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Four-dimensional fluorescence microscopy—which records 3D im-
age information as a function of time—provides an unbiased way
of tracking dynamic behavior of subcellular components in living
samples and capturing key events in complex macromolecular pro-
cesses. Unfortunately, the combination of phototoxicity and pho-
tobleaching can severely limit the density or duration of sampling,
thereby limiting the biological information that can be obtained.
Although widefield microscopy provides a very light-efficient way
of imaging, obtaining high-quality reconstructions requires decon-
volution to remove optical aberrations. Unfortunately, most decon-
volution methods perform very poorly at low signal-to-noise ratios,
thereby requiring moderate photon doses to obtain acceptable
resolution. We present a unique deconvolution method that com-
bines an entropy-based regularization function with kernels that
can exploit general spatial characteristics of the fluorescence im-
age to push the required dose to extreme low levels, resulting in
an enabling technology for high-resolution in vivo biological imaging.

4D microscopy | low dose microscopy | noise-suppressing regularization

The study of dynamic processes is an important facet of cell
biology research. Fluorescently tagged proteins combined

with four-dimensional fluorescence microscopy, which records
3D image information as a function of time, provide a powerful
framework for studying the dynamics of molecular processes in
vivo. One of the most crucial challenges in 4D fluorescence
microscopy is to ensure that normal biological function is not
significantly perturbed as a result of the high doses of illu-
mination (phototoxicity) incurred during 4D imaging. Recent
work indicates that the maximal photon dose that avoids bi-
ological perturbation is 100- to 1,000-fold lower than that
typically used for in vivo imaging (1). Dose limitations are
even more challenging, given the desire to densely sample
in time or to record over extended periods, especially in the
context of analyzing multiple subcellular components via mul-
tiwavelength imaging.
Under normal imaging conditions, widefield microscopy com-

bined with image restoration using deconvolution methods pro-
vides an excellent modality for multiwavelength 4D imaging as
it makes very efficient use of the illuminating photons. However,
its effectiveness, in particular its ability to resolve subcellular
detail sufficiently in the presence of noise, is limited by the per-
formance of the deconvolution method. Such limitations can se-
riously degrade image quality at the low signal levels required for
unperturbed in vivo imaging. The noise behavior of the decon-
volution algorithm is determined by the efficiency of the noise
stabilization term, known as the regularization functional. In
particular, the functional’s ability to discriminate the noise-related
high frequencies from weak high frequencies in the signal ulti-
mately determines the final resolution of the deconvolution.
Currently used noise-stabilization techniques are largely based
on ad hoc formulations and perform poorly, leading to a serious
loss of resolution at the low signal-to-noise ratios required to
maintain the illumination at safe levels during multiwavelength

4D imaging. Surmounting this problemwould dramatically increase
the amount of biological data that could be safely acquired,
paving the way for a much deeper understanding of the dynamics
of biological processes.
We propose a unique deconvolution method that uses a reg-

ularization functional constructed using an entropy-based for-
malism that is tailored to exploit general spatial characteristics of
the fluorescence images combined with the more robust use of
second-order derivatives in the regularization functional. This
entropic-based regularization suppresses large amounts of noise
while at the same time preserving the essential details. Hence the
method brings out details that are nearly invisible in the raw
extremely noisy images and yields a substantially improved res-
olution. Using several datasets of fixed samples recorded at high
and low doses, we quantitatively study the performance of our
method, using Fourier shell correlation methods, and dem-
onstrate that entropy-regularized deconvolution (ER-Decon) re-
veals considerably more detail of the underlying structure
compared with existing methods.

