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Abstract 24 

Background: Association rule mining (ARM) has been widely used to identify 25 
associations between various entities in many fields. Although some studies 26 
have utilized it to analyze the relationship between chemicals and human 27 
health effects, fewer have used this technique to identify and quantify 28 
associations between environmental and social stressors.  29 

Methods: Socio-demographic variables were generated based on U. S. 30 
Census tract-level income, race/ethnicity population percentage, education 31 
level, and age information from 2010-2014, 5-year summary files in the 32 
American Community Survey (ACS) database, and chemical variables were 33 
generated by utilizing the 2011 National-Scale Air Toxics Assessment (NATA) 34 
census tract-level air pollutant exposure concentration data. ARM was then 35 
applied to quantify and visualize the associations between the chemical and 36 
socio-demographic variables.  37 

Results: Census tracts with a high percentage of racial/ethnic minorities, and 38 
populations with low income, tended to have higher estimated chemical 39 
exposure concentrations (4th quartile), especially for diesel PM, 1, 3-40 
butadiene, and toluene. In contrast, census tracts with an average 41 
population age of 40 to 50 years old, a low percentage of racial/ethnic 42 
minorities, and moderate-income levels, were more likely to have lower 43 
estimated chemical exposure concentrations (1st quartile).   44 

Conclusion: Unsupervised data mining methods can be used to evaluate 45 
potential associations between environmental inequalities and social 46 
disparities, while providing support in public health decision-making 47 
contexts.  48 

Key words: Multiple Stressors, Rule Mining, Cumulative Risks, Combined 49 
Effects, Environmental Justice  50 

  51 



INTRODUCTION 52 

Quantitatively evaluating the combined effects of multiple 53 

chemical/non-chemical stressors has been simultaneously a crucial focus of 54 

and a challenge for cumulative risk assessment (CRA)1. CRA defines 55 

cumulative risk as ‘the combined risks from aggregate exposures to multiple 56 

agents or stressors’ 2. Environmental Justice (EJ) communities are often host 57 

to multiple chemical and non-chemical stressors, such as poverty or pre-58 

existing health conditions, which could decrease individual or population 59 

resilience, and increase the potential impacts from chemical exposures3. The 60 

role of CRA in public health decision making related to EJ is vital4, and there 61 

have been a significant number of methodological approaches developed 62 

which intend to capture the combined effects of multiple stressors in 63 

addressing EJ issues5.  64 

In general, most of the approaches used in CRA chemical/non-65 

chemical studies can be divided into three categories: effect-based (top-66 

down), stressor-based (bottom-up) and the hybrid of these two, 67 

vulnerability-based5, 6, which considers impacts from a number of chemical 68 

and non-chemical stressors. In practice, vulnerability-based studies utilize 69 

existing data and information, and can also effectively address the prioritized 70 

stressors without exhaustively considering all the non-chemical or chemical 71 

variables. Several quantitative CRA studies belong to this category7-17. 72 

Specifically, chemical or socio-demographic stressors of interest were 73 



quantified and used as the basis to either compare exposure levels or health 74 

effects among different groups in the population8-16, or serve as a screening 75 

tool to address cumulative impacts in areas featured by social disadvantage7, 76 

17. Other quantitative measures or indices such as Margin of Exposure 77 

(MOE), no observed adverse effect level (NOAEL), benchmark Dose (BMD) 78 

and reference dose (RfD) were also used to assess the combined health risk 79 

of chemical mixtures for regulatory purposes18. Regression models have 80 

proved useful in characterizing associations between exposure or health 81 

effects and different stressors19-21, but this technique does require pre-82 

defining the response variable and explanatory variables. Interpretation of 83 

the interaction term in the model can also be challenging, especially when 84 

there are a large number of variables involved22.  85 

Very few CRA studies adopt alternative data mining methods, such as 86 

unsupervised association rule mining techniques, to quantify associations 87 

between chemical/non-chemical stressors and health effects, especially 88 

those related to exposure and dose-response assessments. 89 

Association rule mining (ARM)23, 24 has been widely applied in many 90 

different scientific areas25-29. Recently, researchers used ARM to analyze the 91 

