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The Mirage of Morphological Complexity

Fermı́n Moscoso del Prado Mart́ın (fermosc@gmail.com)
Laboratoire Dynamique du Langage, CNRS & Université de Lyon, Lyon, France &

Institut Rhône-Alpin des Systèmes Complexes (IXXI), Lyon, France

Abstract

I present a study on the morphological complexity of
six European languages. A theory-free measure of the
complexity of a language’s inflectional morphology, is
derived from Gell-Mann’s concept of Effective Complex-
ity. Using a parallel corpus, I show that disconsidering
word order information results in the classical gradation
of inflectional complexity: Languages in which words
have more inflected variants seem to be more complex
than languages with fewer variants. It also appears that
the presence of the inflectional system increases the com-
plexity of languages. However, when word order infor-
mation is explicitly considered, the apparent gradation
in complexity across languages vanishes. Furthermore,
it becomes clear that the presence of inflections reduces
the overall complexity of languages. In sum, inflection
is used whenever its presence simplifies a language’s de-
scription. Inflectional morphology is not a capricious
feature, as some argue, but rather an effective tool for
complexity reduction.

Keywords: Effective Complexity, Entropy, Morphol-
ogy

Introduction
Words are usually accepted as being the fundamental
units of syntax. However, in many (or most) languages,
words can be related to each other by (quasi-)regular re-
lations between their orthographical forms, their gram-
matical functions, and their meanings. These intra-
lexical regularities are referred to as morphological struc-
ture, and constitute one of the main areas in the study
of human languages, both from a linguistic and a psy-
chological perspective.

Morphology: ‘By itself ’?
The classical structuralist position on inflectional sys-
tems is that they are largely random classifications that
need not serve any useful function within the overall lin-
guistic system. This is still a common view both among
linguists (e.g., Aronoff, 1994; Bloomfield, 1933) and psy-
chologists (e.g., Maratsos, 1979). For instance, Aronoff
(1994) argues that morphology must be considered ‘by
itself’, not merely from the perspective of its interface
with syntax, phonology, or semantics, and that linguis-
tic theory should therefore consider a separate and au-
tonomous morphological component. In contrast, sup-
porters of ‘functionalist’ theories of grammar would ar-
gue that the presence of inflectional systems must be
useful from a communicative perspective. Otherwise, in
line with Zipf (1949)’s ‘Principle of Least Effort’, the
cognitive system would have discarded them for requir-
ing unnecessary efforts. From this perspective, the pres-
ence of inflectional morphology is only justified if one or
both of the following conditions apply:

1. Inflectional morphology expresses semantic content
that is required for successful communication.

2. The presence of inflectional categories and markers re-
duces the overall complexity of a language.

What is morphological complexity?

