ (k), thus it converges toφ(θ∞). For example, continuity ofφ and compactness

of2 would suffice for establishing the result. Moreover with some addiitonal mild

continuity considerations [De Leeuw, 1994] we get that||θ (k)−θ (k+1)
|| → 0, which

in turn implies, because of a result by Ostrowski [1966], that eitherθ converges to

a stable point or that there is a continuum of limit points (all with the same function

value). Hence, majorization algorithms for all practical purposes find local optima.

We make two final points about this class of algorithms. It is not necessary to

actually minimize the majorization function in each step, it suffices to decrease

it in a systematic way, for instance by taking a single step of a convergent “in-

ner” iterative algorithm. And the rate of convergence of majorization algorithms

is generally linear, in fact it is equal to the size of the second derivatives of the

majorization function compared to the size of the second derivatives of the original

function [De Leeuw and Michailidis, 1999].

APPENDIX B. QUADRATIC MAJORIZATION OF NEGATIVE LOG L IKELIHOOD

B.1. The Logit Case. Define

f (x) = −p logπ(x)− (1− p) log(1− π(x)),

where

π(x) =
1

1+ exp(−x)

Theorem B.1. f is strictly convex on(0,1) and has a uniformly bounded second

derivative satisfying0< f ′′(x) < 1
4.

Proof. Simple calculation gives

f ′(x) = π(x)− p,

f ′′(x) = π(x)(1− π(x)).
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Clearly

0< f ′′(x) <
1

4
for all 0< x < 1, which is all we need. �

Theorem B.2. Let

g(x, y) = f (y)+
1

8
[x − (y− 4(π(y)− p))]2− 2(π(y)− p)2

Then g majorizes f in the sense that

f (x) ≤ g(x, y) ∀x, y,

f (x) = g(x, x) ∀x.

Proof. From Theorem B.1 we know

f (x) ≤ f (y)+ (π(y)− p)(x − y)+
1

8
(x − y)2

By completing the square we see that the right hand side isg(x, y). �

B.2. The Probit case. Define

f (x) = −p log8(x)− (1− p) log(1−8(x)),

where

8(x) =
∫ x

−∞

φ(z)dz,

and

φ(z) =
1
√

2π
exp{−

1

2
z2
}.

Theorem B.3. The function f is strictly convex on(0,1) and has a uniformly

bounded second derivative satisfying0< f ′′(x) < 1.

Proof. By simple computation

f ′(x) = −
p−8(x)

8(x)(1−8(x))
φ(x)

and

f ′′(x) =
p−8(x)

8(x)(1−8(x))
xφ(x)+ φ2(x)

p+82(x)− 2p8(x)

82(x)(1−8(x))2

If p = 1 we havef ′(x) = −m(x), where

m(x) =
φ(x)

8(x)
,
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is the Inverse Mills’ Ratio, and

f ′′(x) = xm(x)+m2(x).

We now use a trick from Sampford [1953]. Consider a standard normal random

variable, truncated on the right (from above) at x. Its variance is 1−xm(x)−m2(x),

see Johnson et al. [1994, section 10.1], and because variance is positive, we see that

f ′′(x) < 1. On the other hand, the variance must be less than that of the standard

normal, which impliesf ′′(x) > 0.

If p = 0 then f ′(x) = M(x), where

M(x) =
φ(x)

1−8(x)
,

is Mills’ Ratio, and

f ′′(x) = −x M(x)+ M2(x).

Consider a standard normal random variable, truncated on the left (from below) at

x. Its variance is 1+ x M(x)− M2(x). Again this implies 0< f ′′(x) < 1.

The second derivativef ′′(x) is linear in p for fixed x. Since it is less than one and

larger than zero for bothp = 0 andp = 1, it must also be less than one and larger

than zero for all intermediate values ofp. �

Theorem B.4. Let

g(x, y) = f (y)+
1

2

[
(x − (y+

p−8(y)

8(y)(1−8(y))
φ(y))

]2

−
1

2

[
p−8(y)

8(y)(1−8(y))
φ(y)

]2

Then g majorizes f in the sense that

f (x) ≤ g(x, y) ∀x, y,

f (x) = g(x, x) ∀x.

