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Abstract

The United States’s Clean Water Act stipulates in section 303(d) that states must identify impaired 

water bodies for which total maximum daily loads (TMDLs) of pollution inputs into water bodies 

are developed. Decision-making procedures about how to list, or delist, water bodies as impaired, 

or not, per Clean Water Act 303(d) differ across states. In states such as California, whether or not 

a particular monitoring sample suggests that water quality is impaired can be regarded as a binary 

outcome variable, and California’s current regulatory framework invokes a version of the exact 

binomial test to consolidate evidence across samples and assess whether the overall water body 

complies with the Clean Water Act. Here, we contrast the performance of California’s exact 

binomial test with one potential alternative, the Sequential Probability Ratio Test (SPRT). The 

SPRT uses a sequential testing framework, testing samples as they become available and 

evaluating evidence as it emerges, rather than measuring all the samples and calculating a test 

statistic at the end of the data collection process. Through simulations and theoretical derivations, 

we demonstrate that the SPRT on average requires fewer samples to be measured to have 

comparable Type I and Type II error rates as the current fixed-sample binomial test. Policymakers 

might consider efficient alternatives such as SPRT to current procedure.
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INTRODUCTION

In the United States, the Clean Water Act (CWA) Section 303(d) requires states to identify 

impaired water bodies and to recommend total maximum daily loads (TMDLs) for 

contaminants affecting impaired waters, such that water bodies adhering to those TMDLs 

will eventually comply with water quality standards.1 After the USEPA Administrator’s 

approval of a state’s recommended list of impaired water bodies and implementation of 

TMDLs, impaired water bodies are then monitored to determine whether they have attained 

or not yet attained the water quality standards. If a water body meets water quality standards 

it may be removed from the list of impaired waters (e.g., delisted). There are major regional 

differences within the United States in how the 303(d) listing criteria are implemented,2 so 

we focus on the regulatory framework within California, although our findings from this 

example may be informative for other settings considering efficient alternative study designs 

for 303(d) evaluation. In particular, we focus on the decision rule for sediment quality as an 

indicator of whether a water body is impaired under the Clean Water Act.

The California Water Code section 13191.3(a) requires the state to develop standards for 

listing and delisting water bodies per the CWA.3 Listing decisions are based on the 

frequency of exceedance of water quality standards (binary decision variable), which, for 

constituents such as bacteria, dissolved oxygen, contaminants, or nutrients, are numeric 

criteria or objectives.4 For listing evaluations based on sediment quality in bays and 

estuaries, California has adopted a sediment quality objective based on a “multiple lines of 

evidence” approach that considers contaminant levels, sediment toxicity and sediment 
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macrofaunal community condition.5–7 These multiple lines of evidence are integrated and 

assessed to determine whether the sediment quality objective has been attained at a given 

station8 which reduces the multiple possible considerations for sediment quality into a 

binary decision variable suitable for evaluating exceedance frequency and responding to the 

303(d) listing and delisting requirements of the CWA.

There have been several methods proposed for the analysis of binary water or sediment 

quality data. In 2003, Shabman and Smith recommended striking a balance between the 

desired Type I and Type II error rates for any 303(d) regulatory test.9 The California EPA in 

2004 considered several fixed sample size methods for Section 303(d) analyses10 and opted 

for a variation on the exact binomial test with upper limits of 0.2 for both the Type I and 

Type II error rates as the basis for its listing decisions; delisting decisions are based on 

maximum error rates of 0.1. California has specified the number of maximum number of 

exceedances (failures) for a specified number of total samples, leading to a range of Type I 

and II error rates allowed for different sample sizes (Figure 1, Figure 2, Supplementary 

Material).

Application of the exact binomial test in California’s 303(d) decisions requires a substantial 

number of samples to attain the specified error rates. For example, a minimum of 28 

samples, with no more than 2 exceedances, is required to remove a site (water or sediment 

segment) from the 303(d) list.11 For evaluating sediment quality, monitoring costs to obtain 

the minimum sample size to evaluate delisting could easily exceed $200,000.10 Use of an 

alternative method with similar performance (i.e., Type I and II error rates), but reduced 

sample size requirements, would reduce the cost of compliance monitoring.