Notice that the discussion above assumes that some ob-
jective quantification of the complexity of a morpho-
logical system is available. However, no definition or
quantification of the complexity of a linguistic system
is widely accepted. The concept of complexity has cen-
tral importance for theories of language structure and
processing. For instance, McWhorter (2001) raised an
interesting controversy over his claim that pidgin and
creole languages are intrinsically less complex than other
languages, reflecting the very early stage in their devel-
opment. However –despite its frequent invocation– lin-
guistic complexity remains a rather ill-defined concept.
Indeed, much previous research has been aimed at pro-
viding a concise and workable definition of linguistic –
and morphological– complexity (e.g., Goldsmith, 2001;
Greenberg, 1954; Juola, 1998, 2007; Malvern, Richards,
Chipere, & Durán, 2004; McWhorter, 2001; Nichols,
2010; Shosted, 2006; Siegel, 2004; Vulanović, 2007; Xan-
thos & Gillis, 2010). Many of these studies define com-
plexity in terms of either counting forms, or detecting
the presence or absence of certain morphological phe-
nomena or structures that are chosen as representative
of complexity based on some theoretical premises, an ap-
proach which was also used by Lupyan and Dale (2010).
However, such theory-bound measures can result in con-
siderable vagueness and subjectivity with regard to what
is more or less complex (see, e.g., McWhorter, 2001;
Nichols, 2010; Shosted, 2006, for debate on this issue).
To obtain more objective estimates, some have measured
the complexity of inflectional paradigms as the num-
ber of inflected variants that can be formed for a sin-
gle word (e.g. Malvern et al., 2004; Xanthos & Gillis,
2010). This simple approach presents the problem that
it ignores that there are sometimes very regular relations
between different inflected forms (e.g., the plural of an
English word is in most cases the same as the singular
plus an ‘s’), and not much information is required to
encode this (what some term the Paradigm Cell Filling
Problem; cf., Ackerman, Blevins, & Malouf, 2009). To
avoid this, some have taken a theory-free approach in-
vestigating to what extent linguistic utterances or struc-
tures can be compressed (Goldsmith, 2001; Juola, 1998,
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2007). The irreducible information that is left after com-
pression provides a useful index of the informational con-
tent of the signal; its Algorithmic Information Content
(AIC; Chaitin, 1987; Kolmogorov, 1965), and can thus
be taken as a theory-free measure of complexity.1 Notice
that, by themselves, AIC approaches based on the com-
pressibility of a corpus (such as Juola, 1998, 2007) do not
in fact constitute measures of complexity; it is easy to see
that AIC would rate an incompressible totally random
corpus as being more complex than the complete works
of Shakespeare, as the latter can be compressed to some
degree. In contrast, the approach of Goldsmith (2001)
overcomes this limitation. It does not measure the com-
pressibility of the corpus, but rather, the compressibil-
ity of its formal regularities (a random text would have
no regularities to compress). However, by summariz-
ing paradigms as sets of forms and affixes, Goldsmith
(2001)’s approach overlooks the crucial role that can be
played by the actual functions served by each inflected
variant, as these relate to the complexity of the system,
and have been shown to be of crucial importance for the
cognitive system (Kostić, Marković, & Baucal, 2003).

Outline
In what follows, I start by using the definition of the
Effective Complexity of language (Moscoso del Prado
Mart́ın, submitted) to derive a measure of inflectional
complexity. This is followed by a corpus-based analysis
of the inflectional complexity of six European languages,
investigating the variation in morphological complexity
according to different measures. I conclude by discussing
the theoretical implications of the results.

Formulation & Computational Methods

Effective Complexity of Language
As in Moscoso del Prado Mart́ın (submitted), the defini-
tion of linguistic complexity is derived from Gell-Mann
(1995)’s general definition of Effective Complexity:

A measure that corresponds [. . . ] to [. . . ] complex-
ity [. . . ] refers not to the length of the most concise
description of an entity (which is roughly what AIC
is), but to the length of a concise description of a
set of the entity’s regularities. Thus something al-
most entirely random, with practically no regulari-
ties, would have effective complexity near zero. So
would something completely regular, such as a bit
string consisting entirely of zeroes.

For human languages, such descriptions of the system’s
regularities are grammars. Indeed, many have advocated
that the best measure of a language’s complexity would

1The approach advocated by Goldsmith (2001) is not com-
pletely theory-free, as it requires the parsing of words into
stems and affixes, which is in itself a strong theoretical com-
mitment.

be the size of the shortest grammar that could fully de-
scribe it (Goldsmith, 2001; McWhorter, 2001). As a
starting point, let us assume that the regularities that
need to be accounted for correspond to all the sentences
that appear in an arbitrarily large reference corpus of
a language. This is to say, the definition of grammati-
cal complexity rests on a reference corpus containing N
characters (or phonemes, etc.), and corresponds to the
length of the shortest possible grammar that can gener-
ate all the sentences in that corpus (i.e., it is complete)
and only those (i.e., it does not over-generate). Notice
this definition leaves open the grammatical theory or for-
malism in which the grammar is expressed: Any formal
mechanism that is able to generate the sentences in a
language is valid candidate. Let us denote the length of
that optimal grammar as G(N). In parallel to the defini-
tion above, one can also consider the AIC of the reference
corpus, that is, the length of the shortest possible algo-
rithmic description enabling its full reconstruction and
denote the length of that optimal compression by H(N).