relationship between environmental stressors and adverse human health 92 

impacts30, 31. There are three main advantages of using ARM. First, it can 93 

provide better characterization of the interactions between multiple stressors 94 

without having to pre-define them as response or explanatory variables. 95 



Second, outputs from this method are in general easily interpretable by 96 

those without an advanced mathematical background 31. Finally, as a non-97 

parametric method, ARM makes no assumptions about the probability 98 

distributions of the variables being assessed.    99 

In this study, ARM was applied to analyze the inter-relationships 100 

between different chemical/non-chemical stressors, in order to demonstrate 101 

the use of advanced data mining techniques to understand social disparities 102 

and disproportionate environmental burdens. The null hypothesis is that 103 

increased chemical exposures are not associated with combinations of EJ-104 

related variables. 105 

  106 



DATA AND METHODS  107 

Data 108 

Socio-demographic data and chemical exposure estimates were 109 

collected for each census tract across the United States. In total, more than 110 

73 000 census tracts were evaluated, representing more than 317 million 111 

people living in the U.S.  112 

Socio-demographic variables were selected based on their relevance to 113 

EJ communities. These variables are individual income, race/ethnicity 114 

population percentage, educational attainment, and age by sex information 115 

at the census tract level from the 2010-2014, 5-Year Summary file in the 116 

American Community Survey (ACS) database. Note that the Summary file is 117 

not an average of the 5-year period but aggregated data collected 118 

continuously on a daily basis for 5 years32.   119 

Chemical variables were generated by utilizing the Environmental 120 

Protection Agency (EPA) 2011 National-Scale Air Toxics Assessment (NATA), 121 

census tract-level, modeled pollutant exposure estimates 122 

(http://www.epa.gov/national-air-toxics-assessment/2011-nata-123 

assessment-results). Six pollutants were chosen for analysis, including 124 

acetaldehyde, benzene, cyanide, particulate matter components of diesel 125 

engine emissions (namely diesel PM), toluene, and 1,3-butadiene. These 126 

chemicals were selected based on their potential for health impacts as well 127 

http://www.epa.gov/national-air-toxics-assessment/2011-nata-assessment-results
http://www.epa.gov/national-air-toxics-assessment/2011-nata-assessment-results


as their relevance to mobile source (i.e., vehicular traffic) and industrial 128 

emissions, both of which are highly concentrated in EJ areas33, 34.  129 

Socio-demographic variables were binned such that every census tract 130 

had a score for each variable, and chemical exposure estimates were divided 131 

into quartiles for each census tract. Although variables were selected based 132 

on their relevance to EJ communities, given the national scale and lack of 133 

pre-defined associations, there was no assumption that EJ relationships 134 

would necessarily manifest themselves in the results.   135 

Method 136 

Data analysis was performed using statistical software, R (version 137 

3.2.1; R Core Team, Vienna, Austria). Execution of ARM and visualization of 138 

the resultant association rules were based on the R packages ‘arules’35 and 139 

‘arulesViz’36 respectively.  140 

Association Rule mining 141 

ARM, a form of frequent item set mining37, is a tool used to search for 142 

associations between different variables within a database without explicitly 143 

specifying the cause (the left-hand-side, LHS) or corresponding effect (the 144 

right-hand-side, RHS). As is the case for many situations, if the values of all 145 

variables of concern are binary, i.e., either 0 or 1, the association rule is 146 

categorically referred to as market basket analysis23. Therefore, each 147 

observation or record constitutes a ‘transaction’ which, in our case, refers to 148 



a census tract. Each element within a record is an ‘item’ that corresponds to 149 

a stressor in this study. Essentially, ARM is mining co-occurrence 150 

relationships between two separate sets of items.   151 

The proportion of transactions that contain the item set is defined as 152 

the support (i.e., the proportion of tracts that contain the stressor) and 153 

confidence is the estimated conditional probability of the co-occurrence of 154 

both LHS and RHS, or support of the rule given the support of the LHS35. 155 

Lift is defined as the confidence normalized by the support of the RHS, 156 

meaning the conditional probability of rule support given supports of the 157 

LHS and RHS23. High values of support, confidence, and lift are indicative of 158 

a strong association rule, in that it involves a large number of observations 159 

