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ABSTRACT OF THE DISSERTATION

High-Resolution Localization of Aeroacoustic Sources Using Advanced Phased Array
Setups
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This work aims at improving the current state-of-the-art in noise source localization tech-

niques and phased array technologies by extending and adapting distinct traditional beam-

forming and deconvolution techniques to microphone phased arrays that contain continuously-

scanning sensors. The continuous-scan approach is capable to attain a high-resolution noise

source localization, which is of utmost importance when analyzing certain aeroacoustic

sources. Care must be taken when handling the microphone signals from continuously-

scanning sensors as these are non-stationary due to the traversing of a spatially-varying

acoustic field. Quasi-stationarity is sought by dividing the signals into smaller, quasi-

stationary blocks and by applying a frequency-dependent window within each block. The

motion of the sensors also requires modification of the steering vectors used in beamforming

to include a Doppler-shifted frequency. Optimal block schedules versus frequency are pro-

posed and demonstrated to exploit the benefits of the continuous-scan paradigm by enhancing

the spatial resolution of the images while containing the computational cost. Beamforming

is carried out using three distinct approaches: application of the classical delay-and-sum

technique to the cross-spectral matrix obtained for each blocks, followed by assembly of

non-repeated elements of each block; a cross-spectral matrix completion process; and a par-

tial fields decomposition method. The last two approaches result in a unified cross-spectral
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matrix that enables deconvolution of the array output and the use of advanced beamform-

ing approaches such as orthogonal or functional beamforming. This work features three

deconvolution approaches: DAMAS, Clean-SC, and the Richardson-Lucy method. All the

beamforming and deconvolution methods are applied in conjunction with the proposed signal

processing to the acoustic fields emitted by an impinging-jets source, a subsonic turbulent

jet in isolation and integrated with a shielding plate, and a supersonic jet in isolation and

with upstream reflector surfaces. Introduction of a single scanning sensor to a far-field array

improves dramatically the fidelity of beamforming. The deconvolved images further improve

the spatial resolution. The point spread function and the impinging jets source are used

to assess the performance of all the techniques. The source distributions obtained with the

continuous-scan approaches are compared to those obtained utilizing an array containing

fixed sensors only. The techniques are then used to predict the effect of a shielding plate on

the subsonic turbulent jet, and discern the location of the peak noise source as a function of

frequency. The methods are also applied to the imaging of the supersonic flow issuing from a

convergent nozzle that presented the screech phenomenon. The jet oscillated in well-known

mode B (lateral). The continuous-scan paradigm is capable of obtaining the location of the

screech sources and determination of the fine shock-cell structure of the supersonic jet flow

from far-field microphone measurements only, underscoring its potential. Addition of conical

reflector surfaces to the supersonic jet gave rise to a new mode E, with tonal components

that do not fall into any known category (mode A1, A2, B or C). The source distribution of

mode E and mode B is analyzed.
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Chapter 1

Introduction

1.1 Background and Motivation

The issue of noise source localization has engaged the research community over the past

8 decades. Noise source localization tools are essential techniques that are used to under-

stand, characterize and model certain acoustic sources of interest. These tools are used in a

myriad of fields, finding applications within the automotive industry, high-speed rail, or the

aerospace industry, to name a few. Within the aerospace segment, noise source localization

techniques are used to describe complex flow patterns such as those associated with subsonic

and supersonic turbulent jets or ducted fans. Microphone array techniques are also utilized

to predict other phenomena such as noise emanating from propulsion-airframe interactions

in blended wing body configurations, or from landing gear or lifting surfaces take-off and

landing aircraft procedures, thus becoming critical tools for noise assessment and aircraft

certification. Given the complicated nature of the aeroacoustic sources typically found in the

context of the aviation industry, high-resolution source localization methods are required to

detect and minimize noise sources. The recent years have seen a significant boost on new
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microphone array techniques aiming to improve the limitation on the spatial resolution that

one encounters when using traditional setups and noise source localization techniques. Im-

provement of the current experimental methodologies, including its applications to describe

aeroacoustic sources of interest, poses a complex challenge that must be tackled using novel

experimental setups and tailored signal processing techniques. The following paragraphs will

briefly describe the history of noise source localization techniques, provide a literature re-

view and an overview of the state-of-the-art, and introduce the reader to the high-resolution

beamforming approach developed in this work.

The science and the experimental tools used in noise source localization studies have pro-

gressed significantly over the past decades. In the early days, a passive device known as

acoustic telescope was used. A prominent example of its utilization is found during the

World War II, where soldiers used acoustic antennas to localize approaching aircraft by

analyzing their far-field noise imprints. This device consisted of a parabolic mirror that redi-

rected and “collimated” acoustic waves to a focal point, increasing the signal to noise ratio

significantly, and allowing the detection of aircraft from significantly far distances. This

rudimentary setup might be considered the inception of modern noise source localization

tools.

These early noise source localization techniques did not allow a high degree of flexibility

or a proper quantification or description of the noise sources. As such, significant efforts

were invested into developing more sophisticated experimental setups and signal processing

tools. The introduction of phased microphone arrays and the modern computer enabled an

unprecedented spatial resolution that allowed for an accurate characterization of aeroacous-

tic sources compared to the use of acoustic mirrors. An example of a pioneering work that

utilized microphone techniques is found in the seminal study of Fisher et al. [6], which is con-

sidered to be one of the first references on the polar correlation technique, published during

the 1970s. The authors introduced a new method to localize noise sources that was based on
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far-field microphone recordings that were distributed over a polar arc centered on the nozzle

jet axis (i.e., a phased microphone array). The use of cross-correlations and cross-spectral

densities between all the distinct microphones was the essence of the method, allowing very

important contributions within the field of aeroacoustics. The technique proved to yield

significant improvements to the noise localization process, and the authors were able to dis-

seminate the space-frequency distribution of the main sources of jet noise. Their pioneering

work set the foundations for modern and more advanced source localization techniques.

The National Aeronautics and Space Administration (NASA) ambitious noise reduction goals

for commercial aviation, introduced during the 1980s and the 1990s, proved to be a significant

tailwind for the development of advanced experimental noise localization techniques, which

helped researchers understand the main systems contributing to aircraft noise during take-off

and landing: the propulsion devices, the landing gear, and the lifting surfaces. Computer-

aided simulations were performed in conjunction; however, the computational power required

for large high-fidelity simulations was still lacking and tools for computational aeroacous-

tics (CAA) could still not handle complicated geometries. Microphone phased arrays were

broadly adopted during the 1990s, and have become an industry standard for noise source

localization studies. The works of Mosher [7] and Humphreys et al. [8] are two examples

of how microphone phased arrays could be used for localizing and describing aeroacoustic

sources of interest in a laboratory scale.

During the 1990s and 2000s, the delay-and-sum (DAS) beamforming algorithm was widely

adopted by the aeroacoustics research community. The technique has become a prevalent

tool to process microphone data from simultaneously-sampled sensors nowadays, and remains

widely used. In this approach, each individual microphone can be electronically “steered”

to a region of interest, where significant acoustic sources are expected, by adding time

delays that are dependent on the relative position between the source and the microphone.

The signals are then summed and normalized and an array response can be obtained for
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each point of interest. The steering approach involved in the DAS process forms a focused

beam (the reason behind its name) to a point of interest to detect if there exists a noise

source. The algorithm was quickly adapted to the frequency domain by making use of the

Fourier transform, which allowed to characterize noise sources in the space-frequency domain.

The utilization of DAS in conjunction with phased microphone arrays was a breakthrough

compared to the use of the early acoustic mirrors given that one did not need to physically

move the array to focus it on user-defined spatial locations, and the exact frequency and

amplitude of the sources could be quantified.

However, one of the main drawbacks of DAS, and in general, traditional phased array tech-

niques, relied on the Point Spread Function (PSF). The PSF models the response of the

microphone array to a point source. Given that there is a limit in the number of micro-

phones that can be used for an experiment, the microphone array usually creates artificial

sources, resulting in a blurred noise source localization and a penalization of the spatial res-

olution that is required in many applications. The shape of the PSF is highly dependent on

frequency, the focus point, and the array geometry. The shape and width of the main beam

are also governed by the geometry of the phased array. In most practical applications, the

main beam or lobe, is accompanied by secondary beams (sidelobes), with the latter being

prominent at high frequency in many instances. The output of the DAS process is the convo-

lution of the real source distribution and the array PSF. As such, the point spread function

might greatly influence the source distribution obtained with DAS and traditional phased

arrays. Mitigation of the effects of the PSF is a current topic of research [9, 10, 11]. This

blurring effect of the PSF is excellently described by Brooks and Humpreys [12]: “Tradi-

tional presentations of array results involve mapping (contour plotting) of array output over

spatial regions. These maps do not truly represent noise source distributions, but ones that

are convolved with the array response functions, which depend on array geometry, size (with

respect to source position and distributions), and frequency.”. Reduction of the effect of the

sidelobes implies reducing the spacings between the microphones, incurring into significant
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monetary and processing costs, which is deemed impractical in most the application.

Several deconvolution techniques have been developed since the 1970s. These methods aim

at separating the contribution from the PSF from the measured DAS source distribution in

order to obtain the real source distribution. Examples of these methods are the DAMAS

[12] (Brooks and Humphreys), DAMAS2 and DAMAS3 [13] (Dougherty), CLEAN-SC [14]

(Sijtsma) or the Richardson-Lucy approach [15, 16], to name a few. Other techniques, known

as Spectral Estimation Methods (SEM), have also been developed to increase the spatial

resolution of the beamformer output. These methods obviate the “steering” approach of

the DAS and instead estimate the source distribution by minimizing the difference between

the modeled and the measured pressure statistics [17]. SEM and deconvolution methods

usually assume an uncorrelated monopole nature about the acoustic source. The inversion

of the acoustic problem found in SEM methods can be performed by means of the conjugate

gradient minimization of Shanno and Phua [18] or using a Bayesian-based approach [17, 1,

19, 20]. The direct estimation approach has been shown to provide results of higher quality

than some deconvolution approaches in the imaging of turbulent jets [1, 17]. However, SEM

techniques or deconvolution of the array output can only improve the spatial resolution of the

noise source maps up to a certain degree given the limitation on the number of microphones.

During the recent years, there has been an increasing interest in microphone arrays com-

prising fixed and continuously-scanning sensors. These arrays are an evolution of the early

phased arrays introduced during the 1990s within the context of aeroacoustics, and are capa-

ble of obtaining highly-resolved noise source images and mitigate the sidelobe effects (i.e., the

blurring due to the shape of the PSF). The continuous-scan approach can be considered an

extension of the start-and-stop method of Lee and Bolton [21], which prevents damage to the

microphones due to impulsive accelerations. These novel experimental techniques can reduce

the total experiment time by an order of magnitude [22], compared to using non-synchronous

microphone measurements. The continuous-scan technique has found applications in Near-
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Field Holography (NAH) [23, 24] and beamforming [1, 25, 26, 27, 28], proving to increase

the spatial resolution of the images significantly compared to traditional phased arrays with

the same number of microphones and making it an ideal candidate for the study of complex

aeroacoustic sources without incurring into increased monetary or computational costs.

The most prominent challenge of the continuous-scan paradigm includes the treatment of

non-stationary signals that arise due to the motion of the sensors. Papamochsou et al.

[1] addressed the issue by dividing the microphone pressure signals into quasi-stationary

blocks and by using the Wigner-Ville Spectral estimation to handle the cross-correlations

between microphones that had a relative velocity. Their work set the building blocks for the

beamforming techniques presented in this work. An additional challenge of the continuous-

scan paradigm relies in the signal processing, with new variables such as block length, number

of blocks, etc., arising, which might introduce a certain degree of variability in the results if

not systematically accounted for.

The present work presents several beamforming methodologies to process the data from mi-

crophone arrays that contain continuously-scanning sensors. A detailed study of the signal

processing and its effects on the quality of the noise source maps is presented. As it will

be demonstrated, the utilization of continuously-scanning microphones, combined with the

signal processing guidelines proposed in this work, enables to obtain highly-resolved noise

source maps that would only be possible to obtain if using a very large number of micro-

phones. These high-resolution methodologies are applied to propulsion-related noise sources.

Specifically, this work features high-fidelity noise source localization studies of subsonic jets,

and supersonic jets that presented the screech phenomenon. The supersonic screeching jets

are of interest within the context of beamforming given their small flow field features con-

taining the shock-cells and the screech feedback loop process. Several upstream reflector

surfaces of different geometries are utilized to change the oscillation dynamics of the screech-

ing supersonic jet, with a new oscillation mode arising. The addition of the reflectors triggers
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modal interaction, which is manifested with the presence of new tones in the Sound Pres-

sure Level (SPL) spectrum. Given the beamforming techniques of this work are applied

to propulsion-related noise sources, a summary of the main components that characterize

subsonic and supersonic jet noise is presented next.

1.2 Review of Jet Noise

Before further elaborating and describing the noise components of subsonic and supersonic

jets flows, the concept of the acoustic far-field is briefly introduced. This is of particular

relevance for the modeling and subsequent results that will be shown in this work, as the mi-

crophone measurements have been conducted in the acoustic far-field. The acoustic far-field

might be defined as the region far away from the jet flow field where the pressure intensity

decays radially as 1/ℓ2, where ℓ is the distance between the source and the observer, and

where the pressure field might be computed using linear approximations. Most microphone

surveys used in noise source localization studies are computed in the acoustic far-field, as

one avoids damaging the microphones due to the flow-field potentially impinging on them

while also ensuring that the max SPL of the microphone is not reached. However, many

of the details of the source that generate the observed far-field, such as the turbulence cor-

relation length-scales, time length-scales, etc., are lost. As such, researches usually rely on

modeling the acoustic sources, as will be further elaborated in the next lines and in Chap-

ter 2. Numerous far-field and near-field studies on subsonic and supersonic jet flows have

been conducted over the past decades, providing experimental evidence behind important

physics of the production of noise. These, together with a characterization of the principal

components contributing to jet noise, will be elucidated next.
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1.2.1 Principal Components of Jet Noise

Jet noise is a branch of aeroacoustics that aims at studying and characterizing the noise

generated by the instabilities involving the shear layer on subsonic and supersonic jets.

These instabilities might interact with the shock-cell structures in supersonic jets, produc-

ing additional and high-intensity noise components, which are not found in their subsonic

counterpart.

All turbulent jet flows contain small-scale and large-scale turbulence structures, with both

playing a critical role in generating noise [29]. The large-scale structures are usually associ-

ated with the production of directional low frequency noise. Small-scale turbulence structures

are related to the production of high-frequency uncorrelated noise, usually peaking near the

nozzle exit plane [29, 30]. A universal component of noise that is common in all turbulent jet

flow fields is the turbulence mixing noise, which is produced by the two types of structures

introduced previously. These structures are usually correlated over some distances down-

stream of the nozzle exit, and have been modeled in the past by using amplitude modulated

instability waves [31, 32] (i.e., wavepackets), quadrupoles [33], or monopoles [34, 6, 12],

among others. The relevant levels of coherence of the large-scale turbulence structures make

them an efficient noise generator, usually responsible for the SPL peak in subsonic jets, dom-

inating the emission at angles close to the downstream axis (see Fig. 1.1). High-speed jet

flows might also contain large-scale coherence structures that have a supersonic convective

Mach number. Such structures produce intense Mach wave radiation that quickly overcome

the noise generation, dominating the SPL at polar angles θ = cos−1(1/Mc), where Mc is the

convective Mach number, defined as Mc = uc/a∞, with uc being the convective velocity, and

a∞ the speed of sound.

A second component of jet noise, appearing only on supersonic jet flows, is known as broad-

band shock-associated noise, or using its acronym: BBSAN. BBSAN only appears when
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Observer distance

Figure 1.1: Sketch of a convergent nozzle and a far-field observer.

supersonic jets are imperfectly expanded (i.e., there is a pressure unbalance). The pressure

miss-match at the nozzle exit requires rapid flow adjustments that are done through discon-

tinuities (i.e., shocks and expansions). These shocks and expansions usually repeat along the

jet plume, forming quasi-periodic patterns known as the shock-cell structure that is charac-

teristic in a high number of military jets or the flow field produced by rocket engines. An

example of this pattern is displayed in Fig. 1.2. The figure displays a spark Schlieren image

of an overexpanded supersonic jet designed using the method of characteristics forMj = 1.5.

Figure 1.2: Spark Schlieren image of an overexpanded jet. Extracted from Ref. [1].

The third component characterizing jet noise is known as screech tones. This component, in

parallel with the BBSAN, is only present in supersonic jets. Screech tones arise due to the

interaction of the instability wave in the shear layer and the shock-cell structure in the jet

plume. These prominent tones were first observed by Powell [35] in 1953, when he correctly
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pointed out that they were a consequence of a feedback mechanism loop, summarized in

the next lines. The shear layer instability (Kelvin-Helmhotz) is convected downstream as it

grows, interacting with the shock-cell structure of the jet. Between the 3rd and the 5th shock

cell, the interaction leads to the production of upstream-propagating acoustic waves through

a mechanism known as shock-cell leakage [36]. These waves interact with the nozzle lip, agi-

tating the mixing layer [31] at the nozzle exit, and producing more downstream-propagating

disturbances that close the feedback loop. A schematic of this process is displayed in Fig.

1.3. Jet screech usually shows in the SPL spectra as a combination of a fundamental tone

and a multitude of harmonics. Their directivities are all very distinct [2], with some peaking

at shallow polar angles and others peaking near θ = 90◦. The frequency and amplitude of

the tones is strongly dependent on the jet Mach number and the nozzle lip thickness [37, 4],

as it has been widely documented. They are also dependent on the existence and shape of

reflection surfaces close to the nozzle exit. The high-sensitivity to the experimental boundary

conditions will be detailed further in the next lines.

Figure 1.3: Schematic representation of the screech loop process, with the four stages in-
volved.

A prominent feature of resonant flows such as supersonic screeching jets or impinging jets
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is their staging behavior. Small changes in the jet operating conditions such as total pres-

sure jumps, nozzle lip thickness, the presence of upstream or downstream reflectors or air

temperature and humidity might change the oscillation dynamics of the jet flow dramati-

cally, incurring in large jumps of the resonance frequency. Powell [35] originally explained

this issue by using a criteria of phase and amplitude. The phase criterion states that the

frequency of the screech tone must be selected so that the feedback loop is self-sustaining.

Additionally, Powell also stated that screech will only self-sustain in a steady-state fashion

if the gain associated with the four stages of the feedback loop is selected such that the

amplitude of each new disturbance matches, at least, that of the previous one. The two

conditions, which are tightly linked, imply that adjustments on the gain criterion must be

accompanied with adjustments on the phase criterion, which creates large frequency jumps

and the staging behavior that is observed experimentally. The staging behavior is associated

with distinct jet oscillation dynamics [38, 39, 3, 4]. Supersonic jet screech initially manifests

as two toroidal or symmetric modes (A1 and A2) as the degree of underexpansion is increased

on round jets. As one increases the pressure ratio, the jet transitions into a lateral oscillation

(mode B). The jet finally oscillates in a helical fashion (mode C) for higher total pressures

and might switch to a lateral oscillation again (mode D, similar to mode B) for very high

pressure ratios. The staging behavior can be seen in Fig. 1.4, which has been extracted from

the work of Tam et al., “Harmonics of Jet Screech Tones” [2]. The vertical axis displays the

screech wavelength normalized by the nozzle diameter (i.e., λs/D = a∞/(fsD)), where a∞

is the speed of sound, fs is the screech frequency and D is the nozzle diameter. In addition,

note how certain modes overlap. It has been experimentally demonstrated that the jet might

lock itself to a preferred oscillation mode depending on the initial boundary conditions (i.e.,

nozzle lip thickness, presence of upstream reflectors, etc.) or contain two modes coexisting

or in a mutually-exclusive fashion [4]. The specific reason of the above still remains unsolved

but demonstrates the high degree of non-linearity governing resonant flows.

The distinct oscillation dynamics are also shown in Fig. 1.5. The image has been extracted
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Figure 1.4: Normalized screech wavelength as a function of the fully-expanded jet Mach
number of underexpanded round supersonic jets, extracted from Tam et al. [2]

from Umeda and Ishii, “Sound sources of screech tone radiated from circular supersonic

jet oscillating in the helical mode” [3] and was obtained using a Schilieren apparatus with

an exposure time of 1 µs. The jet flow issued from a convergent nozzle at different total

pressures. Clear symmetric structures can be seen for oscillations modes A1 and A2. It can

also be observed how the upstream-propagating waves of the symmetric modes are weaker

compared to those present for mode B or C. As such, one expects the tonal components of

mode B or C to be more prominent to those of A1 and A2 [37, 4].

Finally, an example of an SPL spectrum of the same imperfectly expanded jet, recorded with

a far-field microphone located at θ = 70.65◦ is shown in Fig. 1.6. The image is particularly

useful as it displays the three components that were previously introduced which characterize

jet noise. Obviously, screech tones and BBSAN are eliminated if there are no shocks present

within the jet flow (i.e., if the nozzle is working at its design conditions). As such, these two

components are not usually a cause of concern within the context of commercial aviation.
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Figure 1.5: Schilieren photographs of the convergent circular jets oscillating in mode A1, A2
(symmetrics), B (lateral) and C (helical). Figure extracted from Umeda and Ishii [3].

However, they are an important noise generator to take into account for the military, rockets

and for supersonic transportation. High degrees of tonal noise are linked to hearing losses of

military aircraft carrier personnel and sonic fatigue failure of aircraft and rocket structures,

incurring into billions of dollars of healthcare and maintenance expenditure every year.

Having introduced the main components associated with the noise emanating from subsonic

and supersonic jet flows, the following lines will describe the mechanisms of noise generation

and provide a brief summary of how the scientific community has understood the topic over
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Figure 1.6: Far-field supersonic jet noise SPL spectrum of an imperfectly-expanded jet ex-
periment performed at UCI. The microphone was located at a polar angle of 70.65◦.

the recent decades.

1.2.2 The Sources of Jet Noise

The production of noise due to the flow structures that are present in turbulent jets was first

described in the seminal work of Lighthill [33, 40]. Lighthill derived an exact relationship,

commonly referred to as Lighthill’s equation, starting from the Navier-Stokes equations,

which described the sound radiated by a turbulent flow field contained within a limited

volume in a quiescent environment (i.e., in ambient air with no mean flow velocity). The

equation governing the sound production under the above conditions is

∂2ρ

∂t2
− a2∞∇2ρ =

∂2Tij
∂xi∂xj

(1.1)

Notice how the left hand side of the relationship resembles the acoustic wave equation on

a quiescent medium (i.e, there is no convective term). The right hand side of the equation

14



represents the generation of noise and its propagation through the turbulent field, where Tij

is the Lighthill’s stress tensor, which contains contributions from turbulence self-interaction,

viscous stresses and the compressive stress tensor. Lighthill stated how the tensor reduces

to Tij ≈ ρ0uiuj for low Mach number, unheated flows, with an approximation error on the

order of M2. In fact, the turbulence self-interaction, which involves the product ρuiuj is

the dominant component in the production of noise in unbounded turbulent jets, especially

when the Reynolds numbers is high. He also showed how the stress field emitted sound like

an equivalent mathematical quadrupole field that had a strength per unit volume equal to

the stress tensor Tij. The quadrupole source model has been widely-used the past decades

when utilizing Lighthill’s acoustic analogy. However, as will be discussed within the next

lines, this source treatment is not the only jet noise model that exists in aeroacoustic analysis

and, in fact, the quadrupole nature of the jet noise source has been contested in more recent

works [29].

In his seminal work, Lighthill utilized dimensional analysis to demonstrate that the acous-

tic sound power intensity of turbulent jet flows is related to, approximately, the 8th power

of the exit velocity for M < 1 (that is I ∼ U8
j ). This important relation was one of the

main drivers in the early research on new jet propulsion devices. To some degree, these

relationships helped in the development of the turbofan engine and its wide implementation

in commercial aviation in the present. The invention of the turbofan engine was a major

breakthrough, proving to be a significant improvement on overall efficiency and noise reduc-

tion when operating at high bypass ratios compared to the utilization of turbojet engines.

The noise reduction was achieved by having a lower total exit velocity, shielding the inner

high-speed jet with a slower outer velocity flow emanating from the inlet fan. Recall that

while Lighthill’s scaling law is a powerful tool to predict the noise impact for low Mach

numbers, it is still based on a mathematical quadrupole and does not appear to hold at high

Mach numbers. However, the relationship is still used and provides an order of magnitude

estimate of noise in the early design stages of propulsive devices. Years later, Vishwanathan
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[30] showed that the power was, in fact, oscillating near 8, but not exactly 8. Vishwanathan

demonstrated that the power exponent decreased for increasing total temperature ratios of

the turbulent jet, and is different at other jet Mach numbers.

In 1963, almost a decade later after the work by Lighthill was first released, Ffowcs Williams

published his influential work “The noise from turbulence convected at high speed” [41].

He showed that, for high speed flows, where Mach wave radiation is relevant, the sound

power intensity is related to, approximately, the 3rd power of the exit velocity of the flow

(I ∼ U3
j ). His reasoning was verified utilizing measurements of very high speed flows taken

by Chobotov and Powell [42]. The departure from Lighthill’s 8th power law was partly

attributed to compressibility effects, which caused a reduction in the source strength and a

reduction of the transverse velocity fluctuations in the jet mixing layer. Other authors have

proposed that the scaling power ranges from 3 to 6, and shown it has a strong dependence on

the jet Mach number [43], suggesting that the sources of noise could also be mathematically

represeted using monopoles and dipoles. The departure from the 8th power law is relevant,

and might be related to different source mechanisms.