On the one hand, the grammar that determines G(N)
needs to be able to generate all sentences in the corpus.
On the other hand, the compressed version of the cor-
pus also needs to generate all those very sentences, with
only the additional burden of having to reconstruct their
actual ordering and frequencies of occurrence. As both
H(N) and G(N) are defined in terms of ideal ‘optimal’
methods that do not waste any space, one can decom-
pose

H(N) = G(N) + Hs(N), (1)

where Hs(N) ≥ 0 denotes the additional information
that needs to be coded in the AIC. It is useful to think
of G(N) and H(N) in terms of per-character rates; their
relation to the size of the reference corpus:

g(N) =
1
N

G(N) =

=
1
N

[H(N)−Hs(N)] = h(N)− hs(N). (2)

If a finite grammar for a language does exist, then, for
increasingly large corpora, the grammar should come
closer to being ‘complete’. That is to say, from some
large N onwards, G(N) should grow much more slowly
than N itself. One can now take the idealization a step
further, and require that the ideal grammar be able to
generate all sentences (and only those) that could even-
tually happen in the language (i.e., they have non-zero
probabilities of occurrence). This is equivalent to tak-
ing the limit of an infinite corpus size. In this way, one
defines the grammatical complexity of the language as

G = lim
N→∞

G(N). (3)

At this extreme, the finite grammar should be complete,
hence its size would become negligible compared to that
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of the corpus. Defining the grammatical density of the
language as the infinite corpus size limit of g(N),

g = lim
N→∞

g(N) = lim
N→∞

G(N)
N

. (4)

If G is finite, one should find that

g = lim
N→∞

G(N)
N

= 0. (5)

That is to say, for a language to have a finite grammar,
its grammatical density should be zero so that the limits
in Eqs. 3–5 converge. One can also extend this limiting
condition to the compressibility measures, and write

g = lim
N→∞

g(N) = lim
N→∞

[h(N)− hs(N)] = h− hs = 0.

(6)
On the one hand, h reflects the rate of compressibility of
the original corpus, taken to the limit of infinite corpus
size. On the other hand, hs is the rate of compressibil-
ity of a manipulated version of the corpus, where the
sentence identities, frequencies, and orderings are main-
tained, but their actual internal structure is lost. For
stationary2 ergodic sources, it is guaranteed that h and
hs are actually the source entropies (Shannon, 1948) of
the original and modified versions of the corpus (Chaitin,
1987; Kolmogorov, 1965).

Moscoso del Prado Mart́ın (submitted) found that, for
human languages g > 0, and therefore no finite gram-
mar can ever be found that fully accounts for all sen-
tences in the language without generating impossible
sentences. In other words, the grammatical complex-
ity G of languages is not finite, but rather keeps growing
for a growing reference corpus. In contrast, the gram-
matical density measure g provides a finite value that
can be compared across languages, corresponding to the
average information that is provided by each new char-
acter or phoneme in the large corpus size limit. This
is to say, even if the actual grammatical complexity is
not finite, one can compare the speed at which the com-
plexity increases with increasing corpus size. Different
languages can be encoded with more or less transparent
orthographies, or may make use of longer, but very pre-
dictable expressions. Therefore, it is important to con-
sider the grammatical density, not in terms of characters
or phonemes, but using instead the basic unit that is be-
ing considered for the grammar, that is, the sentence.
We can therefore define the per-sentence grammatical
density of the language as:

gs = Ls · g, (7)
2Stationarity is not a property of linguistic corpora, but

it can be enforced by simply randomizing the order of the
sentences in the corpus (Moscoso del Prado Mart́ın, submit-
ted). This discards all supra-sentential information, but we
are assuming that the grammar must produce all well-formed
sentences, and information beyond the sentence is thus not
relevant here.

where Ls denotes the mean length of a sentence in
whichever units (characters, phonemes, . . . ) g was com-
puted. This new measure provides a finite index of
the complexity of a language, precisely measuring how
much grammatical knowledge is provided by each new
observed sentence.

Inflectional complexity
Assuming that one can somehow separate the different
contributions to the per-sentence grammatical density
that are provided by the different components of the
grammar (below the sentence level) one could decom-
pose gs into something like

gs = glexicon
s + ginflection + gderivation

s + gsyntax
s + . . . . (8)

Consider now that one could erase from the corpus all
inflectional information without disturbing any of the
other levels. In this case, one would obtain a new ver-
sion of the grammatical densities that would discount all
inflectional information,

g′s = g′lexicon
s + g′derivation

s + g′syntax
s + . . . , (9)

such that one can write,

ginflection
s = gs − g′s. (10)

I refer to ginflection
s as the inflectional complexity of a lan-

guage, and it measures the average amount of informa-
tion required to describe the new inflectional structures
contained by a newly observed sentence. This measure
is readily computable, and it enables direct comparison
of the inflectional systems of different languages. Notice
also that its actual values are themselves meaningful. A
positive ginflection

s indicates that the presence of the mor-
phological system increases the size of the grammar that
is required to describe the language. On the other hand,
were ginflection

s to be negative, it would indicate that the
presence of the inflectional structures in fact simplifies
the grammar of the language; the grammar would be
more complex if the inflectional structures were absent.