(i.e., tracts with those characteristics) and therefore can be generalized to a 160 

wider scope. When the rule size is only 2, which means that only one item 161 

showed up in both the LHS and RHS (such as an income score mapped to a 162 

chemical exposure score), the rule can be interpreted in the context of an 163 

odds ratio38 and relative risks39. Mathematical relations/derivation between 164 

these measures can be found in Supplementary Material, Equations (1)-(9). 165 

Stressors 166 

Census tract-level individual income, race/ethnicity population 167 

percentage, and personal education attainment levels were obtained from 168 

the ACS 2010-2014, 5-Year Summary file to define, quantify, and assign 169 



scores for the demographic variables poverty, race, and education. Variable 170 

‘poverty’ was defined as the percentage of people in each census tract 171 

whose ratio of income to the poverty level (over the past 12 months)40 is 172 

below 1.5. Variable ‘race’ represents the non-white population percentage at 173 

each census tract. The definition of variable ‘education’ is the percentage of 174 

population who received a degree (Associate degree and above) at each 175 

census tract. Note that variables were initially calculated as a percentage 176 

value for each census tract. A score was then assigned to each census tract 177 

given the percentages ranging from score 1 (lowest percentage range – 178 

[0,10%]) to 10 (highest percentage range – [90%, 100%)). Note that the 179 

percentages are evenly divided into ten sub-ranges and therefore, 10 score 180 

categories. The education score 8-10 was merged into one score category, 181 

and poverty score 7-10 into another, due to the small sample size of these 182 

score categories. The number of census tracts associated with each score 183 

can be found in Supplementary Material, Table S-1.  184 

 The tract-level ‘age by sex’ variable in the ACS database was used, 185 

and the average weighted age calculated for each census tract by summing 186 

the products of the percentage of each age group and the median (or 187 

predefined value if there was no upper bound of the interval) of the 188 

corresponding age interval. This variable was then sub-divided into 7 189 

variables, namely ‘0-20 years, ‘20-30 years, ‘30-35 years, ’35-38 years, ‘38-190 

40 years, ‘40-50 years and ‘50-100 years. These age intervals were chosen 191 



based on biological stages and sample size (see Supplementary Material, 192 

Table S-1). We calculated the average of weighted age by sex assuming that 193 

the ratio of male to female was 1:1.  194 

Each of the six chemical variables was converted into four quartile 195 

variables based on the chemical concentrations for each tract. Taking 196 

benzene as an example, the original benzene exposure concentration value 197 

for each census tract was converted into a label depending on which quartile 198 

that particular concentration value resides. For instance, if the value was 199 

within the first quartile of benzene exposure concentrations across all census 200 

tracts, the numeric value was converted to a category label ‘Q1’. As six 201 

chemical variables were considered, these became 24 distinct quartile 202 

variables.  203 

In total, there were 56 variables: 10 race/ethnicity groups, 8 204 

education groups, 7 poverty groups, 7 age groups, and 24 chemical quartile 205 

groups. 206 

Data Analysis 207 

Two separate experiments were conducted by applying the ARM 208 

method with different minimum support thresholds. In the first experiment, 209 

the LHS of the association rule was set to be only non-chemical stressors 210 

and the RHS to be only chemical variables for interpretation purposes. In 211 

order to understand the internal connections among non-chemical stressors, 212 



the second experiment was performed requiring both the LHS and RHS to be 213 

socio-demographic variables. The rules were only analyzed when the lift was 214 

greater than 1. In addition, the focus was on those rules with size equal to 2 215 

