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ABSTRACT

An analytical procedure is presented for the evaluation of the
nonlinear dynamic response of thin shells of arbitrary geometry.
Geometric nonlinearity associated with finite deflections of the
structures is considered; the material is assumed to remain elastic
throughout the analysis,

A quadrilateral finite element, developed by C. A. Felippa is
used for the elastic stiffness derivation, A lumped mass formulation
is used in the dynamic analysis., The natural frequencies and vibra-
tional mode shapes of the structure are calculated using an inverse
iteration technique, Damping in the structure is assumed to be pro-
portional to mass and/or stiffness. The nonlinear dynamic response is
obtained using a direct step-by-step integration of the equations of
motion,

Several examples are analyzed. The results show excellent agree-
ment when compared with existing solutions. Convergence in the dynamic
analysis with respect to the refinements of the mesh size and the time

step are also studied,
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1. INTRODUCTION

The extensive use of thin shell structu?es in modern construction
has created a need for better understanding of their behavior - both
linear and non-linear as well as both static and dynamic., For a
linear problem, the solutions (displacements, stresses, etc,) are
proportional to the applied loads, but for a non-linear problem, this
proportionality does not exist, The reason for considering geometric
non-linearity due to finite deformation of the structure is that the
behavior of shells is very sensitive to their shapes. Therefore, a
non-linear solution may be very much different from a linear one when
the deflection of the structure becomes finite (as against the infini-
tesimal deformation considered in a linear analysis)., In this case,
results based on a linear analysis may be misleading and unconserva-
tive, For many types of shell structures, the critical stress and
deflection response may result from time varying loads such as wind
gusts or earthquake ground.motion. In order to evaluate the dynamic
response behavior, it is necessary to formulate special analysis
procedures which account for the effects of inertia and damping forces,
The inclusion of these forces which are dependent on the displacement
behavior of the structure leads to a further complication in the
analysis procedure, 1In order to study the response of shell structures
under the time varying loadings, such as wind and earthquake, their
dynamic behavior has to be studied.

In classical shell theory, even for linear static case, the
governing differential equations can only be solved for a limited num-

ber of shells with simple geometry and subject to some special types




of loads, Following the development of high speed computers, various
numerical procedures have been used to analyze certain classes of
shells but their usage is still limited. No method for systematic
analysis of shells of arbitrary shapes with arbitrary boundary con-
ditions, changing thickness and subject to arbitrary loadings was
available until the introduction of the Finite Element Method.

During the past ten years, the Finite Element Method has been
used in solving many kinds of structural and mechanics problems, A
flat element suitable for the analysis of thin shells of arbitrary
geometry may be constructed by superposing a plate bending element
and a plane stress element. Two elements of this type, developed by
C. P. Johnson (19) and A. J. Carr (3) have been successfully used.
With their own advantages and disadvantages, both elements are
applicable to general shell analysis, These two elements represent
one type of approach to finite element shell analysis in which the
structure is represented by an assemblage of flat elements.  An al-
ternate approach using a curved element based on a degenerated three-
dimensional solid element (1) has recently been developed, and shows
considerable promise of success,

The dynamic response of a structure may be obtained either by a
mode superposition method (16) or by a direct step-by-step integra-
tion of the equation of motion (27). In the mode superposition
analysis, the vibration modes of a structure are obtained by solving
an eigenvalue problem and the equations of motion are then decoupled
and solved, The dynamic response may then be obtained by superposing
the contribution from different modes. This method can be applied

only to linear systems., On the other hand, the direct step-by-step




integration technique reduces the coupled equations of motion to an
equivalent static problem and may be used for both linear and non-
linear systems,

The classical way of solving a non-linear problem in which the
non-linear equations were set up and solved, can be applied only to
simple structures. In a more general case, a linearized approach,
either by an iteration procedure (26) or by an incremental analysis
(9), has to be used., The iteration procedure uses a series of linear
analysis and calculates the out-of-balance force to get the equili-
brium position, This method can only be applied to the static prob-
lems., The incremental analysis is carried out by applying the load
in small increments and a linear analysis is performed for each 1load
increment. This technique can be used for both static and dynamic
problems,

With regard to the field of non-linear dynamic behavior of
shells, some work (3, 13, 20, 26, 34, 39, 41, 42) using the Finite
Element Method has been carried out for several special problems, A
linear dynamic analysis for shells of arbitrary geometry was pre-
sented in Ref, 3, All the other references listed above deal with
either plates or axisymmetric shells, and most of them consider
static non-linear problems only., The dynamic non-linear behavior of
many shell structures remains unknown.

It was the purpose of the present research to develop a general
procedure to study the non-linear dynamic response of thin shells of
arbitrary geometry. Only geometric non-linearity due to large deflec-
tion of the structure is considered. The material is assumed to re-

main elastic throughout the analysis, The primary interest was to




study large shell structures subject to finite deformation under
working loads,

A quadrilateral shell element, developed by Johnson and later
modified by C. A, Felippa, is used for the elastic stiffness deriva-
tion. The lumped mass formulation is used and damping is assumed to
be proportional to stiffness and/or mass, A step-by-step integration
technique is combined with the incremental analysis for non-linear
problems, to calculate the non-linear dynamic response, This is a
completely general procedure and can be carried out for other kinds of
structures, All operations are carried out in matrix form and the re-
sulting simultaneous equations are solved by standard Gauss Elimina-
tion,

Convergence with successive refinement of meshes formed with
this element for static solution has been discussed extensively in
Ref. 19. The dynamic aspects of convergence are studied in the
present research by examining the natural frequencies of shells cal-
culated with successively refined meshes, and by checking the
dynamic response calculated with different time steps. The accuracy
of the non-linear analysis has been studied by comparison with exist-
ing solutions.

Computer programs have been written to carry out the calculations,
and results checked against existing special solutions have proved
to be satisfactory. Finally analyses of a simply supported cylindri-
cal shell roof and a doubly curved cooling tower are presented to

demonstrate the capability of the analytical procedure,




2. THE ELEMENT

2.1 Finite Element Idealization of Shell Structures

An assemblage of quadrilateral elements each consisting of four
planar triangular elements, is used to approximate the thin shell
structure as shown in Fig. 2-la. In addition, single triangular
elements are also used whenever the quadrilateral element is not able
to approximate the shell geometry properly. The quadrilateral
element has four external nodes and five internal nodes (Fig. 2-1b).
Internal nodes 6, 7, 8 and 9 are the middle points of the lines
connecting nodes 1-5, 2-5, 3-5 and 4-5 respectively. These nodes will
be referred to as the middle point nodes from now on,

The external nodes lie on the middle surface of the shell and
the position of the first internal node (node 5) may be either speci-
fied independently or set equal to the average of the four external
nodes, The thickness is specifiéd at the four external nodes, and
the thickness at node 5 may be either specified or set equal to the
average thickness of the four external nodes, The thickness is
assumed to vary linearly between nodes, The geometry of the quadri-
lateral element is completely defined by the data specified at these
five nodes, The material properties are assumed to be constant for
each element.

The planar element can only approximate the curved shell surface
but will converge to the actual geometry as the size of the element
is decreased,

The shell element is constructed by superposing a plane stress

element and a plate bending element at the triangle level. This




assumption implies that the membrane action and the bending action

[ o

are decoupled at the sub-element level. However for a curved shell
structure, membrane and bending actions are coupled when the structure

stiffness matrix is assembled.

2.2 Coordinate Systems

A local element coordinate system (X,y,z) is defined for each
quadrilateral element (Fig. 2-2a). All physical and kinematic proper-
ties such as stresses, material law, etc. are defined in this system,
The X axis is defined by connecting the middle points of side 1-4
and side 2-3, A ; axis is defined temporarily by connecting the
middle points of side 1-2 and side 3-4, The z axis is taken normal
to X and y and finally y is selected normal to X and z to complete
a right handed system. The system is defined such that looking from
the positive z direction, nodes 1-2-3-4 will run counterclockwise.

For a single triangle, it is assumed that nodes 1 and 4 share
the same position and §,§,E are defined similarly.

A local subtriangle coordinate system (iﬁ,?ﬁ,iﬁ, where m = 1,2,3,4)
is defined for each triangle of the quadrilateral (Fig. 2-2b). These
systems are used to calculate the stiffness matrix, consistent load
vector and internal stresses of the triangles. The Eﬁ axis is normal
to the plane of the m-th triangle, The §ﬁ axis is taken normal to the
Em and y axes and finally ﬁm is selected normal to the Em and Em axes,
If the quadrilateral is planar, all (§ﬁ,§6,2ﬁ) axes have the direction
of (x,Y,z).

For a single triangle element, only (ii,?i,ii) exist and coincide

with axes (X,7V,Z).




2.3 Plane Stress Element

A constrained linear strain triangle (LST) is used to evaluate
the in-plane stiffness of the quadrilateral shell element. The
derivation of the element stiffness matrix and the consistent 1load
vector of LST are discussed in detail in Refs. 10 and 19, therefore
only a brief description of the element will be given here., Those
who are interested in more detail should refer to the original works.

The linear strain triangle has six nodal points and twelve
degrees of freedom (Fig. 2-3). The in-plane displacements u and v
have a quadratic variation within the element and the strains, ex’ ey
and Y, have a linear variation. This element is constrained by re-
quiring the displacements u and v to vary linearly along one side of
the triangle. Thus, two equations are introduced to eliminate u6 and
v6 as independent degrees of freedom, The resulting cohstrained
linear strain triangle has ten independent degrees of freedom and will
be used to construct the quadrilateral element,

For a single triangle element, a constant strain triangle (CST)
with three nodes and six degrees of freedom is used,” The CST assumes
linear variation of in-plane displacements and strains remain con-
stant within the triangle, 1Its derivation can be found in any elemen-

tary finite element analysis book (e.g. Ref. 43).

2.4 Plate Bending Element

The linear curvature compatible triangle (LCCT) is used for the
out-of-plane stiffness mechanism of the shell element. The LCCT, which
is fully compatible between elements, is the most efficient flat plate

bending element yet developed and is discussed in detail in Ref, 11,




The triangle is divided into three sub-triangles with ten degrees
of freedom each (Fig. 2-4a). The transverse displacement within each
sub-triangle has a complete cubic expansion, and its second deriva-~
tive, the curvature, has a linear variation. The three internal
degrees of freedom L exo and eyo (Fig. 2-4b) are eliminated by apply-
ing internal compatibility constraints between the sub-triangles,

Thus the resulting triangle element (LCCT-12) has twelve degrees of
freedom (two rotations and one translational displacement at each
corner and one rotation about the edge at the middle point of each
side, see Fig. 2-4b), This triangle is constrained by forcing the
normal rotation to vary linearly along one side, Thus em6 is elimi~
nated and the resulting triangle element (LCCT-11) has eleven degrees
of freedom and is ready for the constructing of the quadrilateral
element.

For a single triangle element, the normal rotations are con-
strained to vary linearly along all three sides and all 8 8 and

m4’ “mb

9m6 are eliminated, The resulting triangle has nine degrees of

freedom (LCCT-9).