More recently, studies have concentrated on studying the dependence of jet noise emission

on polar angle, frequency, total temperature ratio and jet Mach number. For instance,

Viswanathan [44] (2007) showed how noise is generally suppressed with increasing total

temperature ratios at several polar stations. He also demonstrated how the exponent used

in his power law ranges from 8 to 5 depending on the temperature ratio, Mach number

and polar angle, suggesting complex noise mechanisms involving the large- and small-scale

turbulence structures. The overall trends seen in his study show how the exponent decreases

with increasing total temperature ratio and increases with polar angle. The study also

showed experimentally that decreasing the jet Mach number decreases the production of

noise, as stated by Lighthill decades earlier. A final but yet important conclusion of his

work indicates that the 8th power law exponent still holds for unheated jets near the peak
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emission region within a reasonable range of jet Mach numbers.

In 2008, the influential work of Tam et al. “The sources of jet noise: experimental evidence”

[29] explored the possibility of different source mechanisms that would explain the different

SPL distributions at distinct polar angles. In their work, they concluded that there were

two distinct sources of turbulence mixing noise: the large- and the small-scale turbulence

structures, each with a different behavior that causes different imprints in the acoustic far-

field. Amongst the most important findings of their study, two were of particular relevance.

First, they found that the acoustic field in the downstream direction was coherent radially and

along large polar sectors, suggesting it is generated by large coherent turbulence structures.

Secondly, the acoustic field near the sideline direction (i.e., θ ≈ 90◦) is correlated over narrow

polar regions, with a SPL that appears relatively flat. This suggests the field is generated by

small-scale incoherent turbulence structures. The authors utilized far-field single microphone

data, auto-correlations and two-point correlations of turbulent jets operating over a wide

range of Mach numbers to support their claims.

These above results were very relevant and must be put in the appropriate context. Many

theoretical approaches linked the sources of noise to quadrupoles using Lighthill’s acoustic

analogy. The findings of Tam et al. “challenged” the quadrupole source model. Rather than

attributing the recorded acoustic far-field to distinct quadrupole sources, the authors sug-

gested that the true nature behind the generation of turbulence mixing noise was the large-

and small-scale turbulence structures, which dominated distinct polar regions. Mathemat-

ically, one could create an equivalent acoustic far-field if one used the quadrupole model.

However, these mathematical descriptions do not necessarily need to be the physical mecha-

nisms that generated noise. That is because the solution of the inverse problem is not unique

(i.e., given a particular acoustic field, one might generate it using quadrupoles, monopoles,

wavepackets, etc., and their combinations). This study will also utilize a model for the

acoustic sources, and will be explicitly introduced in Chapter 2. The next lines will describe

17



the upstream- and downstream-traveling perturbations that are found in supersonic jets,

and how these different families of waves are related to the screech feedback mechanism loop

that has been detailed in the preceding paragraphs. This is of relevance within this study

as significant efforts have been made to study overexpanded screeching jets.

1.2.3 Waves in Supersonic Jets

Supersonic jets that contain shocks within the jet plume make them prone to exhibiting

a degree of aeroacoustic resonance. For free supersonic turbulent jets, the resonance is

manifested in the form of screech. However, resonance might be manifested differently de-

pending on the geometry of the problem and jet Mach number (e.g., subsonic and supersonic

impinging tones). As stated in the preceding section, jet screech involves a complex feed-

back loop process in which downstream- and upstream-propagating waves are involved. The

downstream-propagating wave is the only process that provides energy to the feedback mech-

anism, extracting it from the mean flow and contributing to the growth of the instability

wave [45, 46] contained in the shear layer. While the nature of the downstream-traveling

wave involved in jet screech is clear (Kelvin-Helmholtz instability type of wave), that of the

upstream-traveling wave is less clear.

It was firstly proposed by Powell [38] that the upstream-propagating waves were free-stream

acoustic waves, propagating outside of the jet plume. These waves provided the closure for

the feedback mechanism loop involved in jet screech, and had strong supporting experimental

evidence, as some shapes resembling to acoustic waves were seen in Schlieren images (see

Fig. 1.5). In addition, several screech frequency prediction models, based on a sonic wave

speed, also predicted the screech frequency relatively well for some modes. For instance,

Powell’s phased monopole array model [38] is able to predict the frequency of resonance

of mode B (lateral oscillation) remarkably well when one utilizes a sonic phase speed. The
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model of Panda et al. [47] has also been used to predict the screech frequency of other modes

based on the standing wave pattern caused by KH and upstream-traveling free-stream waves.

However, it has been found that these models do not capture well the staging behavior of

jet screech nor they work when multiple tones are present. Perhaps it was this issue that

triggered researchers to believe that additional waves might be present in jet screech, besides

the free-stream upstream-traveling waves.

Figure 1.7: Schematic of the different waves supported by a compressible vortex sheet model.
Extracted from Ref. [4]

.

Tam and Ahuja [45] proposed that the upstream-traveling wave might be a guided jet mode

rather than a free-stream acoustic wave. Their work was founded on the previous work

of Tam and Hu [48], who originally showed that supersonic jet flows support three types of

waves: Kelvin-Helmholtz, supersonic instability waves and neutral waves. They also reported

that at very high Mach numbers, the KH became indistinguishable from the supersonic

instability waves. Nevertheless, at the typical Mach numbers involved in jet screech, KH

dominates the downstream-traveling part. Concerning the upstream-propagating waves, the

existence of guided neutral waves might change our understanding of jet screech and provide

a closure for the feedback loop mechanism. These neutral upstream-propagating waves have

been denoted by kTH− in past works and have well-defined radial and azimuthal structures.

The recent years have seen an increased interest in the role played by the distinct jet acoustic

modes on aeroacoustic resonance [49]. To that end, researchers have used a compressible
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cylindrical vortex sheet analogy to find the waves supported by a supersonic jet (Fig. 1.7).

New trapped acoustic modes within the jet have been recently discovered [4], with them

being capable to transport energy upstream (kd−) or downstream (kT+). Thus, these modes

and the free-stream acoustic waves are all capable of closing the screech feedback mechanism

loop. The free-stream acoustic waves are denoted by kA− (upstream-traveling) and kA+

(downstream-traveling) in the figure. Shen and Tam [50] originally mentioned that screech

could be closed with a kTH− wave rather than a free-stream acoustic wave in their 2002

numerical study. Their predictions have been recently verified utilizing LES data for modes

A1 and C, and using a triple decomposition based on POD for mode A2.

Perhaps the most challenging part of these neutral acoustic waves lies on their radial struc-

ture. As seen in Fig. 1.8, these neutral acoustic wave have strong support outside of the

jet plume. Thus, these particular modes might appear indistinguishable from free-stream

upstream-propagating waves in Schlieren imaging techniques or noise source localization

studies (the latter would only show a source at the nozzle exit plane) and it might be the

reason why they have been unnoticed for several decades. The jet screech feedback loop

will be seen in Chapter 5 when utilizing the high-resolution experimental techniques de-

veloped here. However, the exact nature of the waves will not discerned using the same

methodologies.

1.3 Research Goals

The overarching goal of the research presented in this work is the development of advanced

acoustic testing techniques for microphone arrays that contain continuously-scanning sensors,

and utilization of the proposed methodology to study propulsion-related noise sources. As

stated in the previous sections, traditional microphone array setups, in many instances,

lack of the spatial resolution that is required to study complicated acoustic fields such as
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Figure 1.8: Pressure eigenfunction for the upstream-traveling acoustic modes (kTH−) of mode
(m,n)=(azimuthal,radial) for a jet withMj = 1.5, obtained using a compressible vortex sheet
model. Extracted from Ref. [4]

.

those emitted by subsonic and supersonic jet flows. This project involves a combination of

advanced experimental setup designs and theoretical development of tools and guidelines to

process microphone data from continuously-scanning sensors for the study of such jet flow

fields. The ability of the continuous-scan approach to obtain high-resolution noise source

maps will be demonstrated. In addition, the images obtained from an array containing fixed

sensors only will be used for assessing the improvement attained with the continuous-scan

paradigm. The remaining sections this dissertation are organized as follows.
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An overview of the traditional noise source localization techniques is provided in Chapter

2. The model for the acoustic source is introduced first, followed with the description of

time-domain and frequency-domain delay-and-sum beamforming. A first approximation to

the continuous-scan paradigm consists on using several Cross-Spectral Submatrices (CSSM),

utilizing the non-repeated elements of each matrix to form the noise source map. However,

this results into deconvolution becoming impossible due to the lack of a global Cross-Spectral

Matrix (CSM). As such, two additional techniques are introduced so that advanced decon-

volution processes can be used in conjunction with the continuous-scan paradigm. These

techniques correspond to a matrix completion process and a partial field decomposition, and

their formulation and assumptions are described in detail. Chapter 2 also introduces the

concept of the point spread function and explains how it affects the beamformed images.

Lastly, the chapter briefly summarizes three deconvolution processes that are used in this

work: DAMAS, CLEAN-SC and the Richardson-Lucy (R-L) approach.

The signal processing involved in the continuous-scan approach is described in Chapter 3.

The signal segmentation process and minimization of signal non-stationarity have important

impacts on the quality of the resulting noise source images. Quantities such as block length,

number of blocks, and block overlap are introduced and discussed, and clear guidelines for

signal division are presented. The effects of the signal processing on the resulting noise

source maps is assessed in terms of the point spread function and the sidelobe levels.

The experimental facilities are discussed in Chapter 4. The anechoic chamber and details

of the microphone array are presented, including the synchronization and tracking of the

scanning microphones. In addition, the acoustic sources studied in this work are shown.

These involve an impinging jets source, which is an approximation to a point source that

uses the collision of four jets, a subsonic jet in isolation and in three shielding configurations,

and several supersonic jet flow configurations. The latter presented the phenomenon of

screech.
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Chapter 5 includes the results section. Details of the SPL spectra at different polar stations

are presented. The acoustic source localization images are also displayed. Parameters such as

peak noise source location for the subsonic jet or screech source location for the supersonic

jet flow are introduced. In addition, the flow features extracted from the beamforming

measurements are used to predict the screech frequency of jet oscillation mode B with a high

degree of accuracy, underscoring the potential of the continuous-scan approach.

Finally, Chapter 6 briefly provides the concluding remarks of this work and details future

considerations.
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Chapter 2

Beamforming

A phased microphone array is a system consisting of a spatially-distributed number of mi-

crophones that records pressure signals simultaneously. The pressure signals are then used

to determine the location of the acoustic sources of interest by taking into account the ampli-

tude and phase differences of the signals recorded by the distinct sensors. By electronically

adjusting these differences in a process known as beamforming, one can determine the posi-

tion of the sources and quantify their strength. A certain nature about the acoustic sources

must be modeled in beamforming and many related deconvolution approaches. A schematic

of a noise source and a microphone array is shown in Fig. 2.1. No assumptions with regards

to the noise source or array have been made.

The present chapter outlines the key points in the noise source localization process, including

a description of how the sources of interest are modeled. Then, formulations for beamforming

in the time domain and frequency domain are presented. The effects of the array geometry

through the point spread function are later discussed. Finally, beamforming is extended to

microphone arrays comprising fixed and continuously-scanning sensors. The challenges of

the continuous-scan approach include the treatment of signals that are non-stationary in
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Figure 2.1: Schematic of a noise source and a microphone array.

time, requiring complex signal processing techniques. The motion of the sensor introduces

a Doppler-shifted frequency and a frequency of oscillation of the entire spectrum for sensors

that have a relative velocity [1]. The continuous-can formulation presented in this chapter

will specifically treat the Doppler-shift in frequency. The expression of the oscillation fre-

quency of the cross-spectral densities for sensors that have a relative velocity will also be

derived.

Parts of this chapter are a partial reprint and adaptation of Morata, D., and Papamoschou,

D., “Extension of Traditional Beamforming Methods to the Continuous-Scan Paradigm”,

AIAA Paper 2022-1154, doi: 10.2514/6.2022-1154. Excerpts from the chapter have been

submitted as a full-length journal paper to the Journal of the American Institute of Aeronau-

tics and Astronautics (AIAA Journal) as “High-Resolution Continuous-Scan Beamforming”,

with Morata, D., and Papamoschou, D., as the authors, as of April 2nd, 2022

2.1 Model for the Acoustic Source

Suppose a turbulent flow issuing from a nozzle, and a far-field microphone array containing

a number Mf of fixed microphones, as schematically depicted in Fig. 2.2. The beamform-

ing study presented in this work assumes a certain nature about the acoustic source that
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generates the pressure far-field. The source is modeled as a one-dimensional distribution of

uncorrelated monopole sources [17]. It is further assumed that the medium has a zero ve-

locity (no co-flow) and constant speed of sound a∞. The governing equation of the problem

is then

1

a2∞

∂2p

∂t2
−∇2p = 0 (2.1)

As stated in the preceding section, the uncorrelated monopole source model is one of the

multiple representations that can be used for the acoustic inverse problem (i.e., find the

acoustic sources given an acoustic far-field). Researchers have utilized dipole sources [51],

wavepackets [32, 52], etc., with the later allowing to infer the degree of source coherence.

However, the uncorrelated monopole source model is still the most widely-used representation

of jet noise in beamforming studies given its relative simplicity and its ability at obtaining

physical results. In addition, most of the deconvolution algorithms available assume the

same nature about the acoustic source.

The pressure recorded by a fixed microphone m located in the acoustic far-field at a distance

ℓm(ξ) =
√
(x− ξ)2 + y2 + z2 from the acoustic source, where (x, y, z) are the coordinates of

the microphone, and ξ is a running coordinate along the x axis, obeys the relationship

pm(t) =

∫
L

f
(
ξ, t− ℓm(ξ)

a∞

)
ℓm(ξ)

dξ (2.2)

where f(ξ, t) is the strength of the acoustic source at location ξ. It is seen how the pressure

recorded by the microphone is a consequence of all the sources present within the region of

interest L.

The amplitude and phase of the recorded pressure signal obviously depends on the relative

position between the source and the microphone, as stated by Eq. 2.2. This implies that two
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1 2

m

Figure 2.2: Far-field microphone array and the one-dimensional model of the jet noise source.

microphones at distinct positions will perceive a pressure signal at different time instances,

with different statistics, depending on the directivity of the source. The one-dimensional

uncorrelated monopole source model sets the foundation for the results discussed in this work,

including the extension of the beamforming techniques to continuously-scanning sensors.

2.2 Time Domain Beamforming

The widely-used delay-and-sum (DAS) beamforming algorithm exploits the previously-mentioned

ideas about the differences in phase and amplitude between the distinct microphones in or-

der to find the location and strength of the acoustic sources. The objective behind the DAS

technique is to sum all the microphone signals with added time delays that are dependent

on the relative position between the microphone and the point of interest. These signals

are summed coherently or incoherently as a function of the time delays that are used, and

depending on whether there exists an acoustic source at the point of interest. Considering

only one-dimensional noise source distributions the usual summation relationship to location
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ξ utilized in the DAS process is given by

s(ξ, t) =

Mf∑
m=1

1

ℓm(ξ)
pm(t+ τm(ξ)) (2.3)

where

τm(ξ) =
ℓm(ξ)

a∞
(2.4)

is the source-sensor travel time. Usually, Eq. 2.3 is expressed in a compact form as

s(ξ, t) =

Mf∑
m=1

wmpm(t+ τm(ξ)) (2.5)

where the term wm is a microphone weight that might include corrections for sound convected

through the shear layer or shading algorithms to improve the resolution of the beamformer

output. As one scans along the x axis, a local maximum of s(ξ, t) will be found near the

location of the source. Usually, the location of the maximum of s(ξ, t) is the location of the

source with some caveats, as will be further detailed in the next sections. If the scanned point

does not contain any acoustic source then the signals are not summed coherently, and thus

the value of s(ξ, t) is no longer a local maximum. Note that, many times, the microphone

weight wm might include additional terms to improve the array performance or to take into

account the sound convected due to the shear layer [8, 53].

2.3 Frequency Domain Beamforming

Beamforming studies typically use frequency domain representations to characterize the

acoustic sources of interest. This approach is usually preferred over the time-domain rep-

resentation as one can study the strength and frequency content of the noise sources that
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produce the recorded acoustic far-field. The process is similar to the time domain beam-

forming. However, one makes use of the Fourier transform to translate signal time delays

into phase shifts. The process starts by taking the Fourier transform of Eq. 2.5, which is

S(ξ, ω) =

∫ ∞

−∞

Mf∑
m=1

wmpm(t+ τm(ξ))e
−iωtdt (2.6)

Using the time-shift property of the Fourier Transform, Equation 2.6 can be expressed as

S(ξ, ω) =

Mf∑
m=1

wmPm(ω)e
−iωτm(ξ) (2.7)

where Pm(ω) is the Fourier transform of the pressure signal pm(t), and e
−iωτm(ξ) is known as

the steering vector element for microphone m to location ξ, and contains information about

the phase shifts applied to the microphone. Traditional beamforming approaches aim at

obtaining the array power spectrum, which reveals the distribution, intensity and frequency

content of noise sources within the region of interest. The array power spectrum at location

ξ and frequency ω is computed as

Y (ξ, ω) = S(ξ, ω)S∗(ξ, ω) =

Mf∑
m=1

Mf∑
n=1

wmwn

(
Pm(ω)P ∗

n(ω)
)
e−iωτm(ξ)eiωτn(ξ) (2.8)

where the symbol ∗ is used to denote the complex conjugate, and (·) is used to indicate

the spectral averaging involved in the Fast Fourier Transform (FFT) algorithm. The above

equation is normalized by the number of microphones used by dividing it by M2
f . The

quantity Pm(ω)P ∗
n(ω) is known as the Cross-Spectral Matrix (CSM) and is the starting

point of all beamforming approaches. The CSM contains all the relevant statistics for a

particular experiment (i.e., the auto- and cross-spectral densities of all microphones of the

phased array) for all frequencies ω. In addition, the CSM only needs to be calculated once

for each frequency, as it is independent of the beam steering process. A schematic of a CSM

for a generic acoustic experiment is shown in Fig. 2.3.
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Figure 2.3: schematic of a CSM for a generic acoustic experiment that involves three fixed
microphones.

The above equation is usually expressed in a more compact form as

Y (ξ, ω) =
g(ξ, ω)C(ω)gH(ξ, ω)

M2
f

(2.9)

where C(ω) = Pm(ω)P ∗
n(ω), g(ξ, ω) is the steering vector to location ξ, and H indicates the

complex transpose. The steering vector g(ξ, ω) is constructed as

g(ξ, ω) = [w1e
−iωτ1(ξ) w2e

−iωτ2(ξ) ... wMf
e−iωτMf

(ξ)] (2.10)

A modified version of the Eq. 2.9 can be used to increase the dynamic range of the mi-

crophone array by reducing microphone self-noise contamination and giving more weight to

the cross-spectral terms, which offer information about the phase of the acoustic source.

The beamformed maps can be generated as follows: assume that the microphone self-noise

contamination is concentrated along the CSM diagonal; then, obtain the beamformed image

as

Y (ξ, ω) =
g(ξ, ω)Cdiag=0(ω)g

H(ξ, ω)

M2
f −Mf

(2.11)

where Cdiag=0(ω) places zeros on the diagonal of the CSM. When executing the diagonal re-

moval operation, however, one must be cautious given that the resulting CSM may contain

negative eigenvalues linked with negative source auto-powers, which are considered non-
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physical. Negative source auto-powers can be considered to be noise sinks instead of noise

sources. The diagonal reconstruction process (DiRec) of Hald [54] or Dougherty [55] is an

alternative to the diagonal removal method. Given that the DiRec approach is a semidefinite

programming (SDP) problem, it can be used in conjunction with sophisticated convex opti-

mization libraries like CVX [56, 57]. Then, the resulting noise source image can be obtained

using Eq. 2.9 utilizing the CSM with the optimized diagonal. The diagonal removal (or re-

construction) operation is usually performed in wind tunnel testing, where the microphones

are subject to incoherent noise due to the boundary-layer interaction. The implementation of

microphone phased arrays in wind tunnels is slightly different to that used in anechoic cham-

bers as one must attempt to minimize boundary-layer interaction. The reader is referred to

Refs. [58, 59] for additional information on beamforming in wind tunnels.

2.4 Microphone Array Performance: the Point Spread

Function

Denoting the Fourier transform of the source f(ξ, t) as

F (ξ, ω) =

∫ ∞

−∞
f(ξ, t)e−iωtdt (2.12)

the source spectral density can be modeled as

F (ξ, ω)F ∗(x, ω) = Φ(x, ω)δ(x− ξ) (2.13)

where the source is assumed to be spatially incoherent. The array response obtained through

DAS (i.e., the beamformed source map) can be shown to be a convolution between the PSF
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and the noise source distribution. This is mathematically expressed as

Y (ξ, ω) =

∫
L
S(x, ξ, ω)Φ(x, ω)dx (2.14)

where S(x, ξ, ω) is the PSF, Φ(x, ω) is the source distribution that causes the array response

Y (ξ, ω) when measured with the array, and L is the region of interest. The PSF at location

x0 is

S(x0, ξ, ω) =
M{∑
m=1

M{∑
n=1

wm(ξ)wn(ξ)wm(x0)wn(x0)e
iω[τm(x0)−τm(ξ)]eiω[τn(ξ)−τn(x0)] (2.15)

The PSF determines how the microphone array responds to a monopole source placed at a

position x = x0. Ideally, the microphone array would respond to such source by showing a

small point source in the noise source map (Eq. 2.9), without creating artificial or “ghost”

sources. However, due to the limited number of microphones that is used, the output will

be spatially aliased, containing artificial sources due to the contamination introduced by the

sidelobes. In other words, the microphone array works as a spatial filter bank that aliases

the source distribution due to its geometric constraints.

It has been thoroughly argued [60] that in order to avoid significant spatial aliasing effects,

the distance between microphone pairs should not exceed half of the acoustic wavelength that

is being resolved. The criterion is similar to the Nyquist temporal sampling requirement, in

which one must sample the signal, at least, at twice the frequency of the maximum frequency

that is expected. This clearly introduces a challenge when resolving high frequencies, where

the acoustic wavelength is very small, and requires a high number of sensors. The effect of

the array geometry on the sidelobes has been studied in the past and some geometries that

minimize sidelobe formation have been proposed [61, 62, 10]. However, the constraint on the

microphone spacings still remains and one might only attain a certain degree of improvement

using optimized geometries.
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The PSF causes a blurring effect on the imaged noise source distribution. This effect is not

something seen in phased microphone arrays only. In fact, investigations on how to separate

the effects of the PSF from the real image (or the real source) began within the field of

astronomy in the 1970s. Scientists were using a combination of telescopes to form a focused

image of galactic object but they only obtained blurred images. An example of this is shown

in Fig. 2.4. The figure shows the image of the lunar surface, obtained from the processing of

a combination of measurements (left), and the reconstructed (or deconvolved) image (right).

The effects of the PSF are critical, as it lowers the spatial resolution that is required in many

instances.

Figure 2.4: Image of the lunar surface. Image affected by the point spread function (left)
and real image (right). Image extracted from Ref. [5].

During the past decades, numerous deconvolution algorithms have been presented with the

aim to improve the spatial resolution of the image and reject the sidelobes that are inherent to

the PSF. The distinct deconvolution approaches attempt at separating the contribution from

the sidelobes from the beamformed image. These techniques again assume a certain nature

about the acoustic sources that are present (i.e., incoherent monopoles). This work will

explore three of such methods: DAMAS [63, 13], CLEAN-SC [14] and the Richardson-Lucy
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(R-L) algorithm [15, 16, 17, 64, 28]. The DAMAS and CLEAN-SC deconvolution processes

are implemented as in Refs. [63] and [14] in this work, respectively, and will be discussed

in more detail in the next sections. The Richardson-Lucy image restoration algorithm has

been extensively used in astronomy [65] and acoustic beamforming in the past [17, 1, 64, 28],

and is based on assigning the meaning of a conditional probability to the PSF. The inversion

method uses Bayes’ theorem to find the inverse conditional probability S(ξ|x, ω). The R-L

is implemented following the guidelines of Ref. [17].

It is important to stress that even when utilizing these deconvolution approaches or when

using optimized array geometries, the resolution that one obtains might still not be enough

to fully characterize aeroacoustic sources of interest due to the limitations on the number

of microphones used. Thus, other approaches such as continuous-scan techniques or non-

synchronous measurements have been explored during the last years to improve beamforming

resolution. These approaches can also be combined with deconvolution to obtain very highly-

resolved noise source maps. It will be demonstrated how the continuous-scan paradigm

attains high spatial resolutions through tailored signal processing guidelines that increase the

number of closely-located microphones, thus reducing the degree of spatial aliasing compared

to the use of arrays with fixed sensors only.

2.5 Continuous-Scan Beamforming

There has recently been a surge in interest in sensor arrays with both fixed and continuously-

scanning sensors. The technique can be considered to be an extension of Lee’s start-and-stop

method [21], which is employed in Near-Field Acoustic Holography (NAH). The continuous-

scan paradigm has been shown to improve the spatial resolution of the noise source maps for

a fixed sensor count [1], and has recently found applications in order tracking [66], NAH [23],

and beamforming [1, 27, 25]. The methodology has been shown to be ideal for microphone
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arrays that contain a low number of sensors, where their geometrical properties are highly

constrained by the low number of sensors used. These sparse array configurations suffer from

high sidelobe contamination and are unable to obtain resolved images of relevant aeroacoustic

sources [1, 27].

