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ABSTRACT OF THE DISSERTATION
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In biological contexts, experimental evidence suggests that classical diffusion is

not the best description in instances of complex biophysical transport. Instead, anomalous

diffusion has been shown to occur in various circumstances, potentially caused by such

underlying mechanisms as active transport, macromolecular crowding in a complex and

tortuous extracellular or intracellular environment, or complex media geometry.

Elegant ways of simulating these complicated transport processes are to connect

the spatial characteristics of a medium (porosity or tortuosity of a complex extracellular

environment), to fractional order operators. Some approaches include special random

walk models representing crowded or disordered media; at the continuum limit, these ran-
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dom walk models approach fractional differential equations (FDEs), including variations

of the fractional diffusion equation.

Fractional differential equations are an extension of classical integer-order dif-

ferential equations, and in recent decades have been increasingly used to model the

dynamics of complex systems in a wide variety of fields including science, engineering,

and finance. However, finding tractable and closed form analytical solutions to FDEs,

including the fractional diffusion equation and its variants, is generally extremely difficult

and often not feasible, and especially so when integrating these equations into more

complex physical models with multiple other components; therefore, the development of

stable and accurate numerical methods is vital.

In this thesis we explore the topic of anomalous diffusion and the fractional

diffusion equation from multiple perspectives. We begin by connecting the micro-

molecular behavior of diffusing particles undergoing anomalous diffusion, to the general

derivation of the fractional diffusion equation. We then develop numerical approaches to

efficiently solve the time-fractional diffusion equation, and characterize these methods in

terms of accuracy, stability, and algorithmic complexity.

We then make use of these numerical methods by applying fractional diffusion

to a model of the signaling events leading up the induction of long-term depression

(LTD). We leverage the fact that the fractional diffusion equation can capture the complex

geometry in which diffusing particles travel, and use this to simplify an existing model

of LTD induction; furthermore, we show that our modified model is capable of retaining

the most important functionality of the original model.
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Chapter 1

Introduction

1.1 Fractional Calculus, Fractional Differential Equa-

tions, and Applications in Science and Engineering

The idea of non-integer order differentiation and integration has existed for almost

as long as the foundational ideas of classical calculus have been, and over the centuries

the field of fractional calculus has been developed by many of the same mathematicians

that made fundamental advancements in classical calculus. Leibniz mentions fractional

calculus in a letter to L’Hospital as early as 1695, and the theory was further developed

by Liouville, Riemann, Grunwald, Letnikov, Riemann, and many others [39].

Analogous to ordinary and partial differential equations used to model physical

phenomena using classical calculus, fractional differential equations (FDEs) are an

extension of the theory of fractional calculus. However, because of the difficulty in

finding closed form analytical solutions to FDEs, there has been limited work done in

applying them to physical problems, until recent decades. With the advent of increasing

computational capacity of personal computers and advances in numerical methods, there

has been a resurgence in interests and development of solving FDEs, as it has been shown

1
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that they can appropriately be applied to many branches of science and engineering to

represent complex physical processes whose dynamics are not captured by classical

integer order partial differential equations.

Fractional differential equations have been useful for modeling such uniquely

different applications as advection-dispersion transport phenomena [2], wave propagation

in bone and other rigid porous materials [46, 10], viscoelasticity [48] edge detection

in image processing [33], and neurodynamics and modeling of signal processing in

neuronal dendrites [15]. Richard Magin discusses a wide array of fractional calculus

modeling applications in the field of bioengineering alone, including cell signaling across

membranes, feedback control in neural systems, neurodynamics, capacitor and dielectric

models, the behavior of viscoelastic materials, circuit models of electrode interfaces, cell

biomechanics, electrochemistry (especially relating to cardiac tissue-electrode interfaces),

among many other biomedical applications [30, 31].

1.2 Fractional Diffusion

As we have seen, fractional differential equations are being applied to various

fields in science and engineering. In particular, there has been a lot of recent work with

fractional differential equations to model complex biophysical transport phenomena,

including diffusion. Experimental evidence suggests that classical Brownian diffusion

according to Fick’s laws, may not accurately model many types of biological data.

Various cases of anomalous diffusion in such places as white matter neural fiber tracts,

may be caused by active transport, macromolecular crowding in a complex and tortuous

extracellular or intracellular environment, or a complex media geometry [3, 44, 47].

Elegant ways of simulating these complicated transport processes are to connect the

spatial characteristics of a medium (porosity or tortuosity of a complex extracellular
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environment), to fractional order operators. Some approaches include specific random

walk models to represent crowded or disordered media; at the continuum limit, these

random walk models approach variations of the fractional diffusion equation [53, 54, 55,

14, 51, 36, 13]. Finding tractable and closed form analytical solutions to the fractional

diffusion equation and its variants, is generally extremely difficult and often not feasible,

and especially so when integrating these equations into more complex physical models

with multiple other components; therefore, the development of stable and accurate

numerical methods is vital.

This thesis is an effort to fully explore the fractional diffusion equation, from

its roots in the statistical behavior of diffusing particles, to various numerical methods

of solving this equation in an efficient way that balances tradeoffs between accuracy,

stability, and algorithmic complexity.

In Chapter 2 we explore the theoretical foundations of the fractional diffusion

equation. We begin with the random walk scenario often used to illustrate classical

diffusion, and by making adjustments on our set of assumptions, we connect the random

walk scenario with special probability distributions from which we can then derive the

fractional diffusion equation.

In Chapters 3-5 we explore several computational algorithms for efficiently

solving the time-fractional diffusion equation, and consider various aspects of these

algorithms, including computational time, accuracy, stability, and the difficulty or ease

involved in integrating these numerical methods with larger models that often have

several other complex components aside from the fractional diffusion element.

In Chapter 6, we explore the application of fractional diffusion in capturing

the complex geometry of spiny dendrites in Purkinje neurons, and how this affects the

transport of second messenger signaling molecules such as IP3 and calcium, in the

induction of long-term-depression (LTD). Hernjak et. al have built a model of the events
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leading up to LTD, which takes into account the complex geometry of spiny dendrites in

Purkinje neurons by explicitly modeling dendritic and spine compartments, and the flux

between the two compartments through the narrow bottleneck that is the spine neck. We

hypothesize that the use of fractional diffusion can reflect the dynamics caused by this

geometric complexity, and attempt to create a simplified, modified model that can still

capture the main functionality of the original, including the simulation of parallel fiber

(PF) stimulation and climbing fiber (CF) activation of the Purkinje neuron.

Lastly, in Chapter 7 we summarize several fronts for future investigations, in-

cluding continued study of how fractional diffusion of IP3 , can affect the spread of

LTD along spiny dendrites of Purkinje cells. In addition, we explore the concept of

fractional diffusion to describe calcium signaling at several spatial scales in neurons

and other excitable media, including cardiac myocytes. And finally we briefly revisit

our original motivation for exploring fractional diffusion in the first place, which was

observed diffusion profiles of ATP and its potential role in calcium signaling in astrocyte

networks.



Chapter 2

From Random Walk to the Fractional

Diffusion Equation

2.1 Introduction to the Random Walk Framework

The random walk framework is a well known construct used to connect the micro-

molecular level behavior of discrete particles or objects, to the average macromolecular

behavior of the group of objects, as a continuum. We consider a one-dimensional example

where a particle has set step size (∆z = l), and at each timestep, can go either to the right

(+∆z) or to the left (−∆z) neighboring sites, with equal probability for either option.

Beginning from z0 = 0 , after N steps, the net displacement of the particle is given by

r (N) = ∑
N
i=1 ∆zi . ∆zi is a random variable and since each direction has equal probability

of being chosen in this scenario, 〈∆zi〉= 0.

5
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We can now derive an expression for the mean squared displacement:

r2 (N) =
N

∑
j=1

∆z j

N

∑
j=1

∆zk

=
N

∑
j=1,k= j

∆z2
j +

N

∑
j=1,k 6= j

∆z j∆zk (2.1.1)

〈
r2 (N)

〉
= Nl2 +

〈
N

∑
j=1,k 6= j

∆z j∆zk

〉
(2.1.2)

Since ∆z j and ∆zk are random variables, and are independent of each other (i.e.,

the result at each step is independent of the results at all other steps), the second term in

Eq. 2.1.2 vanishes, leaving us with a simple expression for the root mean squared (RMS)

displacement:
〈
r2 (N)

〉
= Nl2⇒ RMS = l

√
N

If we add the concept of particle collisions to our simple random walk scenario,

we can express the distance travelled between two collisions as l = 〈v〉τ where 〈v〉 is the

average speed of a given particle (averaged over all timesteps), and τ is the collision time.

Over a simulation time t, we have N = t/τ collisions, or steps in the scenario. We can

now write the expression for mean squared displacement:
〈
r2 (N)

〉
= l 〈v〉 t. In a three

dimensional system that is isotropic and at equilibrium, we can assume

〈
r2

x (N)
〉
=
〈
r2

y (N)
〉
=
〈
r2

z (N)
〉
=

〈
r2 (N)

〉

3

and therefore

〈
r2 (N)

〉
= 3〈v〉 lt (2.1.3)

= Dt (2.1.4)

where D is the diffusion coefficient and is defined in this context as D = 3< v> l. Notice
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that for classical diffusion there is a clear linear relationship between the mean squared

displacement of the particle, and the elapsed time. We will see in the next section that

anomalous diffusion refers to systems where this relationship is nonlinear.

The diffusion coefficient and the general phenomena of classical diffusion can

be explored through various other formalisms, including Langevin’s equation, which

involves the physics of forces acting on particles with mass and velocity, and also

including Fick’s laws, which deal with particle flux and from which the classical diffusion

equation can also be derived.

2.2 Einstein’s Formalism

We now arrive at Einstein’s Formalism, which relates the random walk scenario

to probability distributions. We can think of the solution to the random walk scenario as

a probability distribution P(z, t) which gives the probability of a particle being at position

z, at time t. We can write

P(z, t) =
∞∫

∞

P(z−∆z, t−∆t)q∆z (∆z)d∆z (2.2.1)

where P(z−∆z, t−∆t) is the probability of the particle being at location z−∆z, at time

t −∆t (one step away, at one timestep earlier), q∆z is the probability distribution of

random walk steps of all possible sizes (which means q∆z (∆z) gives us the probability

of making a step of length ∆z), and the integral signifies summing our results over all

possible steps.

For classical diffusion we assume that ∆t is small, and ∆z is small compared to

the size of the system, which suggests that q∆z (∆z) is zero for large ∆z, and nonzero for

small ∆z. With these assumptions we expand the term P(z−∆z, t−∆t) as a Taylor series
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expansion, around location z and time t:

P(z, t) =

∞∫
∞

P(z, t)q∆z (∆z)d∆z

−
∞∫

∞

∆t
∂P(z, t)

∂t
q∆z (∆z)d∆z

−
∞∫

∞

∆z
∂P(z, t)

∂z
q∆z (∆z)d∆z

+

∞∫
∞

∆z2

2
∂2P(z, t)

∂z2 q∆z (∆z)d∆z

We normalize the distribution q∆z (
∫

q∆zd∆z = 1) and assume it is symmetric, so that the

mean
∫

∆zq∆zd∆z = 0. Lastly, we define the variance as the second moment of the step

distribution function: σ2
∆z =

∫
∆z2q∆z (∆z)d∆z. From these assumptions and definitions,

we can then recover the classical diffusion equation

∂P(z, t)
∂t

=
σ2

∆z

2∆t
∂2P(z, t)

∂z2 (2.2.2)

From the Central Limit Theorem, we can find that the form of the solution to Eq. 2.2.2 is

a Gaussian if we make the following assumptions:

• q∆z (∆z) has a finite mean µ∆z and variance σ2
∆z

• all ∆zi are mutually independent

• the number of steps N is large
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2.3 Continuous Time Random Walk and the Fractional

Diffusion Equation

We return to the idea of anomalous diffusion and qualitatively compare it to

classical diffusion in terms of particle trajectories. Normal diffusion occurs in systems

close to equilibrium and although step sizes are small and irregular, particle trajectories

look relatively homogenous over time. Anomalous diffusion often occurs in systems

further from equilibrium and we notice two new characteristics of particle trajectories:

• long uninterrupted flights

• local traps where a particle might stay for a long time

As mentioned in the last section, the classification of whether a system undergoes

classical or anomalous diffusion, is determined by the relationship between mean squared

displacement of a particle, and time:

〈
r2 (t)

〉
=∼ tγ (2.3.1)

where
〈
r2 (t)

〉
is the mean squared displacement of the particle after time t has elapsed.

This value is proportional (through the diffusion coefficient D), to tγ. The case for γ = 1

represents normal diffusion, with γ 6= 1 representing anomalous diffusion. γ< 1 refers to

subdiffusion and γ> 1 refers to superdiffusion.

One way in which anomalous diffusion behavior has been modeled is through the

continuous time random walk framework, which can then be used to derive the fractional

diffusion equation in space and time.

In the spatial dimension, if we allow particles to take large steps (up to the

size of the system), we can have unbounded step sizes for infinite systems. We can
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quantify this by choosing the Lévy distribution for our step size probability distribution

q∆z (∆z), which has nonzero probabilities for large ∆z. We also make time a continuous

variable that evolves dynamically so that for large or infinite step sizes we can have

corresponding large or infinite timesteps. Together this relaxation on the limits of step

sizes and timesteps, completes the definition of the continuous time random walk scheme

(CTRW).

From the CTRW relaxations on step sizes and timesteps, we can derive different

forms of the probability distribution function P(z, t). If we assume ∆z is small, we can

recover the classical diffusion equation again, and as stated in the last section, find that

the form of the solution is a Gaussian function. If we assume ∆z is not small, then we

can derive equations representing superdiffusion or subdiffusion, depending on what

our actual q∆z (∆z) distribution is. We also note that from the previous discussion of

unbounded step sizes and time steps, CTRW can be described as a non-local or non-

Markovian process, and it is thus consistent that this framework is used to derive a

fractional diffusion equation that represents anomalous diffusion, a non-local process far

from equilibrium.

At this point we can introduce particular forms for q∆z (∆z) and q∆t (∆t). For the

spatial dimension we can set the step size distribution as a Lévy distribution, which is

defined in Fourier space as

q̂ϑ
∆z (k) = exp

(
−a |k|ϑ

)
(2.3.2)

for 0 < ϑ ≤ 2. For ϑ = 2 we recover the Gaussian distribution and for ϑ = 1 we

recover the Cauchy distribution. See Fig. 2.3.1 for the shape of Lévy distributions

for various λ parameters. We can see that as λ is decreased, the ‘fatter’ the ‘tails’ of

the distributions; this is why the Lévy distributions are often referred to as a class of
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Figure 2.3.1: The shape of various Lévy distributions in Fourier space. As required, we recover
the Gaussian distribution when λ = 2. As λ decreases, the ‘fatter’ the ‘tails’ of the distribution
become; that is, the higher the probabilities for larger magnitude values of k. Note that these
plots are for distributions that have not been normalized, and therefore the true probability will
be scaled by some factor that is dependent on λ.

long-tailed distributions.

