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Abstract
Kupffer cells play a central role in the pathogenesis 
of alcoholic hepatitis (AH). It is believed that alcohol 
increases the gut permeability that results in raised levels 
of serum endotoxins containing lipopolysaccharides 
(LPS). LPS binds to LPS-binding proteins and presents 
it to a membrane glycoprotein called CD14, which 
then activates Kupffer cells via  a receptor called toll-
like receptor 4. This endotoxin mediated activation of 
Kupffer cells plays an important role in the inflammatory 
process resulting in alcoholic hepatitis. There is no 
effective treatment for AH, although notable progress 
has been made over the last decade in understanding 
the underlying mechanism of alcoholic hepatitis. We 
specifically review the current research on the role 
of Kupffer cells in the pathogenesis of AH and the 
treatment strategies. We suggest that the imbalance 
between the pro-inflammatory and the anti-inflammatory 
process as well as the increased production of reactive 
oxygen species eventually lead to hepatocyte injury, the 
final event of alcoholic hepatitis. 

Key words: Alcoholic liver disease; Alcoholic hepatitis; 
Macrophages; Kupffer cells
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Core tip: In this editorial we provide critical comments 
on the pivotal role of Kupffer cells on the development 
of alcoholic hepatitis with a focus on the pro-inflam-
matory as well as the anti-inflammatory pathways. We 
propose that the anti-inflammatory pathway should 
be further explored as a potential alternative for novel 
treatment strategies. This editorial is significant as it 
provides a platform for the future basic and clinical 
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research in elucidating the pathogenesis and developing 
the management strategies of this common clinical 
pathology - alcoholic hepatitis.
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INTRODUCTION
Alcoholic hepatitis (AH) is defined as an acute hepatic 
inflammatory response to excess alcohol ingestion. It 
is estimated that 56809 hospital admissions in 2007 in 
the United States had a primary diagnosis of AH, 0.71% 
of all admissions[1]. In addition, hospitalization for AH 
is a leading cause of healthcare utilization[1]. In spite 
of such high costs and mortality, there has been little 
progress in the treatment strategies over the past 20 
years. Histologically, alcoholic hepatitis is characterized 
by hepatocellular necrosis and immune cell infiltration 
around damaged hepatocytes[2]. This inflammatory and 
immune response leads to further hepatic injury and 
acute liver failure. Thus understanding this inflammatory 
cascade is vital to understanding alcoholic hepatitis and 
developing a treatment strategy. Currently there are only 
two pharmacologic treatments of AH: Corticosteroids 
and pentoxifylline. However these treatments are limited 
in their effectiveness and severe cases of AH still carry 
a short term mortality of 30%-50%[3]. Hepatic macro-
phages, called Kupffer cells, have been found to play 
a central role in hepatic inflammation[4]. Therefore, we 
will focus on providing a concise review of the role of 
Kupffer cells in AH, current treatments to disrupt this 
inflammatory pathway and potential basic and clinical 
research directions. 

OVERVIEW OF THE PHYSIOLOGIC 
FUNCTION OF KUPFFER CELLS
Kupffer cells are macrophages found in the liver. They 
were first identified by Kupffer[5] in 1876. Monocytes in 
the blood stream migrate into the liver and differentiate 
into Kupffer cells[6]. Kupffer cells makeup about 15% 
of all cells in the liver and comprise 50% of the total 
population of macrophages in the body[7]. They function 
to clear foreign matter from the portal circulation and 
in animal models have been shown to clear about 
80%-90% of all particulate injected[8]. The particulate 
include immune complexes, bacterial components, 
endotoxins and collagen fragments. Kupffer cells can 
kill ingested organisms using oxygen dependent and 
independent mechanisms[9]. Studies in Kupffer cell 
depleted mice have shown that Kupffer cells play a 
critical role in neutrophil recruitment and granulomatous 

formation in the liver[10]. Kupffer cells are activated 
by endotoxins (Figure 1). Endotoxins are composed 
of the lipopolysaccharides (LPS) component of Gram-
negative bacterial cell walls. LPS-binding proteins 
(LBPs), produced by hepatocytes, bind and present 
LPS to CD14, a membrane glycoprotein[9]. CD14 in turn 
activates Kupffer cells via a membrane complex that 
includes a pathogen recognition receptor called toll-
like receptor 4 (TLR-4). Activated Kupffer cells release 
interleukin (IL)-1B, tumor necrosis factor (TNF)-α, IL-6, 
IL-8, macrophage chemotactic protein-1 and regulated 
normal T cell expressed and secreted. These cytokines, 
mainly TNF-α, then bind to hepatocyte receptors leading 
to tissue damage via oxidative stress and apoptosis[11].