(a 1-to-1 map of LHS and RHS) in order to better utilize the statistical 216 

measures Odds Ratio (OR) and Relative Risk (RR).  217 

The 95% confidence intervals (CI) were estimated for OR using 218 

bootstrapping41 random sampling for 10 000 times, for particular rules of 219 

interest. Specifically, a new data set was created each time using random 220 

sample records with replacement, and ARM was applied on these newly 221 

created data. The rule of interest was then obtained and the corresponding 222 

OR calculated. For 10 000 bootstrapping runs, we eventually had 10 000 223 

new data sets and corresponding OR values. The 2.5 and 97.5 percentiles 224 

were identified among these 10 000 OR values, which was the estimated 225 

95% CI.  226 

The chemical exposure was also compared to the concentration levels 227 

associated with each of the three demographic variables (poverty, 228 

race/ethnicity & education attainment) using Student’s t tests, in order to 229 

examine the statistical significance of the differences between score 230 

categories of these variables.  231 

  232 



RESULTS 233 

Association Rules  234 

Because there were 56 total variables, the possible number of item set 235 

combinations was 256-1 (≈7.2 × 1016, or 72 quadrillion) as the basis for 236 

generating association rules. With confidence set to be 0.1 and support 0.1, 237 

212 rules were obtained. Without setting a lower bound on the confidence 238 

value, there were 30 932 rules given a minimum support threshold of 0.1 239 

(details in Supplementary Material, Table S-2). Imposed criteria regarding 240 

the content of the LHS or RHS further restricted the number of rules.    241 

-Rules with Larger Minimum Support Values  242 

Table 1 lists the rules for support >0.1 and lift >1.0 and shows that 243 

only two demographic variables, “Race Minority Score 1” (0-10% non-white) 244 

and “Age= 40-50” resulted as the LHS of these rules while most of the 245 

chemical variables represented first or second quartile concentrations, 246 

except cyanide. Odds ratios for these rules ranged from 1.433 to 2.947.  247 

The graph-based visualization of all the association rules with support 248 

>0.1 and lift >1 is shown in Figure 1. All associations are connected through 249 

blank circles. The size of a circle represents the co-occurrence support value, 250 

and color indicates the lift value of the rule. Larger circles mean higher 251 

support values, while deeper colors suggest greater lift. It can be observed 252 

that both variables ‘Age = 40–50’ (average population age of 40 to 50 years 253 



old) and Race score 1 (low non-white percentage) were associated with 1st 254 

quartile chemicals.  255 

Table 2 shows all the association rules with criteria that both the LHS 256 

and RHS were socio-demographic variables, and with minimum support 257 

value greater than 0.1 and lift greater than 1. Only three variables appeared 258 

in these 6 rules, including “Race Minority Score 1”, “Age=40-50” and 259 

“Poverty Score 2”. Interestingly, all three of these variables were interacting 260 

with each other, forming three loops.   261 

-Rules with Smaller Minimum Support Values  262 

If a similar criterion was applied, but with the minimum support value 263 

set to 0.01, more rules were found with size greater than 2 (see 264 

Supplementary Material, Table S-3). Not only did 1st and 2nd quartiles 265 

chemical variables show up in the RHS, but also those in the fourth 266 

quartiles. Corresponding LHS of the fourth quantile rules were high race 267 

minority scores (high non-white percentage), high poverty scores (high low-268 

income percentage), and low education scores (low percentage of degree 269 

attainment). 270 

Table 3 summarizes the total number of rules with particular LHS and 271 

RHS given a minimum support value of 0.01 and lift greater than 1. For the 272 

LHS, the focused was on low and high demographic scores. All the rules with 273 

race minority score 1 and race minority score 2 on the LHS were pooled 274 



together, since they both represent low percentages of non-white 275 

population, and so were race minority scores 7, 8, 9 and 10. Similarly, all 276 

the rules with poverty score 1, 2, and 3 were evaluated at the same time, 277 

and those with education score 1, 2, and 3 examined together. For the RHS, 278 

the total number of rules was counted that contained particular quartiles of 279 

chemical exposure concentrations given the specific LHS.  280 

In general, rules containing low race score (low non-white 281 

percentage), low poverty score (less poor census tract), and average 282 

population age of 38 to 50 years old were more likely to contain the first 283 

quartile (i.e., Q1 or lower values) of chemical exposure concentrations, while 284 