Although there is no closed form expression for the Lévy distributions in space,

we can approximate the form of the distribution by

q∆z (∆z)∼ |∆z|−1−ϑ (2.3.3)

Although there are scaling and normalization factors involved, qualitatively the shape of

the distributions in real space, are the same as in Fourier space.
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We can see how these distributions corresponds to the particle trajectory char-

acteristic of long uninterrupted flights, which are essentially represented by large step

sizes ∆z. The long-tailed nature of the Lévy distribution assures us that the probability of

a particle taking such large step sizes, is no longer extremely improbable, as it would

be in a system undergoing classical diffusion. In addition, the variance σ2
ϑ

is infinite

for ϑ < 2 and the mean is infinite for ϑ ≤ 1 For ϑ = 2 we have a finite variance and

since we recover the Gaussian distribution, we can derive from this the classical diffusion

equation.

For the time domain, we use an asymmetrical Lévy distribution which is appro-

priate defined in Laplacian space as

qγ

∆t (s) = exp(−bsγ) (2.3.4)

for 0< α≤ 1. See Fig. 2.3.2 for the shapes of these asymmetrical versions of the two

sided Lévy distributions.

In the time domain we can approximate this as

q∆t ∼ t−1−γ (2.3.5)

Analogous to the spatial case, although there are scaling and normalization factors

involved, qualitatively the shape of the distributions in the real time domain, are the same

as in Laplace space; this corresponds to increased likelihood of long time steps, which

can be interpreted as long wait times between jumps.

Using Fourier and Laplace transforms, and the space and time distributions given

in Eq. 2.3.2 2.3.4, we can derive the fractional diffusion equation

∂γP(z, t)
∂tγ

=
a
b

∂ϑP(z, t)
∂zϑ

(2.3.6)
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Figure 2.3.2: The shape of various Lévy distributions in Laplace space. As required, we
recover an exponential decay distribution when γ = 1. As γ decreases, the ‘fatter’ the ‘tails’ of
the distribution become; that is, the higher the probabilities for larger values of s. Note that these
plots are for distributions that have not been normalized, and therefore the true probability will
be scaled by some factor that is dependent on γ.
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Further details about the derivation of Eq. 2.3.6 and its variants, are outside the scope

of this thesis and we refer the reader to [51, 36] for a more complete analysis. We also

note that γ in Eq. 2.3.6 is the same parameter as in 2.3.1; the discussions in [51, 36]

reestablish this nonlinear relationship between mean squared displacement, and elapsed

time, from the probability distribution functions in equations 2.3.2 and 2.3.4. However,

we do emphasize the following concepts. It can be seen over the course of this section

that there is a clear connection between probability distribution functions, the classical

diffusion equation, and the space and time-fractional diffusion equation. The exact

path of the derivation and the resulting partial differential equation is dependent on

the assumptions we make about the geometry of the system and corresponding effect

this has on particle step size ∆z and timestep ∆t between steps. For classical diffusion,

we make the assumptions of small ∆z and ∆t, independent walks in all directions and

between steps, and Markovian local processes in systems close to equilibrium. These

assumptions allow us to use the Central Limit Theorem to tie the random walk behavior

on a micromolecular scale Gaussian function.

In contrast, for certain geometries and diffusive contexts, we can relax several

of these assumptions and find appropriate probability distribution functions for step

size and timestep. These distributions should reflect certain details of the system, such

as the presence of external fields, the nature of the media through which particles are

diffusing, and the behavior of the particles themselves (for example, intermolecular

attractive/repulsive forces). Once the appropriate probability distribution functions are

found, we can determine the form of fractional diffusion equation, which can be much

more complicated than given in Eq. 2.3.6 if it is to reflect additional components of the

system such as advection, the presence of external force fields, and other details.

The focus of the remainder of this thesis will be on numerical methods to solve the

two-dimensional time-fractional diffusion equation, which is representative of anomalous
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diffusion. The equation is a particular form of Eq. 2.3.6 with ϑ = 2:

∂γP(~z, t)
∂tγ

= D∇
2P(~z, t) (2.3.7)

where D is the diffusion coefficient (with units spatial units2

time unitsγ ). From here forth we connect

anomalous diffusion with the time-fractional diffusion, unless otherwise explicitly stated

(as in Chapter 7 where we briefly touch on the space fractional diffusion).

2.4 Fundamental Solution

Although it is difficult to find closed form solutions for Eq. 2.3.7, for the funda-

mental problem in unbounded space where the initial condition is P(z,0) = δ(z), we can

write a closed form solution (impulse response) in terms of Fox’s H-function [36]:

P(z, t) =
1√

4Dtγ
H1,0

1,1



∣∣z2
∣∣

√
Dtγ

∣∣∣∣∣∣∣

(1− γ/2,γ/2)

(0,1)


 (2.4.1)

where the Fox function is an analytical representation of Lévy distributions in real space,

and is a general case of many of the special functions occurring in math and statistics. It

can be expressed in computational form as

Hm,n
p,q (x) = Hm,n

p,q


x

∣∣∣∣∣∣∣

(ap,Ap)
(
bq,Bq

)




=
m

∑
h=1

∞

∑
v=0

∏
m
j=1, j 6=h Γ

(
b j−B j (bh + v)/Bh

)

∏
q
j=m+1 Γ

(
1−b j +B j (bh + v)/Bh

)

×∏
n
j=1 Γ

(
1−a j +A j (bh + v)/Bh

)

∏
p
j=n+1 Γ

(
a j−A j (bh + v)/Bh

)

×(−1)v x(bh+v)/Bh

v!Bh
(2.4.2)
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Figure 2.4.1: The fundamental solution for a set γ = 0.75, at various times. It is clear that
the peaked center of the diffusion profile persists even after a considerable amount of time has
passed.

Figs. 2.4.1 and 2.4.2 show the fundamental solution for various fractional order,

and at various times. It is clear that anomalous diffusion for the specific initial conditions

represented by the fundamental solution, has a characteristic peaked profile that is distinct

from the classical Gaussian diffusion profile. In addition, the lower the fractional order γ

(or, correspondingly, the higher the degree of anomalous diffusion), the longer the peaked

profile persists and the more slowly material diffuses away from the initial concentration

profile. We use the fundamental solution as a basis for estimating error of the one-

dimensional versions of several of our algorithms, and we will revisit this solution in

Chapter 4.
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Figure 2.4.2: The fundamental solution for a set time = 1 second, for various γ values. It is
clear that the smaller the value of γ, the more pointed and narrow the diffusion profile. Or, in the
other words, the longer material stays near the point of origin and slower it diffuses away. Again,
we see a persistent peaked nature of the profile, except for γ = 1, which of course corresponds
to Gaussian diffusion.



Chapter 3

The Fractional Diffusion Equation and

Adaptive Time Step Memory

3.1 Introduction

Here we investigate the numerical implementation and computational perfor-

mance of a fractional reaction-diffusion equation. The continuous diffusion equation has

been the focal point of transport modeling in physical and biological systems for over a

hundred years, since first proposed by Adolf Fick in 1855. The practical motivation for

the present work arose from considering cell signaling data between Muller neural glial

cells in the neural sensory retina. The neural retina is a direct extension and part of the

brain itself. Muller cells in the retina can communicate in a paracrine fashion by secreting

adenosine triphosphate (ATP) that diffuses into the extracellular space that then triggers

intracellular calcium waves. In some cases these signaling events can produce long range

regenerative intercellular signaling in networks of cells; see [38, 35, 56]. In particular,

from [38], we observed a peaked diffusion profile for ATP that persisted over long time

periods; this is a typical characteristic of anomalous diffusion, and we suspected that the

18
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diffusion of ATP in this physiological system was subdiffusive. Modeling subdiffusive

neurophysiological transport processes necessitates the use of fractional differential

equations. However, the numerical implementation of such equations involves non-local

fractional derivative operators that require taking into account the entire past history of

the system in order to compute the state of the system at the current time step. This

produces a significant computational burden that may limit the practicality of the models.

In the present paper we introduce an ‘adaptive time step’ approach for computing the

contribution of the memory effect associated with the history of a system in a way that

makes it both numerically and resource (i.e. computer memory) efficient and robust.

While our algorithms can be applied to any diffusion application modeled as a fractional

process, they offer particular value for modeling complex processes with long histories,

such as lengthy molecular or cellular simulations.

Approaches for numerically approximating solutions to fractional diffusion equa-

tions have been extensively studied [6, 18, 22, 32, 34, 41, 57], but in general there is

always a trade off between computational efficiency, complexity, and the accuracy of

the resultant approximations. There has also been a considerable amount of work done

on developing fast convolution quadrature algorithms, which is relevant to fractional

differential equations because the non-local nature of fractional calculus operators results

in either a continuous or discrete convolution of some form. In particular, Lubich and

others [26, 24, 25, 27, 28, 45, 23] have built a generalized and broadly applicable con-

volution quadrature framework to numerically approximate a continuous convolution

integral with a wide array of possible convolution kernel functions (including oscillatory

kernels, singular kernels, kernels with multiple time scales, and unknown kernels with

known Laplace transforms), while achieving good algorithmic performance with respect

to complexity and memory requirements. However, their algorithms are necessarily very

complicated in order to handle a wide range of functions and expressions in the convo-
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lution while limiting storage requirements and scaling of arithmetic operations. They

involve approximating a continuous convolution based on numerical inversion of the

Laplace transform of the convolution kernel function using contour integrals discretized

along appropriately chosen Talbot contours or hyperbolas. The scaling of the number of

required arithmetic operations involved in the convolution, and overall memory require-

ments, are both reduced by splitting up the continuous convolution integral or discrete

convolution quadrature summation into a carefully chosen series of smaller integrals or

summations, and solving a set of ordinary differential equations one time step at a time

without storing the entire history of the solutions. For methods explicitly involving a

discrete convolution summation, the quadrature weights are calculated using the Laplace

transform of the original kernel and linear multistep methods for solving differential

equations. FFT techniques can be applied to calculate these weights simultaneously and

further increase the efficiency of the algorithm [25]. These authors have demonstrated

the success of their framework by simulating various differential equations involving

convolutions, including a one-dimensional fractional diffusion equation [45]. In [19], Li

takes an alternative approach from this framework and focuses on a fast time-stepping

algorithm specifically for fractional integrals by constructing an efficient Q point quadra-

ture, but does not focus on how this fits into numerical algorithms representing larger

mathematical models.

The methods we introduce here are also very efficient, significantly reducing

simulation times, computational overhead, and required memory resources, without

significantly affecting the computed accuracy of the final solution. However, in contrast

to broad generalized frameworks, our algorithms are focused on solving fractional dif-

ferential equations involving nonlocal fractional derivative operators. We approximate

the fractional derivative based on the Grünwald-Letnikov definition instead of pursuing

a general quadrature formula approximation to the Riemann-Liouville integral defini-
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tion of the fractional derivative. The Grünwald-Letnikov derivative is used in many

numerical schemes for discretizing fractional diffusion equations from a continuous

Riemann-Liouville approach [7, 57, 40], and involves a discrete convolution between

a ‘weight or coefficient function and the function for which we are interested in taking

the derivative. The mathematics and theory of this form of a weighting function are

well established in the literature [40, 26]. Building on this foundation avoids the need

for domain transformations, contour integration or involved theory. Our algorithms

were specifically developed for real world applied diffusion and transport physics and

engineering problems, often where there are practical measurement limitations to the

types and quality (e.g. granularity) of the data that can be collected or observed. For

situations such as these, our methods for handling discrete convolutions associated with

fractional derivatives are more intuitive and accessible than other generalized mathe-

matical methods, where it is often not obvious or clear how to implement and apply a

generalized approach to a specific physical problem under a defined set of constraints.

The approaches we introduce here can be incorporated with various combinations of finite

difference spatial discretizations and time marching schemes of a larger mathematical

model, in a straightforward way.

The increased efficiency and memory savings in the approaches we describe

here lie in the way the discrete summation is calculated. The conceptual basis that

results in a saving of computational time without a huge tradeoff in accuracy is in the

interpretation of the weight function as a measure of the importance of the history of

a system. The more recent history of the system is more important in determining the

future state of the system, and therefore we make use of an ‘adaptive time step memory’

method by changing the interval of the backwards time summation in the Grünwald-

Letnikov fractional derivative. Instead of incorporating every previous time point into

the most current calculation, only certain points are recalled based upon their proximity
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to the current point in time, weighted according to the sparsity of the time points. This

substantially reduces the computational overhead needed to recalculate the prior history at

every time step, yet maintains a high level of accuracy compared to other approximation

methods that make use of the Grünwald-Letnikov definition. We consider two adaptive

step approaches - one based on an arithmetic sequence and another based on a power

law, that when combined with a linked-list computational data structure approach yield

O(log2(N)) active memory requirements. This is a significant improvement over keeping

all N steps of the system’s history. We compare our adaptive time step approach with

the ‘short memory’ method described by Volterra ([52]) and Podlubny et al [40], and

examine differences in simulation times and errors under similar conditions for both. In

the last section we sketch out a ‘smart’ adaptive memory method based on a continuous

form of the Grünwald-Letnikov that will be able to accommodate more dynamic past

histories, i.e., histories with sharp and abrupt changes relative to the time step being

considered, that produce larger error in the discrete methods we discuss.

3.2 The Grünwald-Letnikov Derivative

3.2.1 Derivation of the Fractional Diffusion Equation

We begin by considering the standard diffusion equation with no reaction term

∂u
∂t

= α∇
2u, (3.2.1)

where α is the diffusion coefficient. The time-fractional version of equation 3.2.1 is given

by
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∂γu
∂tγ

= α∇
2u. (3.2.2)

Here α has units spatial unit2

time unitγ . This is the simplest form of the fractional diffusion equation.

The real values taken by γ in equation 3.2.2 dictate the diffusion regimes obtained by the

equation. Values of 0< γ< 1 result in subdiffusion, characterized by a slow diffusion

profile relative to regular diffusion. When γ> 1, an oscillatory component emerges in

the diffusion profile resulting in superdiffusion. As required, when γ = 1 the fractional

diffusion equation reduces to standard diffusion that results in a Gaussian profile. When

γ = 2 it reduces to the standard wave equation. Using the relation

∂u
∂t

=
∂1−γ

∂t1−γ

∂γu
∂tγ

(3.2.3)

and substituting into equation 3.2.2 yields

∂u
∂t

=
∂1−γ

∂t1−γ
α∇

2u (3.2.4a)

∂u
∂t

= αD1−γ
∇

2u (3.2.4b)

where D1−γ denotes the fractional derivative operator which we discuss at length in the

next section.