ACTIVATION OF IMMUNE RESPONSE 
INALCOHOLIC HEPATITIS
Gut bacterial translocation likely plays a key role in AH. 
In a healthy individual, only a small quotient of gut 
bacterial endotoxin gets translocated into the portal 
blood. Alcohol ingestion has been shown to increase this 
endotoxin translocation[12]. Alteration of gut microflora 
and increased gut permeability are the driving forces 
behind this process. Experimentally induced bacterial 
overgrowth in rats has been shown to lead to increased 
bacterial translocation and subsequent liver injury[13]. 
Furthermore, evidence suggests that alcohol can alter 
gut microflora[14]. Jejunal aspirates of chronic alcohol 
abuse patients have shown increased aerobic and 
anaerobic bacteria[15,16]. The pathophysiology of bacterial 
overgrowth in chronic alcoholic patients is not clearly 
identified. Possible etiologies include impaired bile flow, 
reduced gastrointestinal motility and increased gastric 
pH[14,17-19]. In addition to bacterial overgrowth, alcohol 
can lead to intestinal dysbiosis. Animal studies have 
shown an increased predominance of Gram-negative 
bacteria in alcohol fed subjects[20,21]. Mice with antibiotic 
induced eradication of gut flora had decreased alcohol 
induced liver injury as compared to mice with intact 
gut flora when exposed to ethanol[22]. Similar results 
were found in mice that were fed with lactobacillus[23]. 
Intestinal decontamination with rifaximin has also shown 
increased liver hemodynamics and decreased incidence 
of hepatic encephalopathy in patients with alcoholic liver 
disease (ALD)[24,25]. The second component of alcohol 
induced endotoxemia is increased gut permeability. 
Alcohol is metabolized into acetaldehyde, which has 
been shown to open tight junctions and increase gut 
epithelium permeability[26,27]. Several studies have 
suggested the association between endotoxins and 
alcoholic liver injury. It was found that endotoxin levels 
in mice directly correlated with the severity of alcoholic 
liver injury[28]. Rats that had LPS administered in addition 
to alcohol were also shown to have worse liver injury 
than those exposed to ethanol alone[29]. In humans, 
endotoxin levels have been shown to be measurably 
higher in acute and chronic alcohol use[30].
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IMPORTANCE OF KUPFFER CELLS IN 
ALCOHOLIC HEPATITIS
Several lines of evidence suggest that Kupffer cells 
play an important role as inflammatory mediators in 
the setting of alcoholic hepatitis. TLR-4 defective rats 
exposed to ethanol were shown to have markedly less 
steatosis, inflammation, and necrosis as compared 
to wild-type rats[31]. Furthermore ethanol increased 
TNF-α in wild-type rats but failed to do so in the TLR-4 
mutant rats[31]. In LBP and CD14 knockout mice, alcohol 
induced liver injury was also significantly reduced[31-33]. 
Mice in whom Kupffer cells were chemically destroyed 
had no alcohol induced liver injury[34]. Activated human 
Kupffer cells express CD163, a hemoglobin-haptoglobin 
scavenger surface receptor[35]. Although the function 
of CD163 is unknown, it has been used as a marker 
for macrophage activation. Studies have shown that 
CD163 is in fact not only elevated in ALD, but that the 
plasma concentration of CD163 also predicts mortality 
in acute liver failure[36]. In addition CD163 has been 
shown to be a predictor of clinical decompensation in 
the setting of liver cirrhosis, an independent prognostic 
indicator for variceal bleeds and a marker of portal 
hypertension[37-39]. It is important to note that a recent 
study comparing levels of CD163 in AH, chronic cirrhosis 
and healthy patients found that CD163 concentrations 
were 30% higher in AH patients than in chronic cirr-
hotic patients and 10 times higher as compared to 
healthy individuals[40]. Therefore, CD163 could serve 
as a diagnostic marker of alcoholic hepatitis as well as 
a potential prognosticator for patients with alcoholic 
hepatitis. 