Computations
The discussion above assumes that the entropy measures
h and hS can be accurately estimated from corpora.
Here, I provide a summary of the methods used for esti-
mating these magnitudes, see Moscoso del Prado Mart́ın
(submitted) for a more detailed discussion of these meth-
ods and their accuracy.

Estimation of h: Asymptotic Lempel-Ziv com-
plexity The source entropy h indexes the compressibil-
ity of the corpus. Although knowing what is the shortest
possible (the most compressed) version of a sequence is
impossible unless one explicitly knows the dynamics of
the process that generated it, some specific lossless com-
pression algorithms are guaranteed to converge to this
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maximum in the long length limit. Of these, a partic-
ularly simple choice is to use the Lempel-Ziv algorithm
(LZ76; Lempel & Ziv, 1976). For very long sequences,
the Lempel-Ziv complexity almost surely converges to
the entropy of the source (Ziv & Lempel, 1978). Hence,
the LZ76 algorithm can be used for estimating the source
entropies h. However, one should take into account that,
although the LZ complexity asymptotically approaches
h, estimates of h based directly on some large corpus
are still subject to finite sample effects. To a large de-
gree however, the finite sample error in estimation can
be corrected for by modelling the convergence of the
Lempel-Ziv measure. In this respect, Schürmann and
Grassberger (1996) found that the convergence of the
Lempel-Ziv measure (L[n]) as a function of the corpus
size n can be very accurately modelled by a three para-
mater power-law expression, and one of these parameters
corresponds to the asymptotic value of the entropy h.
These three parameters can be fitted from data. Given a
finite size corpus, one can compute the Lempel-Ziv com-
plexity using different subsets of the corpus of increasing
length, and fit a simple non-linear regression provides
the estimate of h. This approximation has been found
to perform extremely well (Moscoso del Prado Mart́ın,
submitted; Schürmann & Grassberger, 1996).

Estimation of hs: Chao-Shen estimator The other
entropy rate factor, hS corresponds to the per-character
entropy rate of a sequence which preserves the identity
and ordering of the sentences, but lacks their internal
structure. A simple way to estimate this is to consider
the corpus as a sequence of Ns symbols S1 S2 . . . SNs

,
each of which corresponds to a full sentence. Note here
that the alphabet on which this sequence is defined is
unknown and possibly not even finite. Having such a
large, perhaps infinite alphabet, makes the use of the
Lempel-Ziv method inappropriate. For the LZ76 algo-
rithm to begin to converge towards the source entropy,
one needs to have observed at least a great proportion
of the symbols in the original alphabet. However, even
in extremely large corpora, a great majority of the sen-
tences will occur exactly once, and a great many more
possible sentences will not be in the corpus at all. On the
other hand, as the sequence S1 S2 . . . SNS

originates from
a corpus in which the order of the sentences has been
randomized, it is clear that the sequence is an ensem-
ble of NS independent and identically distributed ran-
dom variables. To solve such type of problems, Chao
and Shen (2003) developed an estimator that takes into
account the contribution of unseen items to the over-
all entropy. The Chao-Shen estimator performs remark-
ably well in sequences originating from infinite alpha-
bets (cf., Moscoso del Prado Mart́ın, submitted). The
estimator relies on a Good-Turing (Good, 1953) adjust-
ment of the frequencies of occurrence of the sentences.
The entropy is then computed on the adjusted values

of the sentence frequencies, and the obtained estimator
is further adjusted to account for the yet unseen sen-
tences. Although the Chao-Shen estimate converges rel-
atively rapidly to the true entropy value, in this case
it still tends to underestimate the true value of the en-
tropy. However, Moscoso del Prado Mart́ın (submitted)
found that an asymptotic correction of the Schürmann
and Grassberger (1996) type is very accurate in this case
as well.