An alternative approach that can make the same assumptions as the exact binomial (i.e., 

independent and identically-distributed Bernoulli observations), called the sequential 
probability ratio test (SPRT), uses the data obtained from previous testing to evaluate 

whether adequate evidence exists at that time to favor a null or alternative hypothesis.12,13 

This is conceptually similar to the sequential Bayesian updating proposed by Qian and 

Reckhow for longitudinal environmental monitoring data to determine if a water body 

following a TMDL has attained water quality standards,14 but here, in addition to being 

focused on a binary variable, our inferential goal includes making the decision of whether a 

water body should be listed as impaired under 303(d) and subjected to TMDL requirements. 

California’s current regulatory testing paradigm has a parallel structure for the listing and 

the delisting decisions, and in this analysis we are comparing against an alternative test that 

also facilitates parallelism between the listing and delisting procedures.

The objective of this study is to contrast the performance of the sequential probability ratio 

test with California’s current procedure, a fixed-sample exact binomial test, through 

theoretical derivations and simulation studies. Our comparison metrics are the expected 

number and standard deviation of the number of required samples to obtain the same Type I 

and Type II error rates as for the corresponding fixed-sample binomial tests. Our comparison 

here focuses on one alternative approach making similar assumptions to current regulatory 

practice, as this apples-to-apples comparison can best highlight the potential gains from 

more efficient methods. However, it should be noted that other efficient designs and analysis 
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approaches, making alternative assumptions, might be even more useful for informing 

303(d) listing and delisting decisions.

EXPERIMENTAL (MATERIALS AND METHODS)

Historical Sediment Quality Data

The Southern California Bight Monitoring Program has, since 1994, coordinated a regional 

sediment quality monitoring survey approximately every 5 years from up to 400 stations 

around Southern California.15 This large longitudinal sediment quality monitoring dataset 

provides a useful resource for evaluating the performance of methods to assess 303(d) 

compliance on realistic datasets. We recoded the five sediment quality assessment categories 

in the public database into the following binary categories, consistent with how these data 

would be used for regulatory decision-making under current practice: meets the sediment 
quality objective (“unimpacted”, “likely unimpacted”) or fails to meet the sediment quality 
objective (“possibly impacted”, “likely impacted”, “clearly impacted”). Data assessments in 

the database classified as “inconclusive” were excluded from analysis, just as they would 

also have been excluded from informing regulatory decisions. For this analysis, we focused 

on regional monitoring data (N=46) from San Pedro Bay in southern California, which 

includes Los Angeles and Long Beach Harbors. To facilitate replication of our simulations, 

these data are available in the Supplementary Material.

Simulated Data

We simulated Bernoulli data with the same success probability (i.e., “exceedance rate”) as 

observed in the historical regional monitoring data (code available in Supplementary 

Material).

Statistical Approach

Idealized Comparisons of Exact Binomial Test vs. SPRT—Theoretical sample 

sizes for the exact binomial test and for the sequential probability ratio test for specified 

Type I and Type II error rates are derived and presented in Tables 1 and 2. Details on the 

theory for sequential probability ratio test are provided in the Supplementary Material. 

Because the sample size of the sequential probability ratio test is a random variable, we also 

assessed the performance of this procedure using simulated datasets. We first evaluated the 

empirical sample size requirements of the sequential probability ratio test to obtain the 

previously specified Type I and Type II error rates (Table 3). The code for all simulations is 

provided in the Supplementary Material.