2.5.1 Signal Division

A naive extension of the DAS method to continuous-scan phased arrays could use Eq. 2.3

with source-sensor propagating times that are time-varying. This is

s(ξ, t) =

Mf+Ms∑
m=1

wmpm(t+ τm(ξ, t)) (2.16)

However, attention must be paid in these additional time-varying dependencies that arise

due to the motion of the sensors when extending the DAS method to arrays containing

scanning microphones. For a scanning sensor, the signal pm(t) is non-stationary, as described

above. Thus, the expression for the source-sensor propagation time of Eq. 2.4 is no longer

valid. Quasi-stationarity is sought by dividing the signal into a number K of overlapping

or non-overlapping blocks of duration T (see Fig. 2.5), similar to the approach of Ref. [1].

Considering an array with Mf fixed and Ms scanning microphones, division of the signal

into K blocks can be thought of as increasing the sensor count to Mf +KMs. However, it is

immediately obvious that not all of these sensors can be correlated. In particular, the signals

of a given scanning sensor at different blocks (different spatial positions) are asynchronous

and thus cannot be related. When considering the CSM based on the sensor count Mf +

KMs, the matrix has missing entries, hence is incomplete. This section will outline three

distinct ways to compute the noise source maps from phased arrays that comprise fixed and

scanning sensors. Two of such approaches will intend to obtain a CSM that is representative

of the complete experiment run.
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Division of the signal into a K number of blocks allows to use a few geometrical approxima-

tions, provided the block length T (in seconds) is sufficiently small. A first-order Taylor series

expansion is used to approximate the source-sensor travel time and source-sensor distance

for block k as

ℓm(ξ, t) ≈ ℓmk(ξ)

τm(ξ, t) ≈ τmk(ξ) +
∂τm(ξ, t)

∂t

∣∣∣∣∣
t=tk

(t− tk)
(2.17)

where tk is the center time of the block, and τmk(ξ) and ℓmk(ξ) are the source-sensor travel

time and the source-sensor distance, respectively, calculated from the spatial center of the

block. It can be shown that for a microphone array similar to that depicted in Fig. 2.6, the

derivative of the source-sensor propagation time can be written as

∂τm(ξ, t)

∂t

∣∣∣∣∣
t=tk

=
Vmk

a∞

(xmk − ξ) cos β − ymk sin β

ℓmk(ξ)
= αmk(ξ) (2.18)

where Vmk is the velocity of scanning sensor m for block k, thus allowing for the possibility

of position-dependent sensor speeds, (xmk, ymk) are the coordinates of the scanning sensor

at the geometric center of the block, and β is the array inclination.

Thus, Eq. 2.16, which was no longer valid within the continuous-scan paradigm, can now be

approximated for every block k as

sk(ξ, t) =

Mf+Ms∑
m=1

wmkpmk

(
(1 + αmk(ξ))t+ τmk(ξ)

)
(2.19)

where pmk(t) is the pressure recorded by sensor m at block k, and wmk is the microphone

weight, similar to that introduced for fixed-reference DAS.
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Figure 2.5: Illustration of the division of the signal into K quasi-stationary blocks without
block overlap.

Finding the noise source map involves taking the Fourier transform of Eq. 2.19 and mul-

tiplying it by its complex conjugate. However, the issue requires special attention, as one

must deal with auto- and cross-spectral densities of non-stationary signals. As such, special

spectral estimation techniques must be used to handle such cross-spectral densities. The

way in which the signal non-stationarity affects the beamforming results is derived explicitly

in the next section, and methods will be proposed to mitigate its worst effects.

2.5.2 Signal Non-Stationarity

There exist several methods to estimate the auto- and cross-spectral densities of non-stationary

signals. One of the most popular techniques is the short-term periodogram. The method

consists of dividing the signal into smaller blocks and performing a short-time periodogram

analysis (i.e., a Short Time Fourier Transform (STFT) is applied). Downsides of the tech-

nique include that the time-varying spectra are highly dependent on the block size that is

selected, and that there is no guidance with regards to the signal division. In addition, the

technique is unable to quantify the non-stationarity of the signal itself, and thus becomes

useless if one tries to minimize it. Papamoschou et al. [1] identified the Wigner-Ville spectral
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Figure 2.6: Line source distribution and far-field microphone array containing fixed micro-
phones and one scanning sensor.

estimator as one of the most robust ways to handle the correlation of non-stationary signals

in the context of continuous-scan beamforming. A similar development is presented next.

Considering two random signals u(t) and v(t), their symmetric cross-correlation is defined

as

Ru,v(t, τ) =
〈
u
(
t+

τ

2

)
v∗
(
t− τ

2

)〉
(2.20)

where ⟨ ⟩ is used to denote the expected value (ensemble average), and the symbol ∗ denotes

the complex conjugate, thus allowing the signals to be complex. The cross-Wigner-Ville spec-

trum (XWVS) for two random variables is defined as the Fourier transform of the symmetric

cross-correlation

Gu,v(t, ω) =

∫ ∞

−∞
Ru,v(t, τ)e

−iωτdτ (2.21)

Obviously, the auto-Wigner-Ville spectrum is obtained if the two random variables are the
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same. On defining the quantity

βmk(ξ) = 1− αmk(ξ) (2.22)

where αmk(ξ) is defined in Eq. 2.18, the symmetric cross-correlation of the scanning micro-

phones pressure signals pm(t) and pn(t) for block k is written as

〈
pmk

(
t+

τ

2

)
p∗nk

(
t− τ

2

)〉
=

∫
L

∫
L

1

ℓmk(ξ)ℓnk(x)

〈
f
(
ξ, βmk(ξ)[t+ τ/2]− τmk(ξ)

)
× f ∗

(
x, βnk(x)[t− τ/2]− τnk(x)

)〉
dxdξ (2.23)

Using the definition from Eq. 2.21, the XWVS is calculated as

Gmnk =

∫ ∞

−∞

〈
pmk

(
t+

τ

2

)
p∗nk

(
t− τ

2

)〉
e−iωτdτ (2.24)

On defining two new variables

t′ = βnk(ξ)[t− τ/2]− τnk(ξ)

τ ′ = t[βmk(ξ)− βnk(ξ)] +
τ

2
[βmk(ξ) + βnk(ξ)] + τnk(ξ)− τmk(ξ)

(2.25)

the XWVS becomes

Gmnk =

∫ ∞

−∞

∫
L

∫
L

1

ℓmk(ξ)ℓnk(x)

〈
f
(
ξ, t′ + τ ′

)
f ∗
(
x, t′

)〉
e−iωτ ′dxdξdτ ′

=

∫
L

∫
L

2F (ξ, x, ω′
mnk)

ℓmk(ξ)ℓnk(x)[βmk(ξ) + βnk(x)]
× exp

(
iω′

mnk[τnk(x)− τmk(ξ)]
)

× exp(iω′′
mnkt)dxdξdτ

′

(2.26)

where

F (ξ, x, ω) =

∫ ∞

−∞

〈
f
(
ξ, t+ τ

)
f ∗
(
x, t
)〉
e−iωτdτ (2.27)
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is the source cross-spectral density, as denoted in Eq. 2.13. The source cross-spectral den-

sity is a fundamental relationship that is used to model the source distribution in spectral

estimation methods.

An important observation derived from Eq. 2.26 is that the source spectral density, which

is what beamforming aims at obtaining, is affected by two parameters that are a direct

consequence of the motion of the sensor. First, a Doppler-shifted frequency ω′
mnk appears

in the source cross-spectral density and the steering vectors. Reference [1] approximated

F (ξ, x, ω′
mnk) ≈ F (ξ, x, ω) with little loss in accuracy provided that the sensor scan speed

was sufficiently low. A similar approach is followed in the present work. The Doppler-shifted

frequency is given by

ω′
mnk = ω

2

βmk(ξ) + βnk(ξ)
(2.28)

and will explicitly appear in the derivation of the equations for the Cross-Spectral Subma-

trices (CSSM) method.

The second parameter affecting the source distribution is a frequency of oscillation of the en-

tire spectrum ω′′
mnk. This effect worsens as the frequency increases, requiring modification in

the way the cross- and auto-spectral densities are handled. The expression for the frequency

of oscillation is

ω′′
mnk = ω′

mnk[βmk(ξ)− βnk(x)] (2.29)

which can be approximated as [1]

ω′′
mnk ≈ ω

(Vnk
a∞

cos(θnk(x))−
Vmk

a∞
cos(θmk(ξ))

)
(2.30)

Note that if the WVS was not used and one instead utilized the short-term periodogram
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(STFT) approach, these exact effects of the signal non-stationarity could have not been

quantified. Suppression of non-stationarity, assuming that only one sensor is scanning, re-

quires |ω′′
mnkT/2| << 1. It can be demonstrated that the oscillation is suppressed [1] when

VmkT << λ (2.31)

where Vmk is the velocity of the scanning sensor, T is the duration of the block in seconds, and

λ is the acoustic wavelength that is being resolved. The above relation implies that as the

frequency resolved rises, the block size must be decreased to suppress the non-stationarity.

However, selecting a block time for each wavelength is not feasible as it incurs into increased

comptational time to compute the noise source maps. Instead, Ref. [1] suggested using a

frequency-dependent window that acts as a filter on the block length. The authors utilized

a Gaussian window that was energy-conserving, with the latter condition expressed as

∫ T/2

−T/2

|b(ω, t)|2dt = T (2.32)

where b(ω, t) is the frequency-dependent function. The expression for the energy-conserving

Gaussian window is

b(ω, t) = A(ω)fw(ω, t) =
( 2
π

)1/4√ T

δ(ω)

1

erf T√
2δ(ω)

× exp
[
−
( t

δ(ω)

)2]
(2.33)

where A(ω) is the parameter to ensure energy conservation, fw(ω, t) is the shape of the

window, and δ(ω) is the tuning parameter of the Gaussian window. Equation 2.31 can be

expressed as

Vmkδ(ω) = cλλ (2.34)
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where cλ is the fraction of the acoustic wavelength that the scanning sensor traverses with

time δ(ω). Ref. [1] proposed applying the Gaussian window in combination with the compu-

tation of the cross-spectral densities between microphones that had a relative velocity. Their

work demonstrated how the non-stationarity could be minimized with the Gaussian filter,

and the source distribution could be recovered at high frequency.

In addition to the frequency-dependent Gaussian of Ref. [1], this work also explored a hyper-

bolic secant and a Cauchy distribution as potential function shapes. However, it was found

that the outcomes were mainly unaffected by the shape of the function used. The expressions

for the frequency-dependent windows are summarized in Table 2.1 for completeness.

A(ω) fw(ω, t)

Gaussian

(
2
π

)1/4√
T

δ(ω)
1

erf T√
2δ(ω)

exp
[
−
(

t
δ(ω)

)2]
Hyperbolic Secant

√
k(ω)T

2 tanh(k(ω)T/2)
sech(k(ω)t)

Cauchy distribution

√
1/
(

2

(
√

k(ω)T )2+4
+

tan−1(
√

k(ω)T/2)√
k(ω)T

)
1

k(ω)t2+1

Table 2.1: Expressions for the frequency-dependent windows.

The tuning parameter for the hyperbolic secant and the Cauchy distribution is k(ω), with

VmkT = k(ω)λ (2.35)

The parameter k(ω) represents the number of wavelengths λ traversed by a scanning sensor

with velocity Vmk for block duration T . An example of the energy-conserving frequency-

dependent windows is shown in Fig. 2.7. A block size of ∼ 0.56 seconds was used. The

block center is located at t = 0 and k(ω) = 5. Notice how all windows are continuous and

how they are relatively similar in their filtering nature.
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(a) (b)

(c)

Figure 2.7: Frequency-dependent windows. (a) Gaussian; (b) Cauchy distribution; and (c)
Hyperbolic secant.

The extensions of the beamforming technique to the continuous-scan paradigm must be

necessarily informed by these non-stationarity observations, including the division of the

signal into smaller, quasi-stationary blocks and the application of a frequency-dependent

window to suppress its worst effects. The signal non-stationarity results in a special signal

processing that affects the quality of the noise source maps. This will be explored in detail

in Chapter 3. A schematic of the window width reduction with frequency is depicted in in

Fig. 2.8.
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Figure 2.8: Schematic of the Gaussian window width reduction with increasing frequency.

2.5.3 Beamforming using Cross-Spectral Submatrices

Finding the noise source map involves taking the Fourier transform of Eq. 2.19 and multi-

plying it by its complex conjugate while considering the windowing process that has been

previously described. The Fourier transform of Eq. 2.19 is written as

Sk(ξ, ω) =

∫ ∞

−∞

Mf+Ms∑
m=1

wmk pmk[(1 + αmk(ξ))t+ τmk(ξ)] e
−iωtdt (2.36)

Using the properties of the Fourier Transform, Eq. 2.36 can be transformed into

Sk(ξ, ω) =

Mf+Ms∑
m=1

wmk

1 + αmk(ξ)
Pmk(ω

′
mk(ξ)) e

−iω′
mkτmk(ξ) (2.37)

where Pmk(ω
′
mk(ξ)) is the Fourier transform of pmk(t). Notice that the quantity ω′

mk(ξ)

appears. This variable is the Doppler-shifted frequency that arises due to the motion of the

sensor [1], as was previously introduced, and was expected to rise in the analysis. Its exact
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expression is

ω′
mk(ξ) =

ω

1 + αmk(ξ)
(2.38)

For low scan Mach number (i.e. Vmk/a∞ << 1), the Fourier transform of the pressure signal

Pmk(ω
′
mk(ξ)) can be approximated as Pmk(ω) with little error.

The Fourier transform of the summation of all microphone signals (fixed and scanning) for

block k can then be approximated as

Sk(ξ, ω) =

Mf+Ms∑
m=1

wmk

1 + αmk(ξ)
Pmk(ω) e

−iω′
mkτmk(ξ) (2.39)

On defining the continuous-scan microphone weight

Wmk =
wmk

1 + αmk(ξ)
(2.40)

the Fourier transform of the summation of all microphone signals for a block k becomes

Sk(ξ, ω) =

Mf+Ms∑
m=1

Wmk Pmk(ω) e
−iω′

mkτmk(ξ) (2.41)

To find the noise source map for block k, one needs to multiply Eq. 2.41 by its complex

conjugate, which includes the averaging involved in the FFT algorithm, and the application

of the frequency-dependent window when estimating the spectral densities between sensors

that have a relative velocity

Yk(ξ, ω) =

Mf+Ms∑
m=1

Mf+Ms∑
m=1

WmkWnk Pmk(ω)P ∗
nk(ω) e

−iω′
mk(ξ)τmk(ξ) eiω

′
nk(ξ)τnk(ξ) (2.42)
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On defining the CSM for block k as

Ck(ω) = Pmk(ω)P ∗
nk(ω) (2.43)

which has a size of (Mf +Ms)×(Mf +Ms) and includes the windowing process as outlined

in Ref. [1], the array output for block k can be computed as

Yk(ξ, ω) = g(ξ, ω) Ck(ω) g
H(ξ, ω) (2.44)

where the steering vector is defined as

g(ξ, ω) =[W1ke
−iω′

1k(x)τ1k(ξ) W2ke
−iω′

2k(ξ)τ2k(ξ) ...

W(Mf+Ms)ke
−iω′

(Mf+Ms)k
(ξ)τ(Mf+Ms)k(ξ)]

(2.45)

Analogous to the procedure performed for the fixed-reference DAS discussed in Section 2.3,

one can attempt to eliminate the microphone self-noise contamination and improve the

dynamic range of the array by removing the diagonal from the block-CSMs

Yk(ξ, ω) = g(ξ, ω) Cdiag=0,k(ω) g
H(ξ, ω) (2.46)

However, the cautionary comment noted before should be remembered when removing the

diagonal elements.

The past paragraphs have described how to find the array power response for a block k.

However, care must be taken in assembling the responses over all the blocks, to include only

the distinct elements of the CSSMs (Eq. 2.43) as to avoid averaging of repeated information.

Methodologies using direct spectral estimation [1, 27] have addressed this issue by breaking

down the CSM into a number of cross-spectral submatrices (CSSMs), one for each block k,

with k = 0 comprising the correlations between the fixed sensors only, calculated using the
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full duration of the pressure signals. A similar approach is employed here to calculate the

DAS noise source map.

As an example, assume that two microphones are scanning and five microphones are fixed.

The CSSMs are organized such that the first two rows and columns always contain the

contributions involving the scanning sensors. This is highlighted in pink in the figure. The

contributions from the fixed sensors are highlighted in blue. Only the bold elements are used

to produce the DAS noise source map, as they contain non-repeated information for each

block. This is illustrated in Fig. 2.9

Figure 2.9: Illustration of the CSSMs for two scanning sensors (1-2) and 5 fixed sensors
(3-7). Non-repeated elements are indicated in bold font.

It is easy to show that the number of non-repeating elements used to compute the noise

source map is then

J = (Mf −Ms)
2 + (K − 1)Ms(2Mf −Ms) (2.47)

When the diagonal is removed from the CSM, the number of elements is

J = (Mf −Ms)
2 − (Mf −Ms) + (K − 1)Ms(2Mf −Ms − 1) (2.48)

Note that if the DiRec method is used to mitigate the microphone self-noise contamination
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on a block by block basis, the number of total elements is that of Eq. 2.47. On defining

Bmn = wmwn

and

Tmn,k = WmkWnk

the contributions from block 0 are

Mf+Ms∑
m=Ms+1

Mf+Ms∑
n=Ms+1

Bmn Cmn(ω) e
iωτm(ξ) e−iωτn(ξ)

The contributions of the first two rows (Fig. 2.9) of a CSSM k are

Ms∑
m=1

Mf+Ms∑
n=1

Tmn,k Cmn,k(ω) e
iω′

mk(ξ)τmk(ξ) e−iω′
nk(ξ)τnk(ξ)

and those of the first two columns, excluding the elements previously accounted for, are

Ms+Mf∑
m=Ms+1

Ms∑
n=1

Tmn,k Cmn,k(ω) e
iω′

mk(ξ)τmk(ξ) e−iω′
nk(ξ)τnk(ξ)

Then, the expression for the noise source map obtained with the CSSM approach is

Y (ξ, ω) =
1

J

( Mf+Ms∑
m=Ms+1

Mf+Ms∑
n=Ms+1

Bmn Cmn(ω) e
iωτm(ξ) e−iωτn(ξ)

K∑
k=1

[
Ms∑
m=1

Mf+Ms∑
n=1

Tmn,k Cmn,k(ω) e
iω′

mk(ξ)τmk(ξ) e−iω′
nk(ξ)τnk(ξ)+

Ms+Mf∑
m=Ms+1

Ms∑
n=1

Tmn,k Cmn,k(ω) e
iω′

mk(ξ)τmk(ξ) e−iω′
nk(ξ)τnk(ξ)

])
(2.49)

The equation constitutes the extension of the DAS methodology to the continuous-scan
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paradigm, here referred to as CSSM. Note that the first term of the equation uses only the

fixed sensors; as such, the frequency is not influenced by the Doppler-shift. The spatial

resolution of the noise source map is significantly increased when using the CSSM tech-

nique over fixed reference DAS, as will be demonstrated in the Chapter 5. However, one of

the principal drawbacks of the CSSM approach is the lack of a global CSM. Deconvolution

(DAMAS, DAMAS2, CLEAN-SC, R-L, etc.) and advanced beamforming approaches (Or-

thogonal Beamforming, Functional Beamforming, etc.) are based on having a global CSM.

As such, it is highly desirable to obtain a global CSM that is representative of the com-

plete experimental run. Two new methods are introduced with this regard: a Cross-Spectral

Matrix Completion process and a Partial Fields Decomposition technique.

2.5.4 Matrix Completion Techniques

As stated earlier, the lack of a global CSM when using the CSSM technique makes it impos-

sible to utilize advanced beamforming and deconvolution approaches. This section explores

the possibility of obtaining a global CSM through interpolation and a matrix completion

process that bears similarities to the matrix completion technique that is used in other

beamforming fields [67].

Considering an array withMf fixed andMs scanning microphones, division of the signal into

K blocks can be thought of as increasing the sensor count toMf+KMs as stated previously.

However, it is immediately obvious that not all of these sensors can be correlated. When

considering the cross-spectral matrix (CSM) based on the sensor count Mf + KMs , the

matrix has missing entries, which is illustrated in the example of Fig. 2.10a. As an example,

the figure assumes an array with three microphones that are fixed and one microphone that

is scanning. The signal of the scanning microphone is divided into six blocks. Treating

the position of the scanning microphone as a “virtual” sensor, one is tempted to construct

49



a 9 × 9 cross-spectral matrix. Auto- and cross-correlations are possible between the fixed

microphones, between the scanning and fixed microphones, and the scanning sensor with

itself at a given block. However, correlations of the scanning sensor at different blocks are

not possible. These are indicated by the blank entries in Fig. 2.10a. This section attempts

at completing the missing entries of the global CSM.

Figure 2.10: (a) Cross-spectral matrix for an array with three fixed microphones and one
scanning sensor whose output is divided into six blocks. The correlations involving fixed
sensors only are highlighted in blue, while those involving fixed and scanning sensors are
indicated in red. Blank entries indicate missing elements. (b) Submatrix for block 0. (c)
Submatrix for block 1.

UPAINT Method

An interpolation approach to construct a global CSM was explored as a first approximation

in this work. In particular, a methodology similar to the array interpolation approach of

Ref. [68] was tested on real supersonic and subsonic jet flow data.

Array interpolation methods have been used in the past to improve signal to noise ratio [69]

or replace faulty microphones [70]. These methods have also been used to extend the spatial

bandwidth of microphone arrays, thus reducing sidelobe contamination [68]. The present

work explored the possibility of using the Unwrapped Phased Array Interpolation (UPAINT)

of Goates et al. [68] within the continuous-scan paradigm. The technique interpolates the
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CSM magnitude and phase for each frequency, thus allowing to virtually increase the number

of references. The process involved in the UPAINT approach is briefly summarized.

The first step in the UPAINT method extended to the continuous-scan approach is the

division of the signal into a number of K quasi-stationary blocks, and the computation of

the cross-spectral densities between fixed sensors pairs, and fixed sensors and the distinct

blocks, and the auto-spectral density of each block. As outlined earlier, the cross-spectral

densities between the blocks cannot be calculated as the measurements have been performed

asynchronously, and one obtains a CSM with missing entries (Fig. 2.10a). The entries of

the CSM are sorted according to a spatial index such as the polar angle to allow proper

interpolation of neighboring microphone correlations. The matrix containing the missing

entries is referred to as Cmissing.

The second step in the UPAINT process is to obtain the phase and amplitude of the CSM.

The amplitude of the CSM is denoted by |Cmissing| while the phase is referred to by Φ =

arg(Cmissing).

A general issue of the approach is that Φ might contain 2π discontinuities if the phase is

wrapped. This can easily be overcome if the phase of the known cross-spectral densities is

unwrapped as

Φ̃mn(ω) = Φmn + 2πΛ(ω) (2.50)

where Φ̃mn(ω) is the phase unwrapping for microphones m and n and Λ(ω) is an integer.

The frequency at which the phase discontinuity occurs is highly dependent on the source

emission pattern and the microphone spacings. The phase unwrapping constitutes the third

step in applying the UPAINT method to continuous-scan beamforming.

After the phase is unwrapped, the missing entries are estimated by 2-D interpolation of the
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magnitude and phase of |C| and Φ̃(ω), respectively, constituting the fourth and final step in

the process.

Although the method has been successfully applied in past beamforming studies [68], it failed

at providing an accurate estimate of the missing block correlations at high frequencies. This

is due to the relationship of Eq. 2.50 not being perfectly linear. An example of this behavior

is shown in Fig. 2.11. The images were obtained using far-field microphones with different

spacings for the isolated supersonic jet flow experiments presented in this work. It is seen how

the relationship of Eq. 2.50 fails to hold as the frequency increases, resulting in penalizations

in the spatial resolution of the noise source map which is obtained when the interpolated

CSM is steered to the region of interest. As such, beamforming results utilizing the UPAINT

technique will not be shown in Chapter 5.

(a) (b)

Figure 2.11: Wrapped and unwrapped phased between cross-spectral densities of micro-
phones with spacings of (a) 0.06 m and (b) 0.22 m.

Cross-Spectral Matrix Completion

The second matrix completion technique (CSMC) utilized in this work bears similarities to

the matrix completion techniques used in non-synchronous microphone measurements. The

study of noise source localization algorithms utilizing a set of non-synchronous microphone
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recordings has gained significant attention in recent years [71, 72, 73, 74, 75]. An initial

approach consisted in moving a prototype array in a sequential manner to perform several

measurements at different points. However, the phase correlations between the array’s mi-

crophones at two independent sequential places were lost, resulting in a reduction in the

spatial precision required for many beamforming applications (Fig. 2.10a). An early solu-

tion consisted in placing zeroes at the positions of the missing entries (those that related

the array at two distinct positions). However, this procedure did not improve the spatial

resolution of the beamformed maps [75].

Later, an approach consisting of installing reference microphones near the source was used

as an approach to infer the missing relationships. Using conditioned spectral analysis and

principal component analysis [76] in a technique akin to partial fields decomposition, such

microphones were utilized to reconstruct the lost phase correlations between consecutive

points of the array. However, in order to resolve the missing relationships accurately enough,

a large number of reference sensors were often required to have independent recordings of

large numbers of uncorrelated noise sources, such as those associated with the high frequen-

cies of turbulence mixing noise or shock-associated noise, resulting in a prohibitive cost for

several applications.

References [67, 76] proposed a novel method for determining missing relationships in se-

quential microphone measurements. The methodology was designed to complete a global

CSM generated by non-synchronous microphone array measurements, which involved the

estimation of the missing entries of a CSM. A similar undertaking has been adapted to

the continuous-scan paradigm. The technique is briefly summarized in the next lines. The

mathematical description is introduced next.