2,5 Quadrilateral Element and Discussion

In the previous sections, the triangle elements are prepared such
that there will be no external middle point node at the quadrilateral
level, The reason is that these nodes tend to increase the number of
equations and the band width of the structural stiffness matrix, as
well as to complicate the computer programming for mesh generation,

Four triangles together form a quadrilateral element which has
five nodal points and four middle point nodes (Fig, 2~1b). Each corner

nodal point has five degrees of freedom (three translations and two




rotations) and each middle point has three degrees of freedom (two

translations and one rotation), The quadrilateral element has a

total of thirty seven degrees of freedom (twenty externals and

seventeen internals). The seventeen internal degrees of freedom are
eliminated by the standard static condenstation procedure after the
quadrilateral element stiffness matrix is formed and may be recovered
in the stress calculation,

The single triangle element has three nodal points and fifteen
degrees of freedom, Due to the constant strain assumption in the
plane stress element, the triangle element should be used only in
areas with small strain variation or with a very fine mesh in order to
represent the membrane behavior properly. Its use should be generally
avoided unless it is absolutely necessary to form a satisfactory mesh.

The quadrilateral element has a superior stiffness property and
it gives good results in comparison with closed form solutions (19).
This element possesses two significant properties to be discussed
below:

a) Each nodal point has only five degrees of freedom instead of six,
This introduces problems when the element stiffness matrix is
transformed into a common coordinate system for the whole struc-
ture. This subject will be discussed in detail in the next
chapter,

b) The in-plane displacements have a quadratic expansion while
the out-of-plane displacements have a cubic expansion within
each element. Incompatibility of the displacements along the
edges of the elements occurs when a curved shell surface is

represented by an assemblage of these elements, However, results
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from a complete compatible shell element (3) which assumed cubic dis-
placement expansions for both the plate bending as well as the plane
stress elements showed little improvement over the results given by
this element, Therefore it appears that the lack of compatibility
between the in-plane and the out-of-plane displacements does not cause

much error in the solution,
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FIG.2-1a FINITE ELEMENT IDEALIZATION OF SHELL
STRUCTURE

4

>

FIG.2-1b TYPICAL QUADRILATERAL ELEMENT
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FIG. 2-2a ELEMENT COORDINATE SYSTEM

FIG. 2-2b SUBTRIANGLE COORDINATE SYSTEM
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FIG.2-4a SUBTRIANGLE OF LINEAR CURVATURE
COMPATIBLE TRIANGLE

FIG.2-4b LINEAR CURVATURE COMPATIBLE TRIANGLE




FIG.2-5 TYPICAL SHELL ELEMENT
WITH 37 DEGREES OF FREEDOM
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3. THE STRUCTURAL STIFFNESS

3.1 Coordinate Systems and Their Transformations

In the direct stiffness analysis, a global coordinate system
(x,y,z) is usually defined for the structure. The element stiffness
matrix is then transformed into this system to form the structural
stiffness matrix which is used to solve for the deflection of the
structure, However for the element used in this study, only five
degrees of freedom per node are defined at the element level. The
resulting structural stiffness matrix which includes six degrees of
freedom per nodal point in the three dimensional space, will not
necessarily be positive definite (i.e. singularity may occur), because
of the discrepancy between the element and global degrees of freedom,
The use of a surface tangent coordinate helps to overcome this
difficulty,

The surface tangent coordinate system (El, §2, §3) is defined for
each node (Fig. 2-la) in the global system. The §3 axis is defined
as normal to the shell surface. Axes §1 and 52 may be oriented arbi-
trarily as long as they both lie in the tangent surface of the shell,
The external rotational degrees of freedom at the element level (two
for each node) are transformed into the surface tangent coordinate and
only the components of rotations around axes §1 and §2 are considered.
The three translational degrees of freedom may be transformed into any
desired coordinate system. The above transformation provides stable
system with five degrees of freedom per node while the rotation about
the normal §3 axis (which from now on will be referred to as the sixth

degree of freedom) is constrained.
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It was found in previous studies that the solution is not sensi-
tive to the accuracy with which the surface tangent coordinate is
defined, Therefore, an approximate surface tangent may be used to
replace the exact surface tangent, This approximation is essential
in the large deflection analysis because axes normal to the surface
change their directions as the structure deforms.

One method to define this approximate surface tangent at node
N (Fig. 3-2) is to find the neighboring nodes I, J, K and L and take
the line connecting nodes I and J as the El axis. The line K-L will
be Ez and 53 is defined to be normal to §1 and EZ' And finally Ez is
taken normal to §3 and El' This convention can be easily programmed
for automatic computation and has proven to give satisfactory results,
For nodes connected with only three other nodes, node K is assumed to
share the same position as node N, And for nodes connected with only
two other nodes, nodes I and K are assumed to share the same position
as node N, If more than four nodes are connected with node N, nodes
I, J, K and L have to be selected for it in advance.

This convention is also very convenient for defining the rota-
tional boundary conditions because for the boundary nodes, at least
one of the axes El and Ez will be approximately tangent to the boun-
dary line,

In large deflection analysis, it is always conveniént to express
the translational degrees of freedom in the global coordinate system,
Then the evaluation of the change of position of nodal points due to
deflection is a straightforward operation,

Note that after the element stiffness matrix of the triangle is

formed, those degrees of freedom corresponding to the external nodes
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of the quadrilateral may be transformed directly to the global

(VA1)

coordinate (x,y,z) or to the surface tangent coordinates (El, §2, 3)
while the remaining degrees of freedom may be transformed to the
local element coordinate (x,y,z)and may stay in that coordinate. The

computational efforts will be reduced in so doing,

3.2 Number of Degrees of Freedom Per Node

The fact that only five degrees of freedom per node instead of
six are considered in this finite element shell formulation provides
an immediate advantage in that both the number of simultaneous equa-
tions and the band width of the structural stiffness matrix are re-
duced by a factor of 6/5. Therefore the required core storage in
the computer is reduced by a factor 1.22 = 1.44 and the equation solv-
ing time is reduced by a factor 1.23 = 1,728, However, neglecting
the sixth degree of freedom is equivalent to imposing an artificial
constraint on the structure; i.e. no rotation about the normal axes
is allowed (Fig. 3-2), Although past experience (19) has shown that
this constraint has an insignificant effect in the analysis of stiff
structures, it may be important for a very flexible structure,

The'sixth degree of freedom is not defined at the element level,
However, for a node on the surface of a doubly curved shell, the stiff-
ness for the sixth degree of freedom will be defined after the trans-
formation to the global coordinate system. To be more specific, if
the elements adjacent to a node do not lie in a common plane, this
node will be stable, i.e., no singularity will occur., In this case,
the sixth degree of freedom may be retained to form a global system

having six degrees of freedom per node,
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Two types of singularities do occur for some element assem-
blages. The first type is represented by a flat plate for which
every node is singular, Columns and rows in the structural stiff-
ness matrix corresponding to all the sixth degree of freedom are
zero and there is no coupling between these degrees of freedom and
the rest, The second type is best illustrated by a cylindrical
shell whose surface is curved in only one direction., Singularity
occurs only at nodes along the straight boundaries of the shell and
the sixth degree of freedom at these singular nodes are uncoupled
with the others, There is no singularity at the other nodes, and
the sixth degree of freedom of these are coupled, In both cases, an
artificial torsional spring has to be attached to each singular node
in the direction of the normal axis to make the system mathematically
stable. Since the stiffness connected with these degrees of freedom
are uncoupled, the size of the spring can be arbitrary. However,
for practical purposes, it is much easier to attach a spring to every
node rather than to identify each singular node. 1In this case, the
spring stiffness has to be small so as not to influence the physical
behavior of the structure, If the spring stiffness is too large,
the system will be constrained similar to the way the five degrees
of freedom per node system is constrained, The necessary spring stiff-
ness may be selected as the average stiffness of rotations about the
El and §2 axes times a factor., 1In practice, it has been found that a
factor equal to 10-'6 provides satisfactory results; it is large enough
to provide numerical stability but not so large as to introduce a

spurious constraint. By this means a stable system with six degrees
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of freedom per node may also be constructed using this element,

Two examples have been studied to examine the effect of
neglecting and including the sixth degree of freedom.

a) Static Case

A cylindrical shell with one end clamped and the other end

free to deflect under its own weight is shown in Fig. 3-3. This
example is designed to bring out the effect of constraining the sixth
degree of freedom in a static stable system. A series of cases were
solved in which the length L was varied from 25 feet to 200 feet while
all other dimensions were held constant. Four elements were used in
the circumferential direction. The number of elements in the longi-
tudinal direction was increased from five for L = 25 feet to ten for
L = 200 feet. The resulting vertical deflection at the middle point
of the free end for cases both with and without constraints (i.e,
five and six degrees of freedom per node systems) are as shown in

Table 3-1:

TABLE 3-1. END DEFLECTION OF CANTILEVER SHELL

LENGTH DEFLECTION (FT) DI FFERENCE
L (Ft) 5-DOF 6-DOF (%)
25 0.03695 | 0.0369 0.03
50 0.2374 0.2375 0,04
100 1.303 1.307 0.31
160 4.501 4,509 0.18
200 8.064 8.075 0.14




20

It can be seen from the above table that the effect of constraining
the sixth degree of freedom is very small, The fact that the per-
centage difference drops as the length exceeds 100 feet is because
the structure becomes so flexible that the total deflection in-
creases at a faster rate thaﬁ the difference,
b) Dynamic Case

A very flexible cylinder hinged at one end and free at the
other end is shown in Fig. 3-4, This cylinder is free to rotate about
the x-axis, thus the frequency of its first vibrational mode (rigid
body rotation) is zero. Taking advantage of the symmetric conditions,
a quarter of the cylinder with five elements in the circumferential
direction and seven elements in the longitudinal direction was analyzed
for its vibrational modes (using inverse iteration as described in
Section 4.3) considering five and six degrees of freedom per node,

The resulting natural frequencies of the first three modes are:

TABLE 3-2, NATURAL FREQUENCIES OF HINGED TUBE

FREQUENCY (rad/sec)
Mode 5-DOF 6-DOF
1 .000274 ,000001311
2 .004221 .004211
3 .004863 .004841

The effect of neglecting the sixth degree of freedom is shown in the

first mode where the frequency should be zero. The non-zero quantity
in the five degrees of freedom system is a result of the artificial "

constraints caused by neglecting the sixth degree of freedom (note

that it is an order of magnitude lower than the next mode anyway) .
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The first mode frequency from the six degrees of freedom system is
considergd small enough in comparison with the second mode,

It should be noted that in this example the artificial torsional
spring is attached to every node, therefore the resulting frequencies
will depend upon the stiffnéss of the spring. If the stiffness is too
large, the system will be constrained, but if too small, the roundoff
error of the computer will overcome its contribution and cause the
system to become unstable again, Only an adequately small spring
will make the system stable and impose only negligible constraint to
it. Also it may be noted that the frequencies of the second and third
modes from both system have a very small difference considering how
flexible the system is, This fact shows that the five degrees of
freedom per node system imposes only very small constraint on the
structure in a dynamic analysis, if the system is properly supported
(i.e. if no rigid body displacement is allowed).

It may be concluded from the preceding examples that the five
degrees of freedom per node system gives good results as long as the
structure is reasonably stiff and is properly supported. This formula-

tion will be used for the rest of this research.
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FIG. 3-1 APPROXIMATE TANGENT COORDINATE
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FIG. 3-2 CONSTRAINTS CAUSED BY NEGLECTING THE
SIXTH DEGREE OF FREEDOM
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E=3x10% PsI
V=0

FIG.3-3 CANTILEVER SHELL

290

FIG.3-4 HINGED CYLINDRICAL TUBE
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4. DYNAMIC ANALYSIS

The equation of motion in dynamic analysis is:

ME +Ck+Kx=P(t) (4.1)%
where

M : mass matrix

c damping matrix

K': stiffness matrix

i,é,g relative nodal point displacement, velocity and
acceleration vectors respectively
P(t) : external load vector (function of time)

The first term in the left hand side of the above equation represents
the inertia force in the system, the second term is the damping force
and the third term is the elastic resisting force. Equation (4.1) in-
dicates that the sum of these three forces is in equilibrium with the
external load.