If we take into account consumption or generation processes, then we can rewrite

the diffusion equation as

∂u(~x, t)
∂t

= αD1−γ
∇

2u(~x, t)+ f (u), ~x = {x1,x2...xN} (3.2.5)

where~x is an N dimensional vector and f(u) represents a consumption or generation term.

We now consider the fractional derivative operator D1−γ.



24

3.2.2 Definition of the Grünwald-Letnikov Derivative

The ath order fractional derivative of a function, denoted by Da f , extends the

order of the differential operator from the set of integers to the set of real numbers. The

operator can be mathematically defined in several ways, including standard descriptions

like the Riemann-Liouville definition, the Grünwald-Letnikov definition, and others. For

numerical simulations, we find the Grünwald-Letnikov derivative to be convenient, since

it is based on the standard differential operator but made applicable to arbitrary order a

with a discrete summation and binomial coefficient term:

Da f (x) = lim
h→0

h−a
x/h

∑
m=0

(−1)m
(

a
m

)
f (x−mh). (3.2.6)

Expanding the binomial coefficient yields

(
a
m

)
=

a!
m!(n−m)!

(3.2.7)

and expressing the factorial components of the binomial coefficient by the gamma

function gives

(
a
m

)
=

Γ(a+1)
m!Γ(a+1−m)

. (3.2.8)

Combining equations 3.2.6 and 3.2.8 yields the Grünwald-Letnikov derivative for real

numbers:

Da f (x) = lim
h→0

h−a
x/h

∑
m=0

(−1)mΓ(a+1)
m!Γ(a+1−m)

f (x−mh) a ∈ R, a 6=−N1. (3.2.9)
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It should be noted that computation of the Grünwald-Letnikov derivative requires

knowledge of the entire past history of the system due to the summation operator. This

means that this fractional derivative, unlike standard derivatives, is no longer local but

global. Computing the value of a real derivative requires knowledge of the system’s past

history. The derivative must take into account all past points from m= 0, the current point,

all the way back to the beginning point m = x/h. This requirement places significant

computational demands on the numerical implementation of the Grünwald-Letnikov

derivative, and is the principle technical motivation for the results presented here.

In the rest of the chapter we explore the implementation of equation 3.2.9 to a

diffusion regime constrained to 0< γ≡ a≤ 2 (as explained in section 3.2.1):

Dγ f (x) = lim
h→0

h−γ

x/h

∑
m=0

(−1)mΓ(γ+1)
m!Γ(γ+1−m)

f (x−mh) for 0< γ≤ 2. (3.2.10)

Applying equation 3.2.10 to the fractional diffusion equation (Eq. 3.2.4b) yields:

∂u
∂t

= lim
τ→0

τ
γ−1

α

t/τ

∑
m=0

(−1)mΓ(2− γ)

m!Γ(2− γ−m)
∇

2u(t−mτ) (3.2.11)

where t represents instantaneous time, and τ is the time step.

Next, define a function ψ(γ,m) such that

ψ(γ,m) =
(−1)mΓ(2− γ)

m!Γ(2− γ−m)
. (3.2.12)
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Given that the standard definition of the gamma function implies Γ(a) = 1
aΓ(a+ 1),

equation 3.2.12 can be reduced to a recursive relationship. Consider the first four terms

in the chain from m = 0 to m = 3:

ψ(γ,0) =
(−1)0 ·Γ(2− γ)

(0!) ·Γ(2− γ−0)
= 1

ψ(γ,1) =
(−1)1 ·Γ(2− γ)

(1!) ·Γ(2− γ−1)
=

(−1) · (−1)0 ·Γ(2− γ)

(1) · (0!) · 1
(2−γ−1) ·Γ(2− γ−0)

ψ(γ,2) =
(−1)2 ·Γ(2− γ)

(2!) ·Γ(2− γ−2)
=

(−1) · (−1)1 ·Γ(2− γ)

(2) · (1!) · 1
(2−γ−2) ·Γ(2− γ−1)

ψ(γ,3) =
(−1)3 ·Γ(2− γ)

(3!) ·Γ(2− γ−3)
=

(−1) · (−1)2 ·Γ(2− γ)

(3) · (2!) · 1
(2−γ−3) ·Γ(2− γ−2)

Examining this system of equations suggests that for any ψ(γ,m):

ψ(γ,m) =
(−1)m ·Γ(2− γ)

(m!) ·Γ(2− γ−m)
=

(−1) · (−1)(m−1) ·Γ(2− γ)

(m) · (m−1)! · 1
(2−γ−m) ·Γ(2− γ− (m−1))

. (3.2.13)

Because the function ψ(γ,m) is dependent on ψ(γ,m−1), an iterative relationship forms

that scales by −(2−γ−m)
m :

ψ(γ,m) =−ψ(γ,m−1)
2− γ−m

m
. (3.2.14)

This recursive function is valid for all γ including subdiffusion, standard diffusion

and superdiffusion, so this equation is general over all regimes. Because the entire history

of the system must be taken into account when computing the current time step, ψ(γ,m)

is used for many m values, many times over the course of the simulation, and can be
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precomputed for values of m = 0 to m = N, where N is the total number of time points,

resulting in a significant savings in computational performance. A similar simplification

has been previously discussed and used in [40]. Taking ψ(γ,m) into account yields the

final form of the fractional diffusion equation, given by

∂u
∂t

= lim
τ→0

τ
γ−1

α

t/τ

∑
m=0

ψ(γ,m)∇2u(t−mτ). (3.2.15)

We can also arrive at equation 3.2.15 by an alternative approach. Begin by

considering again the Grünwald-Letnikov derivative in terms of binomial notation:

D1−γ f (t) = lim
τ→0

τ
γ−1

t/τ

∑
m=0

(−1)m
(

1− γ

m

)
f (t−mτ). (3.2.16)

Applying Eq. 3.2.16 to the fractional diffusion equation (Eq. 3.2.4b) yields

∂u
∂t

= lim
τ→0

τ
γ−1

α

t/τ

∑
m=0

(−1)m
(

1− γ

m

)
∇

2u(~x, t−mτ) (3.2.17)

Knowing the gamma function definition of the factorial operator, a! = Γ(a+ 1), the

binomial coefficient can be expanded to accommodate real numbers (also c.f. equation

3.2.8):

(
1− γ

m

)
=

(1− γ)!
m!(1− γ−m)!

=
Γ(2− γ)

m!Γ(2− γ−m)
. (3.2.18)

Note how combining equations 3.2.17 and 3.2.18 yields equation 3.2.11 as required.

Next, defining the function ψ(γ,m) (equation 3.2.12) using binomial notation

gives

ψ(γ,m) = (−1)m
(

1− γ

m

)
(3.2.19)

and substituting the relation Γ(a) = (a−1)Γ(a−1) into Eq. 3.2.18 results in
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ψ(γ,m) =
(−1)m−1Γ(2− γ)

(m−1)!Γ(2− γ− (m−1))
−1

m 1
2−γ−m

(3.2.20)

yielding the iterative relationship in equation 3.2.14 above:

ψ(γ,m) =−ψ(γ,m−1)
2− γ−m

m
.

With the substitution of ψ(γ,m) into eq. 3.2.17 we once again recover the time-fractional

diffusion equation in the form

∂u
∂t

= lim
τ→0

τ
γ−1

α

t/τ

∑
m=0

ψ(γ,m)∇2u(~x, t−mτ). (3.2.21)

3.2.3 Discretization of the Fractional Diffusion Equation

Using

∇
2u(~x, t−mτ) =

∂2u(~x, t−mτ)

∂x2
1

+
∂2u(~x, t−mτ)

∂x2
2

(3.2.22)

as the formulation in two spatial dimensions, one can discretize the function into a

finite difference based FTCS scheme (forward time centered space) on a grid un
j,l (where

n = t/∆t , j = x1/∆x, l = x2/∆x, ∆x is the grid spacing in both directions assuming an

equally spaced grid, and ∆t is the time step), using the relations ([42])

∂2u(~x, t−mτ)

∂x2
1

=
un−m

j+1,l−2un−m
j,l +un−m

j−1,l

∆2
x

∂2u(~x, t−mτ)

∂x2
2

=
un−m

j,l+1−2un−m
j,l +un−m

j,l−1

∆2
x

∂u(~x, t)
∂t

=
un+1

j,l −un
j,l

∆t
. (3.2.23)

In the discrete limit where τ → ∆t , we approximate the fractional diffusion
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equation (equations 3.2.15 and 3.2.21) with the following finite difference expression,

which has a first-order approximation O(τ) (Chapter 7 in [40], [26]):

un+1
j,l −un

j,l

∆t
= α

∆
γ−1
t

∆2
x

n

∑
m=0

ψ(γ,m)δn−m
j,l (3.2.24)

where δ
n−m
j,l is the finite difference kernel given by

δ
n−m
j,l =

(
un−m

j+1,l +un−m
j−1,l−4un−m

j,l +un−m
j,l+1 +un−m

j,l−1

)
. (3.2.25)

Adding a consumption/generation term is straightforward in this implementation.

For example, take an exponential decay term given by

∂u
∂t

=−βu (3.2.26)

with the complementary finite difference relation

un+1
j,l −un

j,l

∆t
=−βun

j,l. (3.2.27)

Incorporating Eq. 3.2.26 into the form of eq. 3.2.5 results in

∂u
∂t

= αD1−γ

t ∇
2u−βu, (3.2.28)

which gives the full finite difference implementation in two dimensions

un+1
j,l −un

j,l

∆t
= α

∆
γ−1
t

∆2
x

n

∑
m=0

ψ(γ,m)δn−m
j,l −βun

j,l (3.2.29)

Figure 3.2.1 shows the results of four simulations for different values of γ. Sim-

ulations were run on a 100 x 100 grid with initial conditions U0
50,50 = 0.1, U0

51,50 =

U0
50,51 =U0

49,50 =U0
50,49 = 0.05 and zero elsewhere. Dirichlet boundary conditions were
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1

Figure 3.2.1: Simulation results for γ = 0.5, 0.75, 0.9, 1.0 (for traces from top to bottom) in
one dimensional space (panel A) and time (panel B). As the subdiffusion regime is approached
the profile becomes more and more hypergaussian.

implemented and the simulation edge set to zero. Simulations were run for t = 100

seconds with α = 1, β = 0, and ∆x = 5.

3.3 Adaptive Time Step Memory as an Arithmetic Se-

quence

3.3.1 Derivation

In Eq. 3.2.29 each iteration requires the re-calculation and summation of every

previous time point convolved with ψ(γ,m). This becomes increasingly cumbersome

for large times, which require significant numbers of computations and memory storage

requirements. To address this, Podlubny et. al ([40]) introduced the ‘short memory’

principle which assumes that for a large t the role of the previous steps or ‘history’ of

the equation become less and less important as the convolved ψ(γ,m) shrinks towards

zero. This would then result in approximating eq. 3.2.29 by truncating the backwards

summation, only taking into account times on the interval [t−L, t] instead of [0, t], where

L is defined as the ‘memory length’ (eq. 7.4 in [40]; Fig. 3.3.1). While computationally
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efficient, this approach leads to errors in the final solution since not all points are counted

in the summation. Despite the resultant errors, this numerical method represents a

powerful and simple approach for providing a reasonable trade off between computational

overhead and numerical accuracy. In the context of the implementation derived here, it

would result in a discretization scheme given by

un+1
j,l −un

j,l

∆t
= α

∆
γ−1
t

∆2
x

min(L/∆t ,n)

∑
m=0

ψ(γ,m)δn−m
j,l −βun

j,l (3.3.1)

As an alternative to the method of Podlubny, Ford and Simpson proposed an

alternative ‘nested mesh’ variant that gives a good approximation to the true solution

at a reasonable computational cost ([12]). However, this method is exclusive to the

Caputo fractional derivative. Here we introduce an approach that is applicable to the

more general Grünwald-Letnikov definition. Like these other methods, it also shortens

computational times but at the same time results in much greater accuracy than the use of

‘short memory.’ We achieve this by introducing the concept of an ‘adaptive memory’ into

the Grünwald-Letnikov discretization.

The underlying principle of the adaptive time approach is that relative to the

current time point previous time points contribute different amounts to the summation.

Values relatively closer to the current time point will have a greater contribution to the

current numerical calculation than values many time points back due to the multiplier

ψ(γ,m). For smooth functions, as m increases and |ψ(γ,m)| decreases, neighboring

points in the summation exhibit only small differences. Consequently, one can take

advantage of this and utilize an ‘adaptive memory’ approach in which neighboring values

at prior time points are grouped together in defined increments and the median taken

as a representative contribution for the increment weighted according to the length of

the increment to account for the skipped points. This results in fewer time points that

need to be computed in a summation. Algorithmically, for an arbitrary a time steps back
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from the current time point k for which the history of the system is being computed,

consider an initial interval [0,a] for which all time points within this interval are used

in the summation and therefore contribute to the the Grünwald-Letnikov discretization.

Let subsequent time intervals become longer the further away from n they are and within

them only every other d time points are used in the summation term, i.e., only the median

values of a temporally shifting calculation increment of length d along the current interval

are considered. As subsequent intervals become longer, so does d, thereby requiring less

points to compute (Fig. 3.3.1).

Definition 3.3.1. Let n be the current iterative time step in a reaction diffusion process

for which a Grünwald-Letnikov discretization is being computed. Consider an arbitrary

time point a in the history of the system backwards from n. For i ∈ N1, i 6= 1, define an

interval of this past history by

I = [ai−1 + i,ai] (3.3.2)

where N1 represents the set of natural numbers beginning from one. Given how the

indices i are defined, the very first interval backwards from n is independent of equation

3.3.2 and is given by [0,a]. This is considered the base interval. Subsequent intervals

are defined as a function of this base, i.e., as a function of a and determined by eq. 3.3.2.

Let imax be the value of i such that n ∈ Imax = [aimax−1 + imax,aimax ]. The complete set of

intervals then is defined as ζ = {I = [ai−1 + i,ai] : i ∈ N1, i 6= 1, i≤ imax}.

Definition 3.3.2. For the set of intervals ζ as defined in Definition 3.1, D = {d = 2i−1 :

i ∈ N1, i 6= 1} is the set of distances d by which the corresponding intervals in ζ are

sampled at.