First, the signal from all microphones is divided into smaller, quasi-stationary blocks. A CSM

is created by including the cross-spectral densities that relate scanning and fixed sensors.

The spectral densities from the fixed microphones are also incorporated in the CSM. These
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utilize the full duration of the microphone pressure signals. Each fixed microphone and

block correspond to a measurement taken at a distinct geometrical position. As such, it

is advisable to organize the CSM according to a spatial index (e.g., the polar angle with

respect to the noise source). The above process obtains a data-missing CSM. A schematic

of the data-missing matrix obtained within the continuous-scan paradigm is shown in Fig.

2.12, where three microphones are fixed and the signal from one scanning sensor is divided

into 6 blocks. The cross-spectral densities between the distinct blocks (i.e., the scanning

sensor at distinct positions) are not readily available as the measurements have been taken

asynchronously. The contributions from the fixed sensors are highlighted in blue, while those

of the scanning sensor are highlighted in pink. Then, the missing entries of the CSM are

estimated by using a minimization approach. This requires to assume and impose certain

characteristics about the completed matrix that will be further discussed in this section.

Additionally, the position of the microphones (and distinct blocks) must be encoded in the

minimization algorithm to obtain physical results, as discussed by Yu et al. [67, 77, 71].

This is done by “filtering” the CSM using a spatial basis, which prevents neighboring cross-

spectral densities, associated microphone pairs that are geometrically close, from being very

different from each other. The completed CSM can be steered back to the region of interest

using the steering vectors. Deconvolution can be used. The mathematical insights of the

matrix completion process are discussed next.

The CSMC completion method is typically expressed as a matrix rank minimization problem

(low rank model) with constraints. However, when dealing with signals produced by a

large and unknown number of uncorrelated sources the process of estimating the rank of

the completed matrix can be cumbersome without a priori information. Additionally, as

discussed by Yu [67], the process of estimating the matrix rank poses a great challenge when

dealing with signals with moderate to high levels of noise in the measurements, as might be

the case in wind tunnel beamforming applications. If the matrix completion problem was

formulated as a rank minimization process, one would be required to use an experimentally-
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Figure 2.12: Schematic of a data-missing CSM within the continuous-scan paradigm; 3
microphones are fixed and the signal from one scanning sensor is divided into 6 blocks.

determined thresholding parameter related to the most relevant eigenvalues. The parameter

would have to be linked to the most important uncorrelated acoustic sources. For instance,

one could use the difference between consecutive eigenvalues values to inform the selection

of the thresholding value. However, this would introduce a high degree of variability in the

results. As a result, the low rank model is frequently restated as a weakly sparse eigenvalue

spectrum problem. This also allows the use of advanced semidefinite programming (SDP)

methods and libraries for convex optimization applications. In otherwords, it is here assumed

that the completed CSM is of full rank and contains only a few dominant eigenvalues, rather

than imposing a reduced fixed rank. The task of CSM completion can then be translated

into a problem of minimizing the CSM nuclear norm, subject to some constraints. The CSM

nuclear norm is defined as

∥Ccompleted(ω)∥∗ =
Mf+KMs∑

i=1

λ2i (ω) (2.51)

where λi are the eigenvalues. The requirements imposed to ensure a physical solution of the

matrix completion process are discussed next.

The first restrictions imposed on the global CSM are the Hermitian and semipositive definite
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conditions. That is

Ccompleted(ω) = CH
completed(ω) (2.52)

and

Ccompleted(ω) ⪰ 0 (2.53)

respectively. This guarantees that there are no negative source auto-spectral densities, as-

sociated with negative eigenvalues, which is deemeded to be non-physical, as discussed in

earlier sections. The Hermitian condition ensures that the resulting CSM is a suitable and

realistic matrix within the context of beamforming.

The next condition is imposed such that the completed CSM does not modify the measured

entries of the data-missing CSM, denoted by Cmissing. However, this requirement can be

relaxed and stated as

∥A(Ccompleted(ω))−Cmissing(ω)∥F ≤ ϵ1 (2.54)

where the A(·) operator only extracts the positions containing the measured cross- and

auto-spectral densities of the data-missing CSM, ∥ · ∥F is the Frobenius norm, and ϵ1 is a

thresholding parameter that relaxes the modification constraint.

At this point, a CSM that is representative of the complete experiment run can be calcu-

lated with the above requirements. However, as discussed by Yu [67], the results might not

necessarily be physical within the context of aeroacoustic applications. Yu argues that a

new constraint must be introduced in order to ensure that the results are physical. This new

constraint ensures the smoothness of the acoustic far-field by using a smoothing operator

that encodes the positions of the microphones, including the fixed sensors and the center
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locations of the blocks where the “virtual microphones” are placed.

The operator essentially acts as a filter on the completed CSM, preventing significant varia-

tions in the auto- and cross-spectral densities in neighboring columns and rows, associated

with microphones or “virtual microphones” that are placed close to each other. The fil-

ter is denoted by Ψ and can be constructed using a wide variety of basis functions. Hu

et al. [74] discuss the influence of the use of distinct spatial basis functions on the errors

in the estimation of the missing entries of the CSM. In particular, they use Generalized

Harmonic Polynomials (GHPs), which are an approximate solution to the homogeneous

Helmholtz equation in a star-convex domain and also utilize a set of plane wave functions.

The present work uses a simpler version of the plane wave basis spatial filter, constructed

using a dimension-reduced Fourier spatial basis. The Fourier spatial basis is constructed as

Θ = exp
[
i(kxx+ kyy)

]
(2.55)

where x and y represent the coordinates of the fixed sensors and center coordinates of

the blocks, and (kx, ky) are spatial wavenumbers. The wavenumbers are discretized as

knx = n∆kx, with n = −N, ..., N , and similarly for ky, with k
m
y = m∆ky and m = −M, ...,M ,

according to the guidance found in the work of Yu et al. [67]. Note that the expressions for

ky will not be explicitly written in this work given their similarity to those obtained for kx.

The maximum spatial frequency is obviously

kx,max = N∆kx =
π

∆x
(2.56)

Additionally, the spatial frequency can be linked to the aperture of the microphone array

by ∆kx = 2π
Lx
, where Lx is the array aperture in the x direction, and similarly for M . The
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integer N is given by the expression

N =
π

∆x∆kx
(2.57)

Up to this point, no information with regards to the coordinate z has been given. The

array used in this study consists of a one-dimensional distribution of microphones, inclined

a certain angle with respect to the nozzle axis (see Fig. 2.6). The scanning microphone

traverses in a line parallel to that formed by the fixed sensors and with a very small vertical

offset. As such, this work assumes that the acoustic waves will not be significantly different

within the small offset ∆z between the fixed and scanning microphones.

The use of the spatial basis presented earlier is valid provided that the far-field correlation

length, here denoted by ℓc, is larger than the average distance between two microphones or

block centers. This poses a restriction in the position of sequential microphone measure-

ments. However, within the context of the continuous-scan approach, the above statement

poses a requirement in terms of the signal processing, implying that the blocks must be

relatively close to each other. This will be discussed in more detail in the next section. A

general rule to determine the minimum resolution of the Fourier spatial basis is

∆x,∆y ≥ min(ℓc, 2dc) (2.58)

with dc being the distance between two contiguous microphones or block centers. The

smoothing filter is then constructed as

Ψ = ΘΘ† (2.59)

where Θ† is the Moore-Penrose pseudo-inverse. The Moore-Penrose inverse is defined as
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Θ† = VΣ−1UH, where the rectangular diagonal matrix Σ−1 is

Σ−1 =



σ−1
11 0 · · · 0

0 σ−1
22 · · · 0

...
...

. . .
...

0 0 · · · σ−1
2N×2M


(2.60)

and only contains non-negative numbers. The relationship Θ = UΣVH is the singular

value decomposition of matrix Θ, where V and U are the singular value vector matrices,

and Σ is a rectangular diagonal matrix that contains the singular values. It is important

to mention that integers M and N do not necessarily need to be equal, as they depend on

the discretization that has been used to obtain the dimension-reduced spatial basis. At this

point a new requirement to obtain the completed CSM can be stated as

∥ΨCcompleted(ω)Ψ
H −Ccompleted(ω)∥F ≤ ϵ2 (2.61)

The above condition ensures that the entries of the completed CSM are not significantly

changed due to the filtering process and ϵ2 is the thresholding error that governs it. After

all of the necessary variables have been introduced, the problem of CSM completion within

the context of continuous-scan phased arrays is defined as

minimize ∥Ccompleted(ω)∥∗

subject to ∥A(Ccompleted(ω))−Cmissing(ω)∥F ≤ ϵ1

∥ΨCcompleted(ω)Ψ
H −Ccompleted(ω)∥F ≤ ϵ2

Ccompleted(ω) = CH
completed(ω) ⪰ 0

(2.62)

The above equation is similar to that used by Yu et al. [67] within the context of non-

synchronous microphone measurements, with it being successfully applied to complete block-

Hermitian CSMs. However, an important distinction between the continuous-scan approach
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and the non-synchronous approach is that the data-missing CSM is not necessarily block-

Hermitian. Another difference is that one does not need to physically move the array se-

quentially when using the continuous-scan approach, and the sequential array movement can

be related to the signal processing and block segmentation schedule utilized. The completed

CSM is finally computed, as per Eq. 2.62, using the Fast Iterative Shrinkage Thresholding

Algorithm (FISTA) approach of Ref. [77] or using the complex optimization tools of the SDP

Matlab library [56, 57]. It was found the results were largely independent of the method

used. Using the methodology described above requires careful processing and organization

of the completed and data-missing CSMs as outlined in Fig. 2.10. A schematic of a com-

pleted CSM is shown in Fig. 2.13, where 3 microphones are fixed, and the signal from one

scanning sensor is divided into 6 blocks. The contributions from the fixed microphones are

highlighted in blue, while those of the scanning sensor are highlighted in pink. The estimated

cross-spectral densities from Eq. 2.62 are shown in yellow.

Figure 2.13: Schematic of a completed CSM within the continuous-scan paradigm; 3 micro-
phones are fixed and the signal from one scanning sensor is divided into 6 blocks.

The completed CSM is finally steered back to a location ξ within the region of interest to

find the array power response as

Y (ξ, ω) =
g(ξ, ω)Ccompleted(ω)g

H(ξ, ω)

J
(2.63)
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where J =
(
Ms +KMs

)2
. Note that a fundamental difference between the steering vectors

g(ξ, ω) used in this approach and the CSSM technique is that the elements are here sorted

according to their spatial index (for instance, from low to high polar angle). It must be

noted that diagonal removal or reconstruction approaches can be used to improve the array

response. This, however, requires a modification on the number of elements used J .

The steering vector matrix that is used in Eq. 2.63 has components that are associated

with fixed microphones and continuously-scanning sensors. As such, the steering vectors

associated with the continuously-scanning sensor should be corrected with the Doppler-

shifted frequency introduced in the preceding section (Eq. 2.38).

A cautionary note is made with regards to the errors linked to the estimation of the missing

entries of the CSM. These errors are denoted by Matrix Completion Errors (MCE), and can

be defined as

MCE(ω) =
∥Creal(ω)−Ccompleted(ω)∥F

∥Creal(ω)∥F
(2.64)

where Creal is the real global CSM, in which all the relationships between sensors are known.

Past studies [77] have investigated the performance of the matrix completion process in

conjunction with the FISTA algorithm in the accrued estimation errors. It has been found

that the MCE is usually below 0.1 when the signal-to-noise ratio of a given experiment

is below 10 dB. The MCE improves when utilizing additional reference sensors that are

common for all the non-synchronous measurement points, independently of the number of

references used [77]. Reference [67] identified the FISTA approach as a robust method of

minimizing Eq. 2.62 when the number of uncorrelated acoustic sources is unknown a priori.

The matrix completion problem adapted to the continuous-scan approach can be considered

an extension of the FISTA matrix reconstruction of Ref. [77], where the reference sensors

are the fixed microphones and the sequential measurements are the distinct blocks.
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Other matrix completion techniques could be utilizied, such as that of Ning et al. [73] which

are based on Sylvester’s law of inertia. However, these require the data-missing matrix to

be block-Hermitian, which is not generally the case in continuous-scan beamforming.

2.5.5 Partial Fields Decomposition

In line with the previous section, the next paragraphs aim at constructing a CSM that is

representative of the complete experiment run so that advanced beamforming and deconvolu-

tion approaches might be used in conjunction with the continuous-scan paradigm. The CSM

is here constructed using a Partial Fields Decomposition (PFD) technique. This method

varies from the preceding in that no elements of the CSM are calculated using a minimiza-

tion algorithm. A phase referencing approach is used instead. The strategy presented here

is similar to that used by Shah et al. [25, 26] and has been applied in past experimental

studies to obtain the noise source images of supersonic jets and ducted fans. The approach

presented in this section might be considered an extension of the start-and-stop method of

Refs. [78, 79, 21] that is used in NAH and is briefly summarized next.

The method originally depended on having an array of reference (stationary) sensors mea-

suring concurrently and continuously while a small subset of the array successively scanned

through a number of patches. In this work, however, one microphone is continuously-

scanning and the subset of the array at different patches is obtained through the signal

segmentation. Additionally, the non-stationarity of the signal introduced by the scanning

microphone requires advanced spectral estimation techniques such as the application of the

frequency-dependent window in the computation of cross-spectral densities of sensors that

have a relative velocity, as argued previously.

In general, the technique decomposes the acoustic field into an Mf number of coherent

and mutually orthogonal partial fields on a hologram surface using reference sensors (fixed
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microphones) to provide the phase-reference. In the present thesis, the hologram surface

corresponds to the scanned region, and the value for the partial field is obtained at each

block center. The partial fields are then used to construct a CSM that is representative of

the complete experiment run. A schematic of the decomposition of the acoustic field emitted

by a jet noise source into partial fields on the hologram surface is shown in Fig. 2.14.

Figure 2.14: Schematic of the decomposition of the acoustic field emitted by a jet noise
source into a partial field on the hologram surface.

The PFD might be employed in other contexts besides the construction of a CSM. For

instance, the technique can be used for the development of low-order models that can be

used in conjunction with boundary element methods [80]. In order to construct the partial

fields, first the microphone signals must be divided into smaller, quasi-stationary blocks. A

reference CSM (i.e., associated with the fixed sensors only) that uses the full duration of

the microphone signals is computed. Then, a transfer function matrix between fixed and

scanning sensors is calculated for each block. The partial fields are obtained for each block

using the reference CSM and the transfer function matrix, and the full CSM is obtained by

“sewing” together all the partial fields. The procedure is mathematically described in the

next lines. A sketch of the process is depicted in Fig. 2.15, where 3 microphones are fixed

(references), and one microphone is scanning. Only three blocks (k = 1, 3, 5) are shown.
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Figure 2.15: Schematic representation involved in the partial field decomposition technique
for an array containing 3 fixed sensors and one scanning sensor. Blocks displayed are k = 1,
3, and 5.

The mathematical expressions involved in obtaining the CSM with the PFD technique for

the continuous-scan approach are described next. First, a reference CSM, denoted by Cff,T ,

is constructed as

Cff,T (ω) = Cfmfn,T (ω) = Pfm,T (ω)P ∗
fn,T

(ω) (2.65)

where the matrix is constructed using the fixed sensors only, indicated by subscript ff , and

using the complete duration of the pressure signals, indicated by subscript T . The reference

CSM is a square and Hermitian matrix, with a singular value decomposition defined by

Cff,T = Uff,TΣff,TV
H
ff,T (2.66)
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In line with the previous two continuous-scan approaches, the pressure signals from all sensors

(fixed and scanning) are then divided into a number K of overlapping or non-overlapping

blocks. The next step in the PFD technique is obtaining a transfer function matrix between

the reference microphones and the continuously scanning sensors (i.e., the distinct blocks).

The transfer function matrix is constructed for every block k as

Hfs,k =
(
Cff,k

)−1

Cfs,k (2.67)

where Hfs,k is the transfer function matrix, Cff,k is a CSM computed using the fixed sensors

only for block k

Cff,k(ω) = Gfmfn,k(ω) = Pfm,k(ω)P ∗
fn,k

(ω) (2.68)

and Cfs,k is the CSM computed using the combinations of fixed and scanning sensors

Cfs,k(ω) = Cfmsn,k(ω) = Pfm,k(ω)P ∗
sn,k

(ω) (2.69)

The matrix Cff,k might not necessarily have an inverse. Thus, it is a standard practice to

find its pseudo-inverse using the Moore-Penrose formula

(
Cff,k

)−1

=
(
Cff,k

)†
= Vff,kΣ

−1
ff,kU

H
ff,k (2.70)

where Cff,k = Uff,kΣff,kV
H
ff,k is the singular value decomposition of the matrix. The

operation Σ−1
ff,k is defined as

Σ−1
ff,k =



σ−1
11 0 · · · 0

0 σ−1
22 · · · 0

...
...

. . .
...

0 0 · · · σ−1
MfMf


k

(2.71)
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The partial fields for block k are calculated as

Πk = HT
fs,kUff,TΣ

1/2
ff,T (2.72)

where T is used to indicate the transpose. The global CSM is the constructed by “sewing”

the partial fields together as indicated in Ref. [25]

CPF = ΠT
i Πj i, j = 1, ..., K (2.73)

In the notation adopted here, CPF is used to denote the CSM obtained with PFD, having

a size of KMs ×KMs. Once the CSM is obtained, the noise source map can be computed

using the traditional DAS approach as

Y (ξ, ω) =
gPF (ξ, ω)CPF (ω) g

H
PF (ξ, ω)

J
(2.74)

where the steering vector matrix is

gPF (ξ, ω) =
[
W11e

−iω′
11(ξ)τ11(ξ) ... WMs1e

−iω′
Ms1

(x)τMs1(ξ)

W12e
−iω′

12(ξ)τ12(ξ) ... WMs2e
−iω′

Ms2
(ξ)τMs2(ξ)

...

W1Ke
−iω′

1K(x)τ1K(x) ... WMsKe
−iω′

MsK
(ξ)τMsK(ξ)

]
(2.75)

and has a size of 1×KMs, and J = (KMs)
2

As stated in previous sections, diagonal removal or reconstruction processes can be used

in conjunction with the partial fields beamforming approach. If the first approach is to be

used, the number of elements J will require a modification. Additionally, the steering vector

matrix that is used in Eq. 2.74 has contributions from continuously-scanning sensors (i.e., the

distinct blocks at which the partial fields are calculated) and the Doppler-shifted frequency
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must be included.

Care must be taken when interpreting the results obtained with PFD. The partial fields

are constructed by using phase information from the reference sensors (i.e., the fixed mi-

crophones). The PFD technique decomposes the acoustic field into a number of mutually

orthogonal and coherent partial fields. The partial fields are then “sewed” together to con-

struct a CSM based on the locations of the scanning sensor. The quality of the CSM depends

on whether the number of partial fields utilized for its construction is sufficient to adequately

represent the acoustic field emitted by the source. This number depends on the number of

fixed microphones used to construct the reference CSM. It is generally accepted that, in other

to fully describe a particular acoustic field, the number of microphones used must be greater

that the number of noise sources present. This is particularly important for the case of jet

noise, where the ranked singular values are expected to be well separated at low frequency,

where turbulence mixing noise dominates, and be of a similar magnitude at high frequency,

where small-scale turbulence noise is important. This is a manifestation of the randomness

of noise generation at high frequency and makes the PFD less accurate at high frequency.

2.6 Summary of the Continuous-Scan Techniques

The preceding sections introduced three distinct methods to perform the noise source lo-

calization process utilizing measurements from arrays comprising fixed and continuously-

scanning sensors. The first, CSSM, consisted in the natural extension of Fixed-Sensor (FS)

DAS to the continuous-scan approach. The drawback of the method was its inability to

obtain a global CSM, thus making it impossible to use deconvolution processes. Two tech-

niques were introduced with the aim at constructing a global CSM. These techniques are

based on a matrix completion process (CSMC) and a Partial Fields Decomposition (PFD)

technique. The main characteristics of these methods are summarized in Table 2.2.
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Name Acronym Based on Global
CSM

Deconvolution

Fixed-Sensor FS Traditional
beamforming
techniques

Yes Yes

Cross-Spectral
Submatrices

CSSM Non-repeating
contributions from

block-CSMs

No No

Cross-Spectral
Matrix

Completion

CSMC Completing the
missing entries of a

sparse CSM using the
FISTA scheme [67]

Yes Yes

Partial Fields
Decomposition

PFD Using the fixed
microphones as phase

references to
construct a transfer
function matrix for

each block to find the
partial fields

Yes Yes

Table 2.2: Summary of the beamforming methods utilized.

Deconvolution approaches might be applied to any of the techniques that obtains a global

CSM, as indicated in the table, and are briefly summarized next.
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2.7 Deconvolution Methods

In beamforming, the array response is a convolution between the noise source distribution

and the array PSF, as given by Eq. 2.14. Several deconvolution approaches, which attempt

at separating the noise source distribution and the PSF, have been proposed during the

past decades. The present work utilizes three of such methods: DAMAS, CLEAN-SC and

the Richardson-Lucy approach. These deconvolution techniques are briefly summarized next

and their underlying assumptions are explained in detail.

2.7.1 DAMAS

The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) was proposed

by Brooks and Humphreys [63] in 2004. DAMAS discretizes Eq. 2.14 and assumes that the

region of interest can be divided into a number Nx of uncorrelated monopole sources. The

basic steps involved in the deconvolution process are briefly summarized next. This section

uses a notation similar to that of Brooks and Humphreys for clarity.

The first step in the DAMAS process is to relate the Fourier transform of the pressure signal

of microphone m to a modeled monopole source at a location ξ, contained within the region

of interest

Pm,ξ = Qm,ξg
−1
m,ξ (2.76)

where Qm,ξ is the Fourier transform of the pressure if it was not affected by shear-layer

convection or any other losses, and g−1
m,ξ is the individual component of the steering vector

of Eq. 2.10. Using the above equation, one might calculate the product of the pressure

69



transforms to obtain a modeled CSM due to a source at location ξ

Pm,ξP
∗
n,ξ = (Qm,ξg

−1
m,ξ)(Qn,ξg

−1
n,ξ)

∗ (2.77)

The above expression can be rearranged as

Cmod,ξ = Xξ



(g−1
1 )(g−1

1 )∗ (g−1
1 )(g−1

2 )∗ · · · (g−1
1 )(g−1

M )∗

(g−1
2 )(g−1

1 )∗ (g−1
2 )(g−1

2 )∗ · · · (g−1
2 )(g−1

M )∗

...
...

. . .
...

(g−1
M )(g−1

1 )∗ (g−1
M )(g−1

1 )∗ · · · (g−1
M )(g−1

M )∗


ξ

= XξCξ (2.78)

where Xξ is the mean square pressure per bandwidth of the source (i.e., Xξ = Qm,ξQ
∗
n,ξ) and

M is the total number of microphones used. Having divided the region of interest into a

number Nx of increments, the modeled CSM then becomes

Cmod =
Nx∑
i=1

Cmod,i (2.79)

which states that the CSM has contributions from all the orthogonal sources located within

the region of interest. The above expression can obviously be steered back to the region of

interest to find the array response as

Ymod(ξ, ω) =
g(ξ, ω)Cmod(ω)g

H(ξ, ω)

M2
(2.80)

where g(ξ, ω) are the steering vectors. By equating Ymod(ξ, ω) to the experimentally-measured

array response Y (ξ, ω), one can obtain an equation that relates the measured array response

to that which is free of contamination from the sidelobes and is not influenced by shear-layer

convection

Y (ξ, ω) =
Nx∑
i=1

XiAi(ξ) (2.81)
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where i is a running index that considers all uncorrelated sources and

Ai(ξ) = g(ξ, ω)Cig
H(ξ, ω) (2.82)

In the application of the DAMAS algorithm to the continuous-scan approach, the terms

included in the steering vectors g(ξ, ω) should reflect the Doppler-shifted frequency when

dealing with moving sensors. Equations 2.81 and 2.82 constitute the fundamental relations

for the DAMAS algorithm. As stated by Brooks and Humpreys, if matrix Ai(ξ) was non-

singular, one could find the source auto-powers as X = A−1Y . However, in many instances,

A is a singular matrix, making the inversion cumbersome. The authors proposed to use an

iterative scheme to solve Eq. 2.81. A component of Eq. 2.81, where the ω is omitted for

brevity can be expressed as

Y (ξ) = A1(ξ)X1 + A2(ξ)X2 + ...+ AM(ξ)XM. (2.83)

When the matrix Ai(ξ) is steered to location ξ, we obtain Ai(ξ) = 1 (see Eq. 2.82). As such,

Eq. 2.83 can be rearranged as

Xi=ξ = Y (ξ)−
( i=ξ−1∑

i=1

Ai(ξ)Xi +
Nx∑

i=ξ+1

Ai(ξ)Xi

)
(2.84)

The notation i = ξ represents the index of i that is associated with location ξ within the

region of interest. The above equation is solved iteratively using a Gauss-Seidel approach

when using DAMAS. For the first iteration, it is assumed that the initial values Xi can be

taken as zero. The source auto-powers are updated as each equation is resolved, and used

in a succeeding fashion. The algorithm stops when the solution has converged.
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2.7.2 CLEAN-SC

The CLEAN-SC deconvolution process was introduced by Sijtsma [14] in 2007 as an im-

provement of the Clean-PSF method, which is widely used in astronomy. The CLEAN-SC

assumes the source to be comprised of single correlated sources, with no correlation between

them, and uses the fact that the sidelobes are coherent with the main lobe to remove their

contributions from the noise source map iteratively. This section briefly summarizes the

steps involved in the deconvolution process, as described in the influential work of Sijtsma

[14].