The stiffness matrix has been defined in previous chapters. Mass

and damping matrices will be described in the following sections.

4,1 Mass Matrix

Two kinds of mass matrices, the consistent mass matrix and the
lumped mass matrix, have been studied by many investigators. The con-
sistent mass is obtained by calculating the equivalent mass in the
direction of the nodal accelerations that will have the same amount of
kinetic energy as the distributed element mass due to acceleration.

This can be achieved by integrating the displacement interpolation

*An underlined symbol will represent a matrix or a vector in the
following,
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functions of the element. The consistent mass matrix of an element
is therefore defined by:

m = I ph gTé.dv 4.2)

v

where p is the mass density, h is the thickness of the element (may

be function of position) and ® is the displacement interpolation func-
tion for this element., It should be noted that other mass matrices

may also be constructed using this equation together with lower order
interpolation functions. The computational effort is reduced in so
doing, while the accuracy of the solution is still retained. This is
because in the mass matrix, diagonal elements corresponding to the
translational displacements do not change significantly from different
interpolation functions and the solution is not sensitive to the values
of the other elements of the mass matrix.

Element mij of the matrix m represents the ‘inertia force in the
direction of the i-th displacement resulted from unit acceleration in
the direction of the j-th displacement. The consistent mass matrix
of each element, generally, is fully populated. The element mass
matrices are assembled to form the structural mass matrix M in the
same way the structural stiffness matrix is formed. Matrix M has the
same banded form as matrix K if it is based on a consistent element
mass matrix,

The lumped mass matrix may be obtained by concentrating the mass
of the structure to the nodal points., This will result in a diagonal
mass matrix, in which the elements mii corresponding to the rotational
degrees of freedom will be zero. Previous studies made by several

investigators have shown that the lumped mass assumption leads to a
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more accurate result than the consistent mass despite the fact that the
latter has a better mathematical interpretation (6, 11). In addition,
the lumped mass system has the advantage of yielding great savings in
the computer core storage and in computational effort. The only ad-
vantage of the consistent mass formulation is that its solution gives
the upper bound- of the true solution if the element is fully compatible
while this property does not apply to the lumped mass, However, for
the quadrilateral element used in this research the displacements be-
tween element, in general, are not compatible and this advantage does
not exist, Therefore the lumped mass formulation is used in this work.

The method to be used in lumping mass is more or less arbitrary,
but ‘the results of different procedures are only slightly different,

In this study, a quadrilateral element is divided into four pieces by
connecting the middle points of opposite sides and the mass of each
piece is applied to the adjacent node. For a single triangle element,
one third of the total mass is concentrated at each node,

The fact that elements mii in the mass matrix corresponding to
the rotational degrees of freedom are zero causes some problem in
solving the eigenvalue problem (Section 4.3). 1In the present work, a
small quantity 'is assigned to these coefficients to make the lumped
mass matrix positive definite. Physically speaking, this means that
instead of lumping the mass to a point with zero rotational inertia,
the lumped mass will have a small but finite dimension. The quantity
assigned is rather arbitrary and the solution is not sensitive to its
magnitude as long as it is not so large as to constrain the rotations
of the nodal points. In the direct step-by-step integration (Section

4.5) the mass matrix is used to evaluate the inertia resisting force
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in addition to the elastic force and a zero element in the diagonal of
the lumped mass matrix will not cause numerical difficulty as in the

mode superposition method.

4.2 Damping Matrix

The presence of damping forces tends to decrease the dynamic
response of a structure and a solution obtained without damping gives
an upper bound to the response. Damping forces do exist in actual
structures but their exact form is unknown in most systems. The mag-
nitude of the damping is usually obtained experimentally in the form

of a modal damping ratio for each vibrational mode:
cC =2 (cn) 4.3

where (Cn)Cr is the critical damping of the n-th vibrational mode of
the structure,.

The modal damping ratio is used directly in the mode superposi-
tion analysis as will be shown later. For a step-by-step integra-
tion of the equations of motion, however, the damping matrix has to
be defined. 1If the damping forces are proportional to the velocities
of the mass points, it can be shown that the damping matrix will be
proportional to the mass matrix, If the damping forces are propor-
tional to the strain velocities the damping matrix will be propor-
tional to the stiffness matrix., Thus if both types of damping exist,

the damping matrix will have the following form:
C=aM+ Bﬁ (4.4)

The relationship between the above two types of damping and their

properties will be discussed in the following sections.
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4.3 Eigenvalue Problem Solution

The dynamic properties of structures can be studied by examining
their free vibration mode shapes; i.e. considering the motion without
damping and external loads., The equation of motion for free vibration

is:

-

M

g

+KZ(_=9_ (4.5)

In this case the displacement is in harmonic motion and can be ex-
pressed as:

x = X sin (wt) (4.6a)

where X is the vibrational mode shape and is independent of time t and
W is the natural frequency of the structure., Then the acceleration

will be:

N

. 2
X =-w Xsin (Wt) = - 0w x (4.6Db)

Substituting x and g into Eq. (4.5), the following equation is
obtained,

_}S}__(_—_-sz§ 4.7)

For a lumped mass assumption, matrix M is a diagonal matrix and this

equation can be converted to the standard eigenvalue form by defining:

-3

X=M"Y (4.8)
Equation (4.7) then becomes:
wiguty-o?y (4.9a)
or
2
AY=0w"Y (4.9b)

In order to carry out the above transformation, all the diagonal

terms in the matrix M have to be greater than zero. This requires
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a positive inertia term to be defined for those elements mii corres-—
ponding to the rotational degrees of freedom in the lumped mass for-
mulation (Section 4.1).° With this positive definite lumped mass
matrix M, the transformation is straightforward. Matrix A remains
positive definite, symmetric and banded if the original K matrix is
positive definite, symmetric and banded. Equation (4.9) is a stan-
dard eigenvalue problem and may be solved by many existing computer
subroutines,

An-alternate procedure may also be used when the lumped mass
matrix is involved. Considering the fact that the masses corresponding
to the rotations are zero, these degrees of freedom can be eliminated
by a static condensation procedure. ~ The matrix resulting from the
condensation procedure is smaller than the original one, but this
matrix is fully populated. Therefore, this procedure may not be more
efficient than solving Eq. (4.7) directly,

Another procedure in which a flexibility matrix consisting of
only the unconstrained translational degrees of freedom is constructed
and used to solve the eigenvalue problem, also deals with a smaller but
fully populated matrix. The flexibility matrix can be formed by
applying unit load in the direction of each translational displacement
successively. The resulting translational displacement components for
each load case represent one column of the flexibility matrix, The
formulation of the flexibility matrix is a very efficient procedure
which takes advantage of the banded form of the original K matrix in
solving for the displacements. The interested reader should refer to

Ref. 3 for more details:
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There are two types of method to obtain the numerical solution
of the eigenvalue problems, They are the iteration method and the
matrix transformation method (5, 18). Computer subroutines based on
different forms of these two methods for different purposes are
available to solve the eigenvalue problems, Most subroutines are
restricted in their capacities due to the limitation of computer core
storage. For larger systems, several forms of Rayleigh-Ritz tech-
nique have been developed to reduce the size of the matrix before
solving for eigenvalues. = Those who are interested should refer to
other publications, e.g. Ref. 3, for more details.

In this research, an inverse iteration procedure has been used

to solve the eigenvalue problem, The procedure is described below:

i) Equation (4,7) is converted to the classical form of
Eq. (4.9b).
ii) The smallest eigenvalue can be obtained by inverse

iteration, The iteration is carried out by estimating
vector Y on the right hand side of Eq. (4.9b) and solving
for Y on the left hand side, then using this Y as a.new
estimation and repeating this procedure, It can be shown
that this procedure will converge to the lowest eigenvalue
and eigenvector,

iii) After the lowest eigenvalue is obtained, matrix A is de-
flated by a procedure reported by Rutishauser (32) and the
iteration carried on for the next lowest eigenvalue.

iv) This procedure is continued until all the required eigen-

values and eigenvectors are obtained.
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A computer subroutine called BANEIG written by Felippa and
based on the above procedure was used in the present study. This
subroutine takes into account the symmetric and banded form of the
matrix. It can handle a large system with a narrowly banded matrix
efficiently if only a relatively small number of eigenvalues are
needed, which is usually the case in structural analysis, The capa-
city of BANEIG is limited by the computer. With a 140 K (octal)
machine, a matrix with 500 equations and band width around 50 can be

handled.

4.4 Mode Superposition Method

The displacement vector x can be expressed as a linear combina-

tion of all the vibration mode shapes of the structure

x =Xy (4.10)

where X is a square matrix, Each column of X represents one vibra-
tion mode shape of the structure and is independent of time., Vector
y is the time dependent amplitude of each mode. Substituting Eq.
(4.10) into Eq. (4.1), the equation of motion becomes:

MXy+CXy+KXy=P() (4.11)

This set of equations can be decoupled by considering the orthogonal
properties of the vibration mode shapes. (It is assumed that the
damping matrix satisfies the same orthogonal property as the stiffness
and the mass matrices.) Pre-multiplying Eq. (4.11) by Eg, where §n

is the n-th column of matrix X (the n-th mode shape) leads to:
sk e» * o * _ p*
M Yo *+ CF yo + K] y, = Pn(t) (4.12)

in which
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m* =X MX (4.13a)
n -n — -—n

c* =X cXx =2\ w M (4.13Db)
n -Nn — -—-n n n

K* = XT K X = (D2 M* (4.13c)
n ~n — =N n n -
* T

PU(t) = X P(t) (4.13d)
n -n —

Equations (4.13) define the generalized mass, damping, stiff-
ness and load, It should be noted that kn is the modal damping ratio
of the n-th vibration mode. The critical damping for the n-th mode

is defined by:

1
(CHY) =2w M =2 (k*¥ M52 (4.14)
ncr n n n n

The use of the orthogonal property of the damping matrix requires
an assumption on the form of damping matrix C. In practical analysis
it is convenient to assume that C = oM+ 85, Since the coupling
caused by damping is usually small, this assumption is generally
Jjustified. The damping ratio kn of Eq. (4.13b) is usually found by
experiements,

The generalized equation of motion (4.12) is usually solved
numerically either by the Duhamel Integral (37) or by a step-by-step
integration technique. After solving for amplitude y, the total dis-
placement of the structure X can be obtained using Eq. (4.10),.

It should be noted that for many types of loading the higher
vibration modes contribute very little to the displacement x, there-
fore only the few lowest vibration modes will be needed to obtain
an accurate result, This is an important advantage of the mode super-
position method. Otherwise the computational effort involved in

solving all the vibration modes of a moderate system, say 300 degrees
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of freedom, will be formidable.

4.5 Step-By-Step Integration Method

Various numerical procedures have been developed to integrate
the second order differential Eq. (4.1) directly. These procedures
are referred to as the step-by-step integration method. Two of the
most used procedures were reported by Newmark (27) and by Wilson and
Clough (40). Newmark derived a general recurrent equation with a
parameter B, As different values are assigned to B, the general
equation will be reduced to special forms for different assumptions
on the behavior of the system (linear acceleration, constant accelera-
tion, ete.). Given initial conditions, an iterative procedure is used
to calculate the response at the end of time step. Later it was
pointed out by Wilson and Clough that this iteration is not necessary.