Theorem 3.3.3. In general, for two-dimensional diffusion without consumption or gen-

eration terms for any interval as defined in Definition 3.1, the Grünwald-Letnikov
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discretization with adaptive time step memory is given by

un+1
j,l −un

j,l

∆t
= α

∆
γ−1
t

∆2
x

[
a

∑
m=0

ψ(γ,m)δn−m
j,l + · · · (3.3.3)

imax

∑
i=2

ai

∑
mi=ai−1+i

(2i−1)ψ(γ,mi)δ
n−mi
j,l +

n

∑
p=mmax+imax

ψ(γ, p)δn−p
j,l

]

where p ∈N1, and for each i (i.e. for each interval) M = {mi = ai−1 +(2i−1)η− i+1 :

η∈N1 & mi≤mmax} is the set of time points over which ψ(γ,m)δn−m
j,l is evaluated. Since

the time point n may be less than the full length of the last interval Imax, |mmax| ≤ |n− imax|

represents the maximum value in Imax that is evaluated, i.e. the last element in the set M

for Imax.

Proof. The first summation represents the basis interval and the limits of the summation

operator imply the contribution of every time point, i.e., m ∈ N1. For intervals beyond a:

any arithmetic sequence defined by a recursive process νη = νη−1 +d, η ∈ N1 for some

distance d, the ηth value in the sequence can be explicitly calculated as νη = ν1+(η−1)d

given knowledge of the sequence’s starting value ν1. For the set ζ this implies that ν1 =

ai−1 + i and d = 2i−1 for a given i. This then yields νη = ai−1 + i+(η−1)(2i−1) =

ai−1 +(2i−1)η− i+1 := mi as required. The outer summation collects the summations

of all intervals that belong to the set ζ. The last summation on the interval [mmax+ imax,n]

ensures that the final point(s) of the backwards summation are still incorporated into the

computation even if the arbitrarily chosen value of a does not generate a final increment

length that ends on n.

Note that D is not explicitly needed for computing equation 3.3.3 because the

distances d are implicitly taken into account by ζ. Using the median value of each

increment avoids the need for interpolation between time points. The implementation of

the adaptive memory method described here is necessarily limited to smooth functions
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due to the assumption that the neighbors of the median values used in the summation

do not vary much over the increment being considered. This method essentially allows

for a contribution by all previous time points to the current calculation, yet reduces

computational times by minimizing the total number of calculations.

3.3.2 Comparison to Short Memory Methods

The results of using various L (for short memory) and interval steps a (for adaptive

memory) are shown in Fig. 3.3.2. Increasing the values of L and a resulted in a decrease

in the error of the estimated results but at the cost of increased computation times.

Conversely, decreasing the values of L and a resulted in a decrease in computation times,

but at the expense of accuracy. In all cases however, the adaptive memory method

had a significantly lower error for the same simulation time, and also reached a clear

asymptotic minimum error much faster than the minimum error achieved by the short

memory method. In these simulations, α = 1, β = 0, ∆t = 1, ∆x = 10, using a 20 x 20

grid, and ran for t = 1500 where U0
10,10 = 10. The error for the ‘short memory’ method

increased comparatively quickly and worsened as γ→ 1. This was due to the fact that

the evolution of the solution was initially quite fast at times near t = 0, which were the

first time points cut by the ‘short memory’ algorithm.

3.4 Adaptive Time Step as a Power Law

While computationally efficient and intuitively straightforward, the major draw-

back to the adaptive memory method computed as an arithmetic sequence, is the necessary

amount of allocated memory. The backwards time summation grid changes with every

step such that every point in the history needs to be retained and stored during the course

of a simulation. For high dimensional diffusion this limits the practical applicability of
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ψ(γ,m) (Fading system memory)

Full discretization

Short memory approach

Adaptive memory approach

m=0
∑
ψ(γ,m)δk−m

i,j

m=0
∑
ψ(γ,m)δk−m

i,j

m=0
∑

(2i− 1)ψ(γ,m)δk−m
i,j

m=k

m=L/∆t

m=k

m=0m=k

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸︸︷︷︸
i=3 i=2 i=1

weight x5 weight x3 weight x1
(x1)

1

Figure 3.3.1: Short memory and adaptive memory methods for estimating the the Grünwald-
Letnikov discretization. Both approximations rely on the sharply decreasing function |ψ(γ,m)|
as m increases to omit points from the backwards summation. While short memory defines a
sharp cut off of points, adaptive memory provides a weighted sampling of points for the entire
history of the system. Points included in the computation by each method are highlighted in red.
The shape of ψ is different for γ < 1 and γ > 1, but the shape of |ψ| remains a monotonically
decreasing function (as m increases) for both cases, and remains consistent with the principle
that more recent time points contribute (whether positively or negatively) more to the solution at
the next time step, than time points further back in the history of the system. See text for details.
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γ = 0.50 γ = 0.60

γ = 0.75 γ = 0.90

- - - Short
Adaptive

1

Figure 3.3.2: Comparison of the error between adaptive memory and the short memory as
a function of the calculation time (x-axis: computation run time in seconds) expressed as a
percentage error relative to the computed value for the full non-shortened approach (y-axis).
Four different values of γ are shown.
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the method. For example, if one were to solve the three dimensional diffusion equation on

just a 100 x 100 x 100 set of grid points, that would require the storage of 1,000,000 data

points per time step, which over the course of a long simulation would overwhelm the

memory capacity of most computers in addition to greatly slowing simulation times. The

same memory issues arise when considering another popular approach used for solving

the fractional diffusion equation, discussed in [41], that uses an implicit matrix solution

to simultaneously solve all points in time using a triangular strip matrix formulation.

This later approach is very powerful but does not take advantage of any short memory

algorithms. In this section we improve on our results and develop a framework that uses

a power law-based rule for eliminating past history points without sacrificing numerical

accuracy. This approach, in combination with a linked-list based method, minimizes

the storage of the past history of the function. This results in decreasing the amount of

total memory allocated to run a simulation of N time steps from O(N) to O(log2(N)),

resulting in a tremendous memory savings.

Given a simulation of N time steps and number of grid points X/∆x, where X

is the grid width, storing the entire past history would require X
∆x

N points to be stored,

which grows linearly with N. On the other hand, an adaptive mesh with a power law

growth in spacing (in this case 1,2,4...), results in X
∆x

log2(N) points being stored in

memory, which grows with the log of the number of points N. The advantage of using

such a power law scaling is that one can a priori calculate memory points which will

not be used at every time step of the simulation and de-allocate the memory assigned

to storing those time points. With the adaptive memory method, past points needed for

each subsequent time step change with each iteration, necessitating that all time points be

stored for future calculations. The use of a self similar power law allows the elimination

of points that will not be needed at any future time in the calculation. A comparison of

the implementation of this method with the full implementation using every time point,
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∑
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∑
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Figure 3.4.1: Comparison of the full discretization, short memory approach, and adaptive
memory approach, to the minimal memory implementation.

is shown in Figure 3.4.1.

3.4.1 Set Theoretic Implementation

In one spatial dimension, an FTCS discretization of the fractional diffusion

equation on a grid un
j where n = t/∆t , j = x1/∆x, can be written as

un+1
j −un

j

∆t
= α

∆
γ−1
t

∆2
x

i

∑
m=0

ψ(γ,m)δn−m
j . (3.4.1)

(c.f. equations 3.2.23 to 3.2.25 above and [42]), where
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δ
n
j =
(
un

j+1−2un
j +un

j−1
)

(3.4.2)

Definition 3.4.1. Define a well-ordered set U in time consisting of elements ui
j ordered

by the point in time i = t/∆t at which that grid point occurred. The least elements in this

set are then the points where u0
j , and the greatest are the points un

j , where the current time

point is n = tcurrent/∆t . For all integers A and B, if A> B, then uA
j > uB

j .

Given the numerical scheme in 3.4.1, the set U can be expressed as the recursive

algorithm

un+1
j = un

j +α
∆

γ

t

∆2
x

∑
{ui

j∈U}
ψ(γ,n− i)δi

j. (3.4.3)

where u0
j is the set of initial conditions at t = 0.

Taking advantage of this result we can state the following lemma for the short

memory approach:

Lemma 3.4.2. Assume a short memory scheme. The elements ui < un− L
∆t in U for a time

step i are not used in future computations and can be removed from U.

The set U can then become a list of sets U i with only the necessary elements to

complete the recursive relation in each step i.

Proof. The short memory approach shown in Figure 3.4.1 can be written as

un+1
j = un

j +α
∆

γ

t

∆2
x

∑

{ui
j∈U :ui

j>u
n− L

∆t }

ψ(γ,n− i)δi
j. (3.4.4)
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This recursive relation can be written as

un+1
j = un

j +α
∆

γ

t

∆2
x

∑
{ui

j∈Un}
ψ(γ,n− i)δi

j.

Un+1 := {ui ∈Un : ui > un− L
∆t }+{un+1} (3.4.5)

with U0 := {u0}. As the function evolves, elements in U given by ui < un− L
∆t will never

be used again and can be removed.

Numerically only the set Un needs to be stored in memory for the current time

point n and all points after. As discussed above, by its construction adaptive memory

time step as an arithmetic sequence necessitates a shifting of the calculated window of

points, and as such the entire history of the system needs to be stored in memory for

the calculation at all time points. However, we can construct an adaptive memory as a

power law, such that once we know what past history points need to be calculated, all

other points in between will never need to be calculated. This then requires only enough

memory to store the known and computed past intervals of the systems history, allowing

the deallocation and recovery of much of the stored memory. This results in less memory

requirements which translates into much faster computations.

Definition 3.4.3. Define a parameter η which determines the ‘reset interval’. This

represents the number of points in the past history to store in the current time point set

Un at each weight.

Definition 3.4.4. Define weighting sets W i with elements wi ordered in the same manner

as the sets U i.

Algorithm 3.4.1. Assume an adaptive memory time step power law scheme. Assume

w0 = 1. When there are more than η points in the set W i of any given weight, define a

subset of W i as the elements in W i of the given weight. Then from this subset, the weight
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of the least element is doubled, and the second lowest element is is removed from W i

altogether. The time marching scheme is given as follows:

un+1
j = un

j +α
∆

γ

t

∆2
x

∑
{ui

j∈Un}
ψ(γ,n− i)wi

δ
i
j.

wn+1 = 1

W n+1 := {wi ∈W n}+{wn+1}

Un+1 := {ui ∈Un}+{un+1}

(3.4.6)

so that when the number N elements of a given weight is N > η the algorithm is

condensed.

3.4.2 Numerical Implementation

From an applied perspective, to keep a well ordered list of points in U we make

use of linked lists as the data structure. A linked list is one of the fundamental data

structures used in computer programming. It consists of nodes that can contain data and

their own data structures, and also pointers from each node to the next and/or previous

nodes (Fig. 3.4.2A). This means one node can be removed from the set and deallocated

from memory while the order of the set is maintained. In our case each node is an item u

of the set U describing a time point necessary for the current time step, with the entire

list representing all points u that make up the current iteration Un. Once a time point u is

no longer necessary for the simulation, it can be removed (Fig. 3.4.2B). New computed

time points, un+1 are added into the list (Fig. 3.4.2C). The data structure is initialized as

illustrated in Fig. 3.4.2D. At each time step, a new structure containing un+1 and wn+1 is

added onto the end of the list. When the elements of a specific weight ω grow larger than
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the limit η, the first two values of the weight ω are condensed into one value, with the

weight doubling and one value being removed from the memory. We show as an example

the fourth step in a simulation when η = 3 (Fig. 3.4.2E). As this process iterates in time,

one has a condensed list of only the time points that will be needed for the rest of the

simulation in the list. For example, Fig. 3.4.2F shows the transition to the 17th step of a

simulation.

3.5 A Smart Adaptive Time Step Memory Algorithm

Regular diffusion relies on the assumption of a Markovian process that is not

necessarily present in natural systems. One approach to modeling these non-Markovian

processes is using the fractional diffusion equation. Mathematically such methods have

been around for decades but it is relatively recently that they have been applied to the

natural sciences. Computationally efficient methods for numerically evaluating these

equations are a necessity if fractional calculus models are to be applied to modeling real

world physical and biological processes. It should be noted that while in this work the

simulations were done in the subdiffusive regime for a simple point source, the methods

we derive here are directly applicable to more complex sources or superdiffusion (γ> 1).

However, complex fast-evolving past histories in the form of a forcing function ( f (u))

or oscillations generated in a superdiffusion regime will result in much larger errors

for both the short and adaptive memory methods. In the case of the adaptive memory

method introduced in this chapter, this is due to its ‘open-loop’-like algorithm that

blindly increases the spacing between points in the summation as the calculation goes

further back in time and which does not take into account the speed of evolution of the

equation. Adaptive time approaches for regular differential equations often make the

integration step size a function of the derivative, i.e., more closely spaced time steps are
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Figure 3.4.2: Overview of the use of linked list data structures for the algorithmic numerical
implementation of adaptive memory time step as a power law scheme. See the text for details.



44

used when the function is oscillating quickly and cannot be averaged without loss of

accuracy, and widely spaced time steps are used where the function is smooth. In the

current implementation we have assumed that the past history function ψ(γ,m)δn−m
i, j is

smooth. In this last section we extend the original implementation to develop a ‘smart’

‘closed-loop’-like algorithm where the step size of the backwards summation is dependent

on the derivative of the past history function, i.e., a form of feedback. This optimizes the

computational speed of the simulation while reducing the error due to the averaging of

time points in the backwards summation, ultimately resulting in low errors for both high

frequency forcing functions in the subdiffusion regime and for oscillations intrinsic to

the superdiffusion regime.

3.5.1 Approximating the Discrete Grünwald-Letnikov Series as a

Continuous Time Integral

Our analytical approach for smart adaptive memory makes use of the continuous

Grünwald-Letnikov integral. In this form, we can then define a minimum threshold error

function based on the derivative that ensures that no period in the history of the system is

misrepresented up to the defined error.

Recalling equation 3.2.29, the discretized form of the fractional diffusion equation,

the summation term can be defined as a Riemann sum, which in the limit as ∆t → 0

approaches a continuous time integral. The benefits of an integral formulation is that

the backwards integration would be separate from a defined time grid for the series, and

higher order methods for integrating, such as Simpson’s rule, could be used. This would

be impossible in discrete time since it is necessary to project and interpolate between

points on the grid.