Simulations Comparing Current California Regulatory Test Procedure vs. 
Truncated SPRT—The simultaneous test employed by California for regulatory purposes 

is a decision-rule defined by the observed numbers of failures and total numbers of trials, 

with different combinations detailed in tables in the Water Quality Control Policy for 
Developing California’s Clean Water Act Section 303(d) List.11 We converted these 

decision-rules into corresponding Type I and Type II error rates (Supplementary Material) 

for comparisons with SPRT. To summarize, California’s decision rules currently allow Type 

I error rates ranging from 0.0009 to 0.16 and Type II error rates ranging from 0.0008 to 
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0.1885 (Supplementary Material), consistent with never allowing Type I nor Type II error 

rate to exceed 0.20 for listing decisions, or 0.10 for delisting decisions.

The fact that there is no fixed, a priori limit to the number of samples required by the SPRT 

to arrive at a decision could be an obstacle for environmental decision-makers. Therefore, as 

a proof-of-feasibility, we modified the SPRT by adding a truncation rule that would declare a 

water body “impaired” if no decision had yet been reached by the truncation point. We used 

a conservative truncation cutoff of twice the required number of observations from the 

corresponding current regulatory test under comparison. For example, in comparison with 

the state’s decision-rule for 50 samples, the truncated SPRT was forced to make a decision 

by the 100th sample, although it typically terminated in less than 50 samples (see Figures 1, 

2). In general, the lower a truncation threshold for declaring impairment, the fewer extremes 

are included in the sample mean (and standard deviation) number of samples for making a 

decision. If we apply the Precautionary Principle16 and interpret ambiguous truncated 

outcomes as “impaired” when truncated, then for 303(d) listing decisions the Type I error 

rate increases and Type II error rate decreases, while for 303(d) delisting decisions, the Type 

I error rate decreases and Type II error rate increases. Therefore, the comparisons provided 

between the truncated SPRT and the state’s current test are approximate matches, as the two 

tests will have slightly different empirical error rates. How different the error rates are 

between these two methods depends on how often the stochastic process underlying SPRT 

invokes truncation.

RESULTS AND DISCUSSION

Theoretical and simulation-estimated sample sizes for the sequential probability ratio test 

without truncation were lower than the exact binomial test, for the same power and type I 

error rate (Tables 1–3). For a fixed Type I and Type II error rate, the required sample sizes 

for non-truncated SPRT in simulations were slightly higher than the theoretical sample sizes, 

but had standard deviations almost as large as the expected values (Tables 2–3). Thus, the 

performance of the non-truncated SPRT varies according to the data on which it is used, and 

truncation might protect against excessive sampling.

In the applied comparison against the current listing tests used by California, the truncated 

SPRT also required on average fewer samples both for listing (illustrated in Figure 1) and 

delisting (illustrated in Figure 2) decisions.

To make our simulations as comparable to the California current practice as possible, in this 

analysis we applied the special case of SPRT where the observations in sequence are 

Bernoulli random variables, but the idea of SPRT is more general and can be used for other 

sets of independent and identically distributed objects, for example potentially modeling 

independent and identically distributed, vector-valued batches of data as sequential objects, 

rather than single Bernoulli variables. The alternative flavor of SPRT for batches of data is 

called group sequential testing.17 It could be an interesting extension of this work on 303(d) 

evaluation methods to assess how varying the number of samples per stage in a sequential 

collection of batches could help optimize the procedure for real-world practicality and 

statistical efficiency.
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Although it appears from this analysis that there could be major efficiency gains in shifting 

from a simultaneous to a sequential testing framework, in particular with a sequential 

sampling design and truncated SPRT for delisting decisions, we do not recommend that the 

SPRT (or its truncated version) be adopted in its current form for regulatory purposes, 

because there are still major limitations (e.g., failure to account for dependence between 

samples) to both SPRT and conventional approaches. Rather, we hope our analysis will 

advance a conversation leading to development of even more efficient and appropriate 

methods. Our analysis has focused on more efficient designs for future assessments (e.g., for 

future regulatory testing programs assessing regulatory compliance using data collected over 

a fixed period such as new data collected within a 2-year regulatory window, comparable to 

how current Clean Water Act determinations are made using data from the most recent 

assessments). Neither the SPRT nor the current approach explicitly provides for how to 

make use of previous observations collected prior to the current regulatory observation 

window. Several methodological papers focused on improving efficiency of CWA regulatory 

testing have noted there is often prior information available on the historical water quality 

and information on data from neighboring sites. The Bayesian power prior method 

advocated by Duan, Ye and Smith incorporates historical and adjacent site data into a 

binomial-model water quality assessment via a power prior, but treats “current” data as a 

batch to be tested simultaneously to provide a likelihood of the parameter value of interest.18 