Results
Mathematical Formulation of the Method. Deconvolution is per-
formed as a minimization task with the cost to be minimized being
a weighted sum of (i) a data fidelity term measuring the goodness
of the fit to the data, (ii) a functional to enforce smoothness (noise
suppression), and (iii) a term to promote positivity. Mathemat-
ically, the minimization problem is stated as
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goptðrÞ= argmin
g

"X
r

ðhðrÞ p gðrÞ− f ðrÞÞ2 + λJRðgÞ+ λnJNðgÞ
#
;

[1]

where r= ðl;m; nÞ represents the 3D pixel index, f ðrÞ is the mea-
sured 3D widefield image, hðrÞ is the 3D point spread function
(PSF), JR is the functional for enforcing smoothness, which we
call the regularization functional, and JN is the functional for
enforcing positivity. Here, λ is the regularization weight, which
will allow a trade-off between the data fidelity and smoothness.
Although the data fidelity term could be either quadratic as in
the above equation or nonquadratic, nonquadratic data-fitting
methods (2–6) are not practical on large datasets.
A smoothness-enforcing functional (hereafter referred to as

the smoothness functional) is typically composed of derivatives
because derivatives work as cost-effective high-pass filters, com-
plementing the frequency support of the microscope’s transfer
function. The earliest work that used derivatives constructed the
smoothness functional as the sum of squares of the image gra-
dients (7). The main advantage in minimizing the sum of squares
is that the cost can be expressed in Fourier space and the solution
can be obtained in a single step. Unfortunately, such methods are
notorious for their low resulting resolution. As an improvement,
many recent methods use the absolute value of derivative either
directly (8, 9) or indirectly in the form of transforms containing
built-in derivatives (10) and are considered to be superior to
quadratic regularization methods (known as L1 or total variation
methods). Even though there is no theoretical proof for their
superiority, it is generally believed that their improved perfor-
mance stems from the fact that the weaker penalty of minimizing
the absolute value allows some high derivative points, whereas
quadratic minimization tends to forbid high derivative points.
The main problem is that most of the practical methods use first
derivatives and hence the solution takes the form of piecewise
constants when the noise is high. This is due to the fact that
minimizing first derivatives does not give sufficient freedom for
natural intensity variations of fluorescence images. Although this
problem can be alleviated by using second-order derivatives, there
are no practical numerical methods for handling the resulting
complexity although there has been a recent attempt (11).
Our goal in this paper is to develop a method powered by (i)

an improved and much more robust second-derivative–based
regularization functional and (ii) a unique problem-specific com-
putational method that can handle complexity resulting from
using the second derivatives in regularization. The improved ro-
bustness of the regularization functional originates from two modi-
fications that we propose to commonly used forms. To elaborate
in more mathematical terms and to lead to the proposed mod-
ifications step by step, let fLiðrÞ; i= 1; ::; 6g be the digital filters
yielding discrete implementation of all possible second-order
derivatives. Their exact form is given in SI Text. Define

RgðrÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX6
i= 1

ðLiðrÞ p gðrÞÞ2
vuut : [2]

The standard quadratic regularization functional can be ex-
pressed as

H2ðgÞ=
X
r

R2
gðrÞ; [3]

whereas the more robust L1 regularization functional can be
written as

H1ðgÞ=
X
r

Rg
�
r
�
; [4]

which has been recently recognized to yield high-resolution
restoration of images (8, 9, 12). As mentioned before, the main
reason for the superiority of H1 is that H2 forbids large derivative
values, whereas H1 allows few points to have large derivative
values, thereby better matching the typical distribution of deriv-
ative values in images. This effect is commonly known as the
sparsifying effect of L1 regularization. Even though L1 regulariza-
tion has been applied for restoration of fluorescence images (8, 11),
it does not exploit any specific properties of fluorescence images.
We first observe that, in fluorescence images, the percentage

of points having nonnegligible derivative magnitudes is much
lower than that in general images. Also, among the points that
have nonnegligible derivative values, the ratio of high-magnitude
derivative points vs. intermediate-magnitude derivative points is
much higher compared with more generic images. Hence, using a
weighting function that becomes flatter at high values will better
preserve the intensity variations in fluorescence images. We
propose to use

ĤðgÞ=
X
r

log
�
Rg

�
r
��

=
1
2

X
r

log
�
R2
gðrÞ

�
; [5]

which is flatter than H1 at high values of derivative magnitude.
To avoid a logarithm of zero, we modify it as