Proof. From Theorem B.3 we know

f (x) ≤ f (y)−
p−8(y)

8(y)(1−8(y))
φ(y)(x − y)+

1

2
(x − y)2

By completing the square we see that the right hand side isg(x, y). �
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APPENDIX C. ADA ROLL CALL DESCRIPTIONS

C.1. Senate.The votes selected cover a full spectrum of domestic, foreign, eco-

nomic, military, environmental and social issues. We tried to select votes which

display sharp liberal/conservative contrasts. In many instances we have chosen

procedural votes: amendments, motions to table, or votes on rules for debate. Of-

ten these votes reveal true attitudes frequently obscured in the final votes.

(1) Ashcroft Attorney General Confirmation. Confirmation of President

Bush’s nomination of John Ashcroft of Missouri to serve as U.S. Attor-

ney General. Confirmed 58-42. Feb. 1, 2001. A no vote is a +.

(2) SJ Res 6. Ergonomics Rule Disapproval.Passage of a joint resolution

to reverse the ergonomics workplace safety rule submitted by the Clinton

Administration’s Labor Department. Passed 56-44. March 6, 2001. A no

vote is a +.

(3) S 420. Social Security “Lockbox”. Domenici (R-NM) motion to waive

the Budget Act in order to ensure that the Social Security surplus is used

only to pay down the public debt until Social Security reform legislation is

enacted. The bill would also ensure that the surplus in the Medicare Hos-

pital Insurance Trust Fund is used only to pay down the public debt until

Medicare reform legislation is enacted. Motion rejected 52-48 (a three-

fifths majority vote - 60 - is required to waive the Budget Act.) March 13,

2001. A no vote is a +.

(4) S 27. Campaign Finance Reform.McCain (R-AZ) motion to kill the

Hatch (R-UT) amendment requiring unions and corporations to obtain per-

mission from individual dues-paying workers or shareholders before spend-

ing money on political activities. The Hatch amendment was intended as

a ”poison pill” that, if passed and attached to the campaign finance reform

bill, would destroy any chances the full reform bill had of passage. The

Hatch amendment would also require corporations and unions to disclose

information regarding the funds spent on political activities. Motion agreed

to 69-31. March 21, 2001. A yes vote is a +.

(5) S 27. Soft Money Cap.McCain (R-AZ) motion to kill a Hagel (R-NE)

amendment to limit at $60,000 per year soft money contributions by in-

dividuals, political action committees, corporations and unions to national

and state political party committees. The Hagel amendment would render
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the underlying reform bill’s ban on soft money ineffective. Motion agreed

to 60-40. March 27. 2001. A yes vote is a +.

(6) H Con Res 83. Prescription Drug Benefit/Tax Cuts.Grassley (R-IA)

amendment to reserve $300 billion over 10 years to create a Medicare pre-

scription drug benefit and overhaul the program. This amendment was a

response to Democratic legislation which would have allocated $311 bil-

lion for the benefit and not allowed the benefit’s funding to come from the

Medicare Hospital Trust Fund Surplus. Adopted 51-50, with Vice Presi-

dent Cheney casting a ”yea” vote. April 3, 2001. A no vote is a +.

(7) H Con Res 83. Fiscal 2002 Budget Reconciliation.Domenici (R-NM)

amendment to instruct the Senate Finance Committee to report two recon-

ciliation bills to the Senate that would reduce revenue levels by not more

than the President’s proposed $1.6 trillion tax cut, and include a $60 billion

economic stimulus package for fiscal 2001. Adopted 51-49. April 5, 2001.

A no vote is a +.