Defining a Riemann sum S over an interval x1 to xn,
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S =
n

∑
i=0

g(yi)(xi− xi−1) (3.5.1)

there is a correspondence between the discrete summation and the integral

un+1
j,l −un

∆t
= ∆

γ−1
t

t/τ

∑
m=0

ψ(γ,m) f (un−m).

such that,

g(yi) = ψ(γ,m) f (un−m)

i = m

n = t/τ

xi = m = 0...n

where the width of each segment is 1. As ∆t → 0, this sum gets closer and closer to, and

can be approximated by, the continuous time integral

∫ t

τ=0
ψ(γ,τ/∆t) f (u(t− τ)dτ (3.5.2)

which allows the discretized version to be rewritten in continuous form as

un+1
j,l −un

∆t
= ∆

γ−1
t

∫ t

τ=0
ψ(γ,τ/∆t) f (u(t− τ))dτ (3.5.3)

The function f (u(t− τ)) can be interpolated from the previously calculated values of

u. The original definition of ψ(γ,m) is only defined for m ∈ N0, and so needs to extend

into the continuous domain. With an analytical continuous function representing ψ, one

is then free to rediscretize the continuous integral in the most optimal way to solve the

problem efficiently.
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3.5.2 Extension of ψ(γ,m) to the Positive Real Domain

We are interested in a function Ψ(γ,r) that is an extension of ψ(γ,m) into the

positive real domain and is defined such that for all r ∈ N0, ψ(γ,r) = ψ(γ,m). We begin

with a basic linear interpolation of ψ(γ,m) over non-integer space, and the result is shown

in Fig. 3.5.1A for various values of γ. While a linear interpolation provides a reasonable

approximation of ψ, it is not a smooth function and it is a first order approximation that

obviously does not work well for areas of ψ that have a high second derivative (e.g.,

r� 1, for γ < 1). Since we don’t have the ability to increase the number of points we

are basing our interpolation on, we consider other options to obtain a more accurate and

smoother approximation.

Next, we consider simply extending the original definition of ψ(γ,m) and expand-

ing it to all points r by using the gamma function to re-express the factorial. With r

extending to non-integer space in the positive real domain, and with the (−1)r term, we

get an oscillating complex function. A plot of the real part of the function,

Ψ(γ,r) = Real
{

(−1)rΓ(2− γ)

Γ(r+1)Γ(2− γ− r)

}
, (3.5.4)

shows that this method results in a poor approximation of ψ due to the oscillatory behavior

(Fig. 3.5.1B.)

Another possibility for deriving a continuous function Ψ is to consider a ratio-

nal polynomial function. One can rewrite the recursive series ψ(γ,m) as a truncated

approximation using the relation from equation 3.2.14:

ψ(γ,m) = −ψ(γ,m−1)
2− γ−m

m

ψ(γ,0) = 1
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r
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Ψ
(γ
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r
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Ψ
(γ
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Figure 3.5.1: Computing a continuous version of ψ(γ,m) for various values of γ. In all
subplots, γ = (.85, .90..., 1.10, 1.15) from the bottom trace to the top. Exact function ψ is denoted
by discrete points. A) Ψ(γ,r) as a linear interpolation of the exact ψ(γ,m). B) Extending the
definitions of ψ(γ,m) to all r in the positive real domain.
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This can be written in terms of a finite product as

ψ(γ,m) =
(−1)mΓ(2− γ)

m!Γ(2− γ−m)
= · · · (3.5.5)

−ψ(γ,m−1)
2− γ−m

m
=

m

∏
n=1

[
γ+n−2

n

]
=

m

∏
n=1

[
1+

γ−2
n

]

Then, using a transform to show that an infinite rational function will intersect all these

points, define a rational function so that

Ψ(γ,r) = Rα,β =
Pα

Qβ

(3.5.6)

where

Rα,β =
p0 + p1r+ p2r2...pαrα

q0 +q1r+q2r2...qβrβ
. (3.5.7)

As (α,β)→ ∞, Ψ(γ,r) will approach ψ(γ,m) for all r ∈ N0.

An infinite rational expression, however,would be too costly to compute. One can

truncate the expression however, and get a closed-form expression with a very close fit

that approaches the analytical recursive ψ(γ,m). As m→ ∞, ψ→ 0, which implies that

β> α for this truncation.

Given the number of coefficients p0, ..., pα,q0, ...,qβ and flexibility in choosing

α and β, there are multiple possible solutions to equation 3.5.7. But for all cases we

consider the basic set of constraints given by the system of equations:
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ψ(γ,0) = Ψ(γ,0)

ψ(γ,1) = Ψ(γ,1)

ψ(γ,2) = Ψ(γ,2)

. . .

ψ(γ,M) = Ψ(γ,M) (3.5.8)

where M is an integer.

The values of α and β are also important considerations, since higher order

polynomials will yield a more accurate approximation. Although the resulting function

Ψ will increase in complexity along with accuracy, a powerful advantage of a ψ→Ψ

transform that uses a finite rational polynomial function is that we will obtain a continuous

version of the recursive function ψ, that is a closed-form expression.

No matter the exact method or transform used to obtain the new function Ψ(γ,r),

once derived, we can then directly insert it into the numerical implementation. We

can drop all points in the past history function (Ψ(γ,m) f (uk−m)) in the regions where

the second derivative is below a certain threshold (i.e., where the function is slowly

changing), and integrate the function on the resultant mesh using equation 3.5.3, with the

substitution of the continuous Ψ(γ,r), with r = τ/∆t :

un+1
j,l −un

∆t
= ∆

γ−1
t

∫ t

τ=0
Ψ(γ,τ/∆t) f (u(t− τ))dτ (3.5.9)

As discussed before, this smart adaptive step extension to the original algorithm

will allow us to minimize errors by using smaller integration step sizes when the past

history function is quickly changing due to a fast-evolving external forcing function to the
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system, or oscillating behavior integral to the dynamics of the system itself. In addition,

this approach will be able to take advantage of the large body of existing literature and

numerical methods solutions packages for solving continuous equations.
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Chapter 4

Stability and Complexity Analyses of

Finite Difference Algorithms for the

Time-fractional Diffusion Equation

4.1 Introduction

As we have established in Chapter 2, the time-fractional diffusion equation is an

FDE that represents the underlying physical mechanism of anomalous diffusion. In the

same way that the classical diffusion equation can be derived from statistical analysis of

particle interactions, one can also show how the micromolecular behavior of particles

can, under a different set of fundamental statistical assumptions, be represented on a

macro scale by the fractional diffusion equation of the form:

∂γu(~x, t)
∂tγ

= α
∂2u(~x, t)

∂x2 +β
∂2u(~x, t)

∂y2 (4.1.1)

51
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where γ< 1 denotes the subdiffusion regime, γ = 1 denotes classical Gaussian diffusion,

γ> 1 denotes the superdiffusion regime, and α and β represent the diffusion coefficients

in the x and y directions, respectively (in spatial unit2

time unitγ ).

Finding tractable analytical solutions to FDEs such as Eq. 4.1.1 is often much

more involved than solving for the solutions of integer order differential equations, and

in many cases it is not possible to frame solutions in a closed form expression that can

be easily simulated or visually represented. Therefore the development of numerical

methods is vital; over the last decade there have been numerous numerical algorithms

developed for FDEs like the time-fractional diffusion equation, and there is often a

tradeoff between calculation speed and efficiency, complexity, stability, and accuracy.

In Chapter 2 we walk through the discretization of Eq. 4.1.1 into the full 2D fractional

FTCS (Forward Time Central Space) equation, making use of the Grünwald-Letnikov

definition of the fractional derivative, which allows us to use a discrete summation in

our numerical algorithm. In Chapter 3, we also derive an adaptive time step algorithm

which builds on the foundation of the full two-dimensional fractional FTCS equation but

improves calculation speed and efficiency, while maintaining order of accuracy. However,

both the FTCS equation and adaptive algorithms are explicit methods with a limited

stability regime. Here we fully explore and characterize the stability of these two finite

difference schemes in order to easily obtain bounds on important parameters like time

step and spatial discretization and grid size; selecting these parameters appropriately is

crucial for obtaining accurate simulations.

There are numerous approaches to analyzing the stability of finite difference

schemes, including modified wavenumber analysis, matrix eigenvalue analysis, and other

more mathematically complex methods derived from stability definitions involving matrix

norms. Several methods, including matrix analysis, are widely applicable but sometimes

impossible to approach analytically or without the aid of iterative procedures. However,
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since the numerical algorithms in question are both fully discretized in space and time,

and linear with constant coefficients (in their homogenous versions), as we will see in the

next section, an appropriate choice is a von Neumann stability analysis. We assume the

general solution at an arbitrary location and time step, is a linear combination of special

solutions that are represented by a function that is separable in its temporal and spatial

variables. We find that our stability analysis and expressions of parameter bounds agree

very well with our results, where we simulate several examples with various parameter

combinations.

In addition to stability analysis, a complexity analysis is another important metric

used to characterize the efficiency of numerical algorithms, as measured by execution

time of the algorithm as a function of some input variable. In the case of the algorithms

described in this paper, we might be interested in how the execution time might vary

with Nx, Ny(grid size of the simulation in the x and y directions, respectfully), or N,

the number of timesteps. The relationship between execution time and input variable is

usually given in Big-O notation using a worst case scenario, or average case scenario

which is often a better reflection of the average behavior of the algorithm run time.

In Section 4.3, we explore the time complexity of the same two algorithms for which

we complete the stability analysis, and in addition, analyze an alternate version of the

adaptive timestep algorithm that involves a linked list implementation (introduced in

Chapter 3) that yields better algorithmic efficiency. For mathematical simplicity we

analyze our algorithms according to worst case scenarios and interpret the results as a

proof of bounding behavior - the actual run time of the algorithms may be more efficient,

but never less efficient. Section 4.3 shows simulated data that verifies our theoretical

complexity analyses.
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4.2 Stability Analysis of the Two-dimensional Fractional

FTCS Discretization

4.2.1 Full Implementation

We begin by considering the circumstances under which the 2D fractional FTCS

full finite difference discretized equation is stable, and consider the advantages and

disadvantages of several different analytical approaches. We begin by restating the FTCS

discretized equation:

un+1
j,l −un

j,l = ∆
γ

t

n

∑
m=0

ψ(γ,m)

(
α

∆x2 δxn−m
j,l +

β

∆y2 δyn−m
j,l

)
(4.2.1)

δxn
j,l = un

j−1,l−un
j,l +un

j+1,l (4.2.2)

δyn
j,l = un

j,l−1−2un
j,l +un

j,l+1 (4.2.3)

where ∆t is the time step, and ∆x and ∆y are spatial grid sizes. ψ(γ,m), which we refer to

as a ‘memory function’, represents a binomial term (−1)m




1− γ

m


, and results from

the use of the Grünwald-Letnikov definition of the fractional derivative, as discussed in

Chapter 2 and in [40].

Matrix Stability Analysis

Matrix stability analysis is a method of analysis that can be applied to any problem

without particular assumptions or constraints on coefficients, and includes the effects of

boundary conditions [37]. We would like to reformulate Eq. 4.2.1 into a matrix equation

in the form W n+1 = LW n + f n where the W matrices holds u values at times n+1 and n,

the L matrix represents a difference operator, and f n is a constant vector that takes into

account boundary conditions at time step n (here we assume boundary conditions are
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known for all timesteps).

For example, for n = 0, we have:

u1
j,l = u0

j,l +∆
γ

t ψ(γ,0)
(

α

∆x2 δx0
j,l +

β

∆y2 δy0
j,l

)

Then the matrix equation is formulated as follows. Suppose our grid of W values varies

from

un
j,l | j = 0,1,2, ...,Nx; l = 0,1,2, ...,Ny

and

un
j,l | j = 0,Nx or l = 0,Ny

denotes the boundaries.
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We order grid values u into a vector such that W at some time step n is

W n =




u0,0

u0,1

u0,2

...

u0,Ny

u1,0

u1,1

u1,2

...

u1,Ny

...

uNx,0

uNx,1

uNx,2

...

uNx,Ny




n

(4.2.4)

Our matrix equation now becomes W 1 =L0W 0+ f 0 where the matrix L is an NxNy by NxNy
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matrix that consists of block matrices T (a tridiagonal matrix) and R (a diagonal matrix):

L0 =




T0 R0 0 · · · 0

R0 T0
. . . . . .

...

0 R0
. . . R0 0

...
. . . . . . T0 R0

0 · · · 0 R0 T0




T0 =




1−2rxψ(γ,0)−2ryψ(γ,0) ryψ(γ,0) 0 · · · 0

ryψ(γ,0)
. . . . . .

...

0
. . . . . . 0

...
. . . ryψ(γ,0)

0 · · · 0 ryψ(γ,0) 1−2rxψ(γ,0)−2ryψ(γ,0)




R0 =




rxψ(γ,0) 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 rxψ(γ,0)




where rx =
α∆

γ

t
∆x2 and ry =

β∆
γ

t
∆y2 .

For n = 1 we now must take into account multiple past time points, and our matrix
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equation becomes

W 2 = L1W 0 +L0W 1 + f 01

L1 =




T1 R1 0 · · · 0

R1 T1
. . . . . .

...

0 R1
. . . R1 0

...
. . . . . . T1 R1

0 · · · 0 R1 T1




,

T1 =




1−2rxψ(γ,1)−2ryψ(γ,1) ryψ(γ,1) 0 · · · 0

ryψ(γ,1)
. . . . . .

...

0
. . . . . . 0

...
. . . ryψ(γ,1)

0 · · · 0 ryψ(γ,1) 1−2rxψ(γ,1)−2ryψ(γ,1)




R1 =




rxψ(γ,1) 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 rxψ(γ,1)




and f 01 takes into account the boundary conditions from timesteps 0 and 1. We can

repurpose this multistep matrix equation into a single step equation:

V 2 = LV 1 + f 01 with

V 2 =




W 2

W 1


 , V 1 =




W 1

W 0


 , L =




L0 L1

I 0




and I is simply the identity matrix. For n = 2 the complexity of the matrices involved
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continues to grow with

V 3 = LV 2 + f 012



W 3

W 2

W 1




=




L0 L1 L2

I 0 0

0 I 0







W 2

W 1

W 0



+ f 012

where L0,L1,L2... are block matrices which consist of tridiagonal and diagonal sub-

matrices, as demonstrated in previous steps. In general, we have

V n+1 = LV n + f 0...n (4.2.5)

with 


W n+1

...

...

...

W 1




=




L0 L1 · · · Ln−1 Ln

I 0 · · · 0

0 . . . . . . ...
... . . . . . . . . .

0 · · · 0 I 0







W n

...

...

...

W 0




+ f 0...n (4.2.6)

The goal with matrix stability analysis is to show that for a matrix problem Eq.

4.2.6, the spectral radius ρ(L) of the difference matrix L, (i.e., the modulus of its largest

eigenvalue) is bounded, usually by 1 [11]. This involves finding the maximum eigenvalue

for L, for all timesteps n, and proving that its modulus is ≤ 1. The matrix L is not a

straightforward or simple matrix and is not in the form of a special matrix where there are

known analytical algorithms to find the eigenvalues. This makes the process of finding

the eigenvalues very complicated and involved and we consider this to be outside the

scope of this thesis, and conclude that despite the difficulty of finding the spectral radius,

a major advantage of this method would be that it could be applied to any set of boundary
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conditions, or schemes with non-constant coefficients.