ĤðgÞ= 1
2

X
r

log
�
«+R2

gðrÞ
�
; [6]

where « is a small positive number. It is expected that this log-
arithmic weighting will have a more pronounced sparsifying ef-
fect and be better suited for restoring intensity variations in
fluorescence images.
The second proposed modification is based on the following

observation: In fluorescence images, compared with general types
of images, high-intensity points are more sparsely distributed and
are mostly colocalized with high-magnitude derivative points.
Hence, under the sparsifying effect of the logarithm, including the
intensity as well as the derivative magnitude will better capture
the image patterns. Hence we modify ĤðgÞ as

ĤðgÞ= 1
2

X
r

log
�
«+E2

gðrÞ
�
; [7]

where EgðrÞ is given by

EgðrÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðrÞ+R2

gðrÞ
q

: [8]

Although one could include a separate weighting factor to
distinguish the two terms inside the square root, based on decon-
volution experiments, this seemed unnecessary. As we dem-
onstrate experimentally, these two modifications will lead to a
significant improvement in the output resolution. In SI Text,
we interpret the difference between H1 and Ĥ in an entropy
minimization viewpoint and explain why Ĥ is better suited for
fluorescence images.
To complete the development of the deconvolution method,

JR in Eq. 1 should be replaced by Ĥ of Eq. 7, and, JN should be
explicitly specified. We construct JN as follows:

JNðgÞ=
X
r

NðgðrÞÞ;

where
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NðgðrÞÞ = 0; if gðrÞ≥ 0
= g2

�
r
�
; otherwise: [9]

Hence the deconvolution problem becomes

goptðrÞ=
argmin

g

"X
r

ðhðrÞ p gðrÞ− f ðrÞÞ2 + λ
X
r

log
�
«+E2

gðrÞ
�

+ λn
X
r

NðgðrÞÞ
#
:

[10]

Through reconstruction trials, we found that an appropriate
choice is λn = 100λ, assuming that f ðrÞ has been normalized to
the range [0,1] . An algorithm to solve the above minimization
problem is given in SI Text and Figs. S1 and S2. We name our
method ER-Decon. Note that λ and « are the only data-depen-
dent user-adjustable parameters, with λ affecting smoothness
and « most affecting restoration of weak intensities. Ideally, both
of these parameters should be optimized for each class
of problem.

Experimental Validation. We validate the performance of the ER-
Decon method on datasets with high levels of noise and compare
it to two well-established modern methods that have the po-
tential to perform well in the presence of significant noise: the
Huygens constrained maximum-likelihood method from Scien-
tific Volume Imaging and DeconvolutionLab’s wavelet-based
deconvolution (10).
To quantitatively assess the performance of each method, we

cross-validate the restoration obtained from low-dose data by
correlating it with data from the identical fixed specimen imaged
at high dose. To quantify the correlation at different levels of
resolution, we use the Fourier shell correlation routinely used in
the cryo-electron microscopy field, CðηÞ, to measure the agree-
ment between the low- and high-dose results at various levels of
resolution, η. To define the correlation, let ghðrÞ and glðrÞ be the
deconvolved images obtained from high- and low-dose measured
images, respectively. Let GhðωÞ and GlðωÞ be their Fourier trans-
forms, where ω is the 3D frequency vector. Then the correlation
computed within the spherical shell of radius η in Fourier space is
given by