The advantages of this step-by-step procedure are:

i) It has a clear physical interpretation,

ii) In the calculation, only information at the beginning of

the time step is needed to predict the response at the end
of time step. (For many higher order integration techniques,
information of more than one step will be needed.)

For problems in which only the first few modes contribute signi-~
ficantly to the dynamic response, the mode superposition méthod re-
quires less computational effort. However, for structures whose natu-
ral frequencies are close together or for loadings which excite the
higher vibration modes, the direction integration of the equations of
motion is more reliable and efficient. It should also be noted that

the step-by-step integration method is the only technique that can be

applied to a non-linear dynamic problem,
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The basic concept of the step-by-step procedure is to divide the
time space into a sequence of time steps of length At. Knowing the
initial conditions {(i.e. displacement, velocity and acceleration at
the beginning of a time étep) the response at the end of the time step
can be predicted with the aid‘of an assumption on the behavior of the
motion during the time step. The results of this prediction can then
be used as the initial conditions of the next time step and the calcu-
lation carried on successively. It is obvious that the accuracy of
this method depends upon the size of the time step. The smaller the
time step the more accurate the results will be,

The linear acceleration version of the step-by-step method is
based on assuming that the acceleration of the system varies linearly
during each time step. Therefore the velocity will vary quadratically

and displacement cubicly (Fig. 4-1) as follows:

%= Ky o+ Bt—t' %, - %) (4.152)

. . . t2 . o

X=X+t Xy + o (- %) - (4.15b)
. 2 .. oL .

X=Xy +t Xy +3 X+ T (x;, - %) (4.15¢)

where subscripts O and 1 refer to quantities at the beginning and
the end of the time step respectively. By expressing the accelera-
tion and velocity at the end of the time step (t = At) in terms of

displacement at the end of time step, the above equations become:

os 6 6 6 R .

X, = —= X, - —— X - 7—X - 2X (4.16a)
1 Atz 1 Atz =0 At =0 %0

; 3 3 . At .

5k Rt ¥ 2% "3 % (4.16b)

L =% (4.16¢)

1
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To carry out the analysis, Eqs. (4.16) are substituted in Eq. (4.1)

and rearranged in a set of equivalent static equations:

X = (4.17)

-1

1=
1ol

where
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Equation (4.17) can be easily solved for x by any standard

-1
linear equation solving technique, like Gauss Elimination. Then velo-
city and acceleration at the end of the time step can be recovered
using Eqs. (4.186),

It is noted that the function of mass matrix M is to add to the

stiffness matrix., If the lumped mass matrix. is used, a quantity of

—25 mii (2 0) is added to the diagonal terms of the stiffness matrix.

At
Therefore a zero rotational inertia term will not cause any numerical
difficulty,.

This method is straightforward and can be programmed easily for
automatic calculation. It can also be used to solve the uncoupled
Eq. (4.12). The only disadvantage is that the solution may sometimes
become unstable, Instability may be observed as the solution stafts
to oscillate violently and blows up within a few more steps, It is
found that in order to obtain a stable solution, a small time step has

to be used; if At is smaller than one fourth of the highest natural
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period of the system the solution will be stable. However, the
highest period of a system is frequently so small that it is impracti-
cal or even impossible to solve the problem in this way (see example
in Section 4.6).

In order to obtain a stable solution with a large time step, a
similar method employing a constant acceleration assumption is intro-
duced., It is assumed that the acceleration within each time step
remains constant as the average of the accelerations at the beginning
and the end of the time step. Therefore the velocity varies linearly
and displacement quadratically (Fig. 4-2), The constant acceleration
version of the step-by-step method is always stable regardless of the
size of the time ‘step (27). One drawback of this procedure is that
artificial damping is introduced to the system when the time step
becomes too large (see Section 4.6). However in order to get a realis-
tic solution the time step has to be reasonably small anyway (say
smaller than a fraction of the nmatural period of the highest signifi-
cant mode) ., Therefore this will not be an important restriction.

The main advantage of the step-by-step integration technique is
that it can be applied to the non-linear problem. In this case it is
convenient to express the equation of motion (4.1) in an incremental
form:

MAX + CAx + KAx = AP(t) (4.18)

The equations corresponding to Egqs. (4.18) in incremental form and

with constant acceleration assumption will be:

A% = =2 x - ¢

5 X X 2 x.) (4.192)
bt

4
it %o * 2 K
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. 2 .
Ax = AT X 2 X (4.19h)

Ax = Ax (4.19c)

The solution is then obtained by substituting Egqs. (4.19) into Eq.
(4.18) to form an equivalent static problem and solving for the
incremental displacement Ai' The incremental velocity and accelera-
tion can be obtained using Eq. (4.19). The total displacement, velo~
city and acceleration at the end of the time step are obtained by
adding the incremental quantities to the initial quantities.

For a step-by~step integration method, the damping matrix is
frequently defined by Eq. (4.4). The relationship between the modal
damping ratio Xn and the constants @ and B may be derived as follows:

Pre- and post-multiplying Eq. (4.4) by a mode shape vector En

b

it becomes:

2A o M =c* =a M + B K*
n n n n n n
o (4.20a)
= o M* + B w M*
n n n
or
Bw oT
[0 n n i
Mot t D = am +$¢‘ (4.20b)
n n

where Tn is the natural period of the n-th vibration mode, This
equation may be used to determine how much damping, in terms of’modal
damping ratio Xn’ is actually introduced by the damping matrix defined
by Eq. (4.4). It is noted from Eq. (4.20b) that the constant o tends
to damp out the lower modes while the constant B tends to damp out the
higher modes, For the derivation of damping matrix C from the modal

damping ratio Kn' the interested reader should refer to Ref. 5,
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The use of this step-by-step integration technique on a large
system is possible only with the aid of a high speed computer. 1In
the analysis, the stiffness matrix occupies most of the computer core
storage. It is noted that if the damping matrix is defined by Eq,
(4.4), the stiffness matrix E.will appear on both sides of Eq. (4.17).
This means that twice the storage will be needed to store the informa-
tion. However, this problem can be avoided by a little algebraic
operation. Assume that the damping matrix has the form of Eq. (4.4)
and substitute Eqs. (4.19) into Eq. (4.18). Retain all the terms
which contain matrix K on the left hand side of the equation and after

some manipulations, the equation of motion becomes:

KAX = AP (4.21)
where
C
K - M+x
2
Ax = C2 Ax - BB
AP = AP + M (A + (@ - B ==) B)
-— pu— — — C —
2
4 2
C. =+ 0 —
1 At2 At
2
C2 =1 + B it
4 , .
Ao=gpEr 2k
B =22{_O

After solving for Ag from Eq. (4.21), the incremental displacement,
velocity and acceleration may be calculated using the following
equations

Ax = = (AX + BB) (4.222)
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bk = ;= bx - B (4.22b)
4

bx = —5 Ax - A (4.22c)
At

This procedure was developed by Professor Powell at the Univer-
sity of California at Berkeléy and can be programmed very easily,

It should be noted that the static analysis can be regarded as a
special case whose inertia and damping forces are zero, of the above
procedure. Therefore a computer program for dynamic analysis may also
be applied to static problems simply by setting the mass and damping
of the system to zero. This characteristic does not apply for the
mode superposition method, It should be noted, however, that this is
not a very efficient static analysis procedure, because many un-
necessary operations have to be carried out to take care of the mass

and damping terms,.

4.6 Illustrative Example

An example has been selected to investigate the various aspects
of the dynamic analysis procedure described in the previous sections,
The numerical results are checked against closed form analytic solu-
tions to check their accuracy.

A rectangular plate simply supported along all four sides is

shown in Fig, 4~3a. Dimensions and material properties of the plate

are:
Thickness h =1,0 inch
Length in x-direction a = 100 inches
Length in y-direcfion b = 35 inches
Young's Modulus E = 3000 ksi
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Poisson's Ratio v = 0.30

Mass Density 0.,00001 k»secz/in4

pe)
1}

The natural frequencies of this plate and its dynamic response
under certain types of loadings can be obtained using a series
approach. These results are checked against the finite element solu-
tion as described below:

i) Natural Frequencies

Considering bending deformation only, the analytic solution

for the natural frequencies of the plate is:

2 2
o - nzAIhL [22_ .+ 2 (4.23)
P a b
Eh3 ,
where D = —————= |, and m and n are the number of half waves
12(1-v7)

of the free vibration mode in the x- and y-direction respectively.

A quarter of the plate (Fig. 4-3a) was analyzed for its natural
frequencies using the finite element approach. Assuming doubly
symmetric conditions along the two center lines, only vibration modes
for which both m and n are odd were included. The lumped mass
formulation and the inverse iteration procedure were used.

Several different quantities were used for the rotational inertia
term (mii) in the lumped mass matrix, The resulting natural frequen-
cies of the first four modes, compared with the results of Eq. (4.23),

are as follows:
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TABLE 4-1. NATURAL FREQUENCIES (RAD/SEC) OF S,S. PLATE

W
My % ®a 3 4
(k~in—sec2) m=l,n=1 | m=3,n=1 | m=5,n=1 | m=7,n=1
Finite 10 8.132 10.86 14,82 18,19
Element -3
Solution 10 46 .75 88.48 169.,7 2717.3
4x5 3x 107° 47 .46 91,07 178.3 293, 2
Mesh -6 -9
10 "-10 47 .48 91.15 178.6 293.7
Exact soln, 47 .40 88.79 171.6 295.7
Eq. (4.23)

It can be seen from the above table that the finite element
approach predicts very good results, and that the solutions are not
sensitive to the magnitude of the rotational inertia, mii’ as long
as it is not so large as to constrain the system, In this example
the rotational inertias of a typical element about the x- and y-axis
are 6,96 X 10"4 and 3.65 X 10—3 (k—in—secz) respectively. In general,
a quantity smaller fhan the actual rotational inertia of a typical
element is recommended for mii'

ii) Dynamic Response

Assume that the transverse load on the plate is defined by:

P(x,y,t) = q. sin (Qt) (4.24)

0
It can be shown that for a simply supported plate the transverse dis-

placement may be expressed by:

[--] <]

wix,y,t) = z; E; w () sin 925 sin 551 (4.25)

m=1 n=1
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where

0 1 - < . _ & ,
Wmn(t) = ( 2) sin Qt ~ sin wmnt)

2
mnT hp w_ - Q mn
mn

In this example it is assumed that q, = 1.0 1b/in2 and 0 = 10T, An
analytic solution was calculated using Eq. (4.25) with 25 terms
(i.e, m=1-5, n=1-5). This solution is used for comparison against
the finite element results below.

a) Linear Acceleration Assumption

A quarter of the plate was analyzed with the same 4X5 mesh.

The mode superposition method was used and the decoupled equations of
motion were solved by the step-by-step integration method assuming
linear acceleration. Four different cases were analyzed, considering
2,3,4 and 5 modes respectively. The results indicate that only the
first four modes are significant, the differences between the cases
which include four and five modes being very small. The natural
period of the fourth mode is T4 = 0,0215 second, which is 4.3 times
the time step used in this study (At = 0.005 second). Figure 4-3a
shows excellent agreement between the analytic and the finite element
solutions. In general a time step smaller or equal to & of the highest
significant mode period is recommended.