Von Neumann Analysis

As we saw in the previous section, matrix stability analysis for complex schemes

with no simplifying assumptions, requires methods for finding eigenvalues, possibly

including iterative numerical schemes. However, our finite difference scheme in Eq. 4.2.1

has the advantage of being linear with constant coefficients (i.e. α,β don’t depend on t or

~x) and with an additional simplifying assumption of periodic boundary conditions, we

can make use of von Neumann stability analysis and Fourier series expansion. While

von Neumann analysis doesn’t take into account boundary conditions in the same way

matrix stability analysis does, we make the reasonable assumption that stability problems

are mostly affected by discretization of differential equations inside the domain, and

minimally affected by boundary conditions [37]. In the majority of modeling and simula-

tion problems in engineering, we consider this to be a valid and applicable simplifying

assumption.

Given our linear scheme with constant coefficient and periodic boundary condi-

tions, we assume the solution of scheme 4.2.1 at a particular location and time point, can

be expressed as a discrete finite complex Fourier series expansion:

un
j,l =

Ny−1

∑
v=0

Nx−1

∑
u=0

An
uveikux jeikvyl (4.2.7)

where ku =
2πu
M , x j = j∆x, j = 0,1, ...,Nx−1 and kv =

2πv
L , yl = l∆y, l = 0,1, ...,Ny−1.

ku and kv are the spatial wavenumbers in the x and y directions, respectively. The

wavenumbers represent spatial frequency and are related to wavelength by λx =
2π∆x

ku
, λ=

2π∆y
kv

. In the context of Fourier modes and stability analysis, we are interested in sup-

pressing (or as we shall see later in this section, limiting the amplification factor of) the
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high frequency modes (represented by wavelengths on the order of grid sizes ∆x and ∆y

and k values away from 0 and near π) because these modes have a low probability of

corresponding to any real features of the true solution, and usually represent noise arising

from finite precision arithmetic, that is integral to any numerical calculations.

We substitute Eq. 4.2.7 into Eq. 4.2.1, noting that x j+1 = x j + ∆x, x j−1 =

x j−∆x, yl+1 = yl +∆y and yl−1 = yl−∆y. After making use of Euler’s formula and half

angle trigonometric identities, we obtain

0 =
Ny−1

∑
v=0

Nx−1

∑
u=0

eikux jeikvyl
{

An+1
uv −An

uv+

∆
γ

t

(
4α

∆x2 sin2
(

ku∆x
2

)
+

4β

∆y2 sin2
(

kv∆y
2

)) n

∑
m=0

ψ(γ,m)An−m
uv

}
(4.2.8)

Here we apply the principle of orthogonality of complex exponentials, where it is well

known that

N−1

∑
j=0

eiknx je−ikmx j =





N i f n = m

0 otherwise
(4.2.9)

where kn =
2πn
L , km = 2πm

L , x j =
jL
N = j∆x.

Let the value in brackets in Eq. 4.2.8 be denoted as Kn
uv

Ny−1

∑
v=0

Nx−1

∑
u=0

eikux jeikvyl Kn
uv = 0 (4.2.10)

We can multiply Eq. 4.2.10 by ∑
Nx−1
j=0 e−ikgx j and reorder the summations to get

Ny−1

∑
v=0

Nx−1

∑
u=0

eikvyl Kn
uv

Nx−1

∑
j=0

eikux je−ikgx j = 0 (4.2.11)

Using the principle of orthogonality as stated in Eq. 4.2.9 we can simplify this expression
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to
Ny−1

∑
v=0

Nx−1

∑
u=0

eikvyl Kn
gvNx = 0 (4.2.12)

Now we repeat the process by multiplying Eq. 4.2.12 by ∑
Ny−1
l=0 e−ikhyl and applying Eq.

4.2.9 once again to get

Kn
ghNxNy = 0

Since Nx and Ny are nonzero, we conclude that Kn
gh must vanish. Since g and h are

dummy variables that are defined by the same ranges as u and v, Kn
uv must also vanish for

all values u,v:

An+1
uv −An

uv +∆
γ

t

(
4α

∆x2 sin2
(

ku∆x
2

)
+

4β

∆y2 sin2
(

kv∆y
2

)) n

∑
m=0

ψ(γ,m)An−m
uv = 0

If we make the assumption that Auv is independent of time step, we can write

An+1
uv = σuvAn

uv (4.2.13)

where σuv is known as the amplification factor that gives the growth or decay for Fourier

mode (u,v). We require |σuv| ≤ 1 for all Fourier modes, or else some modes will be

amplified at every time step and dominate the solution. We divide Eq. 4.2.13 by An
uv and

rearrange to get

σuv = 1−∆
γ

t

(
4α

∆x2 sin2
(

ku∆x
2

)
+

4β

∆y2 sin2
(

kv∆y
2

)) n

∑
m=0

ψ(γ,m)σ
−m
uv

We require |σuv| ≤ 1 for all values of σuv, which are the roots of this polynomial. We

can also see that the difficulty of solving for the roots increases as time progresses and n

increases. Past a few timesteps, solving for the roots of the polynomial requires iterative

matrix procedures and does not result in a tractable analytical solution from which we
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can find the bounds on the relationship between α,∆t,∆x,and∆y. Instead of solving for

roots, we will approach the problem by considering ‘worst-case’ scenarios to simplify

our expression, and proceed in a similar manner as Yuste and Acedo’s treatment of the

analogous one-dimensional case [57]. Consider the bound on the parameters resulting

from the case σ = 1:

0≥ ∆
γ

t

(
4α

∆x2 sin2
(

ku∆x
2

)
+

4β

∆y2 sin2
(

kv∆y
2

)) n

∑
m=0

ψ(γ,m) (4.2.14)

The summation term and parameters are always greater than 0, and therefore Eq. 4.2.14

can only hold true if both wavenumbers are 0. Therefore, we consider the other ‘worst-

case’ scenario, where σ =−1:

2 = ∆
γ

t

(
4α

∆x2 sin2
(

ku∆x
2

)
+

4β

∆y2 sin2
(

kv∆y
2

)) n

∑
m=0

ψ(γ,m)(−1)m (4.2.15)

From (4.2.15) we can infer the inequality bounding the parameters as

∆
γ

t

(
4α

∆x2 sin2
(

ku∆x
2

)
+

4β

∆y2 sin2
(

kv∆y
2

))
≤ 2

∑
n
m=0 ψ(γ,m)(−1)m = B1 (γ,n)

(4.2.16)

We can see that the bounded value is dependent on the time step n but the dependence is

very weak. Yuste and Acedo demonstrate that because in the limit n→∞, the summation

term in Eq. 4.2.16 involving the memory function, is an alternating converging series; as

n increases, B1 oscillates but clearly converges to an equilibrium value [57]. Therefore we

can approximate ∑
n
m=0 ψ(γ,m)(−1)m by taking the limit as n→∞. We originally derived

the 2D FTCS full finite difference equation and adaptive memory algorithms by using

the Grünwald-Letnikov definition to make a first-order approximation of the Riemann-

Liouville fractional derivative operator [40]. And in the first-order approximation, the
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memory function ψ(γ,m) is defined as (−1)m




1− γ

m


. Podlubny ([40]) shows that

this expression can also be defined as the coefficients of the power series for the function

(1− z)1−γ :

(1− z)1−γ =
∞

∑
m=0

(−1)m




1− γ

m


zm =

∞

∑
m=0

ψ(γ,m)zm (4.2.17)

Applying this identity to B1 (γ,n) and considering the limit n→ ∞, we can derive

B2, f ull (γ) = 2γ (4.2.18)

As Yuste and Acedo describe in their considerations of stability of the one-

dimensional case, we could consider the second-order approximation of the Riemann-

Liouville definition by making use of a different set coefficients to define our memory

function. This option would result in a slightly lower bound on our parameters, but

for the purposes of estimating appropriate parameter values, we consider the first-order

approximation to be sufficient.

From (4.2.16) we can see that we have three degrees of freedom in parameters

that we are free to choose for our simulations (∆t , ∆x2, ∆y2) . To determine the most

conservative restraints on those degrees of freedom (minimum values for grid size

and maximum value for time step), we assume the maximum possible value for the

trigonometric terms, sin2
(

ku∆x
2

)
= sin2

(
kv∆y

2

)
= 1. The resulting inequality determining

parameter bounds is

∆
γ

t

(
4α

∆x2 +
4β

∆y2

)
≤ B2, f ull (γ)

If we assume a simple case with a square grid (∆x = ∆y = ∆) and equal diffusion

coefficients in both spatial directions (α = β), the expression becomes
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r =
α∆tγ

∆2 ≤
B2, f ull(γ)

8
= 2γ−3 = B f ull (γ) (4.2.19)

As a final check, when we set γ = 1 (classical diffusion), we recover the well

known traditional bound r ≤ 1
4 that results from the ordinary 2D diffusion equation using

the FTCS discretization.

Error Propagation

Alternatively we can interpret stability in terms of error propagation and find

the resulting bounds expression to be the same as in Section 2.1.2. Let un
j,l be the exact

solution of Eq. 4.2.1 (assuming no roundoff error) and Un
j,l be the approximate solution

due to roundoff error from floating point or finite precision arithmetic. Let the error at an

arbitrary j, l,n be defined as

ε
n
j,l = un

j,l−Un
j,l

If we substitute this into Eq. 4.2.1 we find that the equation for εn
j,l is

ε
n+1
j,l − ε

n
j,l = ∆

γ

t

n

∑
m=0

ψ(γ,m)
(

α

∆x2

(
ε

n−m
j+1,l−2ε

n−m
j,l + ε

n−m
j−1,l

)
+

β

∆y2

(
ε

n−m
j,l+1−2ε

n−m
j,l + ε

n−m
j,l−1

))
(4.2.20)

We can take the same approach as in Section 2.1.2 and apply a Fourier expansion to

express the error at a particular time and location as

ε
n
j,l =

Ny−1

∑
v=0

Nx−1

∑
u=0

ζ
n
uveikux jeikvyl
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Here we interpret stability of an algorithm as ensuring that the overall error due to

roundoff errors integral to any numerical calculation, does not propagate in time:

∣∣∣εn+1
j,l

∣∣∣
∣∣∣εn

j,l

∣∣∣
=

∣∣∣ζn+1
j,l

∣∣∣
∣∣∣ζn

j,l

∣∣∣
= |G| ≤ 1

where G is the amplification factor. The rest of the mathematical derivation progresses in

much the same manner as in Section 2.1.2 and results in the same parameter boundaries.

4.2.2 Adaptive Memory Algorithm

As discussed in Chapter 3, while the full implementation represented by Eq.

4.2.1 is an accurate finite difference approximation to the solution of Eq. 4.1.1, using

the Grünwald-Letnikov definition of the fractional derivative involves a summation that

takes into account the entire past history of the simulation. As the simulation progresses,

calculating the summation term becomes increasingly cumbersome, time consuming, and

memory intensive. Therefore we have developed an adaptive memory method (introduced

in Chapter 3) that improves on computational efficiency while maintaining an order of

accuracy comparable to the original full implementation. This is achieved by recognizing

that the further back a time point in the history of the simulation, the less it contributes to

the calculation of the solution at the next time point. Therefore we sample the history of

the system more frequently for recent time points (which contribute more to the solution

at the next time step) and less often for time points further back in the history of the

system, weighted by an appropriate amount to compensate for less frequent sampling;

this approach significantly reduces actual computational time. For smooth functions, the

convolution of ψ(γ,m)and the function in question is sufficiently slowly changing that

the weighting of the sampled time points compensates for the less frequent sampling

and maintains overall accuracy. The motivation and derivation of this algorithm was
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discussed in further detail in Chapter 3. Here we reproduce a modified version of the

algorithm and recognize that analyzing stability requires only a few modifications from

the process described in the last section:

un+1
j,l −un

j,l

∆
γ

t
=

a

∑
m=0

R1︷ ︸︸ ︷
ψ(γ,m)

(
α

∆x2 δxn−m
j,l +

β

∆y2 δyn−m
j,l

)
(4.2.21)

+
smax

∑
s=2





ηmax(s,n)

∑
η=1

R2︷ ︸︸ ︷
(2s−1)ψ(γ,M (s,η))

(
α

∆x2 δxn−M
j,l +

β

∆y2 δyn−M
j,l

)

+
min(as,n)

∑
p=Mmax+smax

R3︷ ︸︸ ︷
ψ(γ, p)

(
α

∆x2 δxn−p
j,l +

β

∆y2 δyn−p
j,l

)




M (s,η) = as−1 +(2s−1)η− s+1

ηmax (s,n) = min
(⌊

as−as−1

2s−1

⌋
,

⌊
n−as−1

2s−1

⌋)

Mmax = M (smax,ηmax)

δxn
j,l = un

j+1,l−2un
j,l +un

j−1,l

δyn
j,l = un

j,l−1−2un
j,l +un

j,l+1 (4.2.22)

where a is the base interval, b c denotes the floor function, and smax is determined by the

current time step n such that asmax−1 +1≤ n≤ asmax . The terms R1,R2,R3 are referred

to in more detail during the complexity analysis in later sections.

There are various ways to interpret how a is translated into a numerical algorithm,

depending on whether one assumes that it is with respect to m (mathematical series

beginning at 0), time step n (which may need to be adjusted to begin from index 0 or 1,

depending on the programming language), or time t. For example, if one assumes a is

a time, we can define ae f f ective = a/dt where a is converted to a time step. For dt < 1
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this has the same effect as increasing a and interpreting it with respect to time step n.

The larger the value of a, the more accurate the scheme presented in Eq. 4.2.21, when

compared against the full algorithm in Eq. 4.2.1. Fig. 4.2.1 shows the error plots (where

the adaptive step algorithm in Eq. 4.2.21 is compared against the reference case Eq. 4.2.1,

for the cases a = 4 and a = 20.