(8) H Con Res 83. Funding for Environmental Programs. Corzine (D-

NJ) amendment to increase funding for a wide variety of environmental

programs by $50 billion and set aside $50 billion for debt reduction. The

increases would be offset by reductions in the proposed tax cut. Rejected

46-54. April 5, 2001. A yes vote is a +.

(9) H Con Res 83. “Marriage Penalty” Tax. Hutchison (R-TX) amendment

to increase the proposed tax cut by $69 billion for fiscal 2002-2011 in an

effort to eliminate the co-called marriage penalty. Adopted 51-50, with

Vice President Cheney casting a ”yea” vote. April 5, 2001. A no vote is a

+.

(10) H Con Res 83. Disabilities Education Act Funding. Breaux (D-LA)

amendment to redirect $70 billion from the proposed tax cut to funding

for the Individuals with Disabilities Education Act (IDEA) over 10 years.

Adopted 54-46. April 5, 2001. A yes vote is a +.

(11) S I. School Renovation and Construction.Harkin (D-IA) amendment to

authorize $1.6 billion for fiscal 2002 and such sums as necessary for each

fiscal year between 2003 and 2006 for the construction and renovation of

public elementary and secondary school buildings. Rejected 49-50. May

16, 2001. A yes vote is a +.

(12) HR 1836. Estate Tax. Dorgan (D-ND) amendment to strike the estate-

tax repeal provision and repeal the estate tax in 2003 for only all qualified
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family-owned farms and businesses. It also would reduce the top estate-tax

rate bracket to 45 percent. Rejected 43-56. May 21, 2001. A yes vote is a

+.

(13) HR 1836. Head Start. Kennedy (D-MA) amendment to condition the

reductions in the marginal income-tax rate on full funding for Head Start

programs. Motion rejected 45-54. May 22, 2001. A yes vote is a +.

(14) HR 1836. Tax Cut Reconciliation Bill. Adoption of the conference report

on the bill to reduce taxes by $1.35 trillion through fiscal 2011 through in-

come tax rate cuts, relief of the ”marriage penalty,” phase-out of the federal

estate tax, doubling of the child tax credit, and new incentives for retire-

ment savings. A new 10 percent tax rate would be created retroactive to

January 1. The bill would double the $5000-per-child tax credit by 2010

and make it refundable, raise the estate tax exemption to $1 million in 2002

and repeal the tax in 2010, increase the standard deduction for married

couples to double that of singles over five years, beginning in 2005, and

increase annual contributions limits for Individual Retirement Accounts.

The bill’s provisions would expire December 31, 2010. Adopted 58-33.

May 26, 2001. A no vote is a +.

(15) S I. School Vouchers.Gregg (R-NH) amendment to create a demonstra-

tion program in 10 school districts to provide public school children with

federal funds (vouchers) to transfer to another public school or a private

school, including religious schools. The amendment would authorize $50

million for fiscal 2002 and subsequent necessary sums for the next six fis-

cal years. Rejected 41-58. June 12, 2001. A no vote is a +.

(16) S I. Boy Scouts/Anti-Discrimination. Helms (R-NC) amendment to with-

hold federal education funds from public elementary and secondary schools

that bar the Boy Scouts of America from using school facilities. The tar-

geted schools bar the Boy Scouts because the organization discriminates

against gay men. Adopted 51-49. June 14, 2001. A no vote is a +.

(17) S 1052. Patients’ Bill of Rights. Passage of the bill to provide federal

patient protections and allow patients to appeal a health maintenance orga-

nization’s (HMO) decision on coverage and treatment. It also would allow

patients to sue health insurers in state courts over quality-of-care claims

and, at the federal level, over administrative or non-medical coverage dis-

putes. Passed 59-36. June 29, 2001. A yes vote is a +.
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(18) HR 2299. NAFTA/Mexican Trucks. Shelby (R-AL) motion to uphold a

border truck inspection program which allows Mexican trucks to receive

three-month permits if they pass safety inspections. The motion also up-

holds a grant of $60 billion to the Transportation Department and various

agencies. Motion agreed to 65-30. July 27, 2001. A yes vote is a +.