The same problem was analyzed again with a direct step-by-step
integration assuming linear acceleration with the same time step
(0.005 sec.). In this case, all vibration modes were included and the

solution becomes unstable numerically (Fig. 4-3a) because of the in-

clusion of the higher modes,

Clearly, the linear acceleration assumption can be used in the

mode superposition method to integrate the decoupled equations, because
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the time step can be properly selected according to the natural
period of the highest mode included. However the method should be
avoided in the direct step-by-step integration.
b) Constant Acceleration Assumption

The same problem has also been analyzed by direct step-by-
step integration assuming constant acceleration. Two different time
steps, 0.005 and 0.01 second, were used, and the results are shown
in Fig. 4-3b. It can be seen that the constant acceleration assump-
tion gives stable solutions, However, artificial damping is introduced,
The damping in the case of At = 0,005 second is negligible but the
damping introduced by the larger time step (0.01 second which is al-
most equal to %T4) reduces the maximum displacement by approximately
2.7%. In general, good results may be expected if the time step is
smaller or equal to & of the natural perind of the highest mode which

contributes significantly to the response.
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3. NON-LINEAR ANALYSIS

5.1 Definition of the Problem

There are two types of non-linearities in structural analysis,
namely geometric non-linearity, associated with finite geometric
change of the structure, and material non-linearity, associated with
change of material properties, It is assumed in this study that the
material properties remain constant throughout the analysis, There-
fore, only geometric non-linearity will be considered,

All of the discussions in the previous chapters apply to linear
system only. The stiffness discussed in chapters 2 and 3 represents
the elastic stiffness of the structure. 1In a more general considera-
tion, the structural stiffness matrix K is contributed from both the
elastic stiffness matrix Ee (referred to as K before) and the geometric

stiffness matrix Eg (to be discussed later), i.e.,

K=K +K (5.1)
LI S

In a linear analysis, the deformation of the structure is assumed
to be so small that the deformed geometry of the structure may be
considered identical to the undeformed one. In this case, if the
effect of the geometric stiffness is not considered, or if the geo-
metric stiffness matrix is constant, the behavior of the structure is
unchanged during the process of loading because the structural elastic
stiffness matrix, which is a function of the geometry of the structure,
remains constant, (A non-linear problem has to be solved if the
geometric stiffness matrix is not constant.) For a large deflection
analysis, the structural deformation becomes finite in comparison

with the dimensions of the structure. In this case, both the elastic




48

and the geometric stiffnesses are no longer constant and the problem
becomes a non-linear one,.

Figure 5-1 shows a generalized load (P) vs displacement (8) curve
for a structure. The slope of the tangent line at the origin repre-
sents the initial stiffness of the structure for linear analysis, This
may be termed the initial tangent stiffness. It should be emphasized
that this is only a symbolic representation in which a multi-degrees
of freedom system is represented by a single degree of freedom curve.
In an actual case, the curve in Fig. 5-1 becomes a curved hypersurface
in a multi-dimensional space and the tangent line becomes a tangent
hyperplane. If a load PO is applied to the structure, displacement 51
is determined by a linear analysis,

It sometimes may be possible, for certain simple étructures, to
formulate explicitly a set of non-linear equations which describe the
deflection behavior; that is, it may be possible to find the stiffness
matrix K(x) as a function of the displacement vector x, and to solve

directly the following equations:

[K(x)]x =P (5.2)

The matrix K(x) is a function of x, and therefore also a function
of P, For the load PO in Fig. 5-1, this stiffness is represented by
the slope of the secant line between the origin and the point "A" on
the curve, and may be termed the secant stiffness, The displacement
50 can be obtained by solving Eq. (5.2).

This is the classical approach to the solution of a non-linear

problem, but it can be carried out only for very simple structures.
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5.2 Linearized Approach to the Non-linear Problem

In addition to the difficulties in solving Eq. (5.2), it is
practically impossible for many structures to set up the non-linear
equations in the first place., Therefore, various methods using a
series of linear analyses, héve been developed to solve the non-
linear problems,

There are three main methods of this type, namely the Iteration
Method, the Incremental Method and the combination of these two
methods. Each method has its own advantages and limitations and can
be applied to different classes of problems. The properties and
ranges of application of the methods are discussed in the following
sections.

a) Iteration Method

In one very efficient form of the iteration method, the de-
flection of the structure due to applied load is estimated by a linear
analysis using the initial tangent stiffness of the structure. The
internal resisting force of the structure caused by this deflection
is calculated, and subtracted from the total applied load to obtain
the out-of-balance force. A new tangent stiffness is then defined,
based on the deformed geometry of the structure, and the out-of-balance
force is applied to get an additional deflection. This procedure is
repeated until equilibrium is achieved, i.e. until the out-of-balance
force vanishes. This method is sometimes referred to as Newton's
method and can be expressed graphically as in Fig., 5-2a. The slopes
of the tangent lines in the diagram represent the tangent stiffness
for different deformed geometries of the structure. The tangent stiff-

ness changes for the following reasons:
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i) The geometry of the structure changes because of finite

deformations,

ii) Changes in membrane forces lead to changes of the geometric

stiffness (Section 5,3),

It is also possible to calculate the additional deflection based
on the original tangent stiffness instead of redefining the stiffness
for each iteration., The procedure is shown in Fig. 5-2b in which all
tangent lines are parallel to the one at the origin. In this case,
the convergence can be expected to be slower; however, the computa-
tional effort saved in not forming the stiffness again may compensate
this disadvantage.

The iteration method is usually used in static analysis only. It
is a widely used method in cases where:

i) 'The solution is unique.

ii) Only the final equilibrium position is of interest, i.e.

the history of deflection is not important,.

iii) The internal resisting force can be accurately calculated
for a known finite deformation. Note that if the exact form
of the resisting force, as a function of finite structural
deformation x, is known, its derivative with respect to X
yields the secant stiffness,

In this study, the exact value of the internal resisting force

of the quadrilateral element due to a given finite deformation is not
easily definable; in addition the iteration method cannot be applied

to dynamic problems. Therefore, it will not be discussed further.
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b) Incremental Method
The incremental method is also called the step-by-step
method, although it should be distinguished from the step-by-step
method discussed in Section 4.5, which involved stepping through
time.

In the incremental method, the total load is applied to the
structure in steps, For each load increment (step), a linear analysis
is carried out with the tangent stiffness based on the current de-
formed geometry and the current geometric stiffness of the structure.
This method is graphically represented in Fig. 5-3. The advantages
of this method are:

i) It can be carried out for any kind of structures without

special restriction,

ii) It will predict the complete load-deflection curve and can

be used for dynamic response calculation,

The major disadvantage of the incremental method is that its
solution may tend to diverge from the true solution. Mathematically,
this method is equivalent to the forward difference method in the
numerical solution of initial va;ue problems, Its error (amount of
divergence from the true solution) is proportional to the size of the
load increment.

Several techniques have been developed to reduce the error caused
by this method. The following two have been found by the author to be
most useful and easy to apply.

i) If the internal resisting force due to a known deflection of

the structure can be determined accurately, or even approxi-

mately, the out-of-balance force developed in one step may be
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calculated and added to the next load increment. The solu-
tion thus obtained will be represented by the broken lines
in Fig. 5-3. The improvement of the solution is obvious,
yet the additional computational effort is small,

The results would be improved if a chord stiffness instead
of the tangent stiffness could be defined for each load
increment., (The chord stiffness is represented by the
slope of the chord line befween two points on the load-
deflection curve as shown in Fig. 5-4. The difference be-
tween the chord stiffness and the secant stiffness is that
the former does not start from the origin.) Generally, the
exact chord stiffness can only be obtained by using an
iteration procedure. However, an approximate chord stiff-
ness may be estimated and used to improve the solution.
This estimation can be made by estimating the structural
deflection for the load increment and using the tangent
stiffness based on the geometry of the structure at the
middle point of the load increment., If the estimation of
the displacement were exact, the procedure would be equiva-
lent to the centered difference method in the numerical solu-
tion of initial value problems, and the error would be pro-
portional to the square of the size of the load increment
(18). Generally, the estimated chord stiffness approach will
give an improvement over the plain incremental method with
very little additional computational effort and computer

core storage,
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c) Combined Method

There are two types of combinations of the above two methods:

i) Iteration may be performed until equilibrium is obtained
within each load increment.

ii)  An increment analysis may be carried out for the nearly
linear portions of the problem and iteration can be
employed whenever a strong non-linearity shows up.

These methods should give the most accurate results for a given
number of load steps, and can also be used to predict the complete
load-deflection curve., However, a large amount of computational effort
is involved in the process, and therefore, the methods are not neces-
sarily the best for practical computation., They have not been used in
the research described here, because it is very difficult to carry out

the iteration steps in dynamic analysis.

5.3 Analytic Procedure Selected for This Study

In addition to the assumption that the material remains elastic
throughout the analysis, it is also assumed that the structure may be
subject to large rigid body displacements and rotations, but that the
strains remain small. As a result of these assumptions, the consti-
tutive equations will be unchanged during the response analysis,

An incremental analysis is used to calculate the non-linear
dynamic response, A series of linear analyses is carried out with the
load applied in steps. The equation of motion is expressed in incre-
mental form shown by Eq. (4.18), It is assumed in this study that the
mass matrix M remains constant and the damping matrix is expressed by
Eq. (4.4). Therefore, only the change of the stiffness matrix K has

to be determined. The stiffness matrix changes from step to step
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because of:

i) Change of geometry due to finite deflection.

ii) The effect of the inclusion of the geometric stiffness,.

In addition, an equilibrium (out-of-balance force) correction
is also considered in the procedure, These three effects are
discussed as follows:

a) Change of Geometry Due to Deflection

In a large deflection analysis, the structural deformation
is finite as compared with the dimensions of the structure., The
following two effects have to be considered in the analysis:
i) Non-linear terms are introduced in the strain-displace-
ment. relationship,.
ii) Equilibrium has to be expressed in the deformed geometry
of the structure,

In an incremental analysis, if the load increment is small, the
strain-displacement relationship may be assumed to be linear for each
load increment. By constructing the tangent stiffness for each incre-
ment based on the current geometry, and by considering the out-of-
balance force correction, violation of equilibrium will be small. The
solution thus obtained will converge to the true solution as the load
increment decreases,.

In the incremental analysis described in Section 5.2, a series of
linear analyses is carried out and at the end of each load increment,
the deformed position of each nodal point is obtained simply by adding
the increase in nodal point displacements, Ax, to the nodal point
coordinates. A new tangent stiffness may then be formed based on the

new geometry of the structure., This new tangent stiffness is used to
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calculate the incremental displacement for the next load increment.
Thus, a complete linear analysis has to be carried out for each
increment,

Under the assumption that the displacements will be only moder-
ately large, i.,e, that the déformed structure will not be completely
different from the undeformed structure, it is possible to neglect
the change of shape and dimension of each element. Therefore, the
triangular element elastic stiffness in its local coordinate
(§ﬁ,_g,gﬁ) may be assumed to remain constant throughout the analysis,
The change of geometry due to deformation will be expressed only by
the change in the displacement transformation matrices from the local
coordinate to the global coordinate. From a study of the first
example to be described in Chapter 6, it has been found that this
assumption causes approximately a one percent of error in the solution,
while reducing the computer time by approximately fifteen percent.
However, it should be noted that these figures may be different for
other problems,

It was mentioned in Section 5,2 that the solution would be im-
proved if a chord stiffness could be determined to replace the tangent
stiffnessifor each step; and if the load increment is small, an
approximate chord stiffness may be obtained by estimating the incremen-
tal displacement. The simplest way to estimate the incremental dis-
placement is to assume that it will be the same as the. previous step.
By adding 1% A{ to the nodal point coordinates, an estimated middle
point geometry for the next step can be obtained; a tangent stiffness
based on this geometry can be formulated and used as an approximate

chord stiffness for the next step. The solution thus obtained will be
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improved over the plain incremental analysis, while the additional
computational effort is very small,

This method is approximately equivalent to the centered difference
method in the numerical solution of differential equations and the
error is approximately propoftional to the square of the size of the
load increment. The plain incremental analysis is equivalent to the
forward difference method and its error is proportional to the size of
the load increment.