rules encompassing high race score (high non-white percentage), high 285 

poverty score (poorer tracts), and high education score (high percentage of 286 

residents with education) tended to include the fourth quartile of chemical 287 

exposure concentration (or Q4, indicating high chemical exposure 288 

concentration). Specifically, 20 out of 29 rules (69%) that contained race 289 

score 7, 8, 9 or 10 had Q4 as their RHS, while only 16 out of 342 rules (5%) 290 

that contained race score 1 or 2 included Q4. The number of rules with high 291 

race score increased monotonically, as the chemical exposure concentration 292 

increased in the RHS (from 0 for Q1 to 20 for Q4). In contrast, the number 293 

of rules with low race scores gradually decreased as the chemical 294 

concentration became higher (from 144 for Q1 to 22 for Q4). 295 



There were 9 out of 14 rules (64%) with poverty score 7-10 containing 296 

Q4, but there were only 27 out of 354 rules (8%) with poverty score 1, 2 or 297 

3 containing Q4. A high poverty score was positively associated with 298 

chemical exposure concentrations in terms of rule number (from 1 rule for 299 

Q1, to 9 for Q4), while low poverty score had a negative association with 300 

chemical exposure concentration (144 for Q1, and only 28 for Q4).  301 

Rules with average population age of 38-40 and 40-50 years old 302 

tended to have Q1 as their RHS (50% and 37% respectively). As the RHS of 303 

these rules changed from Q1 to Q4, the rule numbers decreased consistently 304 

(from 31 to 8, and 106 to 4 respectively).  305 

Interestingly, rules with high education score (8-10) were associated 306 

with Q4 (46%), but those with low education score (1, 2, or 3) were more 307 

inclined to contain either Q1 (49%) or Q4 (22%). The number of rules with 308 

high education score increased gradually when RHS changed from Q1 to Q4. 309 

For rules with low education score, there was no monotonic change in rule 310 

numbers when RHS shifted from Q1 to Q4.  311 

Supplementary Material, Table S-4 includes the top 100 rules with 312 

both LHS and RHS being demographic variables, minimum support value 313 

0.01, and lift greater than 1. Highest poverty score was associated with 314 

average population age of 20-30 years old and the lowest education score. 315 



On the other hand, lowest poverty score was related to high education 316 

scores and low race minority scores.  317 

To explore further the one-to-one relationship between the LHS and 318 

RHS, the rule size was set to be 2 on top of other predefined criteria such as 319 

LHS being socio-demographic variables, RHS chemical variables, minimum 320 

support value 0.01 and lift greater than 1 (see sample rules in 321 

Supplementary Material, Table S-5). Table 4 lists complementary pairs of 322 

rules with high and low race scores for given high/low chemical quartiles. 323 

The rule with highest odds ratio (5.534, estimated 95% CI 5.102-6.008) had 324 

an LHS race score of 10 and RHS fourth quartile diesel. The rule with the 325 

same LHS and RHS but low race and exposure values was ‘Race Minority 326 

Score = 1 Diesel = Q1’ for which the odds ratio was 2.893 (estimated 95% 327 

CI 2.818-2.969). The general form of these rules is that ‘Race Minority Score 328 

= 10  Chemical = Q4’ and ‘Race Minority Score = 1  Chemical = Q1’. In 329 

addition, average population age of 20-30 and 30-35 years old were 330 

associated with ‘Diesel = Q4’ but average population age of 40-50 and 50-331 

100 with Q1 chemical concentrations. All estimated 95% CI for the OR of all 332 

rules in Table 4 were well above 1 suggesting positive associations.  333 

 334 

 335 
 336 



Student’s t-tests 337 

 Regarding educational attainment, in general, chemical exposure 338 

concentration levels for different education scores were statistically different 339 