Materials and Methods

I used the Dutch, English, French, German, Italian, and
Spanish sections of the Europarl Corpus (Koehn, 2005),
version 5. This corpus contains transcripts of sessions of
the European Parliament between 1998 and 2009, tran-
scribed (some partly) in eleven of the official languages
of the E.U. For each language, the sessions of the Parlia-
ment were collapsed into eleven files, each correspond-
ing to one individual year, and all computations were
repeated for each year, as to provide multiple estimates
for each language, all equivalent across the six languages.
Within each of the eleven files in each language, the order
of the sentences was randomized to ensure stationarity.

In order to provide versions of the corpora that pre-
served all linguistic information except for that corre-
sponding to inflectional structures, I also created new
versions of each corpora that had been tokenized, that
is, all inflected forms were replaced by their base forms
(i.e., “cars” was replaced by “car”, “ate” was replaced
by “eat”, etc.). Notice that this manipulation preserves
all orthographic, lexical, syntactic, and semantic struc-
ture, but lacks only the inflectional details. The to-
kenizing was performed using the TreeTagger software
(Schmid, 1994) with the available scripts for each of the
languages.3

Finally, to investigate the effect that functional infor-
mation about syntax and semantics has on inflectional
complexity, additional versions of all corpora (original
and tokenized) were created by randomizing the order
of the words (including sentence breaks) in each corpus.
This produces versions of the corpora which retain most
lexical and ortho/phonological information as well as the
same diversity and probability distribution of inflectional
forms that was present in the originals. The measures of
inflectional complexity obtained from these randomized
corpora therefore consider the information about diver-
sity of inflectional forms, the regularity of their forma-
tion, and the homogeneity of their probability distribu-
tions. They do not consider any information regarding
the functions that each inflectional form serves in the
text, or the particular cell in the inflectional paradigms
they occupy.

3
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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Results and Discussion

Figure 1 summarizes the resulting inflectional complex-
ity values that were obtained for the different corpora.
The upper panel plots the distribution of complexity val-
ues for the corpora in which the word order was left in-
tact. Notice that, in this case, there was no significant
heterogeneity in the distributions of complexity across
the six languages compared. All complexity values seem
to arise from a single distribution. More importantly,
the inflectional complexity values tended to be negative
for all languages but Dutch, for which it was not signif-
icantly different than zero. In other words, considering
word order information, the inflectional morphology sys-
tems in fact simplify the grammar of the languages.

In contrast, the lower panel plots the estimated distri-
butions of inflectional complexity when the word order
information has been disregarded. In this case, there
is indeed significant heterogeneity in the complexity of
the different languages, and this variation fits well with
the intuitions that one would obtain from form-counting
measures of inflectional complexity: English ≤ Dutch <
German ≤ Romance Languages. Whereas English and
Dutch have very limited inflectional systems, German
makes use of a relatively complex nominal declension
system, and Romance languages have rather complex
verbal conjugation mechanisms including tens of forms.
Furthermore, if word order is disconsidered, the com-
plexity values are in all cases significantly positive, this
is to say, the inclusion of the inflectional system makes
the description of the languages more complex. Notice,
however, that this differences in morphological complex-
ity are but a mirage produced by not considering the
actual functions served by each form.

I have introduced an objective and theoretically moti-
vated measure of inflectional complexity. This new mea-
sure overcomes all the problems that were detailed in
the introduction: it considers the diversity of forms, the
regularity of their relations, the position that each form
occupies in the paradigm, the frequency distribution of
forms, and the function that each forms serves. Fur-
thermore, the measure relies on an adequate concept of
complexity, in contrast with the plain randomness that
is reflected by raw measures of corpus compressibility.
Finally, by extrapolating to infinite corpus size, one at-
tenuates the innacuracies that are introduced by making
inferences on finite-sized corpora.

These results highlight the strong degree of mutual
dependence between morphological and syntactic infor-
mation. In line with the behavioral results of Kostić
et al. (2003), the structure of the morphological system
cannot be considered independently of the actual func-
tions that the different forms serve. In fact, considering
the presence of these functions, inflectional morphology
serves a role in reduction of uncertainty, simplifying the
description of the whole grammar. Therefore, the pres-

ence of inflectional morphology does not seem to be in
any way capricious, but instead it reflects a delicately
optimized system.
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