First, the source cross-powers are defined as

Y(x, ξ, ω) = g(x, ω)C(ω)gH(ξ, ω) (2.85)

A new quantity, known as degraded CSM is defined. For the first iteration, this quantity is

just

D(i=0)(ω) = C(ω) (2.86)

The source power at location ξ can be calculated using the traditional beamforming algo-

rithm. That is, for the first iteration i = 0

Y(ξ, ω) = g(ξ, ω)C(ω)gH(ξ, ω) = g(ξ, ω)D(i=0)(ω)gH(ξ, ω) (2.87)

Using the above expression, the location of the peak source (i.e., the strongest source) can

be determined. This peak source induces a CSM that can be assumed to be

G(i) = Y (i−1)
max (ω)g(i)

max(ω)g
H,(i)
max (ω) (2.88)
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The steering vector matrix gmax is that which is associated with the position of the peak

source. The relationship is the fundamental idea behind the Clean-PSF method. However,

the matrix G is constructed differently in the CLEAN-SC approach to account for the

coherence between the sidelobes and the main lobe. The matrix is built such that cross-

powers of any scan point satisfy

g(x, ω)D(i−1)gH,(i)
max (ω) = g(x, ω)G(i)gH,(i)

max (ω) (2.89)

for all possible g(x, ω). The above equation does not have a unique solution and is only

satisfied when [14]

D(i−1)(ω)gH,(i)
max = G(i)(ω)gH,(i)

max (2.90)

Assuming that G(i)(ω) is due to a single source component h(i)(ω), the matrix can be con-

structed as

G(i)(ω) = Y (i−1)
max h(i)(ω)hH,(i)(ω) (2.91)

The above equation is rewritten as

G(i)(ω) = Y (i−1)
max h(i)(ω)hG,(i)(ω) = Y (i−1)

max

(
h(i)(ω)hH,(i)(ω)−H(i)(ω)

)
(2.92)

where the term H(i)(ω) is

H
(i)
x,ξ = h(i)(x, ω)hH,(i)(ξ, ω) (2.93)
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for all positions x ̸= ξ. Equation 2.90 is only solved when

h(i)(ω) =
1(

1 + g
(i)
max(ω)H(i)(ω)g

H,(i)
max (ω)

)1/2 ×
( D(i−1)(ω)g

H,(i)
max (ω)

Y
(i−1)
max +H(i)(ω)g

H,(i)
max (ω)

)
(2.94)

As stated by Sijtsma [14], H(i)(ω) contains the diagonal elements of h(i)(ω)hH,(i)(ω). As

such, an iterative scheme must be employed to achieve convergence. It is usually assumed

that h(i)(ω) = g
(i)
max(ω). The source powers (the deconvolved noise source map) is then

obtained as

Q(i)(ξ) = ϕY (i−1)
max (ω)Ψ(ξ − ξmax) (2.95)

where Ψ(ξ − ξmax) is just a beam of a specified width, that fulfills Ψ(0) = 1 and ϕ is a gain

between 0 and 1. The degraded CSM is then computed as

D(i)(ω) = D(i−1)(ω)− ϕYmax(ω)h
(i)(ω)hH,(i)(ω) (2.96)

The deconvolution process stops when the CSM is sufficiently degraded

||D(i−1)(ω)|| ≤ ||C(ω)|| (2.97)

The principal drawback of the CLEAN-SC technique is that it tends to merge closely-spaced

sources into a single one that has the sum of strengths [81, 82, 28]. This is due to the

relatively high level of coherence of the sidelobes surrounding the main lobe with the main

lobe itself. As such, this approach might not be ideal when trying to resolve flow fields

that contain very fine features. Successful attempts at improving the spatial resolution of

CLEAN-SC have been carried out [81]. However, this work did not explore such methods.
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2.7.3 Richardson-Lucy

The Richardson-Lucy image restoration algorithm is described in the next paragraphs. This

technique originated within the field of astronomy, when trying to de-blur astronomical im-

ages by Richardson[15] in 1972 and Lucy[16] in 1974. The method has been extensively used

in acoustic beamforming in past studies [83, 17, 1, 64]. The Richardson-Lucy deconvolution

technique is based on assigning the meaning of a conditional probability to the PSF. The

inversion method makes use of Bayes’ theorem to find the inverse conditional probability

R(ξ|x, ω). In line with the DAMAS approach, the R-L algorithm assumes the sources to be

statistically incoherent and approximates the convolution integral of Eq. 2.14 as a sum of Nx

elements (i.e., Nx sources). This section outlines a method to perform the R-L deconvolution

that is similar to that of Ref. [17].

For a given frequency, and assuming a total of Nx incoherent sources, Eq. 2.14 is discretized

as

Y (ξ, ω) → Yi

R(x, ξ, ω) → Rni

Φ(x, ω)∆ → Φn

such that the following linear system is obtained

Yi =
Nx∑
n=1

RinΦn (2.98)

The Richardson-Lucy iteration algorithm is [15, 16]

Φ(r)
n = Φ(r−1)

n

1∑N
i=1Rin

Nx∑
i=1

RinYi

Ỹi
(2.99)
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where r denotes the iteration step and

Ỹi =
Nx∑
n=1

RinΦ
(r−1)
n (2.100)

The Richardson-Lucy image restoration technique is independent of the indices i and n and

does not need to be performed in a specific order, such as DAMAS, thus becoming a more

robust means of inverting the previous relationship. In addition, the Richardson-Lucy image

restoration technique produces produces results that are of higher quality as those obtained

by DAMAS.
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Chapter 3

Signal Processing for Continuous-Scan

Microphone Arrays

The biggest challenge of the continuous-scan approach is the treatment of the non-stationarity

in the pressure signals introduced by the scanning sensors. This has been extensively dis-

cussed and treated in the preceding section. To summarize, quasi-stationarity is sought by

dividing the signal into blocks (i.e. the signal is quasi-stationary within each block) and

by applying a frequency-dependent window that acts as a block size filter. The frequency-

dependent window can take any of the forms outlined in Table 2.1.

The newly-introduced signal segmentation process has direct consequences on the quality of

the noise source maps. As a result, this section studies it carefully and proposes clear guide-

lines to improve the spatial resolution of the noise source maps and minimize computational

time for processing the data from continuous-scan phased microphone arrays. Criteria to

determine the optimal number of the blocks and their size are formulated in terms of the

geometry of the microphone array, the spectral estimation parameters, and the width of

the frequency-dependent window. Only uniform signal division (equal block sizes) for each
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frequency range of interest is considered.

In general, processing of non-stationary signals may employ adaptive segmentation [84] creat-

ing non-uniform block sizes and overlaps. To that end, several techniques that divide the sig-

nal based on local changes in amplitude and/or frequency have been proposed [85, 86, 87, 88].

Some of these techniques require the tuning of different parameters such as the window length

and overlap for a fractal dimension-based signal segmentation. Estimation of the parameters

is key in order to reduce false block boundaries [89]. These methods greatly increase the

computational cost and complexity of the signal processing, and do not always find the most

suitable segmentation. In addition, a non-uniform block division for each element of the

frequency vector would entail a prohibitive computational cost. For these reasons, only a

uniform signal division is considered here (i.e., equal block sizes for each frequency range of

interest), where the block sizes are based on the criteria outlined in the previous paragraph.

Furthermore, the previously described methods do not account for the beamforming nature

of this study, in which the distance between fixed microphones and the scanning sensor

has a strong influence on the spatial resolution of the noise source maps. Sufficient spatial

sampling at high frequencies requires a very dense array, with microphone spacings of the

order of the acoustic wavelength, which is deemed impractical in most of the cases when using

fixed sensors only. The continuous-scan approach and the distinct block schedules intend

to resolve this issue by introducing closely-spaced measurement points (i.e., the different

blocks) between a given fixed microphone and the scanning sensor, significantly reducing the

sidelobe levels.

This section will introduce new concepts on the signal segmentation process: upper bound

for the block size, minimum and maximum block size, number of blocks and block overlap.

Criteria for an optimal signal segmentation will be formulated in terms of these quantities.

Parts of this chapter are a partial reprint and adaptation of Morata, D., and Papamoschou,
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D., “Advances in the Direct Spectral Estimation of Aeroacoustic Sources Using Continuous-

Scan Phased Arrays”, AIAA Paper 2021-0215, doi: 10.2514/6.2021-0215. Excerpts from the

chapter have been submitted as a full-length journal paper to the Journal of Sound and

Vibration (ElSevier) as “Optimized Signal Processing for Microphone Arrays Containing

Continuously-Scanning Sensors”, with Morata, D., and Papamoschou, D., as the authors,

as of March 9th, 2022

f

β
Trajectory of scanning sensor m

Figure 3.1: Distance and angle variations associated with the length of a signal block.

3.1 Upper Bound on Block Size

The upper bound on block size is based on the quasi-stationary approximations of Eq. 2.17.

It is thus independent of frequency. Referring to Fig. 3.1, in the analysis that follows the

origin of the source is placed at (ξ, y) = (0, 0) for simplicity. This is valid when the sensors

are in the geometric far field; otherwise, the steps presented below would need to be extended

to various locations in the source region.

The first concern is the validity of the approximation ℓm(t, ξ) ≈ ℓmk(ξ) in Eq. 2.17. Consid-
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ering a given block k for sensor m, this involves the variation of the source-sensor distance

within the block and can be quantified as

ϵℓ,mk =
|∆ℓmk|
ℓmk

(3.1)

where ℓmk is the source-sensor distance at the center of the block and ∆ℓmk is the variation of

this distance across the block, as illustrated in Fig. 3.1. It is worked out from the geometry

that |∆ℓmk| ≈ VmkT cos β/ cos θmk, thus the error can be related to the velocity of the

scanning sensor and to its position with respect to the noise source:

ϵℓ,mk ≈
VmkT cos β

ℓmk cos θmk

(3.2)

Low scan velocities are preferred to maintain the errors in the approximation of Eq. 2.17

within reasonable limits, thus avoiding excessively small block sizes that might compromise

the spectral estimation, as will be discussed in the next section.

The second concern is related to the directivity of the acoustic source. For a substantially

omnidirectional acoustic field, this can be directly connected to Eq. 3.1. However, in a field

with strong directivity, the directivity can overwhelm the geometric effects. Considering a

source with characteristic polar directivity Θ, the error related to the source directivity is

formulated as

ϵθ,mk =
|∆θmk|

Θ
(3.3)

where ∆θmk is the polar angle variation across the block, as indicated in Fig. 3.1. Figures 5.9,

5.17 and 5.35 show the far-field narrowband spectra for the impinging jet source, the isolated

subsonic jet, and the isolated supersonic jet, at a number of polar angles θ. For the impinging-

jets source, the spectrum varies as much as 3 dB for ∆θ = 4◦ at the downstream-most polar

stations. The spectrum of the subsonic jet also varies approximately 3 dB for ∆θ = 4◦
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near the peak emission region (θ ≈ 35◦). It was observed how the spectra of the isolated

supersonic jet varied as much as 6 dB for neighboring polar stations (∆θ = 6◦, with the tonal

components being especially important. Therefore, it is physical to set Θ = 4◦ = 0.0698 for

all the acoustic sources. A different Θ could be set for the supersonic jet, however, the results

on the upper bound on block size were largely independent of ϵθ,mk for far-field microphone

measurements, as will be detailed next.

To determine the upper bound on the block size, first the error thresholds are set. The

selection here is ϵℓ,mk = 0.01 and ϵθ,mk = 0.3. The sensor’s trajectory is discretized into fine

increments (xk, yk), k = 1, . . . ,M , representing the location of the center of a block. For each

(xk, yk), the sample size Nk of the block determines its spatial extent through the sampling

rate Fs and the sensor speed Vm, allowing calculation of the errors. Nk is increased from low

value until one of the error thresholds is exceeded; this sets the final value of Nk. Seeking

a uniform block size, the maximum bound is set equal to the minimum value of the vector

Nk, that is,

NBu = min(Nk, k = 1, . . . ,M) (3.4)

For the experiments covered in this study, the criterion of Eq. 3.1 was always more con-

straining than the one related to Eq. 3.3. Once the upper bound is defined, the next steps

involve determination of frequency-dependent minimum and maximum block sizes.

3.2 Minimum Block Size

The need to suppress the frequency of the spectral oscillation of Eq. 2.30 drives the processing

towards small block sizes, particularly at high frequency. However, each block must contain

sufficient samples to compute the auto- and cross-spectral densities accurately, the latter
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being strongly impacted by non-stationarity. This motivates the development of a criterion

for the minimum block size, which is frequency-dependent.

Consider signals pm(t) and pn(t) corresponding to the pressure recorded by a scanning sen-

sor and a fixed sensor, respectively. The signals are divided into K overlapping or non-

overlapping blocks, each one of them containing NB samples. For each block, the cross-

spectral density is estimated by (i) dividing each signal into S segments with overlap σS; (ii)

computing the Fast Fourier Transform (FFT) of the signals in each segment; (iii) multiply-

ing appropriately the FFTs of the two signals within each segment, including the windowing

process; and (iv) averaging the results over the number of segments. In the last step, the ac-

curacy and smoothness of the result improve with increasing S. The FFT algorithm requires

that each segment contains 2NFFT samples, where NFFT is the size of the Fourier Transform.

It is easy to show that the size of the block is related to the number of segments, segment

overlap, and FFT size as follows:

NB = 2NFFT

[
(1− σS)(S − 1) + 1

]
(3.5)

For fixed segment overlap and FFT size, the minimum size of the block is dependent on the

smallest number of segments that allows for accurate spectral estimation. This is directly

linked to the nature of the acoustic source as well as to the array geometry.

The accuracy of spectral estimation is evaluated based on the narrowband SPL spectrum of

the scanning sensor. The SPL is computed with fixed overlap, fixed NFFT, and increasing

number of segments S (thus increasing number of total samples) until the maximum sample

bound (Eq. 3.4) is reached. Denoting SPLS and SPLS−1 the SPL computed with number

of segments S and S − 1, respectively, the difference ∆SPLS = SPLS - SPLS−1 is plotted

versus S for a number of frequencies. This quantity is a measure of the convergence of

the statistics for each block as a function of the number of sample points utilized (i.e., the
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number of segments). Figure 3.2 plots this relationship for IJS and the subsonic turbulent

jet, with NFFT = 1024 and σS = 0.5. It is seen that ∆SPLS undergoes strong oscillations

when the number of segments is small. For S ≥ 15 the spectral estimation has a variability

of less than 0.25 dB for both sources. Thus, a minimum number of segments Smin = 15 is

set as a criterion. Analysis for the supersonic jet, the distinct reflector configurations, and

the remaining shielding and reflector configurations for the subsonic jet flow did not yield

a different result, and Smin = 15 is used throughout this work. It is advisable to perform

this analysis for various values of NFFT and positions of the scanning sensor, although in the

present experiments the result was largely independent of NFFT. From Eq. 3.5 the minimum

size of the block becomes

NBmin
= 2NFFT

[
(1− σS)(Smin − 1) + 1

]
(3.6)

3.3 Maximum block size

The maximum block size is driven by the implementation of the frequency-dependent win-

dows of Table 2.1. These windows are integrated with the spectral estimation [1]. Multi-

plication of the signal within each block by the frequency-dependent window produces an

effective reduction of the block size, as illustrated in Fig. 3.3. The reduction can be severe

at high frequency, meaning that a significant portion of the block is neglected. The analysis

carried out in this section uses the Gaussian window of Table 2.1. However, the reasoning

can be similarly extended to the hyperbolic secant and Cauchy distribution. To limit the

loss of information, one may consider maintaining the ratio T/δ constant. This would entail

different block division for each frequency and therefore spectral estimation for each element

of the frequency vector at prohibitive computational cost. It would also obviate the need for

the Gaussian window, which allows efficient spectral estimation across the entire frequency
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Figure 3.2: ∆SPL computed with consecutive segment increases as a function of the number
of segments for NFFT = 1024 for distinct acoustic sources: (a) Impinging jets source; and
(b) subsonic jet.

vector. However, it will be shown that setting T ∼ δ connects directly T to the size of the

FFT, which has a step-wise relation with frequency, as discussed in Ref. [1]. In other words,

the above relation becomes discrete and requires spectral estimation for only a small number

of frequency ranges, typically four.

The window width δ (Eq. 2.34) must be adequately covered by the segments used in the

spectral estimation. This is illustrated in the sketch of Fig. 3.4, which depicts the division

of the signal within a given block into segments and the generic shape of the Gaussian filter.

For simplicity, the figure shows segments with zero overlap but the results that follow apply

for positive overlap as well. Of the S segments covering the entire block, a sufficient number

of them, ccov, must be used to resolve the width δ of the Gaussian window. This number,
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Figure 3.3: Example of the frequency-dependent Gaussian window (red) and resulting filter-
ing of signal (black). (a) f = 10 kHz; (b) f = 90 kHz.

Figure 3.4: Segmentation of signal within a block and Gaussian window at given frequency.

which is not necessarily an integer, is selected to be ccov = 5 [1]. Past experience has shown

that ccov = 5 adequately resolves the Gaussian and higher values do not offer a significant
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benefit [1, 26]. The window width can then be expressed as

δ = ccov ∆tseg

where ∆tseg = 2NFFT/Fs is the duration of each segment. Accordingly,

T = 2
T

δ
ccov

NFFT

Fs

Multiplication by the sampling rate Fs yields a frequency-dependent maximum block size

NBmax = 2
T

δ
ccov NFFT (3.7)

The coverage requirement imposes the restriction [1]

NFFT ≤ 1

2

cλ
ccov

a

Vm

Fs

f
(3.8)

Because NFFT must be a power of two, this entails discrete reduction of NFFT with increasing

frequency, and attendant discrete reduction of the block size. For example, setting T/δ = 1.7

ensures that the tails of the Gaussian filter reach 50% of the peak value at the ends of the

block. For adequate coverage of δ [1], a reasonable selection is ccov = 5. Then, Eq. 3.7

becomes

NBmax = 17 NFFT

Matching the lower and upper bounds given by Eqs. 3.5 and 3.7, respectively, allows deter-

mination of the segment overlap

σS = 1 −

T

δ
ccov − 1

Smin − 1
(3.9)
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The role of the coverage requirement on the estimated acoustic source distribution was also

explored in Ref. [26].

3.4 Number of blocks and overlap

Considering a signal with total number of samples NT divided into blocks of size NB and

overlap σB, the number of blocks is

K =
NT − σBNB

(1− σB)NB

(3.10)

The block overlap quantifies the repeated information contained in contiguous blocks. The

number of non-repeating elements of the distinct CSSMs is

J = (Mf −Ms)
2 + (K − 1)Ms(2Mf −Ms)

as outlined in the previous section. The number of non-repeating elements for CSMC is

J = (Mf +KMs)
2

and that of the PFD technique is

J = (KMs)
2

The value of J relates to the cost of computing the CSMs as well as the cost of inverting

the integral of Eq. 2.14. Some level of block overlap σB > 0 is desirable to prevent loss of

information caused by the frequency-dependent filtering. However, excessive overlap leads to

increase the computational cost without yielding new information. An appropriate balance

appears to be 0.25 ≤ σB ≤ 0.75 and is comparable to that used in recent work [26]. For the
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optimal signal division that will be proposed, the block overlap is set at σB = 0.5. However,

this work will also show noise source maps obtained with a coarse block schedule, with

σB = 0.9. This non-optimal schedule is used to illustrate the role of the signal processing on

the resolution of the noise source maps.

3.5 Optimal signal segmentation

The guidance for signal division is summarized. The geometric criterion of Eq. 3.4 sets an

upper bound on block size, NBu , for ensuring that the approximations of Eq. 2.17 are valid.

The accuracy of spectral estimation imposes a frequency-dependent minimum size, NBmin
,

formulated in Eq. 3.6. Prevention of information loss from the frequency-dependent window

that filters each block requires frequency-dependent maximum size, NBmax , defined by Eq.

3.7. Both NBmin
and NBmax are directly proportional to the size of the FFT, NFFT, used for

spectral estimation, which has a step-wise declining relation with frequency.

The qualitative diagrams of Fig. 3.5 help explain these relationships. Figure 3.5a displays the

trend of the block-size bounds versus NFFT. NBu is invariant on NFFT since it depends only

on the array geometry, speed of the sensor, and directivity of the source. NBmax and NBmin

are linear with NFFT. The area bounded by NBmax , NBmin
, and NBu (highlighted in green)

represents the block sizes associated with optimal signal division. The relation of NFFT with

frequency is sketched in Fig. 3.5b. It declines in step-ladder fashion with frequency following

Eq. 3.8 and the requirement that NFFT be an integer power of two. Figure 3.5c represents

the combination of the trends in the previous subfigures, showing that NBmax and NBmin

decline in discrete steps with increasing frequency. The green region again represents the

optimal block sizes. The sample size of the window width Fs δ is a smooth function of

frequency. So, while the block size experiences discrete changes, the smoothness of δ ensures

that filtering is done in a continuous fashion with minimal loss of information.
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It is possible to match NBmax and NBmin
by setting the segment overlap σS (used in spectral

estimation) according to Eq. 3.9. This would result in the most efficient block division in

terms of computational cost. Once the block sizes are set versus frequency, the number of

blocks follows Eq. 3.10. If it turns out that NBmax < NBmin
, and this cannot be fixed by

reasonable settings of σS, it would imply that experimental parameters such as sensor speed

and sampling frequency may need to be revised.

Figure 3.5: Trends governing the determination of optimal block size. (a) Block-size bounds
versus NFFT; (b) NFFT relation with frequency; (c) Block-size bounds and Gaussian window
width (in samples) versus frequency. Green regions indicate the allowed block size.
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Chapter 4

Experimental Program

This section provides an overview of the experimental setup used to conduct the acoustic

investigations presented in this work. It features a description of the anechoic chamber,

microphone array and traversing system, microphone tracking system and a detailed de-

scription of the distinct acoustic sources used. The section also outlines the distinct block

schedules that have been utilized.

Parts of this chapter are a partial reprint and adaptation of Morata, D., and Papamoschou,

D., “Advances in the Direct Spectral Estimation of Aeroacoustic Sources Using Continuous-

Scan Phased Arrays”, AIAA Paper 2021-0215, doi: 10.2514/6.2021-0215, and Morata, D.,

and Papamoschou, D., “Extension of Traditional Beamforming Methods to the Continuous-

Scan Paradigm”, AIAA Paper 2022-1154, doi: 10.2514/6.2022-1154. Some figures have been

obtained from Papamoschou, D., Morata, D., and Shah, P, “Direct Spectral Estimation

Method for Continuous Scan Beamforming”, AIAA Paper 2018-2806, doi: 10.2514/6.2018-

2806, with permission from the authors.
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4.1 Anechoic Facility and Microphone Array

All the noise measurements were taken inside an anechoic facility of approximately 990 sqft

in internal size, schematically depicted in Fig. 4.1. The inner side of the walls of the ane-

choic chamber were covered with acoustic foam wedges that were arranged to minimize wave

reflections. The microphone array comprised twenty-four 1/8-inch condenser microphones

(Brüel and Kjaer, Model 4138) with frequency resolution up to 120 kHz. The microphones

were connected, in groups of four, to six conditioning amplifiers (Brüel and Kjaer, Model

2690-A-0S4). The outputs of the amplifiers were sampled simultaneously, at 250 kHz per

channel, by three 8-channel multi-function data acquisition boards (National Instruments

PCI-6143) installed in a PC with an Intel i7-7700K quad-core processor. National Instru-

ments Labview software provided the interface for signal acquisition and filtering, as well as

control of the experiment, utilizing a custom built program and graphics user interface.

Figure 4.1: Anechoic chamber and qualitative deployment of the microphones.

The ‘atmospheric’ details inside the anechoic chamber were measured: temperature and
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humidity were recorded to enable computation of acoustic atmospheric absorption and cal-

culation of the exact speed of sound. The microphone signals were conditioned with a

high-pass filter set at 350Hz to wipe out any possible DC noise of the signals.

The narrowband sound pressure level (SPL) presented in this work have been computed

using a 2048-point Fast Fourier Transform, yielding to a frequency resolution of 122Hz. The

SPL spectra presented here are all corrected for microphone actuator response, microphone

free field response and atmospheric absorption, thus resulting in lossless spectra. They are

also referenced to a 1 foot arc radius (0.31 m).

One continuous-scan microphone was mounted on a linear traverse consisting of a belt drive

(Igus ZLW-0630) powered by a servo motor (ClearPath-MCPV). The design of the traverse

system is depicted in Fig. 4.2. The path of the traverse was parallel to the line of the

microphones that were mounted on the horizontal arm of the array holder (see Fig. 4.2). The

scanning and fixed microphones had offset distances of 6 mm, approximately, as illustrated

in Fig. 4.3.

Figure 4.2: Design of the linear traverse system.
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Figure 4.3: Fixed and scanning microphones at their closest spacing of 6 mm, measured from
the cartridge centers.

4.2 Noise Sources

This work features several studies that used distinct aeroacoustic sources in conjunction

with the continuous-scan paradigm presented in the preceding sections. The sources include

an impinging jets source (IJS), which is an approximation to a point source, a subsonic

jet and an underexpanded supersonic jet that issued from a convergent nozzle. The IJS is

utilized to assess the performance of the continuous-scan techniques and deconvolution and

compare it with that of an array that utilizes fixed sensors only. The last two sources are of

particular interest within the context of commercial aviation and the military, respectively.

Several reflector surfaces were used in conjunction to the supersonic jet to change the screech

emission dynamics.

4.2.1 Impinging Jets Source

The impinging jets rig, shown in Fig. 4.4, uses the collision of four small round jets to create

an approximation to a point source. The design is similar to that used by Gerhold et al. [90].