(Bonferroni’s corrected α level = 1.79×10-3) except for cyanide compounds 340 

(see Supplementary Material, Table S-6). Also, differences between chemical 341 

concentration levels for each poverty score were statistically significant for 342 

all chemicals (details in Supplementary Material, Table S-7). Except for 343 

several pairs of race score categories associated with cyanide and 344 

acetaldehyde concentrations, statistically significant differences between 345 

different race scores in terms of chemical exposure concentration levels were 346 

observed (Supplementary Material, Table S-8).  347 



DISCUSSION 348 

Overview 349 

Major Association Rules  350 

 Among the 212 rules with minimum support value greater than 0.1, 13 351 

major rules were found with the strength measure ‘lift’ greater than 1 that 352 

contained socio-demographic variables as their LHS and chemical variables as 353 

their RHS. Results presented in Table 1 convey the main message that 354 

census tracts with low non-white population percentages (0-10%) or average 355 

population age of 40 and 50 years old (which happens to be associated with 356 

low poverty and low non-white populations, details in Table 2) are associated 357 

with low chemical exposure concentrations (mostly at the first quartiles).  358 

 Six major rules were also found when setting both the RHS and LHS to 359 

be socio-demographic variables with similar criteria (in Table 2). As with the 360 

results in Table 1, in addition to low percentage of non-white population and 361 

average population age of 40-50, poverty score 2 (or, 10% - 20% of the 362 

residents within a census tract having income below one-and-a-half times the 363 

poverty level) appeared and demonstrated key interactions with the other 364 

two socio-demographic variables. This suggests that income level is probably 365 

associated with chemical exposure concentration level. Another perspective is 366 

that predominantly white census tracts of middle aged people are directly 367 



related to lower exposure levels, and they happen to have low poverty levels, 368 

which are thus indirectly related to exposures.  369 

Association Rules and EJ Interpretation 370 

 When the minimum support value was lowered to 0.01 and held other 371 

criteria the same, several interesting trends were found regarding the 372 

association between demographic variables and exposure concentration 373 

levels. Greater proportions of non-white populations and poorer census tracts 374 

tended to be exposed to higher chemical concentrations, while tracts with low 375 

non-white percentages, wealthy tracts, and those with average population 376 

age of 38 to 50 were more likely to have low chemical exposure 377 

concentrations (Table 3). Particularly, the number of stronger (lift > 1) and 378 

applicable (support > 0.01) association rules with high race score, high 379 

poverty score, and higher education scores (contrary to expectations) 380 

increased as the chemical exposure concentrations increased from the first to 381 

the fourth quartiles; while rules with low race score, low poverty score, and 382 

average population age of 38 to 50 decreased as chemical concentrations 383 

became higher. 384 

 Educational attainment did not show a clear inverse relationship with 385 

chemical concentrations when considered by itself on the LHS (Table 3). 386 

These may represent a limited sample of highly educated census tracts that 387 

were exposed to increased concentrations. However, in general, according to 388 



results when comparing socio-demographic variables as both LHS and RHS, 389 

(Table S-4), high education was associated with low poverty and low non-390 

white population percentages, which experienced lower concentration levels 391 

and appeared to be more influential to exposures. Also, when considering 392 

multiple socio-demographic variables on the LHS and chemical concentrations 393 

on the RHS, educational scores were no greater than 4, suggesting that the 394 

majority of tracts that were associated with chemical concentrations (high or 395 

low) had populations where less than 40% of the residents have an 396 

associate’s degree, and were likely driven by the other EJ factors, especially 397 

race, income, and age. Wealthier, middle aged, white population experienced 398 

lower exposures, and low-income, younger, minority population experienced 399 

higher exposures. Education may not be as influential, as long as race and 400 

poverty had low scores (i.e., more non-white with higher incomes).  401 

Education could vary and still represent lower exposures but itself cannot 402 

sufficiently address environmental disparities. 403 

Graph-based Visualization  404 

 Graph-based visualization of the identified association rules offers 405 

better illustrations of the combined effects of multiple chemical and socio-406 

demographic variables. It can be rather useful in displaying associations 407 

between variables, especially when the number of involved variables 408 

increased and the size of a rule was more than 2 (see Supplementary 409 

Material, Figures S-1 & S-2). In conjunction with using other statistical 410 



methods such as regression analysis, the combined effects of multiple 411 

stressors upon one response variable can be identified and quantified, 412 

provided that the number of explanatory variables was small (<4) and the 413 

association of interest was statistically significant.  414 

 The graph-based visualization of the association rules can also serve as 415 

the basis for developing more complex mathematical models for 416 

environmental studies such as a system dynamic model42, 43 or multi-417 

objective model44, 45, and provide hints for better ways of clustering and 418 

classifications (Supplementary Material, Figures S-1 & S-2). It may also shed 419 