(19) S 1438. Military Base Closures.Warner (R-VA) motion to authorize an

additional round of U.S. military base realignment and closures in 2003.

Motion agreed to 53-47. September 25, 2001. A yes vote is a +.

(20) HR 2944. Fiscal 2002 District of Columbia Appropriations.Passage of

the bill to provide $408 million for the District of Columbia in fiscal 2002,

including funds for the city’s courts and corrections system and $16.1 mil-

lion for an emergency response plan following the September 11 attacks.

The bill also would approve a $7.2 billion budget for the District. Passed

75-24. November 7, 2001. A yes is a +.

C.2. House. The votes selected cover a full spectrum of domestic, foreign, eco-

nomic, military, environmental and social issues. We tried to select votes which

display sharp liberal/conservative contrasts. In many instances we have chosen

procedural votes: amendments, motions to table, or votes on rules for debate. Of-

ten these votes reveal true attitudes frequently obscured in the final votes.

(1) HR 333. Bankruptcy Overhaul. Jackson-Lee (D-TX) amendment to al-

low debtors to deduct additional medical and child-care expenses before

determining their eligibility for Chapter 7 bankruptcy status. The amend-

ment also expands the definition of family farmer, changes the standards

for calculating median income, and includes debtor privacy provisions. Re-

jected 160-258. March 1, 2001. A yes vote is a +.

(2) SJ Res 6. Ergonomics Rule Disapproval.Passage of the joint resolution

to reverse the ergonomics workplace safety rule submitted by the Clinton

Administration’s Labor Department. Passed 223-206. March 7, 2001. A

no vote is a +.

(3) HR 3. Income Tax Reduction.Passage of the White House’s bill to lower

federal income taxes by restructuring the five existing tax brackets into four

- 10 percent, 15 percent, 25 percent and 33 percent. The benefits of this tax

cut go disproportionately to the wealthy and to major corporations. The

large cost of the legislation would jeopardize domestic spending programs
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aimed at middle- and low-income Americans. Passed 230-198. March 8,

2001. A no vote is a +.

(4) HR 6. Marriage Tax Reduction. Rangel (D-NY) substitute amendment

to reduce taxes by $585.5 billion through 2011. This tax cut would be con-

siderably less regressive and more equitable than the Republican version.

The Rangel plan would create a new 12 percent bracket for the first $20,000

of a couple’s taxable income and $10,000 for single taxpayers. It also

would increase the standard deduction for married couples filing jointly to

twice that of individuals filing singly. Additionally, the amendment would

simplify and expand the earned-income tax credit for low-income earners.

Rejected 196-231. March 29, 2001. A yes vote is a +.

(5) HR 8. Estate Tax Relief. Rangel (D-NY) substitute amendment to in-

crease the estate tax exemption from $675,000 to $2 million ($4 million

for married couples) in 2002, rising to $2.5 million by 2010. This leg-

islation serves as an alternative to the drastic Republican abolition of the

progressive estate tax. The Rangel tax cut would lower federal revenue

by $39.2 billion over ten years. The amendment would retain current-law

”step-up basis” provisions, and replace the credit for estate taxes paid to a

state with a deduction. Rejected 201-227. April 4, 2001. A yes vote is a +.

(6) HR 503. Fetal Protection.Passage of the bill to make it a criminal offense

to injure or kill a fetus during the commission of a violent federal crime.

The measure would establish criminal penalties equal to those that would

apply if the injury or death occurred to a pregnant woman, regardless of the

perpetrator’s knowledge of the pregnancy or intent to harm the fetus. The

bill states that its provisions should not be interpreted to apply to consen-

sual abortion or to a woman’s actions with respect to her pregnancy. The

death penalty could not be imposed under this bill. Passed 252-172. April

26, 2001. A no vote is a +.