The jets issued from tubes with internal diameter of 2.4 mm, and were supplied by air at

room temperature and pressure of 205 kPa. The selected total pressure resulted in the tubes

being choked, with an exit Mach number of ∼ 1, and a Reynolds number of approximately
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4.2× 104 based on the internal diameter.

Figure 4.4: Impinging jets source.

4.2.2 Subsonic Jet

The subsonic jet used in this work issued from a convergent nozzle with exit diameter D =

14.22 mm. It was supplied by air at room temperature and pressure of 171 kPa, producing

an exhaust at Mach number M = 0.9 and velocity U = 285 m/s. The jet Reynolds number,

based on exit diameter, was 3.6 × 105. A rectangular aluminum plate was integrated with

the jet to study the effects of shielding. The plate had a thickness of 3 mm, span of 610 mm

(42.9D), and chord length c of 255 mm (17.9D). A schematic of the setup for the subsonic

jet experiments is depicted in Fig. 4.5. The transverse distance H from the jet axis to the

plate was kept constant at 29 mm (2.1D). The axial location L of the trailing edge from

the nozzle exit plane took the values L = 28.4 mm, 71.0 mm, and 113.6 mm (2D, 5D and

8D, respectively). The trailing edge of the plate for L = 8D was located at an angle of

11.3◦ relative to the nozzle lip line proximal to the plate, a value significantly larger than

the spreading rate of the shear layer. Mean velocity measurements for the same jet [91]

show that the edge of the jet, defined as the surface on which the mean axial velocity equals

0.05U , expands at an angle of ∼ 7◦ relative to the lip line. For L = 8D, the gap between

the plate and the edge of the jet is ∼ 0.6D. Therefore, the jet was not scrubbing the plate

for any of the shielding configurations.
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Figure 4.5: Schematic of convergent nozzle integrated with plate used in the subsonic jet
experiments.

4.2.3 Supersonic Jet

The supersonic jet issued from a convergent nozzle with exit diameter D = 14.22 mm and

lip thickness of 0.4 mm. The coordinates of the nozzle are shown in Fig. 4.6. The nozzle

was supplied by air at room temperature at a variety of total pressures p0 in order to

identify the highest-amplitude screech tones, always operating in an underexpanded regime.

Several reflector surfaces were mounted at the exit of the nozzle as depicted in Fig. 4.7.

All the surfaces had the same base diameter of 60.0 mm (4.22D) and cone half-angles of

90◦ (flat plate), and 60◦. The surfaces were 3D printed using a Formlabs Form 2 printer,

and polished so that their surface roughness was much smaller than the screech acoustic

wavelength. Structures upstream of the nozzle were covered with anechoic foam to minimize

any reflections towards the nozzle.

Operation of the isolated nozzle (without reflector) at sweep of total pressures, from 239 kPa

to 335 kPa, identified strong screech tones within a narrow range of total pressure associated

with fully-expanded Mach numbers of 1.32 ≤ Mj ≤ 1.34, or 289 ≤ p0 ≤ 297 kPa. As such,

a total pressure of 297 kPa was selected in this work. The corresponding fully-expanded

jet velocity was Uj = 397 m/s. The Reynolds number based on nozzle exit diameter was
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Figure 4.6: Nozzle coordinates on symmetry plane.

6.5 × 105. During each experimental run, the total pressure was held to within 1% of its

target value.

Figure 4.7: Photographs of the nozzle and the reflectors. (a) 90◦; and (b) 60◦.

4.3 Signal division and Array Layouts

The continuous-scan techniques presented in this work entailed division of the signals into

blocks. Two block schedules were investigated to demonstrate the benefits of the tailored

signal processing presented in the preceding chapter. One of the block schedules utilized a

fixed block size while the second used a variable block size. The first schedule, CSK=120,

utilized a block size NB = 260000 with overlap σB = 0.9. The total number of blocks was K

= 120, as given by Eq. 3.10. This configuration entails a relatively small number of blocks

96



with a size close to the maximum size allowed, as dictated by Eq. 3.4. As discussed in

Chapter 3, the large block size is expected to result in information loss at high frequency.

The configuration is also predicted to yield a lower spatial resolution due to the limited

number of blocks used as it does not significantly increase the number of closely-spaced

measurement points. The second schedule, referred as CSV, utilized variable block size

following the guidelines of Fig. 3.5. In particular, setting T/δ = 1.7, σS = 0.5, and ccov = 5

in Eq. 3.9 gives Smin = 16, which satisfies the minimum criterion for number of segments

discussed in Chapter 3. In turn, Eqs. 3.6 and 3.7 give NBmin
= N∗

Bmax
= 17NFFT. The block

division displayed in Table 4.1 follows approximately this formula. All the continuous-scan

methods used the NFFT schedule of Table 4.1 and a frequency-dependent Gaussian window

with cλ = 0.2. The source region of interest was -0.4 m ≤ x ≤ 1.0 m.

Frequency Range (kHz) NFFT NB T (s) K σB

0-30 2048 36000 0.144 166 0.50
30-60 1024 17000 0.060 352 0.50
60-90 512 8200 0.032 750 0.50
90-120 256 4100 0.016 1480 0.50

Table 4.1: Block division for continuous-scan method (CSV).

Phased-array measurements were conducted using different subsets of the fixed microphones

in combination with the scanning microphone. Table 4.2 shows the number of sensors used,

the polar angle coverage, and the array center polar angle θc for each layout. The array

center angle is defined as the average angle of the fixed sensors. The polar angle coverage

was slightly different for the fixed and scanning microphones. The impinging jets source and

the subsonic jet, including its shielding configurations, were imaged using array layout P.

The supersonic jet and all of the reflector configurations were imaged using layout S.

The coordinates of the fixed microphones and the scanned region for array layouts P and S

are shown in Fig. 4.8. The total scanned region was 900 mm for both cases, with the sensor

traversing at a steady-state velocity of approximately 75 mm/s. The total experiment time

97



Layout Mf Ms
θ range θ range

θcFixed Scanning
P 11 1 36.0◦ to 97.3◦ 50.0◦ to 97.0◦ 66.7◦

S 13 1 51.1◦ to 97.8◦ 52.2◦ to 100.8◦ 74.5◦

Table 4.2: Array layouts P and S.

was 12 seconds, resulting in the collection of 3× 106 samples.

(a)

(b)

Figure 4.8: Coordinates of array layout P (a) and S (b). Fixed microphones indicated in
black and scanned region indicated in red.

4.4 Tracking and Synchronization of the Scanning Sen-

sor

The position of the scanning sensor must be properly acquired and monitored to ensure the

microphone trace and the microphone pressure signals are synchronized. The source-sensor

position is a fundamental parameter in beamforming. The continuous-scan approach en-

tails division of the pressure signals into blocks. These blocks can be thought of as “virtual

sensors”, as described in Chapter 2, the coordinates of which are at their geometric cen-

ters. Errors on the position of the scanning microphone are particularly detrimental to the
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resolution of the noise source maps when utilizing dense block distributions, such as those

presented in Table 4.1, as the number of virtual references used surpasses that of the fixed

sensors. The following lines summarize the synchronization of the pressure signals with the

scanning microphone and the tracking of its position.

The signals from the microphones, scanning and fixed, are sampled simultaneously at 250

kHz, as described previously. A synchronization signal and a position time-trace is also

recorded in conjunction with the microphone pressure signals. The synchronization signal is

created by splitting the voltage input of the motor moving the scanning sensor (ClearPath

MCPV) into a channel connected to the Data Acquisition Board (DAQ). The voltage signal

rises when the motor is activated and is equal to 0 V otherwise. This synchronization signal is

used to detect the exact instant at which the scanning sensor starts moving by detecting the

time instant of the initial voltage rise. The synchronization signal might be filtered using a

high-pass Butterworth filter at 350 Hz to obtain a voltage peak when the motor is activated,

as seen in Fig. 4.9b. The experimental data that is acquired before the initial voltage rise

is always discarded. In addition, more data points than necessary are acquired to ensure

signals are properly acquired for the full duration of the experiment. With knowledge of

the total scanning time, the data recorded after the scanning sensor stops is also discarded.

Figure 4.9 shows an example of a pressure and synchronization signal for an experiment of a

duration of 8.4 seconds. The blue part of the pressure plot includes the data that is utilized

to obtain the noise source maps. The activation instant can be clearly seen in image b.

Two systems are used to track the position of the scanning sensor and generate the position

time-trace signal. First, ClearPath MSPV software is used to record the coordinates of the

scanning sensor at all time instances. The position of the scanning sensor is determined from

the encoder signal of the motor powering the traverse. At the same time, a second system

consisting of a laser-based distance measurement device (SICK OD1000) is used. The laser

utilizes the triangulation principle to determine the position of the target: a point light
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(a)

(b)

Figure 4.9: Example of the synchronization of the microphone traces with the position. (a)
Pressure signal; (b) Synchronization signal.

source is projected onto a small body attached to the scanning sensor. The distance is then

calculated based on the angle of the reflected light. The laser-based measurement channel is

also connected to the DAQ and sampled simultaneously with the rest of the channels. Figure

4.10 shows an example of the trajectory of the scanning sensor, obtained using the ClearPath

MSPV software signal and SICK OD1000. The image on the left represents the trajectory of

the scanning sensor. The image on the right shows the error between the ClearPath motor

encoder and SICK OD1000. The signal from the ClearPath motor encoder is usually utilized

to produce the position time-trace.
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Figure 4.10: Scanning microphone trajectory comparison for a given experiment.

101



Chapter 5

Results

Results for the acoustic sources of this work are presented next. The results include a combi-

nation of far-field SPL spectra, and the noise source maps. In addition, the expected perfor-

mance of the continuous-scan methods in conjunction with the signal processing guidelines

is evaluated. The distribution of the impinging jets source shows a highly localized source.

The noise source distribution of the subsonic jet shows agreement with past experimental

works [29]. The shielding surfaces demonstrate to be an effective way of suppressing high-

frequency noise. However, additional low-frequency noise sources are generated due to an

energy conversion from hydrodynamic to acoustic waves at the trailing edge of the plate.

The source distribution of the supersonic jet flow is of interest given its intricate flow pat-

tern containing large-scale and small-scale turbulence structures and the shock-cells. The

continuous-scan methodologies are able to discern the shock-cell spacing and predict the

location of the screech sources. Finally, upstream reflectors are used to change the emission

dynamics of the jet flow.

Parts of this chapter are a partial reprint and adaptation of Morata, D., and Papamoschou,

D., “Advances in the Direct Spectral Estimation of Aeroacoustic Sources Using Continuous-
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Scan Phased Arrays”, AIAA Paper 2021-0215, doi: 10.2514/6.2021-0215; Morata, D., and

Papamoschou, D., “Effect of Nozzle Geometry on the Space-Time Emission of Screech Tones”,

AIAA Paper 2021-2306, doi: 10.2514/6.2021-2306; and Morata, D., and Papamoschou, D.,

“Extension of Traditional Beamforming Methods to the Continuous-Scan Paradigm”, AIAA

Paper 2022-1154, doi: 10.2514/6.2022-1154. Excerpts from the chapter have been submitted

as a full-length journal paper to the Journal of the American Institute of Aeronautics and

Astronautics (AIAA Journal) as “High-Resolution Continuous-Scan Beamforming”, with

Morata, D., and Papamoschou, D., as the authors, as of April 2nd, 2022.

5.1 Expected Performance of the Beamforming Meth-

ods

The array point spread function (Eq. 2.14) affects the spatial resolution of the beamformed

images, as described in the preceding sections. In order to improve the spatial resolution of

the array, the PSF should be free of sidelobes that will create artificial sources in the noise

source map. These artificial sources lower the spatial resolution of the noise localization

process and cause the DAS beamformed maps (Eqs. 2.9, 2.49, 2.63, and 2.74) to not truly

represent the real noise source distribution.

The continuous-scan paradigm reduces the sidelobe levels significantly. The reduction is

obviously dependent on the block schedule that is utilized (e.g., a relatively coarse block

distribution will not suppress the sidelobes as much as a fine distribution [27]). The PSFs

of the continuous-scan approaches of this work are studied next. They have been computed

using array layout S (Table 4.2), and using the corresponding block distribution from Table

4.1 depending on the frequency of interest (i.e., using the optimized block schedule). The

PSF of the fixed array (FS) is also included for reference. No signal segmentation is required
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for its calculation. The shape of the PSFs calculated for array layout P were of a shape

relatively similar to that of layout S.

Typically, the PSF is characterized using two parameters. These variables are the main lobe

beamwidth and the relative sidelobe level [92]. With regard to the main lobe beam width,

Brooks and Humphreys [12] found it to be inversely proportional to frequency

B−3dB ≈ CR/(fL) (5.1)

where L is the aperture of the array, R is the average distance between the array and

the measurement line, and C is an experimentally-found constant [63]. The experimental

constants for array layouts P and S are shown in Table 5.1.

Layout L (m) R (m) C (m Hz)
P 0.8 0.95 298.12
S 0.85 1.02 308.34

Table 5.1: Array geometric constants.

The dependency on frequency of the main lobe beamwidth for array layouts S and P is

shown in Fig. 5.1. The main lobe beamwidth is an indication of the minimum distance at

which distinct sources must be situated in order to separate them properly using traditional

beamforming techniques. As expected, the beamwidth is wider at low frequency and reduces

significantly at high frequency [92]. It is observed that both array layouts had relatively

similar main beamwidths given their geometric constants being alike (Table 5.1).

The relative sidelobe level is shown in Fig. 5.2. The image displays the PSF at the focal point

x = 0 m, calculated using the various continuous-scan methodologies introduced in this work,

and for the frequency range of interest. The PSF has been normalized for every frequency

to allow for a fair comparison of the sidelobe levels. It is seen how all the continuous-scan

methodologies suppress the sidelobes significantly when compared to FS. It was verified that
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Figure 5.1: Main lobe beamwidth for array layouts S and P.

no strong sidelobes at high frequency appeared for x < −0.3 or x > 0.5 m when using CSSM,

CSMC or PFD with the optimized block schedule of Table 4.1.

(a) (b) (c) (d)

Figure 5.2: Normalized point spread function at x = 0 for the frequency range of interest
obtained using the optimized block schedule. (a) FS; (b) CSSM; (c) CSMC; and (d) PFD.

It is instructive to examine the performance of the distinct continuous-scan methods in more

detail. This is done in Figs. 5.3, 5.4, and 5.5. The images display a slice of Fig. 5.2 at

a frequency of 15, 50 and 85 kHz, respectively. The sidelobe suppression is evident in the

figures. At a frequency of f = 15 kHz, notice there is a strong sidelobe near x = 0.4 m

when using FS (black). The prominent sidelobe is completely eliminated when using CSSM
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(red), CSMC (blue), and PFD (green). The CSMC and PFD produce PSFs of virtually the

same quality and suppress the sidelobes that are neighboring the main beam that are present

when using the CSSM technique.

Figure 5.3: Normalized point spread function at x = 0 at 15 kHz.

A similar sidelobe suppression behavior is seen at a frequency of 50 kHz (Fig. 5.4), with the

sidelobes for FS being significant at multiple positions.

Figure 5.4: Normalized point spread function at x = 0 at 50 kHz.

Figure 5.5 shows the normalized point spread function at x = 0 m obtain with all the

beamforming methods of this thesis. The plots have been divided into four distinct sub-

figures to aid the visualization of the results given the high number of sidelobes present when

utilizing the FS technique. High frequencies are noticeably contaminated as a consequence

of the spatial aliasing produced by the geometric distribution of the microphone array with

FS. This translates into strong distortions of the source distribution at high frequency. The

sidelobes are again significantly mitigated with all the continuous-scan methodologies of this

work. Notice how the CSMC and PFD overperfom the CSSM technique.
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Figure 5.5: Normalized point spread function at x = 0 at 85 kHz for FS, CSSM, CSMC and
PFD.

The figures displayed in this section demonstrate the ability of the continuous-scan methods

combined with the optimized signal processing to suppress the sidelobes that are inherent to

the PSF, which result in noise source maps with a spatial resolution that is significantly im-

proved compared to utilizing FS. However, the signal segmentation chosen has consequential

effects on the quality of the noise source maps.

5.1.1 Effect of the Signal Processing

The effects of the signal processing (i.e., the block schedule) on the spatial resolution of

the noise source maps is studied next. The images shown in this section are analogous to

Figs. 5.3, 5.4, and 5.5 but have been obtained with the coarse block schedule (CSK=120).
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Figure 5.6 shows the PSF at f = 15 kHz obtained with CSK=120. It can be seen how it is

almost identical to that obtained with the variable block distribution (CSV). The sidelobes

are always more prominent at high frequency and the combination of the continuous-scan

methods and the coarse block schedule already does a good work at suppressing them.

Figure 5.6: Normalized point spread function at x = 0 at 15 kHz with CSK=120.

A certain degree of sidelobe contamination arises for CSSM, CSMC and PDF near x = 0.5

m at a frequency of f = 50 kHz (Fig. 5.7). This was not observed when using the CSV block

schedule and is related to the lower number of closely-space microphones, which produces a

spatial aliasing. In other words, the microphones are not spaced at, at least, 0.5λ.

Figure 5.7: Normalized point spread function at x = 0 at 50 kHz with CSK=120.

Sidelobes become more prominent at a frequency of f = 85 kHz. Similarly as in the previous

section, the plots have been divided in four sub-figures to aid the visualization of the results.

Relatively strong sidelobes near 0.4 and 0.5 m can be observed for CSSM. The sidelobes

appear suppressed with CSMC and PFD when compared to CSSM. Nevertheless, notice

that the coarse block schedule still over performs when compared to the use of FS.

The previous figures demonstrate the vital role of the signal processing in increasing the
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Figure 5.8: Normalized point spread function at x = 0 at 85 kHz with CSK=120 for FS,
CSSM, CSMC and PFD.

number of closely-space microphones to prevent spatial aliasing [60]. Thus, the noise source

maps presented in this work have been obtained by exploiting the full potential of the

continuous-scan technique (i.e., using the block schedule of Table 4.1).

109



5.2 Impinging Jets Source

The impinging jets source is studied next, and the exact performance of the distinct continuous-

scan approaches and deconvolution methods is evaluated experimentally. In addition, the

precision of the PFD technique is briefly analyzed by using information from the phase-

referencing matrix.

5.2.1 Sound Pressure Level

Figure 5.9 shows the lossless narrowband SPL spectra for the impinging jets source, measured

with the fixed microphones, at various polar angles. The acoustic field is broadband, peaking

near 15 kHz. The emission is moderately directive, with the spectral peak being the highest

near θ = 90◦.

(a) (b)

(c)

Figure 5.9: SPL spectra for the impinging jets source at polar angles θ = (a) 23.5◦; (b) 39.7◦;
and (c) 82.6◦.
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5.2.2 Noise Source Distribution

Figure 5.10 displays noise source maps computed with array layout P of Table 4.2, using

the DAS algorithm and the optimized block schedule for the continuous-scan approaches.

A dynamic range of 20 dB is used, with the local maximum set to 0 dB. The IJS is an

approximation to a point source, as stated in the preceding section. As such, it is expected

that the source becomes a vertical line centered near x = 0 m in the frequency-space plots.

It is evident that the noise source map obtained with fixed references only (a) suffers from

strong sidelobes and a low spatial resolution. Notice how there are strong artificial sources

outside the vertical line at x = 0, becoming more prominent at high frequency, due to the

spatial aliasing introduced by the measurement, as described previously. All continuous-scan

approaches (CSSM, CSMC, and PFD) obtain noise source maps with a high degree of spatial

resolution and without the presence of artificial sources caused by the sidelobes. Notice how

the source appears slightly sharper when utilizing the CSSM approach when compared to

CSMC and PFD. The figure evidences the potential of the continuous-scan techniques of this

work at obtaining high-resolution noise source maps using an experimental point source.

Additional detail on the performance of all beamforming methods is shown in Fig. 5.11. The

figure shows a slice of the noise source distributions obtained with DAS, normalized by their

peak level, at several frequencies. Images a, b, and c have been obtained for a frequency of 15,

50 and 85 kHz, respectively. The sidelobes are evident in all the noise source distributions

obtained with FS, being prominent at high frequency. The sidelobe levels appear to be

comparable to the level of the source. The noise source distributions obtained using the

continuous-scan approaches of this work are practically devoid of sidelobe contamination at

all frequencies and are able to perfectly localize the source. In addition, note how the source

distribution obtained with CSMC and PFD is virtually identical.

It is instructive to examine how precisely represented the source is when using the PFD
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Figure 5.10: DAS noise source maps of the IJS obtained using different methods. (a) FS;
(b) CSSM; (c) CSMC; and (d) PFD.

technique. The accuracy of the PFD relies on having a sufficient number of microphones

in the far-field that are able to capture the number of independent acoustic sources at all

instances. The number of sources needed to accurately represent the acoustic field can be

inferred from the difference between the ranked singular values of the phase referencing

matrix Σff,T (Eq. 2.66) [79, 26, 28]. Figure 5.12 shows the ranked odd singular values (1, 3,

5, etc.) of the IJS experiment. It can be seen that there is a significant difference between

the highest and the lowest singular values of the source for all frequencies of interest in

this work. In particular, there is more than one order of magnitude difference between the

first and the third highest singular value. As such, it is expected that the number of fixed

sensors used for the IJS experiment is sufficient to fully characterize the acoustic source. The

accuracy of the PFD technique could also be evaluated by employing an approach similar to

that used by Lee and Bolton [79], in which the number of partial fields required to construct

the total acoustic field, related to the number of fixed references, is analyzed utilizing the

virtual coherence function. The performance of the CSMC is similar to that of PFD and

will be further explored in the next sections by employing the far-field complex coherence
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(a) (b)

(c)

Figure 5.11: Normalized source distribution obtained with DAS at several frequencies: (a)
15 kHz; (b) 50 kHz; and (c) 85 kHz.

function.

The source distribution can be improved using deconvolution. This is first performed on

the DAS map obtained using FS and is shown in Fig. 5.13. It is seen how deconvolu-

tion further sharpens the noise source distribution and mitigates the sidelobes to a certain

extent. The DAMAS and R-L approaches show a moderate presence of the sidelobes at

high frequency. They appear to be suppressed to a greater extent when using R-L over

DAMAS, and the source appears to be more continuous when using the R-L approach. The

DAMAS deconvolution creates a speckle-like distribution, which is an issue that has been
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Figure 5.12: Ranked odd singular values (1, 3, 5, etc.) for the IJS.

seen in past experimental studies [28]. The highest sidelobe mitigation is obtained when

using CLEAN-SC given that the relationship between the main lobe and the sidelobes is

explicitly accounted for in its formulation. However, the map results in a source that is not

as sharply localized. This is consistent with the trends seen in past works [28]. The source

distribution at a frequency lower than 15 kHz is not well-defined using DAMAS or the R-L

approach.

Deconvolution can also be performed for the continuous-scan approaches that obtain a full

CSM (CSMC and PFD). Figure 5.14 shows the deconvolved DAS map obtained through

CSMC. It is seen how the sidelobes are completely eliminated using all deconvolution ap-

proaches and the source is particularly sharp when using DAMAS and R-L.

Figure 5.15 is analogous to the previous one except that the CSM has been obtained with

PFD. Similar trends to those described for the CSMC approach are observed for all the

deconvolution methods.

The performance of the three distinct deconvolution methods that are utilized in this thesis

is evaluated in Fig. 5.16. The figure shows a slice of the noise source distributions obtained
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Figure 5.13: Deconvolved DAS noise source maps of the IJS obtained with FS using (a)
DAMAS; (b) CLEAN-SC; and (c) R-L.
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Figure 5.14: Deconvolved DAS noise source maps of the IJS obtained with CSMC using (a)
DAMAS; (b) CLEAN-SC; and (c) R-L.

with PFD and deconvolution, normalized by their peak level, at several frequencies. The

frequencies are the same as those shown in Fig. 5.11. The tendency of DAMAS to create

a source with a speckle-like nature is seen for f = 15 kHz, and R-L appears to perform
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Figure 5.15: Deconvolved DAS noise source maps of the IJS obtained with PFD using (a)
DAMAS; (b) CLEAN-SC; and (c) R-L.

better. CLEAN-SC results in a source that appears wider when compared to DAMAS and

R-L for all the frequencies studied here. Finally, it is seen how DAMAS and R-L result in

similar noise source distributions at high frequency. Similar trends were observed for the

deconvolved noise source distributions obtained with CSMC and have not been included in

this section for brevity.
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(a) (b)

(c)

Figure 5.16: Normalized source distribution obtained with PFD and the distinct deconvolu-
tion algorithms at several frequencies: (a) 15 kHz; (b) 50 kHz; and (c) 85 kHz.

5.3 Subsonic Jet Flow

The subsonic jet flow issuing from a convergent nozzle is analyzed next. This section displays

the corrected SPL together with the noise source distributions obtained with distinct methods

for the isolated jet and the distinct shielding configurations. In addition, the performance of

the CSMC and PFD is compared using the far-field coherence function.
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5.3.1 Isolated Subsonic Jet

Sound Pressure Level

Figure 5.17 plots the lossless narrowband SPL spectra for the isolated jet, measured with the

fixed microphones only, at various polar angles θ. The spectra are clearly directional with

the turbulence mixing noise undergoing strong variations with polar angle, peaking between

θ = 20◦ to 40◦ and decreasing significantly at the upstream polar stations, as seen in past

experimental works [93, 27]. The low frequency noise of the figure is associated with the

large-scale turbulence structures, which generate intense and directional acoustic waves that

peak in the downstream-most positions, detailed in Chapter 1. Notice how the frequency of

the peak of the SPL increases as the polar angle increases, suggesting a transition from the

dominance of noise created by large-scale to small-scale turbulence structures [29].