As with the full implementation, we apply a von Neumann stability analysis,

assume the solution is separable in the form Eq. 4.2.7, substitute into Eq. 4.2.21 and

simplify in the same fashion as described in Section 4.2.1 to yield

0 =
Ny−1

∑
v=0

Nx−1

∑
u=0

eikux jeikvyl
(
An+1

uv −An
uv

+∆
γ

t

(
4α

∆x2 sin2
(

ku∆x
2

)
+

4β

∆y2 sin2
(

kv∆y
2

))[ n

∑
m=0

ψ(γ,m)An−m
uv

+
smax

∑
s=2

{
ηmax(s,n)

∑
η=1

(2s−1)ψ(γ,M (s,η))An−M
uv +

min(as,n)

∑
p=Mmax+smax

ψ(γ, p)An−p
uv

}])

As before, we apply the principles of orthogonality of the complex exponentials,

and once again assume An+1
uv = σuvAn

uv to get the following expression:

σuv = 1−∆
γ

t

(
4α

∆x2 sin2
(

k1∆x
2

)
+

4β

∆y2 sin2
(

k2∆y
2

))[ a

∑
m=0

ψ(γ,m)σ−m
uv

+
smax

∑
s=2

{
ηmax(s,n)

∑
η=1

(2s−1)ψ(γ,M (s,η))σ
−M
uv

+
min(as,n)

∑
p=Mmax+smax

ψ(γ, p)σ−p
uv

}]
(4.2.23)

Again, for stability we require that | σuv |< 1 for all values of σ. If we assume the

“worst-case” scenario (σ =−1), we can infer the following inequality to provide bounds
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A)

B)

Figure 4.2.1: Effect of a on Accuracy. A) With adaptive step parameter a = 4, defined with
respect to time step, we see the error (compared against the full 2D discretization defined in
Eq. 4.2.1) grows significantly. B) For a = 20, the error remains consistently below 0.7%,
even as long as 200 s into the simulation. The tradeoff for this increase in accuracy is a
longer computation time. For both cases the following parameters are used: γ = 0.6, α = β =

50 units2

sγ , dt = 0.1s, ∆x = ∆y = 10 units, Nx, = Ny = 20.
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on the time step and spatial steps

B1(γ,n,a) =
2
Ξ
≥ ∆

γ

t

(
4α

∆x2 sin2
(

ku∆x
2

)
+

4β

∆y2 sin2
(

kv∆y
2

))
(4.2.24)

Ξ =
a

∑
m=0

ψ(γ,m)(−1)m (4.2.25)

+
smax

∑
s=2

{
ηmax(s,n)

∑
η=1

(2s−1)ψ(γ,M)(−1)M

+
min(as,n)

∑
p=Mmax+smax

ψ(γ, p)(−1)p

}

If we assume a simple case with a square grid and equal diffusion coefficients, the most

conservative restraint occurs when the trigonometric terms are equal to 1 and we get

r =
α∆tγ

∆2 ≤
B1 (γ,n,a)

8
=

1
4Ξ

= Badap (γ,n,a) (4.2.26)

Unlike the full implementation in Section 4.2.1 where we could use the convergent

nature of the series to approximate the bound Badap with an analytical expression, the

adaptive memory algorithm involves the parameter a which makes it difficult to take a

limit approach to the expression Ξ. Fig. 4.2.2A shows the value of Ξ for a simulation

with parameters γ = 0.6, and a varying from a = 4 to a = 11. We can see that for each

value of s, the interval oscillates around some equilibrium value and if extended over

infinite timesteps, would converge to said value. As would be expected, we also observe

that as a increases, the value of Ξ approaches the the value of the summation in (4.2.16)

in the analogous full 2D case.

From Ξ in Eq. 4.2.25, we can take the sum over η for a given value of s

ηmax(s,n)

∑
η=1

(2s−1)ψ(γ,M (s,η))(−1)M(s,η) (4.2.27)
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Table 4.1: Error values between Ξ and Ξapprox for various values of a.

a 4 5 6 7 8 9 10 11
|%Error| 2.043 1.845 1.717 1.424 1.293 1.097 1.010 0.878

and by virtue of the nature of the memory function ψ,

∣∣ψ(γ,Mη+1)
∣∣≤
∣∣ψ(γ,Mη)

∣∣

which makes Eq. 4.2.27 an alternating series that, in the limit ηmax → ∞, converges.

However, η never approaches infinity in any of these sums, and depending on the parity

of a and whether or not M indices repeat parity or switch parity between the end of one

interval and the start of another, the next interval can see the sum Ξ oscillating around a

different equilibrium value (see discontinuities in Fig.4.2.2B,C). In many cases it seems

that as n→ ∞ and the amplitude of oscillations becomes smaller and smaller for each

subsequent interval, we do approach a limit or at least a narrow range of values. However,

all of these complications make it difficult to further simplify the expression for Ξ as an

analytical expression.

On the other hand we do note that because the modulus of the memory function

|ψ| decreases quickly as n increases, especially for the first few terms, it is the value of

the first summation term in Eq. 4.2.25 that largely determines the final value of Ξ (and in

turn Badap). Let Ξapprox = ∑
a
m=0 ψ(γ,m)(−1)m. We see from Table 4.1 that for various

values of a, the error between Ξ (after it approaches a clear equilibrium, which occurs

at least by n ∼ 200 steps in most cases) and Ξapprox is within 2%, and decreases as a

increases, as expected. Since we are unable to extract a simple analytical expression for

Ξ, we will instead use Ξapprox which, while numerically based, is accurate, simple, and

quick to calculate for a reasonable range of a value.

We will now show with numerical examples how Badap varies with γ,n,a, and
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A)

B) C)

Figure 4.2.2: A)For a range of values for a, we plot Ξ as a function of time step n. B,C) Ξ for
a = 5, a = 6. There are several obvious discontinuities in the pattern of the oscillations, which
occur at the breaks between consecutive s intervals.
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Table 4.2: B(γ,n) f ull and B(γ,n,a)adap values as parameters a,n are varied.

γ = 0.6 n
100 1000 10000 100000

4 0.196072 0.195852 0.195848 0.195848
a 7 0.185494 0.185568 0.185584 0.185584

15 0.187897 0.187877 0.187881 0.187880
B1 (γ,n) 0.189495 0.189466 0.189465 0.189465
B(γ) f ull 0.189465

Table 4.3: B f ull (γ,n) and Badap (γ,n,a)values as parameters a,n are varied.

γ = 1.2 n
100 1000 10000 100000

4 0.267001 0.271656 0.271833 0.272202
a 7 0.308339 0.309281 0.306723 0.306786

15 0.300969 0.300604 0.300355 0.300456
B1 (γ,n) 0.286279 0.287032 0.287152 0.287171
B(γ) f ull 0.287175

compare to B f ull , derived in Section 2.1.2. Tables 4.2 and 4.3 show that the values for

the B functions change minutely as n→ ∞. It is also clear that for Badap (γ,n,a), the

dependence on a is not very strong, but still noticeable. And as expected, the bounds

depend significantly on the order of the fractional operator, γ. Still, for both the full

implementation and the adaptive memory algorithms, it is easy to precompute B based on

γ (and a in the adaptive case) and then decide how to define parameters ∆t,∆x, and ∆y as

needed to maintain stability during the simulation. Since the stability dependence on n is

weak in all cases, the length of simulation has little influence on the parameters. It is also

clear from the table results that Badap is pretty close to B f ull in many cases, suggesting

that the adaptive memory algorithm significantly saves on computational time and power,

without adverse effect on the stability regime of the parameters.
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4.2.3 Stability Results

Here we will show that our stability analyses agree well with numerical simula-

tions. For all plots in the results section, we are using the adaptive memory algorithm

defined in Eq. 4.2.21 and have set α = 50units2

sγ , ∆x = ∆y = 10 units, and base inter-

val a = 8 (which insures a reasonable level of accuracy with maximum error of the

adaptive memory algorithm remaining under 1% for the duration of the simulation).

Our initial condition is a narrow two-dimensional Gaussian: u(~x,0) = e−x2/2σ2
1e−y2/2σ2

2 ,

σ1 = 5 units, σ2 = 5 units.

We begin by setting γ = 0.6, which puts our simulations in the subdiffusion

regime where the true solution to the fractional diffusion equation is composed of only

decaying modes). With the parameters we have already set, we find that according to

Eq. 4.2.26, r ≤ 0.1929 using Ξ, and r ≤ 0.1905 if we use Ξapprox. Our only degree of

freedom is time step ∆t.

In Fig. 4.2.3A-B, we have chosen ∆t = 0.1s which puts r in the stable regime

and relatively far from the bound. Both the intensity maps and surface plots confirm that

the numerical solution is clearly stable at early and late time points in the simulation, as

there is no oscillatory behavior.

In Fig. 4.2.3C-D, we have chosen ∆t = 0.2s, which puts r in the stable regime,

but close to the boundary. The plots show that there is an oscillatory component that

is evident early in the simulation. However, at a later time in the same simulation, the

oscillatory component has been suppressed and the solution has decayed in time and

space as expected of subdiffusive behavior. It is reasonable that the oscillatory component

was present in the beginning of the simulation since r is close to the boundary between

the stable and unstable regimes. However r is still strictly in the stable regime and this is

verified by the fact that the oscillations do decay with time. Recalling the discussion in

Section 4.2 relating to high frequency Fourier modes, we can see clearly from these plots
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that the oscillations causing instability are indeed on the order of the grid size.

In Fig. 4.2.4A-B, we have chosen ∆t = 0.21s, which puts r in the unstable region,

but close to the boundary between stable and unstable regimes. As expected of the

unstable regime, the numerical solution has oscillatory behavior that persists as the

simulation continues. But because r is close to the boundary with the stable regime, the

oscillations do not increase drastically overwhelm the decaying modes, indicating that

the solution is only mildly unstable.

In Fig. 4.2.4C-D, we have chosen ∆t = 0.3s, which puts r clearly in the unstable

region and further from the boundary. The plots confirm this by showing that the oscil-

latory behavior of the solution grows drastically with time and completely overwhelms

the decaying modes of the true solution, as observed by scale axes, which are orders of

magnitude larger than that of the true solution.

Next, we will consider the superdiffusion cases with γ = 1.2. According to Eq.

4.2.26, for a stable numerical solutions, r ≤ 0.27105 using Ξ, and r ≤ 0.2809 if we

use Ξapprox. In addition, the differential equation is in the superdiffusion regime. It is

less straightforward to characterize this regime because the true solution has oscillatory

components (which is logical because as γ increases towards 2, we approach the classical

wave equation), in addition to decaying modes characteristic of diffusion. However,

we can still observe the difference in behavior between unstable and stable numerical

solutions.

In Fig. 4.2.5A, we have chosen ∆t = 0.4s, which puts r in the stable region.

The plots show a numerical solution with low spatial frequency oscillatory components

(oscillating on a much larger scale than the scale of the grid elements), and the presence of

high frequency components characteristic of noise, is absent. In 4.2.5B, ∆t = .55s, which

puts r still in the stable region but close to the boundary between stable and unstable

regions. The presence of the high frequency noise components is apparent, but even late
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into the simulation, they do not overwhelm the true solution and are clearly bounded,

which verifies stability. Finally, in 4.2.5C-D, we have chosen ∆t = 0.7s so r is clearly in

the unstable regime. The plots show that the high frequency oscillatory behavior of the

solution grows drastically and unbounded with time, which, as noted in Fig. 4.2.4, is a

good indicator of numerical instability.

All our results verify the conclusions made during our stability analysis in Sec-

tions 2.1.2 and 2.2. It’s also clear from Figs. 4.2.3 and 4.2.4 that the boundary between

stable and unstable regimes is quite a sharp one, as changing our time step from ∆t = 0.2s

to ∆t = 0.21s was enough to change our simulations from being stable to unstable.

4.3 Complexity Analysis

In the following sections we analyze the complexity of the full two-dimensional

implementation of the fractional diffusion equation, the adaptive memory algorithm, and

the linked list alternative version defined in Chapter 3.

4.3.1 Full Implementation

We begin with the pseudocode for the full implementation defined in Eq. 4.2.1.

In our pseudocode we generally omit instructions not essential to showing the logical

structure of the algorithm and note that the most important aspect of time complexity

analysis are data structures involving loops. Lines of code that are run a constant number

of times within a loop and are independent of variables like timestep, can be ignored in

the overall function in the final big-O result.

From the pseudocode in Algorithm 1 we can see that for each n, the total approx-

imate number of instructions (ignoring things like constant number of instructions) is
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A)

B)

C)

D)

Figure 4.2.3: Stable Simulations in the Subdiffusion Region. α = 50 units2

sγ , ∆x = ∆y = 10
units, γ = 0.6,left: 2D intensity plots, right: 3D surface plots. A-B) ∆t = 0.1 s, r is in the stable
region and far from the bound, and it is clear that there is no oscillatory component at any point
in the simulation. C-D) ∆t = 0.2s, r in the stable regime, but very close to the boundary. It is
clear during the snapshots, that there is a tiny oscillatory component that appears early in the
simulation (away from the center of the grid), but decays as the simulation progresses, and so
the solution remains bounded.
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A)

B)

C)

Figure 4.2.4: Unstable Simulations in the Subdiffusion Region. α= 50 units2

sγ , ∆x=∆y= 10
units, γ = 0.6, left: 2D intensity plots, right: 3D surface plots. A-B) ∆t = 0.21s, r is in the
unstable region and close to the boundary. The plots reflect an oscillatory component that
appears early in the simulation and is sustained through the duration of the simulation. Even
though the oscillations do not increase, and do not overwhelm the decaying modes of the true
solution, they do not disappear and would remain even as n→ ∞, which is an indication of
instability. C) ∆t = 0.3s, r is in the unstable region, and far from the bounds between the
unstable and stable regions. The plot reflects oscillatory components that not only remain later
in the simulation, if we note the scale axis of both plots, we see that those components have
completely overwhelmed the decaying modes of the solution and increase unbounded as the
simulation progresses. This is a hallmark of strong instability in numerical simulations.
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A) B)

C) D)

Figure 4.2.5:
Stable and Unstable Superdiffusion Simulations. α = 50 units2

sγ , ∆x = ∆y = 10 units, γ = 1.2,
left: 2D intensity plots, right: 3D surface plots. A) ∆t = 0.4s, r is in the stable regime.
Because we are in the superdiffusion regime, the true solution does have oscillatory components
alongside decaying modes. However, the numerical solution is obviously bounded, even later in
the simulation, and there is no sign of high frequency oscillations (visible on the plots C and
D), so the plots seem to verify that the simulation is indeed stable. B) ∆t = 0.55s, r is in the
stable regime. We can clearly see high frequency components, especially contrasted the same
plot at the same time in the simulation, in part A. However, as observed by the scale bar, the
high frequency components don’t overwhelm the decaying modes of the solution and cause it
grow unbounded, so this verifies stability. C-D) ∆t = 0.7s, r is in the unstable regime. It is clear
from the plots that the high frequency oscillatory components is present early in the simulation,
but the decaying modes still dominate the overall solution. However, it’s clear that later in the
simulation the high frequency oscillations continue to grow unbounded in time, which verifies
the unstable nature of the numerical solution.
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NxNyn where n varies from 1 : N . Therefore:

total instructions = NxNy (1+ ...+N)

= NxNy

(
N (N +1)

2

)

⇒ O
(
NxNyN2)

This gives us the growth in execution time as a function of the grid dimension Nx

and Ny, as well as the timestep N. While time grows linearly with the size of each spatial

dimension of the grid we are using, it grows as the square of the number of timesteps in

the simulation, which is not the most efficient result.