Kupffer cell-mediated products have been extensively 
studied to further characterize their association in AH. 
TNF-α has been identified as a key mediator in AH. 
Serum TNF-α have been found to correlate with endo-

toxemia and development of inflammation and fibrosis 
in patients with AH. It can even be used as a biomarker 
for fibrosis[41,42]. Studies have confirmed that monocytes 
from patients with alcoholic hepatitis had greater 
levels of TNF-α than healthy subjects[43]. Furthermore, 
analysis of liver biopsies in patients with AH have shown 
increased staining for TNF-α, IL-1 and IL-6[44]. Kupffer 
cells can also contribute to liver injury via oxidant stress. 
Kupffer cells in animals fed with alcohol produce free 
radicals. This is further supported by studies showing 
nicotinamide adenine dinucleotide phosphate oxidase 
knocked out mice demonstrated to have decreased 
liver necrosis and inflammation in addition to decreased 
nuclear factor-kappa B and TNF-α[45].

In addition to the resident Kupffer cell-mediated 
hepatic injury, recruited macrophages have also been 
shown to play a part in liver injury[46]. Murine models 
have shown that there is an increased accumulation of 
infiltrating monocytes in the setting of liver injury[47]. 
Recruitment of these monocytes is highly dependent 
on the chemokines CCL1 and CCL2. Of note, one of the 
major sources of CCL2 is hepatic stellate cells, which 
in turn are activated by the TLR-4 ligands. Mice lacking 
CCL2 have been shown to incur less liver injury[48]. 
Furthermore mice lacking CCR8, a receptor for CCL1, 
were also shown to be more protected from liver 
injury[49]. Infiltrating monocytes have been divided into 
two groups depending on surface protein expression, 
Ly6Chi and Ly6Clow. Ly6Chi monocytes exhibit a pro-
inflammatory phenotype while Ly6Clow monocytes exhibit 
an anti-inflammatory phenotype. Mice fed with ethanol 
had a shift towards more Ly6Chi monocytes, resulting in 
significantly increased liver injury[50]. There is still much 
to be learned about the role and function of infiltrating 
monocytes in liver injury.

Kupffer cells have been shown to play central roles 
in other causes of liver injury such as nonalcoholic 
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Figure 1  Central mediating role of Kupffer cells in alcoholic hepatitis. The dysregulation between the pro-inflammatory and the anti-inflammatory 
cytokines eventually leads to hepatocyte injury. Image components obtained from somersault 1824 online image library (http://www.somersault1824.com/). LPS: 
Lipopolysaccharides; TLR-4: Toll-like receptor 4; IL: Interleukin; TNF: Tumor necrosis factor; ROS: Reactive oxygen species.
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tality rates are predominantly due to a lack of effective 
treatment for severe AH. Multiple clinical trials for 
treatment of alcoholic hepatitis have been published 
(Table 1). The American Association for the Study of 
Liver Diseases (AASLD) guidelines for management of 
AH currently stratifies the management depending on 
severity. Low risk patients are managed conservatively 
with nutrition, supportive care and close monitoring. 
High-risk individuals, defined as those with a Maddrey’s 
discriminant function greater than or equal to 32 or a 
model for end-stage liver disease score greater than 
or equal to 18, may benefit from pharmacological 
intervention with either prednisolone or pentoxifylline. 
Corticosteroids have been extensively studied with 
mixed results[63-67]. This is likely due to the fact that 
study design, severity of AH and exclusions criteria vary 
greatly between studies. One meta-analysis showed 
survival rates of 80% at 28 d with corticosteroids vs 
66% in the control group in patients with severe AH[63]. 
Corticosteroids presumably improved outcomes by 
decreasing pro-inflammatory cytokines. Pentoxifylline is 
a nonselective phosphodiesterase inhibitor that increases 
intracellular concentration of adenosine 3’, 5’-cyclic 
monophosphate, which in turn inhibits the expression 
of pro-inflammatory cytokines[68]. AASLD recommends 
pentoxifylline as an alternative to corticosteroids when 
the use of steroids is contraindicated or in the setting of 
early renal failure. According to one randomized, double-
blinded, placebo controlled trial, patients treated with 
pentoxifylline had a survival benefit (24.5% mortality 
vs 46.1% in the placebo group)[69]. Although multiple 
clinical trials have shown some benefit of treatment 
with steroids or pentoxifylline, a recent well designed, 
multicenter, double-blinded, randomized trial found no 
statistically significant mortality benefit in treatment 
with either pentoxifylline or prednisolone[70]. The study 
involved 1053 patients who were randomized to four 
arms: A group that received a pentoxifylline-matched 
placebo and a prednisolone-matched placebo, a group 
that received prednisolone and a pentoxifylline-matched 