(a) (b)

(c) (d)

Figure 5.17: SPL spectra for the isolated jet at various polar angles. (a) θ = 23.94◦; (b)
θ = 41.35◦; (c) θ = 87.28◦; and (d) θ = 117.52◦.
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Noise Source Distribution

Figure 5.18 displays noise source maps computed with array layout P of Table 4.2, using

the DAS algorithm and the optimized block schedule for the continuous-scan approaches. A

dynamic range of 40 dB is used, with the local maximum set to 0 dB. This wide dynamic range

is chosen in order to properly visualize the noise source distribution at high frequency. The

noise source map computed with FS suffers from strong sidelobes. The source distribution is

completely distorted for frequencies higher than 20 kHz and no information about the source

can be extracted due to sidelobe contamination. The continuous-scan methods extend the

highest frequency that is resolved to close to 90 kHz. The source appears to extend as far as

x = 0.4 m downstream (∼ 30D) at low frequency and gets closer to the nozzle exit plane at

high frequency. This behavior has been documented in past experimental works [93, 92] and

responds to the physics of noise generation detailed in Chapter 1. Large-scale turbulence

structures are correlated over wider spatial regions and are more effective at generating noise,

which is demonstrated in the low frequency region of the noise source maps. An opposite

behavior is noted for the high-frequency noise, with narrow regions of correlation near the

nozzle exit. This behavior will be further explored next.

It is instructive to analyze the peak noise source location to study the potential effects of

the shielding plate. This is done in Fig. 5.19, where the peak noise source has been obtained

using the three continuous-scan methods. The peak noise location obtained with FS has

been obviated in the figure given the lower spatial resolution attained with the approach.

The peak low frequency noise producing region is located near x = 0.12 m (∼ 9D) and

the high frequency region is near x = 0.04 m (∼ 3D). The initial instabilities of the shear

layer which are being convected downstream due to the main flow keep growing as they

move away from the nozzle exit [94]. These instabilities grow into large-scale turbulence

structures that become efficient noise generators at a distance sufficiently far from the nozzle

exit. As such, it is expected that low frequency noise is generated further downstream from
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the nozzle exit. The high-frequency noise producing region is associated with small-scale

turbulence structures; with these eddies being already capable of generating noise near the

nozzle exit. These short-lived turbulence structures generate uncorrelated broadband noise

[95], as demonstrated by the flattening of the SPL seen in Fig. 5.17 at high polar angles [29]

and discussed in Chapter 1. The spatial distribution of the small- and large-scale turbulence

structures explain the above trends and why it is expected that the shielding surface will be

more efficient at preventing high frequency acoustic waves from reaching the microphones,

particularly at large polar angles. Additionally, this case is of particular importance since it

displays the physics of turbulence mixing noise that were discussed in the first Chapter of

this thesis.

(a) (b) (c) (d)
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Figure 5.18: DAS noise source maps of the isolated subsonic jet obtained using different
methods. (a) FS; (b) CSSM; (c) CSMC; and (d) PFD.

Figure 5.20 shows the deconvolved noise source distribution Φ(x, ω) obtained using DAMAS

(a), CLEAN-SC (b) and R-L (c) with the PFD technique. It is seen how the noise source

map is slightly sharpened when using deconvolution. However, the effects are generally

not very significant for this case. The DAMAS and R-L obtain a source distribution that

is moderately sharper to that obtained with CLEAN-SC. The trends for the CSMC were
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Figure 5.19: Location of the peak noise source for the isolated jet.

similar to those observed for PFD and have not been included in this work for brevity.

The deconvolved peak noise source distribution as a function of frequency was similar for

DAMAS, CLEAN-SC and R-L using CSMC and PFD, and similar to that shown in Fig.

5.19.

The accuracy of the PFD technique is examined in Fig. 5.21. The image shows the ranked

odd singular values (1, 3, 5, etc.) of Eq. 2.66 for the isolated jet. It can be seen how the

source appears to be well separated for f ≤ 30 kHz. However, the difference between the

distinct singular values reduces for f > 30 kHz and it is expected that the source will not

be as precisely represented. This is a direct manifestation of the randomness of the noise

generation for f > 30 kHz, and hints to the possibility of a high number of uncorrelated

sources present for this case. A similar trend was detected in Refs. [79, 21] when using

PFD in conjunction with NAH for a subsonic jet. Notice how the trends in Fig. 5.21 can

be related to the SPL spectra seen in Fig. 5.17, with the large-scale turbulence structures

being prominent noise generators at low frequency and the remaining structures creating
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Figure 5.20: Deconvolved noise source maps of the isolated jet obtained with PFD using (a)
DAMAS; (b) CLEAN-SC; and (c) R-L.

an approximately broadband acoustic field for f > 30 kHz, translating into difficulties in

separating the distinct orthogonal sources.

Figure 5.21: Ranked odd singular values (1, 3, 5, etc.) for the isolated subsonic jet.

The performance of the CSMC and PFD techniques can be compared using the far-field

complex coherence function. This is done in Fig. 5.39. The real part of the complex
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coherence of the acoustic far-field for a frequency of 5 and 30 kHz between a fixed microphone,

marked with a vertical blue line, and the scanning sensor (i.e., the distinct blocks) is shown in

black. The same quantity is displayed in red color for CSMC and the PFD. The corresponding

fixed microphone is removed in the computation of the CSMs for the CSMC and PFD

technique. The left column uses a microphone near θ = 46.4◦ as reference. The right

column uses a microphone near θ = 80.1◦. The frequency of 5 kHz is representative of the

noise generation of the large-scale turbulence structures, as seen in Figs. 5.21 and 5.17 and

peaks at shallow polar angles. At 30 kHz the noise emission appears to be produced by

uncorrelated sources. The CSMC and PFD technique capture well the far-field complex

coherence at 5 kHz, even when the corresponding microphones are removed, underscoring

the potential of the continuous-scan techniques. Note the large oscillations of Re(γ) present

for 40◦ ≤ θ ≤ 60◦. For θ > 60◦ the real part of the coherence function decays to almost

0, as broadband uncorrelated noise dominates. The far-field coherence function is not as

precisely captured when analyzing a frequency of 30 kHz, linked to an uncorrelated noise

generation. As stated earlier, this is due to the possibility of a high number of uncorrelated

sources present generating the acoustic far-field at that frequency. Recall that the PFD

uses the reference sensors to construct the matrix containing information about the number

of sources. As such, if the number of references is low, the spatial resolution obtained in

beamforming using PFD will decrease. On the other hand, the CSMC approach is formulated

as a weakly sparse eigenvalue problem. This implies that the full CSM is of full rank but

contains a small number of dominant eigenvalues. The number of dominant eigenvalues (or

singular values) is alike in both CSMC and PFD, thus the results are relatively similar.

5.3.2 Subsonic Jet with Installation Effects

The effects of shielding the subsonic jet flow shown in the preceding section are presented

next. The trailing edge of the shielding plate is placed at three different positions with
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Figure 5.22: Real part of the complex coherence in the acoustic far-field for two frequencies
using PFD and CSMC (in red), and using the raw data (in black).

respect to the nozzle exit to study its performance. The vertical offset between the surface

and the nozzle axis is kept constant.

Sound Pressure Level

Figure 5.23 plots the SPL spectra of the isolated jet and the jet with the shielding plate at

the different positions, measured with the fixed microphones only, for several polar angles θ.

The plate in the shielding configuration suppresses sound at high frequency but amplifies the

sound at low frequency, as noted in earlier works [91, 96]. If the shielding plate is sufficiently

close to the jet flow, the near-field hydrodynamic pressure fluctuations near the trailing edge

might be scattered into acoustic waves and create additional noise sources, which manifest

at lower frequencies. It can be seen that as the trailing edge of the plate gets closer to the

jet flow (Fig. 5.23), the low frequency bumps become more prominent at high polar angles,

which is explained by the presence of additional scattering effects. Within the range of the

measurements shown, a peak reduction of ∼ 12 dB is achieved at θ between 100◦ and 120◦

for L = 8D, and at a frequency of around 100 kHz. This is a consequence of a source that
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is more compact at high frequency (see Figs. 5.18 and 5.20), preventing the high frequency

acoustic waves from reaching those polar stations.

(a) (b)

(c) (d)

Figure 5.23: SPL spectra for the isolated (black lines) and with the shield at different
positions. Blue: L = 2D; Red: L = 5D; and Green: L = 8D. (a) θ = 23.94◦; (b) θ = 41.35◦;
(c) θ = 87.28◦; and (d) θ = 117.52◦.

Noise Source Distribution

Figure 5.24 displays noise source maps computed with array layout P of Table 4.2, using the

DAS algorithm and the optimized block schedule. For the sake of brevity, only the noise

source distributions obtained using the PFD technique have been included. In parallel with

the isolated jet, a dynamic range of 40 dB is used, with the local maximum set to 0 dB.

Image (a) corresponds to the isolated jet while image (b), (c), and (d) correspond to the

shielding configuration with L = 2D, 5D, and 8D, respectively. The position of the trailing

edge of the plate is marked with a vertical black line. The effect of the shielding surface is

evident from the figure. High frequency noise is significantly suppressed for L = 5D and

8D. This translates into difficulties in localizing the noise source at that frequency range,
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as seen in image (c) and (d). Additionally, note how the low frequency noise is exacerbated

for the same two cases, manifesting in the noise source map as a significant increase in the

strength of the sources from 1 ≤ f ≤ 5 kHz. This was seen in the SPL in Fig. 5.23.
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-40
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dB / (m Hz)

(a) (b) (c) (d)

Figure 5.24: DAS noise source maps of the isolated jet and the shielding configuration
obtained using PFD. (a) Isolated; (b) L = 2D; (c) L = 5D; and (d) L = 8D.

The effect of the reflector surfaces is further explored in Fig. 5.25. The image shows the

location of the peak source for the isolated case and the shielding configurations as a function

of frequency. It is seen how the shielding configuration with L = 2D does not significantly

change the position of peak noise generation when compared to the isolated case. However,

the location of the peak source for L = 5D and 8D displaces towards the trailing edge of

the plate, which indicate efficient shielding and noise scattering from the edge of the plate

at those frequencies.

126



Figure 5.25: Location of the peak noise source for the isolated jet and the shielding config-
urations.

5.4 Supersonic Jet Flow

This section presents the results obtained for the supersonic jet flow and the reflector config-

urations featuring the planar and conical surfaces described in Chapter 4. The section shows

the SPL of several fixed microphones and a study of the tone directivity performed using

the continuously-scanning microphone. High-resolution noise source images are included and

used to predict the screech frequency.

The study of screech tones is of vital importance in many aeroacoustic applications. These

high amplitude tones are present in a multitude of situations that pose a risk to aircraft

systems and human beings. For instance, sustained levels of exposure to high intensity noise

that includes screech tones has been associated with hearing losses of military personnel on

aircraft carriers. Additionally, these noise components might produce damage to aircraft

structures due to sonic fatigue failure in the vicinity of the nozzle exit. A variation of these

sustained and high-amplitude pressure oscillations, is found during rocket lift-off operations.
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As such, the last decades have seen significant efforts to fully characterize the screech feedback

loop, the tone diretivity and the location where these high-amplitude acoustic waves are

generated [4]. In addition, researchers have invested significant resources attempting to

mitigate tonal noise [97, 98, 28]. This work will present a way to modify tonal noise based

on changing the geometry at the nozzle exit by adding conical reflector surfaces.

In the presentation of the results of this section, the notation X(n) is used to designate a

screech tone, where X is the mode and n is the harmonic. The mode notation of Ref. [99]

is followed. Modes A1 and A2 denote toroidal oscillation. Modes B and C describe lateral

and helical oscillations, respectively. Reference [99] also identified an “unknown” mode E as

well as a mode that was not labeled. Inclusion of the 60◦ reflection surface gives rises to new

tones that do not fall into any of the widely-known oscillations modes (A1, A2, B, C).

5.4.1 Isolated Supersonic Jet

Selection of the Pressure Setpoint

The isolated convergent nozzle was initially run at a wide range of total pressures, ranging

from 239 to 335 kPa, in order to identify strong screech tones. Typically, the notation of

fully-expanded jet Mach number is used over the total pressure ratio. The jet fully-expanded

jet Mach number can be related to the ambient and total pressure as

p0
pamb

=
(
1 +

γ − 1

2
M2

j

) γ
γ−1

(5.2)

where p0 is the total pressure, pamb is the ambient pressure, Mj is the fully-expanded jet

Mach number and γ is the heat capacity ratio (γair ≈ 1.4). The corrected SPL spectra for
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the isolated nozzle at several fully-expanded jet Mach numbers is shown in Figs. 5.26 to

5.34.

(a) (b)

Figure 5.26: SPL spectra for the underexpanded jet at Mj = 1.18 various polar angles. (a)
θ = 62.1◦; and (b) θ = 97.8◦.

(a) (b)

Figure 5.27: SPL spectra for the underexpanded jet at Mj = 1.22 various polar angles. (a)
θ = 62.1◦; and (b) θ = 97.8◦.

Note how the intensity of the tones is relatively low at lower-valued fully-expanded jet Mach

numbers. As the quantity p0/pamb increases, the intensity of the tones also increases. It can

be seen that operation of the isolated nozzle at Mj = 1.33 and Mj = 1.34 produced very

prominent tones near θ = 90◦ and a strong tone near 9 kHz for θ = 62.13◦. Operation at

Mj = 1.34 produces a myriad of harmonics of the fundamental tone at the highest polar

station. As such, the total pressure corresponding to Mj = 1.34 was selected to perform the

subsequent experiments. It is important to mention that the tones for the cases presented
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(a) (b)

Figure 5.28: SPL spectra for the underexpanded jet at Mj = 1.26 various polar angles. (a)
θ = 62.1◦; and (b) θ = 97.8◦.

(a) (b)

Figure 5.29: SPL spectra for the underexpanded jet at Mj = 1.30 various polar angles. (a)
θ = 62.1◦; and (b) θ = 97.8◦.

(a) (b)

Figure 5.30: SPL spectra for the underexpanded jet at Mj = 1.33 various polar angles. (a)
θ = 62.1◦; and (b) θ = 97.8◦.
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(a) (b)

Figure 5.31: SPL spectra for the underexpanded jet at Mj = 1.34 various polar angles. (a)
θ = 62.1◦; and (b) θ = 97.8◦.

(a) (b)

Figure 5.32: SPL spectra for the underexpanded jet at Mj = 1.36 various polar angles. (a)
θ = 62.1◦; and (b) θ = 97.8◦.

(a) (b)

Figure 5.33: SPL spectra for the underexpanded jet at Mj = 1.40 various polar angles. (a)
θ = 62.1◦; and (b) θ = 97.8◦.
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(a) (b)

Figure 5.34: SPL spectra for the underexpanded jet at Mj = 1.43 various polar angles. (a)
θ = 62.1◦; and (b) θ = 97.8◦.

here were pertaining to jet oscillation mode B, implying the jet flow field was oscillating in

a lateral fashion.

Sound Pressure Level

This section presents the SPL spectra for the isolated supersonic jet configuration. This

case constitutes the basis for comparison with the supersonic jet flows with the reflector

surfaces placed at the nozzle exit. SPL spectra are presented based on the full record of the

microphone signals. They are plotted for several polar angles, at which one encounters a

richness of tones.

Figure 5.35 displays the lossless SPL spectra for the isolated jet. Tones B(1), B(2), B(3)

and B(4) appear very prominently. Their directivity is not uniform, hence their levels vary

depending on the polar station [2, 100]. The fundamental frequency of tone B(1) is approx-

imately 9200 Hz. Notice how tone B(1) appears in most of the surveyed stations. Tone

B(2) peaks near θ = 90◦, overtaking in amplitude tones B(1) and B(3). The tone is more

than 20 dB higher than the broadband noise near the peak emission region. The broadband

shock-associated noise appears to increase with polar angle, as seen in other works [2, 97].

The screech tone and its harmonics, up to B(4), are marked in the figure.
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Figure 5.35: SPL spectra for the underexpanded jet at various polar angles. (a) θ = 62.1◦;
(b) θ = 69.1◦; (c) θ = 83.8◦; and (d) θ = 97.8◦.

Tone Directivity

The directivity of the screech tones was investigated using the continuously-scanning sensor.

The “instantaneous” SPL spectra were used to infer the variation of tone levels versus polar

angle with high spatial resolution. The signal of the scanning sensor was divided into 299

blocks with 50% overlap. Each block contained 20000 samples, corresponding to a duration of

0.08 seconds. During this time, the sensor traversed 6.1 mm, yielding an angular resolution

∆θ ≈ 0.3◦ for the polar sector covered. A Fast Fourier Transform with size 4096 was

used to calculate the SPL spectra. This space-time procedure for producing highly resolved

SPL(θ) can be affected by the time intermittency of the tones. It is thus expected that

the polar directivity may contain spurious variations due to the tone unsteadiness. Results

are presented as waterfall plots of SPL versus f and θ. The spectra have been corrected
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for atmospheric absorption, microphone actuator response and free-field response, and are

referenced to a 1-foot arc (0.33 m). Only the frequency range containing tone B(1) and B(2)

is shown for clarity.

B
(2)

B
(1)

(a)

1

Figure 5.36: Directivity of SPL for the isolated supersonic jet.

Figure 5.36 shows how tone B(2) peaks at the nozzle exit plane and slowly decays as the polar

angle decreases until disappearing for θ ≤ 70◦. Note how tone B(1) appears to be present

throughout the scanned region. Its amplitude does not smoothly increase or decrease and

appears rather chaotic in the plot. This might be related to the unsteadiness of B(1) [28].

Noise Source Distribution

The beamforming results are obtained using the fixed sensors and the three continuous-scan

methodologies, analogous to the previous sections. Beamforming results are shown in Fig.

5.37, and have been obtained using DAS. In the presentation of the noise source maps, a

dynamic range of 20 dB is used, with the local maximum set to 0 dB. The noise source map

obtained with fixed sensors only lacks of the spatial resolution needed for aeroacoustic appli-
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cations. The source distribution at high frequency is greatly contaminated by the sidelobes

and no useful information can be extracted. This pattern has been seen consistently in this

work. The continuous-scan paradigm greatly increases the resolution of the beamformed

maps, also demonstrated by earlier works [1, 25, 26, 101]. It is seen how the CSSM, CSMC

and PFD techniques produce DAS noise source maps that attain a high spatial resolution

and are practically devoid of any sidelobe contamination.

Figure 5.37: DAS noise source maps of the isolated supersonic jet obtained using different
methods. (a) FS; (b) CSSM; (c) CSMC; (d) PFD.

The source appears to cover many nozzle diameters (up to x = 0.3 m ≈ 20D) at low

frequency, whereas it is closer to the nozzle exit at high frequency. This behavior has been

seen in past works [1, 25, 101], and has also been observed for the subsonic jet shown in

the preceding section. The jet nozzle exit is located at x = 0 m. The horizontal thin layers

containing periodic-like patterns represent the location of screech tones B(1), B(2), B(3), and

B(4). A weak source at x = 0 m is seen near 9 kHz in the continuous-scan maps, indicating

the interaction of the upstream-propagating waves of tone B(1) with the nozzle lip that close
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the feedback loop that is necessary to sustain jet screech. This effect is impossible to discern

using the fixed sensors only. At a frequency range of 30 ≤ f ≤ 50 kHz, periodic vertical

streaks can be seen with the three continuous-scan methods, and will be further studied next.

They are discernible to about x = 0.1 m ≈ 7D. These “shock sources” are associated with

the turbulence structures that are being convected downstream due to the main flow velocity

and their interaction with the shock-cell pattern of the jet. They are approximately aligned

with the shock-cells of the jet flow [92, 28]. Similarly to previous sections, it is demonstrated

how the continuous-scan approach reduces the need for deconvolution as the DAS maps are

already free of ghost sources. However, deconvolution approaches might still be applied to

further sharpen the noise source distributions.

The efficiency of the PFD technique at describing the supersonic jet flow is studied next.

Figure 5.38 shows the singular values of the diagonal of Σff,T , calculated using Eq. 2.66,

for the jet experiment. The values are plotted against the frequency range of interest. Only

the odd-numbered entries of the diagonal are displayed in the figure. It can be seen that

there is a relatively good separation between the largest and the smallest singular values

for frequencies up to 50 kHz, suggesting that the majority of the energy for such frequency

range can be described utilizing a reduced number of independent sources. The opposite

behavior is observed for frequencies larger than 50 kHz. The screech tone and its harmonics

appear to be well represented using one to three distinct sources. Thus, it is expected that

the beamforming results presented in this work will be more accurate for f ≤ 50 kHz, and

start degrading for f > 50 kHz. Notice this behavior is in sharp contrast to that found for

the isolated subsonic jet (see Fig. 5.21), where there was only good separation between the

distinct singular values for frequencies up to 30 kHz.

In line with the preceding section, the performance of the CSMC and PFD decomposition

techniques is evaluated in Fig. 5.39 for the supersonic jet case using the far-field complex

coherence function. The real part of the complex coherence for tones B(1) and B(2) between a
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Figure 5.38: Ranked odd-numbered singular values from matrix Σff,T for the isolated su-
personic jet. Highest to lowest singular value plots are shown from top to bottom.

fixed microphone, marked with vertical blue line, and the scanning sensor is shown in black.

The same quantity is displayed in red color for CSMC and the PFD. The corresponding

fixed microphone is removed in the CSMC and PFD technique. The left column uses a

microphone near θ = 90◦ as reference, where the emission for tone B(2) peaks. The right

column uses a microphone near θ = 65◦, which is found in an area of intense activity of tone

B(1) (Fig. 5.35). Both the CSMC and PFD technique capture well the far-field complex

coherence, even when microphone the corresponding microphones are removed. The plots

appear to be smoother for CSMC than PFD decomposition, but no significant differences

between the raw data (the black line) and the two methods are appreciated.

Figure 5.40 presents the results for DAMAS, CLEAN-SC, and R-L deconvolution algorithms

of the DAS noise source maps obtained with PFD. The CSMC deconvolution results were

of similar quality and will be only used in assessing the shock sources. The source becomes

highly localized and the small-scale spatial features of the jet flow are very well-resolved.

It is instructive to examine the source distribution around tones B(1), B(2), B(3) and B(4),

marked with horizontal lines in the DAMAS map. The source distribution near the B(1)

frequency appears to have some periodicity when deconvolved using DAMAS. However, this
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Figure 5.39: Real part of the complex coherence in the acoustic far-field for tones B(1) and
B(2) using PF decomposition and CSMC (in red), and using the raw data (in black).

effect is not seen when using the R-L deconvolution or CLEAN-SC. The periodicity might be

an artifact of the DAMAS approach which tends to create a speckle-like source distribution.

The strong reflection from the nozzle lip near x = 0 m, associated with the upstream-

propagating waves of tone B(1) is clearly visible. Reflections from the nozzle lip can also be

seen for tone B(2). The location of the source peak for tones B(2), B(3) and B(4) is between

0.084 ≤ x ≤ 0.088 m, corresponding to 5.9 ≤ x/D ≤ 6.25. This apparent location is 1D

downstream of the location from which the upstream-travelling waves were identified to be

originated from for mode B by Powell et al. [102], and Mercier et al. [103], but is in line

with previous experimental beamforming results (Ref. [101]).

The spatial pattern associated with the shock-cell structures near 30 ≤ f ≤ 50 kHz is further

explored in Fig. 5.41. A dynamic range of 12 dB is used, and the local maximum is set to 0

dB. The image displays a detail of the noise source map obtained with PFD (left column)

and CSMC (right column) using the R-L deconvolution (first row), DAMAS (second row)

and CLEAN-SC (third row). Moderate averaging in frequency, with a window of ∼ 1 kHz,
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Figure 5.40: Deconvolved noise source maps of the supersonic jet flow obtained with PFD
using different algorithms: (a) DAMAS; (b) CLEAN-SC; (c) R-L.

was used in obtaining the contour maps to remove the effects of spurious wiggles in the

source distribution. The black dashed vertical lines display the approximate location of the

peak source, obtained by finding the local maxima near 35 ≤ f ≤ 45 kHz. It is inferred

from the figure that the shock cell spacing, which is approximately the same as the spacing

of the shock sources, is between 1.17D and 1.20D. This shock cell spacing, obtained only

from the beamforming results, is close to that measured by Mercier et al. [103] for a jet at a

similar fully-expanded Mach number, obtained through Schlieren visualization analysis. In

their study, the shock spacing was s = 1.20D, approximately. A similar shock spacing is

inferred from the coherence-based noise source maps of Ref. [101]. This demonstrates the

potential of the continuous-scan approach at illuminating the fine details of the supersonic
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jet flow field. The images deconvolved with CLEAN-SC are not able to perfectly delimit the

shock sources due to the low performance of the method at separating closely-spaced sources

[82].

Figure 5.41: Detail of the shock cell pattern around tone B(4) obtained through deconvolution
of the PFD (left column) and CSMC (right column) using R-L (first row), DAMAS (second
row) and CLEAN-SC (third row).

The information drawn from Fig. 5.41 can be used to predict the screech frequency and

determine whether the shock source spacing is physical. In his pioneering work, Powell

[39, 38] identified a gain and a phase criteria that must be fulfilled for screech to become self-
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sustaining. With regards to the gain criterion, he established that the gain associated with

all the feedback stages had to be such that amplitude of the new disturbances should at least

match that of the previous ones. The phase criterion was formulated in terms of the noise

source location xns, the speed of the downstream- and upstream-propagating disturbances

(U1 and U2, respectively), the frequency fX(n) at which the shear layer is naturally unstable,

and the number of upstream and downstream propagating disturbances N as

N

fX(n)

=
xns
U1

+
xns
U2

+ ψ (5.3)

where ψ accounts for any delay associated with the receptivity at the nozzle lip or near

the reflection surface, or with the production of the upstream-propagating waves. Powell

originally assumed that screech was generated at one or more of the shocks, and incorpo-

rated an additional observation related to the screech directivity to predict its frequency.