CðηÞ= <Gh;Gl>ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<Gh;Gh>η

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<Gl;Gl>η

p ; [11]

where

hGh;Gliη =
Z

kωk=η

Gh
�
ω
�
Gl

�
ω
�
dω

with k•k denoting the modulus of its vector argument. Regard-
less of the deconvolution method, we optimized all parameter
settings, choosing the minimum amount of smoothing required
to obtain a deconvolved output without any background oscilla-
tions. Further, we set the number of iterations to 100.
In the first biological experiment, we imaged immunolabeled

mitotic spindles of fixed Drosophila S2 cells (Methods) in which
the image stacks were acquired with dose levels differing by a
factor of 20. Deconvolution results are given in Fig. 1, where in
each image the upper part represents an xy section and the lower
part represents an xz section for each of the different methods. It
is clear that ER-Decon performs best at both dose levels. Al-
though the resolution yielded by ER-Decon from the high-dose
image is noticeably better than that by the other two methods,

the superiority of ER-Decon is much more pronounced at the
low-dose levels. In particular, ER-Decon’s output from the low-
dose raw image resolves almost all of the microtubules, whereas
many have merged together in the Huygens and Deconvolu-
tionLab results. Note that for a new type of sample, optimization
of parameters for ER-Decon typically involves scanning through
three or four values for each of the two parameters. Typically,
the optimal value of the parameter « appears to be inversely
proportional to λ, and hence a full 2D grid search is rarely
necessary. Ongoing effort is aimed at simplifying this process
even further. Fig. 2 shows the corresponding Fourier shell
correlation plots clearly demonstrating that ER-Decon achieves
considerably higher correlation even at the cutoff frequencies.
In the second experiment, we imaged green fluorescent

protein (GFP)-labeled yeast vacuoles, where the yeast strain
was obtained from the GFP library (13). The cells were fixed
and mounted as described in Methods and image stacks were
acquired with four different dose levels (1.5%, 3%, 33%, and

Fig. 1. Deconvolution results for Drosophila spindle. (A and E) High- and
low-dose raw images; (B and F) ER-Decon output from A and E; (C and G)
Huygens’ output from A and E; (D and H) DeconvolutionLab’s output from A
and E. In each image, the upper part is a lateral section, and the lower part
is a vertical section. (Scale bar: 4 μm.) ER-Decon’s parameters: λ = 0.05, 3
(B and F ); « = 0.01, 0.001 (B and F ).

Fig. 2. Fourier shell correlation between high- and low-dose images. Cor-
relation plots for the Drosophila spindle displayed in Fig. 1. The vertical line
is the xy theoretical resolution limit.
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100% of highest intensity). As shown in Fig. 3, ER-Decon
again provides a significantly improved resolution at all dose
levels. As before, the most striking improvement is at the lowest
dose, where ER-Decon clearly resolves the shell structure of the
vacuole even though the structure is completely obscured in the
raw image. By contrast, the other methods fail to clearly resolve
the shell structure.
In the third experiment, we imaged GFP-labeled synaptone-

mal complex protein Zip1 protein filaments (14) in yeast cells
(Methods). Emboldened by the previous results, we acquired
two stacks with dose levels differing by a factor of 400. It is clear
from the deconvolved images (Fig. 4) that the high-dose results
of all three methods have comparable resolution, whereas the
low-dose results differ significantly. In particular, ER-Decon’s

output from the low-dose stack reveals the filamentous structures
despite the structure being nearly invisible in the raw images.
On the other hand, the results of Huygens and Deconvolu-
tionLab show only blob-like structures. Fig. 5 shows the corre-
sponding Fourier shell correlation plots, from which it is evident
that ER-Decon achieves a considerably higher correlation even
at the cutoff frequencies.
In the final experiment, we imaged Zip1 filaments of live yeast

cells undergoing meiotic recombination (Methods). For simplic-
ity in comparison, color-coded z-projections of the raw image
sequence and the deconvolved sequences at selected time points
are shown (Fig. 6). The images confirm that ER-Decon gives
significantly higher resolution on unfixed, live samples. In par-
ticular, closely spaced filaments are clearly resolved, whereas
the other methods fail to resolve these structures. For example,
the upper arrow in Fig. 6 shows a filament traversing from
6:5 μm depth to 8 μm depth in the ER-Decon output, which
cannot be revealed by the other methods. Further, the lower ar-
row highlights that two filaments in ER-Decon output located at
depths 6.5 μm and 7.5 μm are clearly resolved, which again cannot
be resolved in the output of the other two methods. Movie S1
demonstrates the superior performance of ER-Decon for all 90
time points.
It should be emphasized that our method is applicable to any

kind of imaging system as long as a PSF is available, and one can
expect the same kind of relative improvement in resolution.
Considering computational complexity, our method takes less
than 1 h to deconvolve images of size 512 × 512 × 32.