An example has been chosen to test this estimated chord stiffness
approach and the plain incremental analysis. A simply supported cylin-
drical shell subjected to uniform pressure, whose time history was a
sinusoidal impulse, was analyzed. (This is the same problem as the
second dynamic example presented in Chapter 6; the reader should refer
to it for more detail.) A static analysis was carried out with a
quarter of the shell represented by a 2 X 2 mesh. Although there is
no other solution to compare with, physically, it can be seen that
the displacement time history under this load should have a similar
shape of the load time history, and there will be no displacement when
the load is removed after time t = 1.0 second. Therefore a residual
deflection resulted from the divergent character of the increment
analysis would indicate the amount of error caused by this method.

Both the estimated chord stiffness méthod and the plain incremental
method were tested with 10 and 20 load increments from t = 0 to t = 1.0
second. The maximum deflection at the center of the free edge 1is
approximately 0,37 foot and the residual deflection for each case is

shown in the table below.
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TABLE 5-1. ERROR IN THE INCREMENTAL ANALYSIS

RESIDUAL DISPLACEMENT AT THE
CENTER OF THE FREE EDGE (FT)

10 Steps | 20 Steps

Plain Incremental Method 0.04345 0,02193

Estimated Chord Stiffness Method 0.01095 0.00277

It can be seen that this estimated chord stiffness method yields
better solution and also converges faster than the plain incremental
method. It is of interest to note that the estimated chord stiffness
approach yields a result even better than that of the plain incremental
analysis with twice as many steps.

Another way to estimate the incremental displacement is to ac-
tually calculate it with the tangent stiffness at the beginning of the
step, and then to construct the "middle point" tangent stiffness and
use it to approximate the chord stiffness for the same step. This is
usually referred to as the predictor-corrector method, In the predic-
tor-corrector method, the firsf incremental displacement is obtained
by calculation, therefore it should yield better results than the es-
timated chord stiffness method Jjust discussed. However, it requires
twice as much computational effort as the plain incremental method be-
Cause the incremental displacement is calculated‘twice for each step,
Therefore, it is is not used in this study.

b) Geometric Stiffness Matrix

The geometric stiffness matrix Kg (10), which is also called
the initial stress matrix, is a function of the stresses in the element

(mainly the in-plane stresses) and may be interpreted as the influence
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of the existing stresses on the behavior of the structure. The
geometric stiffness matrix is combined with the elastic stiffness Ee
to give a better representation of both the tangent and secant (chord)
stiffnesses as indicated by Eq. (5.1).

The element geometric sfiffness matrix for the plate bending

element is defined (6) by:
N N
Fr 170 x “xy x|
k = I Q,. 9, | [ da (5.3)
- A L b'< yJ ny Ny E’yj

where E’x and g,y are the derivatives of the transverse displacement
interpolation function of the element with respect to the §m and §ﬁ
coordinates, respectively. Nx’ N& and ny are the in-plane stress
resultant components in the element. Matrix Eg is transformed to
the global coordinate system and assembled to form the structural
geometric stiffness matrix Eg similar to the elastic stiffness matrix.

It should be noted that the interpolation function_g used here
does not have to be consistent with that used for the elastic stiff-
ness derivation. The use of lower order interpolation functions gives
approximations of the geometric stiffness matrix, It has been found
(6) that a single cubic expansion (43) gives a result as good as a
fully compatible cubic expansion used for the elastic stiffness deriva-
tion, but much less computational effort is needed. Therefore, it has
been used in this research,

In linear static systems, the geometric stiffness is propor-
tional to the external load, and is used in bifurcation buckling
analysis, The object of the bifurcation analysis is to find the cri-

tical load, Pcr’ under which the structure is in a state of neutral
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equilibrium (35). Mathematically the critical load is represented

by the non-trivial solution of the following equations:

(K +K)x =0 (5.4a)
e - 252
or
K x=-AK x (5.4b)
where
K =7\E
- -g

A is referred to as the load factor
gé is the geometric stiffness matrix for certain reference
load state,

If the deflection is small, both Ee and Eg are constant, Equation
(5.4b) is an eigenvalue problem. Each eigenvalue represents a criti-
cal load for a different buckling mode. But usually only the lowest
one is of interest, and it can be found by an inverse iteration tech-
nique similar to the one discussed in section 4,3,

The eigenvalue problem yields only the critical buckling load,
Pcr’ and does not predict the post buckling behavior, which is dif-
ferent for different structures. For example, a plate structure
usually becomes stiffer as it deflects, a shell will become more
flexible, and the strength of a column will remain constant if the
deflection is not too large (Fig. 5-5a).

For large deflection analysis, both Ee and Eg are functions of
the displacement X, and the buckling problem may be solved by an
asymptotic analysis. In this case, the external load is applied in

an incremental form and the critical load is approached asymptotically

(Fig. 5-5b). The process may be carried on for the post buckling
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behavior analysis.

In this research, the tangent stiffness is defined by Eq. (5.1)
based on the current geometry and internal stresses for each step.

It should be noted that in this case,; the elastic and geometric
stiffnesses may be combined ét the element level, and the transforma-
tion to global coordinates has to be performed only once.

In cases where the estimated chord stiffness is used, it is also
possible to estimate the internal stresses at the middle point of
each load increment., Assuming that the stress increment at one load
increment is the same as that of the previous load increment, then
the geometric stiffness matrix (5.3) may be constructed using the
estimated middle point stresses in order to be consistent with the
elastic stiffness.

The geometric stiffness has little influence on the structure
when the stresses are small, Its importance increases as the load
approaches the critical load, i.e. as the structure tends to buckle.
A shell structure is more likely to buckle normal to its surface than
within its surface, i.e. the critical loads for in-plane buckling
modes are much higher than those of the out-of-plane buckling modes.
Therefore, only the geometric stiffness matrix for the plate bending
element (geometric stiffness normal to the surface) is considered in
this research, as is shown in Eq. (5.3).

¢)  Equilibrium Correction

In the incremental analysis, after the deflection of the
structure has been calculated, an equilibrium correction may be per-

formed in the following way:
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i) The global displacement is transformed to the local

system to find the element strains which, in turn, are
used to calculate the element stresses.

ii) Element stresses are transformed back to the global system,

based on the defofmed geometry, to get the resisting forces,

iii) The resisting forces are subtracted from the total applied

loads to get the out-of-balance force which is then added
to the next load increment.

This is an efficient procedure especially for dynamic analysis for
which iteration is difficult., It has also been used by other investi-
gators (e.g. Ref., 9).

Although in an incremental analysis, the out-of-balance force for
each load increment may be neglected if the load increment is small,
the internal stresses developed in the early stage of loading may not
always be in equilibrium with the load which caused these stresses,
as the structure continues to deform under additional loads. Consider

the structure in Fig. 5-6, assuming that at position 1 the internal

stress §l is in equilibrium with the load El’ i.e.
T
él §1 = El (5.5)
where éi is the displacement transformation matrix from the local

element coordinates to the global coordinates for the geometry of posi-
tion 1. In the next load increment, AB is added to the structure which
in turn deforms to position 2 with additional internal stresses AS,

In general, the total stress §1 + A§ at position 2 will not be in
equilibrium with-the total load P, + AE because stress S. has changed

1 1

its direction due to deformation. Load 21 may or may not change its
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direction depending upon the type of load (e.g. dead weight of the
structure may be assumed to remain in the same direction and normal
pressure may change its direction due to deformation). Assuming that

the direction of the load E

1 remains unchanged, the out-of-balance

force may be expressed by:

T T
AF = (A, - AD) 5 (5.6)

where Az is the displacement transformation matrix at position 2,
This force is small if the incremental displacement is small, but its
effect is cumulative, If the load El also changes its direction (in
which case this is a non-conservative system) this effect becomes
even more important.

In order to take this effect into-account, the equilibrium
correction, described previously, is used, In actual computer calcu-
lation, assuming that the load increment is small and the displace-
ment-strain relationship is a linear one within each step, the equili-
brium correction may be carried out as follows,

At the end of n-th step, the incremental displacement bx is cal-
culated and the incremental ' stresses" AS may be obtained by trans-
forming Ax to the local coordinate (§ﬁ,§ﬁ,2&) using the displacement

transformation matrix An and pre-multiplying it by the element stiff-

-1

ness matrix:

Ag = A Ax (5.7a)

[>d
wn
1

k, Bg (5.7b)

where Ee is the element elastic stiffness matrix in the local coor-
dinates, and subscript n-1 refers to the quantity at the end of the

(n-1)-th step (same definition applies to superscripts n and n + 1
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below),
The total "stresses' are obtained by accumulating the incremental

stresses from each step:
S5 =8 + AS (5.7¢)

The total '"stresses" 8, are then transformed to the global
coordinates, based on the geometry at the end of the n-th step, and
subtracted from the total applied load at the end of the (n+l1)-th step
to get the load increment for the next step:

AP = P(t_ ) - AL s (5.8)
= = n+l -n —n

The AP thus obtained will be used in Eq. (4.20).

If an estimated chord stiffness matrix is used, the transforma-
tion matrix will be formed based on the estimated ''middle point”
geometry,

This is a simple operation and only very small amount of computa-
tional effort will be needed.

As a final remark, the step-by-step integration (Section 4.5) is
combined with the incremental method (Section 5.2b) to calculate the
non-linear dynamic response. The equation of motion is expressed by
Eq. (4.18) in which the stiffness matrix is defined by Eq. (5.1) to
form an estimated chord stiffness, the lumped mass matrix M is
assumed to remain constant, the damping matrix is defined by Eq. (4.4)
and the load increment is derived from Eq. (5.8).

This procedure yields good results if the load increment is
reasonably small, The results will converge to the exact solution

as the load increment decreases.
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6., EXAMPLES AND DISCUSSION

Computer programs have been written to carry out the non-linear
dynamic response calculations discussed in the previous chapters.
Their results are checked against existing solutions. Because not
many problems have been solved in the field of large deflection
dynamic analysis of thin shells and because a static solution can be
regarded as a special case in this non-linear dynamic analysis pro-
cedure for which the inertial and damping forces are zero, three non-
linear static problems, two plates and one axisymmetric shell, are
chosen to check the accuracy of the non-linear aspects of this pro-
cedure, (The plate can be regarded as a special form of shell; it
becomes a shell once the large deflection starts.)

Dynamic aspects of the programs are checked by calculating the
natural frequencies of a shell structure whose natural frequencies
are known, Finally, two structures, a simply supported cylindrical
shell roof and a doubly curved cooling tower, subjected to time
varying loads are analyzed,

In computer programming, the time steps are usually held con-
stant for each problem. For static analysis, different load incre-
ments can be employed by having different rates of change of load in
different time periods,

In the following sections, results of this research will be re-

ferred to as the QTSHEL solutions (for quadrilateral shell element).