(7) HR 1. School Vouchers.Armey (R-TX) amendment to provide federal

funding for students to attend private schools, including religious schools,

if they are currently enrolled in schools that are dangerous or have been

low-performing for three years. Crime victims also would be provided

with funding to attend alternative private schools. Rejected 155-273. May

23, 2001. A no vote is a +.

(8) HR 1836. Tax Cut Reconciliation Bill. Adoption of the conference report

on the bill to reduce taxes by $1.35 trillion through fiscal 2011 via income
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tax rate cuts, relief of the ”marriage penalty,” phaseout of the federal estate

tax, doubling of the child tax credit, and new incentives for retirement

savings. A new 10 percent tax rate would be created retroactive to January

1. The bill would: double the $500-per-child tax credit by 2010 and make

it refundable; raise the estate tax exemption to $1 million in 2002 and

repeal the tax in 2010; increase the standard deduction for married couples

to double that of singles over five years, beginning in 2005; and increase

annual contributions limits for Individual Retirement Accounts. The bill’s

provisions would expire December 31, 2010. Adopted 240-154. May 26,

2001. A no vote is a +.

(9) HR 2356. Campaign Finance Reform.Adoption of the rule to allow the

House to consider a ban on ”soft money” donations to national political

parties. This rule was crafted by campaign finance reform foes to disal-

low amendments which fine-tune the bill and, thus, keep reform advocates

from gathering more votes in support of final passage. Beyond banning

soft money, the original reform legislation would allow up to $10,000 in

soft-money donations to state and local parties for voter registration and

get-out-the vote activity. The reform bill would prevent issue ads from tar-

geting specific candidates within 60 days of a general election or 30 days

of a primary. Additionally, the legislation would maintain the current in-

dividual contribution limit of $1,000 per election for House candidates but

raise it to $2,000 for Senate candidates, both of which would be indexed

for inflation. Rejected 203-228. July 12, 2001. A no vote is a +.

(10) HJ Res 36. Flag Desecration.Passage of the joint resolution proposing

a Constitutional amendment to prohibit physical desecration of the U. S.

flag. Passed 298-125. (A two-thirds majority vote of those present and

voting - 282 in this case - is required to pass a joint resolution proposing

an amendment to the Constitution.) July 17, 2001. A no vote is a +.

(11) HR 7. Faith-Based Initiative. Conyers (D-MI) motion to recommit the

bill to the Judiciary Committee with instructions to add language stating

that federally-funded religious service providers cannot discriminate based

on religion and that no provision supercedes state or local civil rights laws.

Motion rejected 195-234. July 19, 2001. A yes vote is a +.

(12) HJ Res 50. China Normalized Trade Relations.Passage of a joint res-

olution to deny the President’s request to provide normal trade relations

(formerly known as most-favored-nation trade status) for items produced
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in China from July 2001 through July 2002. Rejected 169-259. July 19,

2001. A yes vote is a +.

(13) HR 4. ANWR Drilling Ban. Markey (D-MA) amendment to maintain the

current prohibition on oil drilling in the Arctic National Wildlife Refuge.

Rejected 206-223. August 1, 2001. A yes vote is a +.

(14) HR 2563. Patients’ Rights/HMO Liability. Norwood (R-GA) amend-

ment to limit liability and damage awards when a patient is harmed by

denial of health care. This amendment was offered after patients’ rights

opponents in the White House exerted pressure on Rep. Norwood to aban-

don a stronger bill. The legislation would allow a patient to sue a health

maintenance organization (HMO) in state court but with federal, not state,

law governing. An employer could remove cases to federal court. The

bill would limit non-economic damages to $1.5 million. Punitive damages

would be limited to the same amount and only allowed when a decision-

maker fails to abide by a grant of benefits by an independent medical re-

viewer. Adopted 218-213. August 2, 1001. A no vote is a +.