Discussion
Multiwavelength 4D live cell imaging is an invaluable tool for
understanding the complex interrelationships among various
molecular components of live cellular processes. However, to

Fig. 3. ER-Decon (B, F, J, and N) output from A, E, I, and M; Huygens’
output (C, G, K, and O) from A, E, I, and M; DeconvolutionLab’s output
(D, H, L, and P) from A, E, I, and M. (Scale bar: 2 μm.) ER-Decon’s
parameters: λ = 0.2, 8, 200, 650 (B, F, J, and N ); « = 0.01, 0.001, 0.0001,
0.00001 (B, F, J, and N ).

Fig. 4. Deconvolution results for a yeast Zip1 filament. (A and E) High- and
low-dose raw images; (B and F) ER-Decon output from A and E; (C and G)
Huygens’ output from A and E; (D and H) DeconvolutionLab’s output from A
and E. (Scale bar: 2 μm.) ER-Decon’s parameters: λ = 0.05, 700 (B and F); « =
0.01, 0.00001 (B and F).
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draw reliable conclusions from observations, it is important to
ensure that normal cell functioning is not disrupted as a result of
the illumination. Due to phototoxicity caused by light-generated
oxygen radicals, it is challenging to ensure that illumination does
not alter the biochemical processes while imaging in 4D, as it
involves higher levels of accumulated illumination dose espe-
cially in multiwavelength imaging. To fully avoid this problem,
it appears necessary to reduce the illumination intensity by 100-
to 1,000-fold compared with levels conventionally used (1). This,
in turn, leads to severe loss of resolution due to high levels of the
resulting noise, thereby hindering the accurate study of live cell
dynamics. Hence, it is important to optimize every component of
the imaging system such that the resolution is maximized for a
given illumination dose level or, equivalently, the dose level re-
quired for ensuring a certain resolution is minimized. From this
viewpoint, here we have addressed the computational part of a
widefield imaging system, the deconvolution.
To maximize the resolution resulting from deconvolution, we

optimized the noise stabilization term, the regularization func-
tional, because it solely determines the obtainable resolution. We
constructed a regularization functional that is specifically tailored
for spatial characteristics of fluorescence signals and uses ap-
propriately weighted second derivatives to achieve robust be-
havior. This contrasts with other deconvolution methods that
use general-purpose regularization functionals, using first deriv-
atives. We named this method ER-Decon because we con-
structed the regularization functionals using an entropy-based
formalism.
Even though widefield deconvolution has long been a topic of

research, ER-Decon is a significantly improved method designed
to exploit very general spatial characteristics of fluorescence
images, using an entropic formulation. As a result, it is able to
distinguish between spatially correlated weak signal high fre-
quencies and random noise far better than the other methods,
and hence its output resolution differs from that of the existing
methods by an unusually high magnitude. More specifically,
there are three factors that make ER-Decon different from other
methods and that combine to provide the improved performance:
(i) The method uses second derivatives to provide sufficient
freedom from fluorescence intensity variations, contrasting with
other 3D image restoration methods that use first derivatives; (ii)

it combines the image intensity with the derivative magnitude to
capture patterns of intensity variations routinely found in fluo-
rescence images; and (iii) it uses logarithmic weighting on the
combined derivative and intensity magnitudes to better adapt to
the relative distribution of high-derivative and high-intensity points
found in fluorescence images. As a consequence, ER-Decon can
reveal unprecedented structural detail in data with extremely low
levels of signal. This means that ER-Decon can enable the study of
dynamic cellular processes at unique exposure levels, thereby
opening unique possibilities in cell biology research.