6.1 Static Cases

a) Simply Supported Plate
A plate, infinitely long in one direction, is simply supported

along its edges and subjected to uniform pressure, Span of the plate
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is 20 inches, This problem has been solved by Timoshenko (36) and
has been checked by several other investigators (26, 41). The struc-
ture exhibits a strong geometric non-linearity because as soon as it
starts to deflect, the membrane strength and stiffness begin to act
to resist the normal pressure, Therefore it is considered as a good
example to check a procedure for non-linear analysis.

Since the behavior does not vary in the infinitely long direction,
only a strip of the plate has to be considered in the analysis,
Taking advantage of the symmetric condition the finite element assem-
blage representing half of the strip is shown in Fig. 6-la. Other

properties of the plate are:

Thickness h = 0,5 inch
Young's Modulus E = 30000 ksi
Poisson's Ratio v = 0.3

The solution plotted against Timoshenko's results for loading up
to 625 psi is shown in Fig., 6-1b. It can be seen that the finite
element procedure yields very accurate results,

It should be noted that the stiffness of this structure in-
creases rapidly once it starts to deflect, Therefore small load in-
crements are usedeor the first few steps and larger increments are
used for the later steps. In general, several test cases with succes~
sively reduced load increments have to be carried out to determine an
adequate size of the load increments, The first step with relatively
large, evenly distributed load increments yields the approximate be-
havior of the structure. The relative sizes of the load increments
may then be adjusted, if necessary, according to the result of this

first test. A load increment is considered as adequate if further
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reduction does not introduce significant changes in the solution.

b) Plate Buckling

A simply supported plate subjected to uniaxial compression

is shown in Fig, 6-2a, This example was chosen to demonstrate the
asymptotic analysis, Since the in-plane stress is nearly constant
within the structure, a relatively coarse finite element mesh may be
used,

Considering symmetric conditions, a quarter of the plate was
analyzed with a 2X2 mesh (Fig. 6-2a). Dimensions and material

properties of the plate are:

a = 100 inches
h =1 inch

E = 30000 ksi
v =0

The buckling stress of the plate is given by:

Q
]
N
Id
w)

(6.1)
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=gl

where

Eh3
12(1-v)

In order to carry out the asymptotic analysis, a small non-zero
disturbing force f has to be applied to the structure. The magnitude
of the force f can be arbitrary and the resulting buckling stress will
be independent of this value. In this example, force f is taken equal
to one percent of the total in-plane force and is applied normal to
the surface at the center of the plate,

It should be noted that the critical stress given by Eq. (6.1)

is based on consideration of the bending stiffness only., The inclusion




70

of the membrane stiffness in the shell analysis tends to stiffen the
structure, Therefore the asymptotic analysis will not find the plate
bending buckling stress. In order to obtain the buckling stress given
by Eq. (6.1) using a shell analysis, the membrane stiffness of this
structure is artificially redﬁced to one percent of its actual stiff-
ness (further reduction will make the in-plane displacement too large
to be realistic).
The resulting stress-deflection curve is shown in Fig. 6-2b.
Even with such coarse mesh, the finite element solution shows excel-
lent agreement with the analytical result. The fact that the stress
deflection curve crosses the critical stress (9.87 ksi) is caused by
the inclusion of the membrane stiffness in the analysis.
c) Shallow Spherical Shell

Both of the previous examples involve plates. The third case
is a shallow spherical shell with clamped edge, The load on the struc-
ture is a uniform pressure normal to its surface (Fig. 6-3a). The
analytical solution of a symmetric snap through of this structure is
presented in Ref, 21, One reason for selecting this particular struc-
ture as an example is that its structural stiffness matrix is always
positive definite throughout the analysis. Otherwise special control,
which has not been included in the existing program, would have to be
used to take care of the negative stiffness.

The shallowness of the shell is defined by:

K = — (6.2)
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where:
a is the horizontal distance between the crown and the edge
of the shell
h is the shell thickness

R 1is the radius of the shell

In this example, K is set equal to 3.0 and with

R 100 inches

h = 0.5 inch
the half angle of the shell 9 is approximately 7.1°. Material proper-
ties of the shell are:
E = 30000 ksi
v = 0,3
A quarter of the shell was analyzed with a mesh as shown in Fig,
a

4
6-3b. The resulting normalized load [<E> (%)] vs normalized displace-

¥ N
o . . s s . .
ment (7;) curve comparing against Kornishin's power series solution

(21) is shown in Fig. 6-3c. It is noted that in the area close to

w
;? = 1.5 1i.e. where the shell snaps through, the structural stiff-

ness is nearly zero. Therefore small load increments have to be used
in this area in order to get good results. Also noted is the fact
that the QTSHEL solution tends to diverge from the true solution in
this region. However, the inclusion of equilibrium correction brings
back the QISHEL solution to the true solution-as the load increases
beyond this area (Fig. 6-3c).

It can be seen from the above three examples that the finite
element procedure yields very good results as compared with existing

solutions. Although only simple structures such as plates and an
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axisymmetric shell are analyzed, it should be emphasized that this
finite element procedure is developed to treat all shell structures
indiscriminately. Therefore it may be concluded that this procedure
can predict non-linear shell behavior accurately as long as the
structural stiffness matrix remains positive definite and the strain

is small.

6.2 Dynamic Cases

a) .Cylindrical Tube
A cylindrical tube supported on diaphragms at both ends is
shown in Fig. 6-4a. The diaphragms are assumed to be infinitely rigid
in their own planes and infinitely flexible normal to their planes.
The natural frequencies of this tube have been studied by several in-
vestigators, Therefore, this example has been selected to check the
dynamic aspect of this finite element procedure.

One group of the tube's natural frequencies may be obtained by
considering one eighth of the tube with symmetric boundary condi-
tions along the three center lines, By assuming these boundary condi-
tions, only vibrations whose number of half waves in the longitudinal
direction "m" is odd and the number of complete cyles around the
circumferential direction '"n" is even, will be included. The mesh
layout for one eighth of the tube is shown in Fig. 6-4b. This example
was studied by Carr (3) using a complete compatible element., The
same finite element mesh was used in Carr's analysis as presented in
this study except Carr used two triangles to represent each quadri-
lateral ‘used in this study.

Dimensions and material properties of the tube are:
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Length L = 500 inches
Radius R = 100 inches
h = 0.2 inch
E = 10000 psi
v =0

Mass Density © 1.0 lb—secz/in4

The material properties are artificially chosen such that:
2 -
w, = [pa (1—v2)/E] 3 =1.0

for simplicity. Resulting natural frequencies for the first three
vibrational modes (using the lumped mass matrix and inverse iteration
technique) comparing with results from Carr (3) and Forsberg (12) are

presented in Table 6-1 following:

TABLE 6-1. NATURAL FREQUENCIES (RAD/SEC)
OF CYLINDRICAL TUBE

Carr
n n QTSHEL Direct Soln. Rayleigh-Ritz Forsberg
6 1 0.0267 0.0280 0,.0274 0.0224
8 1 0.0340 0.0464 0.0372 0.0363
4 1 0.0662 0.0788 - 0.0616

It can be seen from the above table that the QTSHEL solution shows
reasonable agreement as against Forsberg's solution which was obtained
by numerical evaluation of several versions of classical cylindrical
shell theory according to Donnell and Fligge. It should be noted that
the finite element mesh used in this example is a very coarse one -

each element spans 18° in the circumferential direction. = Improved
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results would be expected with a finer mesh,

Comparing the consistency between the finite element and the
analytical solutions in this example and that in the example of
section 4,6, it can be seen that the latter is superior. This is be-
cause there is no geometric approximation. involved in representing
the plate structure by the finite element assemblage while in this
shell analysis there is a geometric approximation. Therefore, the
closeness between the finite element system and the real structure is
a very important factor in the analysis,

Comparing the two finite element solutions, the QTSHEL solution
is as good as, if not superior to, Carr's, despite the fact that the
latter used a complete compatible shell element. This is mainly be-
cause of the superior bending stiffness property of the quadrilateral
element over the triangular element used by Carr.: Therefore it may
be concluded that the lack of compatibility in the quadrilateral shell
element used in this study is not a very important handicap.

b) Simply Supported Cylindrical Shell

A cylindrical shell roof structure supported on diaphragms at
both ends and free to move along the longitudinal edges is shown in

Fig. 6-5a. Dimensions and material properties of the shell are:

L = 50 feet
R = 50 feet
h = 3 inches
8 = 20°

E = 3X1O6 psi
v =0

Weight of shell wt = 90 lb/ft2
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The static behavior convergence of solution with respect to mesh
refinement of this structure was discussed in Ref, 19, The dynamic
behavior of this shell will be presented here.  One reason for se-
lecting this particular structure is that its geometry is simple,
Therefore, it is relatively easier to carry out analyses for succes-
sively refined meshes. However, the same analyses can be carried out
for any shell structure with this procedure at the expense of more
computer time being spent., This example is considered as appropriate
for the demonstration of dynamic analysis.

i) Natural Frequencies

Assuming doubly symmetric conditions, only a quarter of the
shell was analyzed. A typical 4X4 mesh is shown in Fig. 6-5b. Natu-
ral frequencies, obtained by inverse iteration,‘for the first six
vibration modes with successively refined mesh are presented in Table

6-2 below,

TABLE 6-2, NATURAL FREQUENCIES OF SHELL ROOF (RAD/SEC)

MESH | & Wy Y3 Yy Cs Y6 (sgégin)
ox2 | 8.614 ] 22.52| - - - - -
4x4 | 9.643 | 24.49| 33.88 | 42.81 | 64.20 | 68,95 6
6X6 | 9.765| 24.24 | 34.17 | 44,99 68.99 | 70.31 10
8x8 | 9.777 | 24.09| 34.08 | 45.95 | 69.73 | 70.93 50

The term "Time" in the table refers to the average central processor
time required to calculate one eigenvalue in a CDC 6400 machine. It
can be seen that the natural frequencies converge as the mesh size is

reduced., Note that in modes 2 and 3, the frequencies increase as the
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mesh is refined up to 4X4 and 6X6 respectively and decrease as the

mesh refinement continues. The increase is caused by the better geo-
metric approximation of the structure by the flat finite element
assemblage for these two modés; and the decrease is caused by the
better representation of the structural deformation by the displacement
interpolation functions assumed for each element. Similar behavior is
expected for other modes as the mesh refinement continues beyond 8x8,

ii) Linear Dynamic Response to Time Varying Loading

The load on the structure is a uniform pressure of 90 lb/ft2
whose time history is a sinusoidal impulse (Fig. 6-5c¢). It is assumed
that there is no damping for the system,

The convergence with respect to the mesh refinement is further
demonstrated by calculating the linear dynamic response to this load.
The mode superposition method was used for the analysis and six modes
were included. The decoupled equations were solved by a step-by-step
integration method assuming constant acceleration with a time step
At = 0,025 second,

In Fig. 6-6 through 6-10, Fig. "a" refers to the vertical deflec-
tion at the middle point of the free edge and Fig. "b" refers to the
vertical deflection at the center of the shell.