Similarly, the Bayesian approach encouraged by McBride and Ellis uses a simultaneous 

sample binomial likelihood but with beta priors.19 The TMDL compliance method 

recommended by Qian and Reckhow allows for sequential updating of the likelihood, but 

was only developed for continuous variables (in the context of attainment of TMDL 

goals),14 whereas California determines CWA compliance via a binary decision variable per 

sample. Combining these ideas, for example by basing a prior for a “failure” parameter on 

historical information and updating sequentially with each sample using a group sequential 

test, could make better use of the complete monitoring record available. Another extension 

that could further strengthen the real-world appropriateness of this method is to formulate a 

model that would explicitly account for the spatial and temporal autocorrelation between 

regulatory samples collected across different stations and years; none of the regulatory 

decision rules we have encountered yet take this spatio-temporal autocorrelation into 

account.

One concern that might be raised for sequential testing in an environmental monitoring 

context is that the data points could be “cherry-picked” by an unscrupulous assessor to 

prioritize the cleanest sampling sites within a water body to be the first sampling stations 

evaluated, biasing CWA 303(d) decisions toward false “attainment”. However, similar 

concerns about using unreasonable environmental sampling sites also apply to simultaneous 

study designs and the current “exact binomial test” as well. Any study used for regulatory 

decisions must include strict requirements for informative sampling.

In conclusion, the SPRT offers an efficient alternative to the current regulatory framework 

for CWA 303(d) listing and delisting decisions in California. In particular, for CWA 303(d) 

delisting decisions, adoption of a truncated SPRT that parses any inconclusive (i.e., 

truncated) results as “impaired” could reduce both the Type I error rate, thus better 

protecting public health and the environment, and the average required sample sizes, thus 
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reducing the cost of monitoring for adherence, relative to the status quo. Further work is 

needed to develop and make accessible to stakeholders (e.g., through easy to use software) 

new methods for CWA 303(d) evaluation that incorporate historical data, account for the 

autocorrelation of samples, and update evidence sequentially in order to efficiently make 

appropriate decisions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Sequential Probability Ratio Test (SPRT) can mimic assumptions of 

California’s test.

• SPRT needs fewer samples, on average, to obtain similar Type I and Type II 

errors.

• Sequential testing procedures may offer an efficient alternative to current 

methods.
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Figure 1. Simulations Comparing Sample Sizes for 303(d) Listing: Sample Sizes under 
Truncated SPRT vs. Simultaneous Testing
The grey circles have proportionate area to frequency of each sample size observed across 

simulations (e.g., these are top-down views of histograms). The black squares represent the 

mean expected sample sizes, per row. The black squares with X through them represent the 

required sample size from the corresponding fixed-sample test per the state of California’s 

current requirements.
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Figure 2. Simulations Comparing Sample Sizes for 303(d) Delisting: Sample Sizes under 
Truncated SPRT vs. Simultaneous Testing
The grey circles have proportionate area to frequency of each sample size observed across 

simulations (e.g., these are top-down views of histograms). The black squares represent the 

mean expected sample sizes, per row. The black squares with X through them represent the 

required sample size from the corresponding fixed-sample test per the state of California’s 

current requirements.
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Table 1

Fixed-sample exact binomial test: sample sizes needed to achieve type I error and power.

Type I error Power = 0.8 Power = 0.9 Power = 0.95

α = 0.05 78 109 135

α = 0.1 61 86 112

α = 0.2 39 63 82
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