(15) HR 2563. Patients’ Bill of Rights. Passage of the bill to provide federal

health care protections, such as access to specialty and emergency room

care, and require that health maintenance organizations (HMOs) have an

appeals process for patients who are denied care. This weakened legisla-

tion was offered to head off consideration of a stronger version. A patient

denied care could sue an HMO in state and federal court but first must ex-

haust internal and external appeals processes. Passed 226-203. August 2,

2001. A no vote is a +.

(16) HR 2944. Domestic Partner Benefits.Weldon (R-FL) amendment to

the FY 2002 District of Columbia Appropriations Bill that would prohibit

the use of local, as well as federal, funds to extend city employees’ health

benefits to unmarried domestic partners. Rejected 194-226. September 25,

2001. A no vote is a +.

(17) HR 2586. U.S. Military Personnel Overseas/Abortions.Sanchez (D-

CA) amendment to the FY 2002 Defense Authorization Bill which allows

female military personnel stationed at U.S. bases overseas to undergo an

abortion at medical facilities there provided they pay for it themselves and

a doctor consents to perform the operation. Rejected 199-217. September

25, 2001. A yes vote is a +.
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(18) HR 2975. Anti-Terrorism Authority. Adoption of the rule to provide

for House consideration of the bill that would expand law enforcement’s

power to investigate suspected terrorists and beef up domestic surveillance.

The legislation threatens the civil liberties, civil rights, and due process

protections guaranteed individuals in the United States. Adopted 214-208.

October 12, 2001. A no vote is a +.

(19) HR 3090. Economic Stimulus.Passage of the Republican version of the

post- September 11 economic stimulus package. The bill would grant busi-

nesses and individuals $99.5 billion in federal tax cuts in fiscal 2002, and

a total of $159.4 billion in reductions over 10 years. Additionally, the bill

would allow more individuals to receive tax rebates for 2000, accelerate

a reduction of the 27 percent tax bracket to 25 percent, lower the capital

gains tax rate from 20 percent to 18 percent and eliminate the corporate

alternative minimum tax. Also, the legislation would provide $3 billion to

states for health insurance for the unemployed. Passed 216-214. October

24, 2001. A no vote is a +.

(20) HR 3000. Trade Promotion Authority/Fast Track. Passage of the bill to

allow expedited negotiation and implementation of trade agreements be-

tween the executive branch and foreign countries. The bill includes pro-

visions requiring increased consultations with Congress on any proposed

changes of tariffs for imports of sensitive agriculture products and on trade

disparities for textile products. Passed 215-214. December 6, 2001. A no

is a +.
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APPENDIX D. CODE

l o g c a l l<−f un c t i on ( data ,

rownames=as . charac te r ( 1 : dim ( data ) [ 1 ] ) ,

row labs =as . charac te r ( 1 : dim ( data ) [ 1 ] ) ,

ndim =2 ,

5 eps =1e−3,

imax =10000 ,

c o r r e c t =TRUE,

ex t reme =TRUE,

form=” l o g i t ” ,

10 o f f s e t =1 .20 ) {

name<−deparse( s u b s t i t u t e ( data ) )

o u t f i l e<− f i l e ( pas te( name , ” ou t ” , sep=” . ” ) , ”w” )

v log<−f un c t i o n ( a , b ) i f e l s e ( b>0,a∗ l og ( b ) , 0 )

l s<−−2∗ l eng th ( which ( ! i s . na ( data ) ) ) ∗ l og ( . 5 )

15 i t e l<−1

z<− i f e l s e ( i s . na ( data ) ,0 ,−4∗ ( data− .5) )

repea t {

a<−apply ( z , 2 ,mean)

z<−z−a

20 sv<−La . svd ( z , nu=ndim , nv=ndim , method=” dgesdd ” )

x<−sv$u ; y<−sv$d [ 1 : ndim ]∗ ( sv$v )

aa<−( x%∗%y ) +a

pr<−1 / (1+exp( aa ) )

t b<−t a b l e ( as . vec to r ( data ) , as . vec to r ( i f e l s e ( pr

> . 5 ,1 ,0 ) ) )