Figure 6-6 shows the comparison between the linear dynamic res-
ponse for a 4X4 mesh and a 6X6 mesh, Figure 6-7 shows the comparison
between a 6X6 mesh and a 8X8 mesh. It can be seéen that the difference
shown in Fig. 6-6 is small and there is practically no difference in
Fig. 6-~7. Therefore, for practical purposes a 4X4 mesh is probably

good enough in this structure,
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iii) Effects of the Sizes of Time Steps on the Solutions
For a 4X4 mesh, a time step At = 0,025 second which is

adequate for this problem and At = 0.10 second which is too large,
were used. Figure 6-8 shows the comparison of linear dynamic solu-
tion for these two time steps and Fig. 6-9 shows the comparison be-
tween the non-linear dynamic solutions. It can be seen that about the
same amount of discrepancy shows up in both diagrams due to inadequate
time step. It can be further noted that in Fig. 6-8a, the larger
time step (0.10 second) gives essentially the first mode response
as expected (because the natural period of the second mode is only
2.5 times the time step). Therefore, although the constant accelera-
tion assumption is always stable regardless of the size of the time
step, excessively large time steps tend to damp out the higher mode
contributions and give inferior results,

iv) Non-linear Dynamic Response

Finally a comparison between the linear and non-linear solu-

tion is made for the 4X4 mesh and At = 0,025 second. It can be seen
in Fig. 6-10a that the structure is stiffened and higher modes are
excited by the deflection of the structure. Figure 6-10b shows that
the natural period is shortened because of deflection.

The fact that the linear solution was obtained by the mode super-
position method considering only six modes while the non-linear solu~
tion was obtained by a direct step-by-step integration technique which,

]

"theoretically,” included all modes, may have some contribution to the
difference between the results shown in Fig., 6-10, However, since the

natural period of the sixth mode is only 0,091 second which is already

less than four times the time step (0,025 second) used, the higher
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modes will be damped out rapidly anyway. Therefore this effect should
be small and considered as negligible.

Although the maximum deflection in this example is only 0.533
foot which is not very large in comparison with the span (50 feet),
it is very large in comparisén with the depth of the undeformed shell
(3.01 feet). The change of cross section shape of the shell is
drastic due to this deflection. It is this change that causes the
non-linearity in the response, The difference shown in Fig. 6-10
has demonstrated the importance of including the non-linear behavior
in the shell analysis,

¢) Cooling Tower

All the previous examples are relatively simple structures.
In this last example a doubly curved cooling tower with negative
Gaussian curvature is analyzed to demonstrate the versatility of this
finite element procedure. The cooling tower selected for this study
was actually constructed in Czechoslovakia. Its geometry was slightly
modified for this study to make it suitable for relatively coarse
mesh layout so that not too much computer time would be spent for the
analysis,

The cooling tower is shown in Fig. 6-1la. The shell structure
above the supporting truss system is 312.5 feet (3750 inches) high,
Half of its profile is shown in Fig, 6-11b. The smallest radius "a"
(= 905.5 inches) is at the height of 3024 inches from the base of the

shell, The radius elsewhere is defined by:

R=a [l + 0.1405 (E:§923>2]% (6.3)

where z is the vertical distance (in inches) between the radius

and the base of the shell. The top stiffening ring is 145 inches high
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and has a constant thickness of 19,2 inches. The bottom ring is 624
inches high., Its thickness is 18 inches at the bottom and varies
linearly to 5,12 inches at the height of 624 inches. The shell
thickness is constant (5.12 inches) between these two rings,

The shell structure is Supported by a series of inclined columns
along its base (Fig. 6-11a). For the purpose of this analysis, it
was assumed that the base of the shell is free to move in the radial
direction and free to rotate about the surface tangent coordinates
El and ﬁz, but is constrained against vertical and tangential dis-
placements,

The shell is made of concrete with material properties:

4.3 x 10° psi

E =
V = 0.15

3
wt = 150 1b/ft

The dynamic behavior of this shell structure is described in the
following sections:

i) Natural Frequencies

A quarter of the tower was analyzed for its natural fre-

quencies. Assuming doubly symmetric conditions, only vibrations whose
numbef of complete cycles in the circumferential direction "n" is
even, will be included. Two different meshes were used in the verti-
cal direction. One has seven elements from top to bottom and the
other has ten, The mesh sizes are plotted qualitatively in Fig. 6-1lb,
Also two different meshes were used in the circumferential direction -
with six and eight elements evenly distributed for a quarter of the

circle respectively. A 6X7 mesh is shown in Fig. 6-12,
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The natural frequencies of the first five vibrational modes

based on three different meshes are as shown in Table 6-3 below:

TABLE 6-3. NATURAL FREQUENCIES OF COOLING TOWER (RAD/SEC)

MESH wl(n=4) wz(n=6) ws(n=2) w4(n=4) ws(n=8) (sgég{f}m)
6X7 10.03 10,07 11.84 12,19 12,48 41
8X7 10.18 10.38 11,87 12,33 13.25 56
6X10[ 10,08 10,31 11.88 12,10 12,28 52

The term "Time" in the table refers to the average central processor
time required to calculate one eigenvalue with a CDC 6400 machine,
It is noted from the above table that the 6X7 mesh gives very good
results for the first four modes (i.e. the results have only little
changes with a finer mesh in both vertical and circumferential
directions). The frequency of the fifth mode increases approximately
six percent as the number of elements in the circumferential direc-
tion increases from six to eight (mesh 6X7 and 8X7). This change
‘results from the fact that this mode has eight complete cyeles in
the circumferential direction (n=8) and six elements cannot approxi-
mate this vibrational behavior closely. However, the 6X7 mesh was
used for the response analysis described later because its results
are considered to be reasonably good, as well as because of the res-
triction imposed on available computer core storage (140,0008 for the
CDC 6400 machine used at the Computer Center at Berkeley).

It is further noted that:

A) The natural ffequencies of this structure are not widely

separated. Therefore it is hard to decide how many modes
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will contribute significantly to the dynamic response. In
this case, it is much more reliable to use a direct step-
by~step integration technique to evaluate the linear dynamic
response than to use the mode superposition method.

B) Considering the size of the structure and the magnitude of
its first mode frequency, this is a very stiff structure,
Therefore the large deflection effects may be not so pro-
nounced as in the previous examples,

ii) Dynamic Response to Wind Load
Load on the structure is assumed to be a wind blowing from

the positive x-direction. . The wind pressure on the structure in the

circumferential direction is defined by:

0° £ 6§ <72°, P(B) = - cos %%; G (6.4a)
72° £ 8 < 105°, P(B) = - 0,225 cos %;? (6-72) + 0.775 (6.4b)
105° < 6 < 180°, P(8) = 0.550 (6.4c)

where 6 is the angle from the positive x-axis. In the vertical
direction, it is assumed to remain constant. Wind pressure at each
node is calculated using Eq. (6.4) and a linear variation is assumed
within each element (Fig. 6-13a). The time history of the wind is
shown in Fig. 6-~13b. The maximum wind pressure on'the structure
during the process is 0.4 psi (57.6 lb/ftz). Damping in the system is
assumed to be 8 = 0,01 which is equivalent to five percent of critical
damping for the first mode.

Half of the structure has been considered in the analysis (Fig,
6-14a) taking account of symmetry. A 12X7 mesh was used to represent

the half shell. The mesh is plotted symbolically in Fig. 6-14b,
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Figure 6-15 shows the radial displacements of three nodes along
the top ring as a function of time and Fig, 6-15b shows another three
nodes along the throat of the shell., Figure 6-16 a and b show the
deformed shapes of the top ring and the throat respectively at the
time t = 1,15 second which cérresponds to the maximum deflection in
the process., Figure 6-~17 shows the deformed shape of the profile of
the tower at the time t = 1,15 second.  Displacements in all these
three figures are exaggerated one hundred times to make the diagrams
clear, It should be noted that the displacements are so small that
the solution is almost equivalent to a linear one,

The computer central processor time required for this non-
linear dynamic aﬁalysis was approximately 90 second/step with a CDC
6400 machine,

iii) Tower Collapses at Larger Load

A second case was studied with all data unchanged. except that
the wind pressure was increased by a factor of five, It was found that
the tower collapses under this load. The collapse is caused by a
local buckling which starts from the most highly compressed part of
the shell and propagates to other parts. The structure finally
collapses at the time t = 0,60 second,

Letting the resulting deformation of the tower from the above
two loads E} and 22 be represented by:

1

x il(t) (6.5a)

1

2
X

x2 () (6.5b)
A normalized deformation vector will be defined by:

i i i :
£ (t) = 2{_ (t)/pmax y 1=1,2 (6,6)
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where

pr = mxa [(PT(D)] .

Figure 6-18 shows the comparison of 31 and 32 at three nodes along
the front edge of the shell.’ It can be seen that 32 starts to
diverge from zl at node 7 and propagates to node 6 and then node 5,
This divergence exhibits the non-linear property due to larger
deformation. Figure 6-19 shows the plot of the quantity (r?—ri)/rﬁ
for the same three nodes, where r; is the j-th component of vector
Ei(t). The propagation of divergence of 52 from £1 is more clearly
demonstrated. Figure 6-20 shows the profile of the deformed tower
Jjust before collapse at the time t = 0.6 second,

It should be noted that a linear dynamic analysis will give a
solution close to that presented in ii), but it can never predict

this collapse,
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FIG.6-14a HALF OF THE COOLING TOWER
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7. CONCLUSIONS

A general procedure has been developed in this investigation for
the determination of the nonlinear dynamic response of shell struc-
tures. This procedure is direct and simple and can be applied to
structures of virtually any type if the element stiffness matrices
of these structures can be properly defined,

The examples presented in Chapter 6 have demonstrated how this
procedure can be applied to solve a variety of static and dynaﬁic shell
problems involving geometric nonlinearities. The three static examples
indictate that the nonlinear behavior of a shell structure undergoing
finite deformation can be correctly predicted. 1In the dynamic analyses,
the convergence of the computed natural frequencies with successively
refined mesh sizes demonstrates that the Finite Element Method may be
used to study the dynamic behavior of shell structures. Therefore, it
may be concluded that with a reasonably fine mesh and small time step,
the proposed procedure should predict the nonlinear dynamic response of
thin shell structures with sufficient accuracy for practical purpose,

Although only shells with relatively simple geometry and loading
have been studied, it should be emphasized that a shell with any shape
and boundary conditions, subjected to arbitrary loadings, can be
analyzed by this procedure.

There are some restrictions on this procedure. First, a structure
whose stiffness matrix becomes non positive-definite during the process,
such as snap through problems of shells, cannot be analyzed by the

existing computer programs. In addition, structures which develop
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large strains under applied load must be avoided, because of the
assumed small strain behavior. The former difficulty could be over-
come by building in special controls in the program to check the
structural stiffness matrix and control the load increments according
to the positive or negative~definiteness of the matrix (this considera-
tion is for static case only). To extend the program to account for
large strains, nonlinear constitutive relations which are not in-
cluded in this study would have to be considered.

Another restriction of the present program is that a large amount
of computer core storage and computational effort are needed to carry
out the analysis. The nonlinear dynamic analysis used in this study
requires that the complete structural stiffness matrix be held in core,
and the program is therefore limited in capacity. 1In the Computer
Center at the University of California at Berkeley, the CDC 6400 machine
with a core storage of 140,000 (in octal) storage spaces is used. The
problem in Fig. 6-14b is about the maximum size that can be handled in
core by this computer (520 equations and the band width of the struc-
tural stiffness matrix is 50). This limitation could be removed by
dividing the stiffness matrix into blocks and solving block by block.
However, the large amount of computer time needed for the analysis is
the cost one has to pay to solve a large problem.

Further modification of the program might include the combination
of this shell element with some other elements such as beam elements.
This would extend the practical value of the program because many shell
structures are constructed with ribs or in combination with frames.

Further research is suggested in the following areas:
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i) Development of new shell elements. The most promising
one is the curved shell element based on a three~dimensional
solid (1).

ii) Study of nonlinear material properties. This is important
because in many shell structures collapse is caused by
material failure while the deformations of the structure are

still small.
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