steatohepatitis (NASH) and viral hepatitis that are often 
also present in AH patients. Using a murine model 
of NASH, several studies have shown that sequential 
depletion of Kupffer cells reduced the incidence of 
steatosis[51-53]. Furthermore, targeted knockdown of 
TNF-α also decreased the incidence of NASH develop-
ment[51,54]. Current understanding of the role of Kupffer 
cells in viral hepatitis is limited. Identification of a 
specific pathogenesis has been difficult due to similar 
characteristics of recruited macrophages and resident 
Kupffer cells. A recent study suggests that Kupffer cell 
interaction with hepatitis B surface antigen leads to pro-
inflammatory cytokine production, which may contribute 
to liver pathology[55]. Studies have shown increased 
numbers of Kupffer cells during hepatitis C viral (HCV) 
infection[56]. Incubation of HCV E2 envelop protein with 
human liver cells resulted in Kupffer cell binding in a 
CD81-dependent manner[57]. In addition HCV core 
and NS3 stimulate human CD14+ Kupffer cells and 
monocyte derived macrophages to produce IL-1β, IL-6 
and TNF-α[58,59]. It is likely that Kupffer cell activation 
contributes to the progression of liver disease in viral 
hepatitis. Increased numbers of Kupffer cells have been 
found in regions of liver fibrosis in the setting of chronic 
viral hepatitis[60]. Viral hepatitis has also been shown to 
induce Kupffer cells to release cytotoxic molecules that 
kill not only infected hepatocytes but also non-infected 
cells[61,62]. It is likely that Kupffer cells are involved in the 
pathogenesis of many types of liver pathologies and it 
may be the case that their activation is multifactorial in 
patients with AH as well as other hepatic comorbidities.

CURRENT TREATMENT OF ALCOHOLIC 
HEPATITIS
AH is an acute process and most patients will recover 
with nutritional support and abstinence from alcohol. 
However severe AH carries a high mortality rate: 35% 
at 28 d without effective treatment[63]. These high mor-

Table 1  Randomized controlled trials evaluating the treatment of alcoholic hepatitis

Study Topic Methods Findings

Prednisolone or pentoxifylline
   Theodossi et al[99] PRED vs placebo Randomized control No difference in mortality
   Ramond et al[100] PRED vs placebo Double-blinded, randomized control Improved mortality with PRED
   Akriviadis et al[69] PTX vs placebo Double-blinded, randomized control Improved mortality with PTX
   Sidhu et al[101] PTX vs placebo Randomized control Improved mortality with PTX
   De et al[102] PTX vs PRED Double-blinded, randomized control Reduced mortality with PTX
   Park et al[103] PTX vs PRED Randomized control Reduced mortality with PRED 
   Mathurin et al[104] PRED vs PRED + PTX Multicenter, double-blinded, randomized control No difference in mortality
   De et al[105] PTX vs PTX + PRED Double-blinded, randomized control No difference in mortality
   Thursz et al[70] PTX vs PRED vs placebo Multicenter, double-blinded, randomized control No difference in mortality
N-acetylcysteine
   Moreno et al[106] NAC vs placebo Multicenter, single-blinded, randomized control No difference in mortality
Cytokine inhibitors
   Naveau et al[72] Infliximab vs placebo Double-blinded, randomized control Increased mortality with infliximab
   Boetticher et al[71] Etancercept vs placebo Multicenter, single-blinded, randomized control Increased mortality with etancercept

PTX: Pentoxifylline; PRED: Prednisiolone; NAC: N-acetylcysteine.
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placebo, a group that received pentoxifylline and a 
prednisolone-matched placebo, or a group that received 
both prednisolone and pentoxifylline. The prednisolone 
group was the only group associated with an initial 
reduction in 28-d mortality. However at 90 d and at 1 
year there were no significant differences between the 
groups. There is no doubt that this well designed study 
certainly questions the currently established treatments 
of AH.

While cytokine inhibitors have great potential in 
theory, trials with both infliximab and etanercept have 
resulted in increased mortality, primarily due to infec-
tion[71,72]. Liver transplantation is another treatment 
option in ALD. Most transplant centers require at least 
6-months of abstinence[73,74]. This allows for disease 
regression in patients with recent alcohol use, time for 
proper counseling and demonstrates patients’ ability 
to abstain from alcohol. One meta-analysis comparing 
alcohol use in post-transplant patients showed no 
difference in the proportion of patients that used alcohol 
when comparing ALD to non-ALD patients, although ALD 
patients were more likely to drink excessively[75]. Risk of 
alcohol recurrence in ALD transplant patients continues 
to be an area of debate. In summary, treatment options 
for AH are limited with even the standard of care now 
being questioned, emphasizing the urgent need for 
effective and novel treatment strategies.