lights on potential contributors to disproportionate environmental burdens for 420 

certain vulnerable populations such as pregnant women or children who 421 

suffer from obesity46.   422 

 Along with the method developed to explore and identify a group of 423 

important variables47, this approach can be applied to evaluate the internal 424 

relationships among a large number of multiple stressors, and potentially 425 

provides a systemic perspective into the environmental issues at hand.  426 

 Limitations  427 

There are three limitations of this study. First, NATA exposure 428 

concentration are simulated data rather than actual observations. The results 429 

presented here may not perfectly reflect the actual chemical exposure levels. 430 

Second, ARM cannot provide exact quantitative relationships between 431 



variables. Therefore, the results cannot be directly compared with those from 432 

other studies. Third, interpretation of other measures such as OR and RR can 433 

be an issue when the rule size is greater than 2.  434 

Conclusion 435 

Unsupervised data mining methods such as ARM can be applied to EJ-436 

related evaluations of the combined effects of multiple stressors. It 437 

highlights some of the main variables associated with chemical exposures, in 438 

this case race, income, and population age, and suggests that other 439 

variables, such as education, may be less associated with exposures and 440 

more a secondary component of the other socio-demographic variables.  441 

Other variables that could be included in future studies include pre-442 

existing health conditions, access to health care, epigenetic predisposition, 443 

chemical mixtures, and chemical/non-chemical synergistic interactions (e.g., 444 

radon and smoking, or toluene and noise). ARM has proven to be an 445 

effective methodology for finding associations between specific 446 

categories/values (i.e., binned ranges) of EJ variables, which provides more 447 

insight into the specifically affected populations. In general, middle aged, 448 

white, non-poor tracts were associated with lower exposures, and younger, 449 

higher poverty, non-white tracts with higher exposures. ARM allows us to 450 

investigate each of these variables with respect to their associations to not 451 



only chemical exposures but to each other as well. This method could thus 452 

be used to target solutions to the most applicable variables.  453 

 454 

Supplementary information is available at Journal of Exposure Science and 455 

Environmental Epidemiology’s website.  456 
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Table 1. Association Rules (LHS socio-demographic variables and RHS chemical variables, minimum 629 
support value of 0.1, lift > 1) 630 

LHS  RHS Support Confidence Lift Relative Risk Odds Ratio 
Race Minority Score 1 => BUTADIENE=Q1 0.146 0.448 1.793 2.074 2.947 
Race Minority Score 1 => DIESEL=Q1 0.145 0.445 1.780 2.051 2.893 
Race Minority Score 1 => TOLUENE=Q1 0.141 0.435 1.740 1.981 2.737 
Race Minority Score 1 => BENZENE=Q1 0.134 0.412 1.647 1.830 2.411 
Race Minority Score 1 => ACETALDEHYDE=Q1 0.129 0.396 1.585 1.734 2.216 
Age=40-50 => DIESEL=Q1 0.125 0.375 1.499 1.615 1.984 
Age=40-50 => BUTADIENE=Q1 0.119 0.356 1.425 1.512 1.795 
Age=40-50 => TOLUENE=Q1 0.117 0.349 1.396 1.473 1.726 
Age=40-50 => BENZENE=Q1 0.115 0.344 1.375 1.445 1.679 
Race Minority Score 1 => CYANIDE=Q3 0.108 0.332 1.328 1.383 1.573 
Age=40-50 => ACETALDEHYDE=Q1 0.109 0.324 1.297 1.346 1.512 
Race Minority Score 1 => DIESEL=Q2 0.102 0.315 1.259 1.297 1.433 
Race Minority Score 1 => TOLUENE=Q2 0.102 0.315 1.258 1.297 1.433 