Methods
Fixed Drosophila Spindle. Schneider S2 cells were cultured in Schneider’s
Drosophila medium supplemented with 10% (vol/vol) heat-inactivated FCS
(Gibco BRL) and penicillin/streptomycin. Drosophila S2 cells were plated for 3 h
on a 35-mm glass-bottom Delta T dish (Bioptechs) coated with Con A (Sigma
Aldrich) to promote cell spreading. Cells were fixed with −20 °C methanol for
20 min, rehydrated in PBS, and then blocked with 3% (wt/vol) BSA in PBS/
0.1% Triton X-100. Anti–α-tubulin antibodies (mouse DM1α ; Sigma Aldrich)
were diluted into blocking solution (1:200) and applied to fixed cells for 1 h
followed by extensive washing with PBS/0.1% Triton X-100. Fluorescent

Fig. 5. Fourier shell correlation between high- and low-dose images. Cor-
relation plots for the yeast ZIP1 filament displayed in Fig. 4. The vertical line
is the xy theoretical resolution limit.

Fig. 6. Depth color-coded z-projections of deconvolved live images of yeast
Zip1 filaments. Upper arrow points to a filament in ER-Decon output tra-
versing from 6 μm depth to 8 μm depth, which cannot be resolved from the
outputs of the other methods. Lower arrow points to two filaments in ER-
Decon output located at depths 6.5 μm and 7.5 μm, which again cannot be
resolved from the output of the other two methods. ER-Decon’s parameters:
λ = 12; « = 0.001.
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secondary antibodies (Alexa 488-conjugated anti-mouse; Invitrogen) were
used at a final dilution of 1:500 in blocking buffer. Samples were mounted
in PBS, 50% (vol/vol) glycerol, 2% (wt/vol) propyl gallate solution as an
antifading agent.

Fixed Yeast Vacuoles. The yeast strain used was obtained from the GFP library
(13) and carries a marker for the limiting membrane of the vacuole (MATa,
his3Δ 1, leu2Δ 0, met15Δ 0, ura3Δ 0, VPH1-GFP::HIS3). Five-milliliter liquid
YPAD cultures were inoculated with this strain and cultured at 30 °C for
approximately 24 h. By this point, the cells have begun a diauxic shift, and
vacuole morphology tends to become more fused and spherical. Cells were
fixed using paraformaldehyde as described in the next section, and aliquots
of cell culture were mounted on microscope slides, using Con A-treated
coverslips. Samples were imaged on the OMX microscope (University of
California, San Francisco), using a 100× 1.49NA APO TIRF oil-immersion
Olympus objective.

Fixed Yeast Zip1 Filaments. The yeast strain yCA90 is a MATa/MATa diploid in
the BR1919-19B background (15). The genotype is zip3::LYS2/zip3::LYS2
zip1::LEU2/ ZIP1-GFP(700) lys2/LYS2 and is homozygous for his4-260, leu2-3,
112, ura3-1, ade2-1, thr1-4. Strains were sporulated in 10mL of 2% potassium
acetate at 30 °C for 15 h before 1 mL was pelleted and resuspended in 4%

formaldehyde, pH 7.0, in PBS. Cells were fixed for 15 min and washed
twice with 1× PBS, pH 7.0. A total of 4.6 μL of suspended cells was imaged
under a 22 × 22 coverslip coated with 0.1 mg/mL Con A.

Live Yeast Zip1 Filaments. Two milliliters of diploid Zip1-GFP yeast strains was
grown for 20 h at 30 °C in YPD media. Cells were spun down and transferred
to 10 mL 2% potassium acetate to sporulate for 12–14 h at 30 °C. Cells were
plated in a Delta T dish (Bioptechs) coated with 0.1 mg/mL Concanavalin A
(Sigma) and spun at 3,000 rpm for 5 min to adhere cells to the dish. Two
milliliters of 2% potassium acetate at 30 °C was added to the dish to cover
the cells. Cells were imaged at 30 °C on the OMX microscope.
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