25 l k<−v log ( data , p r ) + v log (1−data ,1− pr )

l t<−−2∗sum( l k [ which ( ! i s . na ( data ) ) ] )

ca t ( ” I t e r a t i o n : ” , formatC ( i t e l , d i g i t s =6 , w id th =6) ,

” Dev iance : ” , formatC ( l s , d i g i t s =6 , w id th =12 ,

format =” f ” ) ,

” ==>” , formatC ( l t , d i g i t s =6 , w id th =12 ,format =” f ” )

)

30 i f ( c o r r e c t )

ca t ( ” C o r r e c t : ” , formatC ( sum( diag ( t b ) ) / sum( t b ) ,

d i g i t s =6 , w id th =10 ,format =” f ” ) )
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ca t ( ” \n” )

i f ( ( abs( l t − l s )<eps ) | | ( i t e l ==imax ) ) break ( )

i t e l<− i t e l +1

35 l s<− l t

z<− i f e l s e ( i s . na ( data ) , aa , aa−4∗ ( data−pr ) )

}

r a d i u s<−mean( rowSums ( x ˆ 2 ) )

xx<−c ( min ( x [ , 1 ] ) ,max( x [ , 1 ] ) )

40 yy<−c ( min ( x [ , 2 ] ) ,max( x [ , 2 ] ) )

zz<−c ( min ( xx [ 1 ] , yy [ 1 ] ) , max( xx [ 2 ] , yy [ 2 ] ) )

pdf ( f i l e =pas te( pas te( name , ” row ” , sep=” ” ) , ” pd f ” , sep=” . ” ) ,

encod ing =”MacRoman” )

p l o t ( x , t ype =”n ” , main=pas te( ” I d e a l p o i n t p l o t f o r ” , name ) ,

x l ab =pas te( ” d imens ion ” , 1 ) , y l ab =pas te( ” d imens ion ” , 2 )

, x l im= o f f s e t∗xx , y l im= o f f s e t∗yy )

45 t e x t ( x , rownames, cex = . 5 ,c o l=” red ” )

dev . o f f ( )

pdf ( f i l e =pas te( pas te( name , ” c o l ” , sep=” ” ) , ” pd f ” , sep=” . ” ) ,

encod ing =”MacRoman” )

p l o t ( x , t ype =”n ” , main=pas te( ” Ro l l c a l l p l o t f o r ” , name ) ,

x l ab =pas te( ” d imens ion ” , 1 ) , y l ab =pas te( ” d imens ion ” , 2 )

, x l im= o f f s e t∗xx , y l im= o f f s e t∗yy )

50 t e x t ( x , rowlabs , cex = . 5 ,c o l=” g reen ” )

f o r ( i i n 1 : dim ( y ) [ 2 ] ) {

i n t e r c e p t<−−a [ i ] / y [ 2 , i ] ; s l o p e<−−y [ 1 , i ] / y [ 2 , i ]

a b l i n e ( i n t e r c e p t , s l o p e )

u<−s l o p e∗ i n t e r c e p t ; v<−1+( s l o p e ˆ 2 ) ; w<−( r a d i u s∗v )−(

i n t e r c e p t ˆ 2 )

55 i f ( w>0) {

x1<−−(u+sq r t (w) ) / v ; x2<−−(u−sq r t (w) ) / v ;

y1<− i n t e r c e p t +( s l o p e∗x1 ) ; y2<− i n t e r c e p t +(

s l o p e∗x2 )

t e x t ( x1 , y1 ,as . charac te r ( i ) , c o l=” red ” )

t e x t ( x2 , y2 ,as . charac te r ( i ) , c o l=” red ” )

60 }

}
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dev . o f f ( )

c l o s e( o u t f i l e )

l i s t ( i n t e r c e p t s =a , r o w p o i n t s =x , co lumnpo in t s =y , p r o b a b i l i t i e s =

pr )

65 }
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