FUTURE AREAS OF RESEARCH
Identification of new therapeutic targets has been 
hampered by a lack of appropriate animal models. 
Current animal models do not develop severe liver injury 
as humans do. One possible area of future investigations 
would be the modulation of the LPS pathway. A recent 
study evaluating the effects of milk osteopontin on gut 
permeability found that milk osteopontin preserved gut 
architecture and prevented inflammation in ethanol fed 
mice[76]. Milk osteopontin has also been shown to directly 
bind to LPS and prevent Kupffer cell activation thereby 
disrupting the subsequent pro-inflammatory cascade[77]. 
Another study used probiotics to alter gut flora and TLR4 
antagonists, which have been proposed for treatment of 
ALD[78].

Genetic factors leading to the predisposition for 
liver disease is another promising area of exploration 
in recent years. A number of studies have shown an 
association between variations in the PNPLA3 gene 
and liver fat content as well as plasma aspartate amino-
transferase[79-82]. Furthermore two groups have inde-
pendently found associations between the PNPLA3 single-
nucleotide polymorphism rs738409 and ALD populations 
in Mexico and Germany[83,84]. During the last decade, a 
prominent area of research had been the inhibition of 
pro-inflammatory cytokines. However blocking TNF-α 
had led to unacceptable complications. More targeted 
inhibition using dexamethasone conjugates targeting 
the CD163 receptor on macrophages have shown some 

success in rats[85,86]. Yet another unique way of managing 
inflammation in AH patients is apheresis. A recent case 
series and literature review of 35 cases concluded that 
leukocytapheresisand granulocytapheresiswere effective 
in controlling leukocytosis as wells as inflammatory 
cytokines[87].

In contrast to pro-inflammatory cytokines, Kupffer 
cells also produce anti-inflammatory or hepato-protective 
cytokines, such as IL-6 and IL-22[88] (Figure 1). Activated 
Kupffer cells release IL-6, which then stimulates signal 
transducer and activator of transcription 3 (STAT3) 
leading to increased expression of genes that are anti-
apoptotic, anti-oxidative, and promote mitochondrial 
DNA repair[89,90]. Studies have shown that IL-6 deficient 
mice are in fact more susceptible to hepatic steatosis, 
cellular apoptosis and mitochondrial DNA damage when 
exposed to ethanol[89-91]. Furthermore STAT3 knockout 
mice have been shown to have greater degree of hepatic 
steatosis as compared to wild-type mice[92]. Ethanol 
induced liver injury was alleviated by treatment with 
IL-6[93]. IL-22 is another hepato-protective cytokine that 
has been found to ameliorate hepatocellular damage 
in fatty liver as well as acute and chronic alcoholic liver 
injury[94-97]. It is believed that both IL-6 and IL-22 share 
the same pathway, STAT3 mediated hepatoprotection[96]. 

Another potentially important observation relevant 
to alcoholic hepatitis is a recently reported finding that 
the administration of lactate reduced inflammation and 
organ injury in mice with an immune mediated hepa-
titis[98]. Lactate interacted with the specific receptor G 
protein-coupled receptor 81 (GPR 81) to reduce inflam-
mation and injury. Further, lactate and GPR 81 prevented 
LPS-induced macrophage activation (Kuppfer cells) 
suggesting that the beneficial effects were mediated by 
the effects of lactate on activated macrophages. These 
results suggest that hepatic injury due to macrophage 
activation may be treated by ligands including lactate 
that interact with GPR 81. 

CONCLUSION
AH is a major cause of morbidity and mortality worldwide. 
The underlying mechanisms are poorly understood, 
which has resulted in a lack of specific treatments. The 
absence of animal models further hampered the progress 
in elucidating the molecular mechanisms which may 
provide scientific evidence for designing more targeted 
treatment strategies. Given the inconsistent results of 
currently available treatment strategies, which mainly 
target the pro-inflammatory process, we speculate that 
it is also important to recognize the potential effort of 
targeting the anti-inflammatory pathway or targeting 
both the anti and the pro-inflammatory pathways simul-
taneously. With the recognition of the anti-inflamma-
tory process mediated by Kupffer cells, it may be the 
prime time for a well-designed clinical trial to target the 
unique anti-inflammatory pathway. This may lead to the 
development of novel effective treatment strategies for 
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this common clinical entity. 
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