He modeled the screech tone generation by using a series of phased stationary monopole

sources located at the shock tips [38, 39, 4]. The screech frequency was predicted based

on three monopole sources, connecting the shock spacing and convective Mach number of

the downstream-travelling perturbations. By requiring maximum directivity towards the

upstream direction (θ = 180◦) for the fundamental tone, Powell obtained the well-known

relation for the screech frequency

fX(n) =
Uc

s(1 +Mc)
(5.4)

where Uc is the convective velocity, s is the shock spacing, and Mc is the convective Mach

number, defined as Mc = Uc/a∞. Although there are different theories explaining how

screech is generated [4, 104], Powell’s original relationship is still widely used and provides

very accurate predictions of the screech frequency in many operation conditions, including

for the lateral oscillation mode of the isolated supersonic jet and assuming the upstream-

propagating waves move at the speed of sound a∞. Jet screech has also been studied by
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performing high-fidelity computational simulations, with recent efforts on round [105, 106]

and rectangular supersonic jets [107, 108, 109] aiming at studying the near acoustic field.

Gao and Li [110] used their numerical simulations on free round jets to extract a screech

frequency prediction formula that was based on the apparent location of the screech source.

Their study extracted the integer N of concurrent upstream and downstream disturbances

used in Powell’s general feedback equation (Eq. 5.3). Based on this, they formulated an

equation to predict the screech wavelength

λX(n) =
xns
N

1 +Mc

Mc

(5.5)

where λX(n) is the screech wavelength and xns is the effective position of the screech source,

that they located at the fifth shock cell. The screech frequency is fX(n) = a∞/λX(n) . Note

that this is similar to Eq. 5.3 with a time delay or phase lag ψ equal to 0 and with a velocity

for the upstream-propagating waves equal to the speed of sound. Gao and Li found that the

number of concurrent disturbances N was 5 for jets presenting flapping oscillations (mode

B), and 6 for supersonic jets oscillating in a helical fashion (mode C).

The screech frequency of tone B(1) is calculated using Eqs. 5.4 and 5.5, using two clearly

distinct features of the jet flow extracted from the beamforming results: the spacing of the

shock sources and the apparent location of the screech source. Using a convective velocity of

Uc = 0.7Uj, and a shock spacing of s ≈ 1.18D = 0.0168 m, obtained from the beamforming

results, a screech frequency of fs = 9150 Hz is predicted from Eq. 5.4. A cautionary note

with regards to the convective velocity must be made. There have been disparate convective

velocities reported for a supersonic jet at approximately the same fully-expanded Mach

number of this work. For instance, Panda et al. [47] reported Uc = 0.6Uj; Castelain et al.

[111] argue that Uc falls between 0.7Uj and 0.8Uj; and Mercier et al. [103] calculate Uc to be

between 0.6Uj to 0.67Uj. As such, selecting Uc = 0.7Uj appears reasonable with this regard.

The screech frequency using Uc = 0.6Uj is 8400 Hz, while that predicted using Uc = 0.8Uj is
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9800 Hz, accruing errors of around 8%.

Finally, using Eq. 5.5 with an approximate screech source location of x = 6D, a screech

frequency of fs = 9000 Hz is obtained, which deviates less than 2.5% from the measured

screech frequency of 9200 Hz. The ability to predict the screech frequency based on far-field

measurements alone demonstrates the high degree of spatial resolution that is obtained with

the continuous-scan methods.

5.4.2 Supersonic Jet with an Upstream Reflector

The influence of upstream reflector surfaces on jet screech is studied next. It is widely ac-

cepted that the phenomenon of jet resonance is highly dependent on the boundary conditions

of the experiment (lip thickness, screech reflection point, etc.). For instance, changes in the

lip thickness are associated with a reduction of the screech frequency for mode B, and also

associated with higher tone amplitudes when using nozzles with larger lip thicknesses. The

modification of the nozzle lip produces changes in the receptivity process, and can even re-

activate the screech feedback loop after its cessation [97]. It has also been reported that the

jet might be oscillating in a lateral (mode B) or helical fashion (mode C) depending on the

nozzle lip thickness at a given fully-expanded jet Mach number (see Fig. 1.4), and the tones

might show a degree of intermittency depending on the laboratory facility [4]. The presence

of upstream reflectors exacerbate this trend and might introduce new non-linearities, ener-

gizing the jet oscillation at lower nozzle total pressures. This highly nonlinear behavior is

also manifested in the underexpanded jet experiments presented in this work. Here, a 90◦

reflector plate and a 60◦ conical reflection surface are used to modify the screech feedback

loop and infer any changes in the spatial structure of the jet flow using the continuous-scan

microphone array. It will be demonstrated how the presence of these two surfaces changes

the emission dynamics, with new tones arising.
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Sound Pressure Level

Figure 5.42 displays the lossless SPL spectra for the isolated jet (black) and the jet with

the 90◦ reflector (red). Tones B(1), B(2), B(3) and B(4) are marked in the figure. It is seen

how addition of the planar reflector surface turns into an enhanced tonal emission, with

harmonics B(1) through B(8) arising. The frequencies of the tones are lower than those of

the isolated jet, indicating an increase in the shock-cell spacing that increases the screech

wavelength (thus reducing the frequency) [4]. The jet appears to be locked into oscillation

mode B for both cases. Note that the broadband shock-associated noise source level is higher

for the cases with the reflector, becoming especially evident at θ = 62.1◦ and θ = 69.1◦. The

directivity of the tones is highly non uniform, with the highest harmonics only appearing

at high polar angles. The intensity of tones B(1), B(2), and B(3) also undergoes significant

variation with polar angle. The lower screech frequencies for mode B that appear with the

90◦ reflector have been associated in the past with a slight increase in the shock-cell spacing

of the jet, increasing the screech wavelength. Thus, in order to meet the requirements of Eq.

5.3 with a larger shock spacing, the screech frequency must decrease.

Figure 5.43 displays the lossless SPL spectra for the isolated jet (black) and the jet with the

60◦ reflector (red). Tones B(1), B(2), B(3) and B(4), E(1) and E(2) are marked in the figure.

The new tones that arise for this case are marked in red. Similar as in the previous case, the

directivity of the tones is highly dependent on polar angle. It is seen how the addition of the

60◦ reflector changes the emission dynamics of the jet, with tones E(1) and E(2) appearing

prominently. Tone E(1) dominates most of the surveyed region and its amplitude does not

suffer strong oscillations with observation angle. Tone E(1) dominates most of the surveyed

region. Tones B(1), B(2), B(3) and B(4) also appear for the 60◦ reflector case, but they are

much weaker compared to their amplitudes for the isolated jet or the 90◦ reflector. It thus

appears how there is an energy transfer from the unstable frequency of mode B to that of

mode E. Notice how the tonal noise is reduced at the most upstream stations but is enhanced
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Figure 5.42: SPL spectra for the underexpanded jet with the 90◦ reflector at various polar
angles. (a) θ = 62.1◦; (b) θ = 69.1◦; (c) θ = 83.8◦; and (d) θ = 97.8◦.

at shallow polar angles. It is important to remark that tone E(1) or E(2) do not fall into any

of the widely-known jet oscillation mode categories (A1, A2, B, or C) and the jet oscillation

dynamics for this mode are unknown. It could be an extension of a toroidal mode or a new

unstable frequency of mode B which is reactivated due to the introduction of the reflector.

In addition, an interaction tone which is the product of mode B and E appears at high polar

angles, situated between the frequency of B(2) and E(2).

Tone Directivity

The directivity of the screech tones is investigated using the continuously-scanning sensor

using the “instantaneous SPL spectra”, in parallel to the analysis performed for the isolated

jet. The block size, number of blocks and polar angle resolution is kept the same. The
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Figure 5.43: SPL spectra for the underexpanded jet with the 60◦ reflector at various polar
angles. (a) θ = 62.1◦; (b) θ = 69.1◦; (c) θ = 83.8◦; and (d) θ = 97.8◦.

spectra have been corrected for atmospheric absorption, microphone actuator response and

free-field response, and are referenced to a 1-foot arc (0.33 m).

Figure 5.44 has been obtained for the jet with the 90◦ reflector. It shows how the directivity

patterns of tones B(2) and B(1) are relatively similar to those observed for the isolated

supersonic jet. Tone B(2) peaks near θ = 90◦ and slowly decays as the polar angle decreases.

Tone B(1) manifests more prominently throughout the scanned region, particularly at shallow

polar angles.

Figure 5.45 is calculated for the jet with the 60◦ reflector and shows the directivity of tones

E(1), E(2), B(1), B(2) and F (1). Tone F (1) appeared to be the complex interaction of tones

E(1) and B(1) as mentioned previously, with its frequency following fF (1) ≈ fE(1) + fB(1) .

Notice how tone E(1) appears prominently throughout the scanned region and tones B(1)
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Figure 5.44: Directivity of SPL for the supersonic jet with the 90◦ reflector.

and B(2) appear relatively suppressed. Tone F (1) only appears at high polar angles while

tone E(2) is present from 70◦ to 100◦. The amplitude of tone E(1) appears rather chaotic,

which might be a product of tone unsteadiness.
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Figure 5.45: Directivity of SPL for the supersonic jet with the 60◦ reflector.
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Noise Source Distribution

The noise source maps for the jet with the 90◦ reflector were similar to those obtained for

the isolated jet and have not been included in this work for brevity. The only differences

were the tonal noise and broadband shock-associated noise appeared more intense in the

spatio-spectral plots, and the shock-cell spacing was slightly higher (s ≈ 1.19D).

Figure 5.46 shows the deconvolved noisse source maps for the jet with the 60◦ reflector

obtained with DAMAS (a), CLEAN-SC (b), and R-L (c) using PFD. The overall trends are

similar to those of the isolated supersonic jet, with the sources extending further downstream

at low frequency and becoming more compact at high frequency. However, some significant

differences on the source distributions associated with the screech tones are noted. Similarly

as in the previous case, the nozzle exit is located at x = 0 m. Screech tones B(1), B(2), E(1),

E(2) and F (1), marked in the DAMAS contour plot, can be clearly seen in all the noise source

distributions, corresponding to the thin horizontal layers presenting periodic-like patterns for

the frequencies between 9 and 25 kHz. Strong reflection sources for tones B(1) and E(1) are

seen for x between -0.0216 and -0.018 m, corresponding to −1.52 ≤ x/D ≤ −1.25. This

corresponds approximately to the axial position of the edges of the reflector, which are strong

scattering noise sources. This clearly indicates the presence of upstream-propagating types

of waves for mode E, implying there is a feedback loop process associated with the frequency

of tone E(1) that must be present in order to sustain the high amplitude tonal emission. The

figure clearly indicates that installation of the 60◦ surface changes the point from which the

upstream propagating waves reflect back to the flow and scatter, producing changes in the

feedback loop length and introducing new unstable frequencies (mode E). In addition, it

appears that additional upstream-propagating components appear near the frequency range

of 12 to 16 kHz when using the reflector surface, a behavior also seen in Ref. [101], and not

seen for the isolated supersonic jet.

148



A certain degree of source periodicity is noted near tones B(1) and E(1). However, the

periodicity might be an artifact of the deconvolution process, for which DAMAS is especially

prone to. Finally, note how the CLEAN-SC deconvolution results in a noise source that does

not appear to be as sharly localized as that obtained with DAMAS and R-L. This is especially

clear near the screech frequencies at the nozzle exit, where the reflections and scattering from

the reflector surfaces appears to extend significantly compared to the other methods.

The apparent location from which the upstream-traveling waves emanate is not easy to

discern and appears to be different for each mode. Tone E(2) is generated near x = 0.1049

m ≈ 7.4D, and tone F (1) near x = 0.1012 m ≈ 7.1D. It is difficult to extract the location of

tone B(1) or B(2) from the noise source maps. This is in contrast with the source distribution

for the isolated jet (Fig. 5.40), where the location of the apparent screech source was clearly

seen for tones B(2), B(3) and B(4), and a direct manifestation of substantial changes in the

jet flow field produced by the upstream reflector. The intensity of tones B(2), B(3), and B(4)

is much lower for the reflector case (Fig 5.43), which is also reflected in the noise source

distribution by making the assessment of the generation of these tones cumbersome.

In parallel to the previous analysis, the spatial pattern of the shock-cell structures near

30 ≤ f ≤ 50 kHz is explored in Fig. 5.47. The figure has been obtained in an analogous

manner as Fig. 5.41. The shock sources appear to be spaced an average distance between

s = 1.16D to 1.19D, which is in line with the isolated jet. The shock spacing was expected

to be similar given that it is only a function of the fully-expanded jet Mach number (or the

nozzle pressure ratio). Powell’s formula for the screech frequency (Eq. 5.4) can be used to

predict a screech frequency of tone B(1) near 9100 Hz, similar to the measured frequency,

using Uc = 0.7Uj. The cautionary note with regard to the convective velocity that was stated

for the isolated jet is again reminded for this case.

The frequency of tone E(1) cannot be predicted using the same equation. In addition, it is

difficult to use Eq. 5.5 to predict the screech frequency of tone B(1) due to the inability to
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Figure 5.46: Deconvolved noise source maps of the supersonic jet flow with the 60◦ reflector
obtained with PFD using different algorithms: (a) DAMAS; (b) CLEAN-SC; and (c) R-L.

extract the approximate position of the screech source from the beamformed maps. This

issue also manifests in the coherence-based noise source maps of Ref. [101]. Regarding tone

E(1), Gao and Li’s formula does not correctly predict its frequency if one uses that the number

of concurrent upstream and downstream disturbances in the jet flow is 5 (i.e. N = 5), which

is what is found for mode B. However, the predicted screech frequency is remarkably close

to the measured value (within 1%) if one uses N = 8. This might be the case for mode E

or might just be a coincidence. Nevertheless, it is reasonable to believe that high screech

frequencies are associated with a higher number of concurrent upstream- and downstream-

propagating disturbances. For instance, it has been found [110] that jets oscillating in a

helical mode are associated with N = 6. Thus, given that it is true that fE(1) > fC(1) , it is
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expected that NE(1) > NC(1) .

The fact that mode B and mode E have different numbers of concurrent upstream- and

downstream-propagating waves might also hint at different mechanisms of screech generation.

The presence of the upstream reflector appears to produce changes to the jet flow, and

the screech modes appear to be very sensitive to such differences. It is possible that two

mechanisms are at work, exciting the shear layer near fB(1) and fE(1) at the same time,

even if the jet is oscillating in a lateral fashion. Shen and Tam [50] suggested that neutral

acoustic modes of the jet might also play an important role in the screech process. Similar

observation were made by Singh and Chaterjee [112] with regards to oscillation modes A1 and

A2. Whether mode E is supported by these neutral acoustic modes cannot be determined

from this results alone and was outside of the scope of the current work.

This section demonstrates the true potential of the continuous-scan paradigm at resolving

the very fine details of the jet flow field. Empirical and theoretical formulas have been used

to predict the screech frequencies of the supersonic jet, based on distinct features of the jet

flow field. The three continuous-scan methods (CSSM, CSMC, PFD) show a remarkable

higher level of spatial resolution when compared to the same array using fixed sensors only.
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Figure 5.47: Detail of the shock cell pattern around tone B(4) for the 60◦ reflector case
obtained through deconvolution of the PFD (left column) and CSMC (right column) using
R-L (first row), DAMAS (second row) and CLEAN-SC (third row).
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Chapter 6

Conclusions and Future

Considerations

6.1 Conclusions

The purpose of this work was to improve the state-of-the-art of the current beamforming

techniques that are widely used in noise source localization studies. Even though these

methodologies are used in a myriad of industries, an special emphasis is made within the

context of noise generated by propulsion-related devices. The improvement of the current

beamforming techniques required working with novel experimental setups that comprised

fixed and continuously-scanning sensors. This is in contrast with traditional techniques,

where only fixed sensors are utilized. The introduction of a continuously-scanning sensor

required special spectral estimation techniques [1] and division of the signal into quasi-

stationary blocks to suppress the non-stationarity in the correlations of sensors that had

a relative velocity. The Wigner-Ville Spectral estimator was used to quantify the non-

stationarity and find ways to suppress it.
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The signal segmentation process is key to fully exploit the benefits of the continuous-scan

paradigm and might introduce variability in the noise source localization process if it is not

done systematically. Chapter 3 analyzed the signal processing in terms of geometric effects,

spatial resolution, spectral accuracy, and adequacy of samples within each block. Criteria

for optimal block size, number of blocks, and block overlap within distinct frequency ranges

was formulated. Implementation of the method entailed discrete reductions in block size and

FFT size with increasing frequency. The end result consisted in patching the noise source

maps obtained with the variable-sized blocks. The role of the signal processing was analyzed

using the point spread function in Chapter 5. It was demonstrated how the proposed block

schedules suppressed the sidelobes to a great extent when compared to other, non-optimal

block configurations, and incurred into a high-resolution noise source localization process.

This work has presented three distinct methodologies to construct the noise source maps

utilizing phased arrays that contain continuously-scanning sensors. The first is a natural

extension of the traditional delay-and-sum algorithm and uses information of the distinct

cross-spectral submatrices (CSSM). The noise source map is obtained by combining the

non-repeated elements of the CSSMs for each block. This resulted in highly suppressed

sidelobes and an increased spatial resolution when compared to an array that utilized fixed

sensors only. A main drawback of the approach, however, is the lack of a global CSM that

is representative of the complete experimental run. This means that advanced beamforming

processes such as orthogonal or functional beamforming and deconvolution are impossible.

Two additional approaches were introduced to obtain a global CSM. The first consisted of

a cross-spectral matrix completion (CSMC) and partial fields decomposition (PFD) method

was the second. The first technique was originally proposed as a tool to extend the array

resolution from non-synchronous microphone measurements or replace faulty microphones,

and has been applied to synthetic and industrial noise sources in the past. This thesis

extended the method to the continuous-scan paradigm. The second method, PFD, has been

used in the past in near-field acoustic holography studies and beamforming and has been
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described in this work within the continuous-scan context. The CSMC and PFD yield noise

source maps with very high spatial resolution, and suppress the sidelobes to a greater extent

when compared to the CSSM approach.

The Partial Fields Decomposition technique can be used to develop low order models. The

technique decomposes the acoustic field into a numberMf of coherent and orthogonal partial

fields, whereMf is the number of fixed microphones. The leading partial fields can be studied

by displaying the singular values of the reference CSM. As such, this allows for the possibility

of describing complex acoustic fields utilizing a reduced number of partial fields depending

on the difference in the order of magnitude of the singular values. This technique can be

employed in the acoustic near-field, at a distance that is sufficiently close to the acoustic

source, in order to find the leading partial fields which can later be used in conjunction

with Boundary Element Methods (BEM) to propagate the radiation in the far-field. This

allows the detailed study of scattering and shielding effects for aeroacoustically-relevant noise

sources and enable further research in rapid noise assessment.

This thesis presented and briefly described three widely-used deconvolution approaches:

DAMAS, CLEAN-SC, and Richardson-Lucy (R-L). The details and assumptions of each

of the methods have been outlined, and their performance has been assessed on distinct

sources. They have been used in conjunction with the CSMC and PFD techniques and

improved the spatial resolution of the noise source maps a step further.

All the methodologies have been successfully applied to the imaging of an impinging jets

source. The impinging jets source is an approximation to a point source and provides an

ideal experimental background to disseminate the potential of the continuous-scan approach.

It has been demonstrated how imaging of the source with an array that contained fixed sen-

sors only resulted in a poor spatial resolution, with the noise source map being completely

dominated by the sidelobes. Addition of the continuously-scanning sensor improved the spa-

tial resolution significantly. The three continuous-scan approaches of this work resulted in
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a highly localized source. The localization of the noise source was improved using deconvo-

lution in conjunction with CSMC and PFD. It was demonstrated the superior ability of the

R-L over DAMAS and CLEAN-SC at obtaining a high-fidelity noise source maps. DAMAS

created a speckle-like source distribution while CLEAN-SC obtained a wider source.

A subsonic jet source in different shielding configurations was also analyzed. The continuous-

scan technique was used to discern the spatio-spectral distribution of the subsonic jet flow.

The location of the peak noise source as a function of frequency was discussed and the

potential effects of shielding were argued. Three shielding cases were presented, with the

jet flow not scrubbing on the plate for any of them. It was found that when the plate

is sufficiently close to the edge of the jet, additional noise is scattered from the trailing

edge. This is attributed to an energy conversion from near-field hydrodynamic disturbances

into acoustic wave scattering. The plate proved to be an efficient means of blocking high-

frequency noise at the highest polar stations. Its efficiency was more limited at the lower

polar stations, with a raise in the low frequency noise.

This work culminated with the analysis of a supersonic jet flow with several reflector config-

urations. Again, the distinct continuous-scan approaches were used to obtain high-fidelity

noise source distributions. It was experimentally found that operation of the jet in isolation

gave rise to strong screech tones pertaining to jet oscillation mode B (lateral oscillation).

Deconvolution used in conjunction with CSMC and PFD allowed resolution of the very fine

features of the jet flow field that have been discerned in past research works using optical

techniques or near-field experiments. This is a clear testament of the high degree of spatial

resolution that can be attained with the methods presented in this work. The location of the

screech source was used to predict the screech frequency with high accuracy. The shock-cell

spacing, obtained from beamforming, was also used to predict a similar screech frequency.

Reflector plates at the nozzle exit were used to illuminate the high-degree of non-linearity of

resonant supersonic flows. To that end, a 90◦ and a 60◦ degree reflectors were placed at the
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nozzle exit. It was found that addition of the 90◦ reflector reinforced tonal noise, with more

harmonics appearing and with the intensity of the tones becoming more prominent. How-

ever, this did not produce a shift in the jet oscillation dynamics. Addition of the 60◦ gave rise

to new tonal components that we categorized as mode E, coexisting with the tones of mode

B. Note that the frequency of these new tones does not appear to match any of the known

modes (A1, A2, B, C). It was demonstrated how the directivity of mode E was completely

different to that of mode B. Additionally, the 60◦ was capable of mitigating broad-band

shock associated noise and tonal noise at high polar angles, which might be beneficial in

terms of avoiding sonic fatigue failure of aircraft surfaces. The continuous-scan approach

was also used to find the location of the screech sources and to visualize the shock-cell pat-

tern. The latter was found to be similar to that of the isolated jet, enabling to predict a

screech frequency close to that of mode B. However, the screech frequency of mode E could

not be predicted, indicating that mode E might have a different oscillation behavior.

6.2 Future Considerations

A next step of this work that arises naturally is its extension to two-dimensional and three-

dimensional noise source mapping. The extension to two-dimensional sources will require

design and implementation of two-dimensional scanning microphone arrays. Some progress

has been made in that direction in the recent years [25, 26, 113] with the use of 2-dimensional

rotating arrays. Obviously, the extension the continuous-scan phased array setup to two-

dimensional source mapping requires careful tracking of the moving sensor(s) and synchro-

nization of the signals. In addition, the geometrical approximations of Eq. 2.17 must be

reevaluated. This requires reconsideration of signal division and potential modifications on

the optimal block schedule. The same considerations apply to the extension of the method-

ology to three-dimensional source mappings. Efficient deconvolution algorithms for 3-D
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inversion must yet be investigated, as calculation of the spatially-variant point spread func-

tion might be cumbersome depending on the grid size that is used and DAMAS, R-L and

CLEAN-SC could be significantly more expensive.

Another consideration and guidance for future studies relies on the aeroacoustic sources

that have been studied. This work has demonstrated that shielding surfaces in the vicinity

of a subsonic jet flow might convert hydrodynamic disturbances into acoustic waves that

scatter from the trailing edge of a flat plate, provided the plate is sufficiently close to the

jet boundary. Additional experiments could be performed using serrated surfaces with the

ultimate goal of minimizing such energy transfer.

Finally, a significant contribution of this work has been the study of supersonic jet flows.

This work demonstrated that the presence of angled surfaces upstream of the nozzle exit give

rise to new tonal components that do not fall into any of the known jet oscillation categories

(i.e., mode A1, A2, B, C, or D). The presence of a 60◦ reflector is particularly important,

as it contributes to the appearance of new tones from an unknown mode, categorized in

this work as mode E. The oscillation dynamics of mode E remain unknown. There exists

a possibility that the mode is an extension of one of the symmetric modes (A1, A2) but

additional near-field azimuthal data is required to validate this hypothesis. It could also be

possible that the jet was oscillating in a lateral fashion but had more unstable frequencies

with the addition of the reflectors. Future studies might explore the oscillation dynamics

of mode E and attempt at its complete categorization. To that end, sophisticated tools to

separate tonal components such as the Vold-Kalman filter will be required given that mode

B and E appear to be coexisting.

The ability of the continuous-scan methods at obtaining orthogonal partial fields could be

further exploited. Near-field acoustic experiments might be performed in an attempt to find

the partial fields that has to be imposed on a virtual radiating surface. The surface and

the partial fields could later be used to generate the acoustic far-field using a Boundary
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Element Method (BEM) approach and to compare with distinct source models and far-

field experimental data. The continuous-scan approach and the proposed signal processing

provides a very high spatial resolution when constructing the partial fields, which will be

useful at comparing the modeled and the measured pressure statistics at the radiating surface.
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