 631 



Table 2. Association Rules (both LHS and RHS are socio-demographic variables, minimum support value of 632 
0.1, lift > 1) 633 

LHS  RHS Support Confidence Lift Relative Risk Odds Ratio 
Race Minority Score 1 => Age=40-50 0.172 0.530 1.583 1.801 2.704 
Age=40-50 => Race Minority Score 1 0.172 0.514 1.583 1.801 2.650 
Poverty Score 2 => Race Minority Score 1 0.110 0.435 1.338 1.397 1.702 
Poverty Score 2 => Age=40-50 0.110 0.433 1.295 1.344 1.607 
Race Minority Score 1 => Poverty Score 2 0.110 0.340 1.338 1.397 1.601 
Age=40-50 => Poverty Score 2 0.110 0.329 1.295 1.344 1.512 

634 



Table 3. Summary of Association Rules (LHS socio-demographic variables and RHS chemical variables, 635 
minimum support value of 0.01, lift > 1) 636 

 Number of 
Rules 

Low Exposure 
(Q1) 

Q2 Q3 High Exposure 
(Q4) 

Race Minority Score 7 or 8 or 9 or 10 29 0 (0%) 1 (3.45%) 8 (27.59%) 20 (68.97%) 
Race Minority Score 1 or 2 342 139 (40.64%) 129 (37.72%) 58 (16.96%) 16 (4.68%) 
Poverty Score 7-10 14 1 (7.14%) 1 (7.14%) 3 (21.43%) 9 (64.29%) 
Poverty Score 1 or 2 or 3 354 140 (39.55%) 118 (33.33%) 69 (19.49%) 27 (7.63%) 
Education Score 8-10 24 2 (8.33%) 3 (12.5%) 8 (33.33%) 11 (45.83%) 
Education Score 1 or 2 or 3 237 116 (48.95%) 31 (13.08%) 39 (16.46%) 51 (21.52%) 
Age 40-50 213 106 (49.77%) 69 (32.39%) 34 (15.96%) 4 (1.88%) 
Age 38-40 83 31 (37.35%) 28 (33.73%) 16 (19.28%) 8 (9.64%) 

 637 



Table 4. Complementary Pairs of Rules with One-to-One Relationship (LHS socio-demographic variables 638 
and RHS chemical variables, minimum support value of 0.01, lift > 1, Size = 2) 639 

LHS  RHS Support Confidence Lift Odds Ratio Est. 95% CI 

Race Minority Score 10 => DIESEL=Q4 0.023 0.637 2.549 5.534 5.102 6.008 
Race Minority Score 1 => DIESEL=Q1 0.145 0.445 1.780 2.893 2.818 2.969 
Race Minority Score 10 => TOLUENE=Q4 0.018 0.501 2.002 3.081 2.851 3.335 
Race Minority Score 1 => TOLUENE=Q1 0.141 0.435 1.740 2.737 2.666 2.809 
Race Minority Score 10 => BUTADIENE=Q4 0.017 0.489 1.958 2.942 2.722 3.177 
Race Minority Score 1 => BUTADIENE=Q1 0.146 0.448 1.793 2.947 2.869 3.025 
Race Minority Score 10 => BENZENE=Q4 0.017 0.468 1.870 2.687 2.484 2.902 
Race Minority Score 1 => BENZENE=Q1 0.134 0.412 1.647 2.411 2.351 2.472 
Race Minority Score 10 => ACETALDEHYDE=Q4 0.013 0.369 1.475 1.768 1.636 1.914 
Race Minority Score 1 => ACETALDEHYDE=Q1 0.129 0.396 1.585 2.216 2.161 2.272 
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 644 

Figure 1. Graph-based Visualization of Association Rules (LHS is socio-645 
demographic variables and RHS is chemical variables, minimum support 646 

value of 0.1, lift > 1) 647 
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