Algorithm 1 Full 2D Implementation
1: for n = 1 : N do . N is the total # of timesteps the algorithm will run
2: for j = 1 : Nx do . iterate over all grid points in x direction
3: for l = 1 : Ny do . iterate over all grid points in y direction
4: for m = 0 : 1 : n do
5: Calculate ψ(γ,m)

(
α

∆x2 δxn−m
j,l + β

∆y2 δyn−m
j,l

)

6: end for
7: Calculate un+1

j,l
8: end for
9: end for

10: end for

Here we note that in the one-dimensional case, we can easily vectorize the loop

iterating over grid points, increasing efficiency with regards to grid size. However, the

time complexity still grows as O
(
N2).

4.3.2 Adaptive Memory Algorithm

In Algorithm 2 we provide the pseudocode for the implementation of the adaptive

memory algorithm described in equation Eq. 4.2.21. As before, we omit the instructions

detailing the calculations themselves because counting these instructions involve mul-
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tiplying constants against the number of times the loops are run, and do not affect the

form of the big-O expressions in terms of the input variable of interest. As with the full

implementation, we note that in the one-dimensional analogue, we can vectorize the loop

iterating over spatial gridpoints.

Analysis of the total number of instructions in Part 1 of Algorithm 2 proceeds in

exactly the same way as in Section 4.3.1. The total instruction count is approximately

NxNy (1+2+ ...+a) = NxNy
a(a+1)

2

⇒ O
(
NxNya2)

Analysis of Part 2 of Algorithm 2 is more complicated because of the additional

parameters smax, ηmax, and Mmax. For loop {L1} (lines 21-23), ηmax depends on the

current s interval, but the maximum value it can be is always as−as−1

2s−1 . For loop {1b} (lines

24-26), the loop serves to sample timesteps when the current interval [as−1 : as], is not

evenly divisible by the weight for that interval, (2s−1), and therefore these few timesteps

aren’t taken into account with loop {L2}. The maximum number of times this loop is run

is always ≤ 2s−1. Therefore in the large for loop in Algorithm 2 encompassing lines

13-31, for a given value of n, the number of instructions run is:

NxNy





a+
smax

∑
s=2




as−as−1

2s−1︸ ︷︷ ︸
{1a}

+2s−1︸ ︷︷ ︸
{1b}








(4.3.1)

To simplify this expression further we need to make some assumptions about worst case

scenarios. We can simplify the first term {1a} of the summation in Eq. 4.3.1 using

telescoping series:
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Algorithm 2 Adaptive Memory Algorithm
1: . Part 1
2: for n = 1 : a do
3: for j = 1 : Nx do . iterate over all grid points in x direction
4: for l = 1 : Ny do . iterate over all grid points in y direction
5: for m = 0 : 1 : n do
6: Calculate ψ(γ,m)

(
α

∆x2 δxn−m
j,l + β

∆y2 δyn−m
j,l

)

7: end for
8: At this location, calculate un+1

j,l
9: end for

10: end for
11: end for
12: . Part 2
13: for n = a+1 : N do . N is the total # of timesteps the algorithm will run
14: Determine smax as a function n
15: for j = 1 : Nx do . iterate over all grid points in x direction
16: for l = 1 : Ny do . iterate over all grid points in y direction
17: for m = 0 : 1 : a do . Calculate Sum 1 (base interval)
18: Calculate R1: ψ(γ,m)

(
α

∆x2 δxn−m
j,l + β

∆y2 δyn−m
j,l

)
. R1 from Eq. 4.2.21

19: end for
20: for s = 2 : smax do
21: for η = 1 : ηmax do
22: Calculate R2 in Eq. 4.2.21
23: end for
24: for p = Mmax : min(as,n) do
25: Calculate R3 in Eq. 4.2.21
26: end for
27: end for
28: Use R1-R3 to calculate un+1

j,l
29: end for
30: end for
31: end for

{L1}

{L2}
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smax

∑
s=2

as−as−1

2s−1
=

a2−a
3

+
a3−a2

5
+ ...+

asmax−asmax−1

2smax−1

<
a2−a

3
+

a3−a2

3
+ ...+

asmax−asmax−1

3

=
1
3
{(

a2−a
)
+
(
a3−a2)+ ...+

(
asmax−1−asmax−2)+

(
asmax−asmax−1)}

=
1
3
(asmax−a)

The second term {1b} of the summation can be reduced to

smax

∑
s=2

2s−1 = 2
smax

∑
s=2

s−
smax

∑
s=2

1

= 2
(

smax (smax +1)
2

−1
)
− (smax−1)

= s2
max−1

The expression in Eq. 4.3.1 can now be reduced to

NxNy

(
a+

1
3

asmax− 1
3

a+ s2
max−1

)
(4.3.2)

smax for a given timestep n is determined by asmax−1 +1 ≤ n ≤ asmax , or ln(n)
ln(a) ≤ smax ≤

ln(n)
ln(a) +1. Since we are concerned with worst case scnearios, we use the maximum value

of this interval, smax =
ln(n)
ln(a) +1 and substitute into Eq. 4.3.2 . Now we must consider

the for loop encompassing lines 13-31 in Algorithm 2 and how the total number of

instructions relates to the total number of timesteps N:

NxNy

N

∑
n=a+1




2
3

a
︸︷︷︸
{2a}

+
1
3

aln(n)/ln(a)

︸ ︷︷ ︸
{2b}

a+
(

ln(n)
ln(a)

)2

︸ ︷︷ ︸
{2c}

+2
ln(n)
ln(a)︸ ︷︷ ︸
{2d}


 (4.3.3)

We now simplify the four components of the summation in Eq. 4.3.3. For {2a},
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∑
N
n=a+1

2
3a = (N− (a+1)) 2

3a. Since a is a constant parameter chosen by the user prior

to the simulation, the dominant term in this expression is clearly N.

For {2b}:

a
3

N

∑
n=a+1

a
ln(n)
ln(a) =

a
3

N

∑
n=a+1

a
logan
logae

1
lna

=
a
3

N

∑
n=a+1

n

=
a
3

(
N2 +N

2
− (1+2+ ...+a)

)

The dominant term here is clearly N2.

For {2c} in equation Eq. 4.3.3:

1

(ln(a))2

N

∑
n=a+1

(ln(n))2 =
1

(ln(a))2

[
(ln(a+1))2 +(ln(a+2)2 + ...+(ln(N))2

]

≤ 1

(ln(a))2

[
(ln(N))2 +(ln(N))2 + ...+(ln(N))2

]

=
1

(ln(a))2

[
(N−a)(ln(N))2

]

This expression in big-O notation is O
(
N
(
ln(N))2)). Alternatively, we can simplify

{2c} using integration by parts, to get the same result.

For {2d}:

2
ln(a)

N

∑
n=a+1

ln(n) =
2

ln(a)
ln [(a+1)(a+2) ...(N)]

=
2

ln(a)
ln
(

N!
a!

)

=
2

ln(a)
(ln(N!)− ln(a!))



85

Using Stirling’s approximation our final expression is

2
ln(a)

(Nln(N)−N +O(ln(N))− ln(a!)) (4.3.4)

which is dominated by the Nln(N)term.

Combining the simplified expressions for {2a}-{2d} in Eq. 4.3.3, it is clear that

the N2 term dominates the behavior of the overall expression as N becomes large, and

so we conclude that the worst case behavior of the adaptive step algorithm, is bounded

by O
(
NxNyN2). While the adaptive time step algorithm improves raw execution time in

relation to the full memory implementation, the complexity analysis shows that when it

comes to scaling with large N, the algorithm is as inefficient as the full implementation.

4.3.3 Linked List Adaptive Timestep Algorithm

In Chapter 3 we describe an alternative version of the adaptive memory algorithm

which is based on a power law that enables us to eliminate past history timepoints that

will never again need to be referenced, thus saving us execution time and memory. Here

we summarize the algorithm and refer to Chapter 3 for additional background technical

details and derivation.

un+1
j,l −un

j,l

∆
γ

t
= ∑{

ui
j,l∈Un

}ψ(γ,n− i)wi
(

α

∆x2 δxi
j,l +

β

∆y2 δyi
j,l

)
(4.3.5)

wn+1 = 1

W n+1 :=
{

wi ∈W n}+
{

wn+1}

Un+1 :=
{

ui ∈Un}+
{

un+1}
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Table 4.4: Linked list data for timestep n = 25

Timestep 0 4 8 12 14 16 18 20 22 23 24 25
Weight 22 = 4 4 4 21 = 2 2 2 2 2 20 = 1 1 1 1

where the data associated with each timestep n is stored via the elements constituting

a doubly linked list. Additionally, when there are more than η points in the set W i, of

a given weight, the elements of the set are condensed according to Algorithm 4.1 in

Chapter 3. As in the previous sections, we present the pseudocode for the linked list

implementation, shown in Algorithm 3.

Algorithm 3 Linked List Implementation
1: for n = 1 : N do . N is the total # of timesteps the algorithm will run
2: for j = 1 : Nx do . iterate over all grid points in x direction
3: for l = 1 : Ny do . iterate over all grid points in y direction
4: for node = 1:length(linked list) do
5: From each node calculate ψ(γ,n− i)wi

(
α

∆x2 δxi
j,l +

β

∆y2 δyi
j,l

)

6: end for
7: Calculate un+1

j,l
8: end for
9: end for

10: If-else statements to determine whether we need to condense the linked list
according to Algorithm 3.4.1 in Chapter 3. If so:

11: while it continues to be necessary to condense the linked list do
12: Constant number of instructions
13: end while
14: end for

{L1}

{L2}

To determine how many times loop {L1} runs in relation to timestep n, we can

consider the following.

For a given timestep n, we are interested in a summation of terms involving

weights (powers of two), each set of which never exceeds η nodes. For example, for

timestep n = 25 and η = 5, Table 4.4 shows the timestep and weight for all nodes

currently in the linked list at this point in the simulation.
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Since the dynamically changing weight is directly related to how often the history

of the simulation is sampled, we can construct the following relationship between time

step and weight based on the data in Table 4.4:

20 ·5+21 ·5≤ n+1 = 26≤ 20 ·5+21 ·5+22 ·5

The inequality arrives from the fact that a particular weight category has η or fewer

nodes.

For a general timestep n we can write the inequalities in terms of geometric series:

x−1

∑
l=0

2l ≤ n+1
η
≤

x

∑
l=0

2l (4.3.6)

where x+1 is the number of weight categories represented in the linked list at timestep

n. In the example in Table 4.4, the number of weight categories is 3, with weights

20, 21, and 22. Substituting the geometric series with their total sums, we can rewrite

equation Eq. 4.3.6 as

x≤ log2

(
n+1

η
+1
)
≤ x+1⇒

log2

(
n+1

η
+1
)
≤ x+1≤ log2

(
n+1

η
+1
)
+1 (4.3.7)

Where x+1 is the number of weight categories.

We now return to Algorithm 3 and refer to loop {L1}. The maximum possible

number of times this loop runs for any given timestep n, is η times the maximum number

of weight categories at that time, which, using Eq. 4.3.7, is

η

(
log2

(
n+1

η
+1
)
+1
)
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Therefore the total number of instructions in lines 2-9 of Algorithm 3 is

NxNyη

(
log2

(
n+1

η
+1
)
+1
)

. We now look at loop {L2} (lines 11-13). This while

loop runs whenever we need to condense the linked list based on the number of nodes

belonging to a particular weight category, exceeding the user-set parameter η. The

maximum number of times this may run within a single timestep, is the number of weight

categories in the linked list. For example, if the number of nodes with weight 20 exceeds

η, we delete the second “least” node in the set of nodes with this weight, and double

the weight of the “least” element (node) in this same set, to 21. (See the derivation of

Algorithm 3.4.1 in Chapter 3 for details about the ordering of these sets). For some

particular timestep this may mean that the number of nodes with weight 21 now exceeds

η and we continue to condense in the same fashion until we have addressed all weight

categories currently represented in the linked list. The maximum number of weight

categories is given by Eq. 4.3.7, and this is the maximum number of times loop {L2} is

run for a given time step n. Now we can combine all loops in Algorithm 3 and write that

the maximum number of instructions (ignoring constants) is given by

N

∑
n=1

[
NxNyη

(
log2

(
n+1

η
+1
)
+1
)
+ log2

(
n+1

η
+1
)
+1
]

= (NxNyη+1)




N

∑
n=1

log2

(
n+1

η
+1
)

︸ ︷︷ ︸
{1}

+N




(4.3.8)

We can simplify the summation term {1}:

N

∑
n=1

log2

(
n+1+η

η

)
=

N

∑
n=1

(log2 (n+1+η)− log2 (η))
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With a change of variable d = n+1+η we can rewrite the summation as

N+1+η=N′

∑
d=2+η

log2 (d)−Nlog2 (η)≤
N′

∑
d=1

log2 (d)−Nlog2 (η)

= log2 (1)+ log2 (2)+ ...+ log2
(
N′
)
−Nlog2 (η)

= log2
(
N′!
)
−Nlog2 (η)

= N′log2
(
N′
)
−N′+O

(
log2

(
N′
))
−Nlog2 (η)

We can now write Eq. 4.3.8 as

total instructions≤ (NxNyη+1)
[
N′
(
log2

(
N′
))
−N′+O

(
log2

(
N′
))
−Nlog2 (η)+N

]

It is clear that the dominant term here is N′ (log2 (N′))and since N′ is simply equal to N

offset by a constant, we can conclude the overall complexity is

O(NxNyNlog2 (N))

Compared to the full and adaptive step algorithms analyzed in this section, the linked

list implementation is clearly the most efficient in terms of how execution time scales as

number of timesteps N, grows large. An added benefit (as noted in Chapter 3, Section

4) would be the lowered memory requirements from O(N) (data stored for all N time

steps) to O(log2N), since we no longer require keeping all time points in the history of

the simulation.

As before, we also note that in the one-dimensional analogous case of the linked

list pseudocode, the loop iterating over spatial grid points can be vectorized.
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4.3.4 Empirical Results

We verify our theoretical complexity results with simulated data. In Fig. 4.3.1

we show computation run times for simulations of various number of steps N and

demonstrate the complexity of the three numerical methods explored in this section.

For each algorithm we used a one-dimensional analog of the two-dimensional verison

described in the pseudocode in this section. For all algorithms we set γ = 0.8, D =

units2

sγ , dt = 0.1s, dx = 0.69 units. We used adaptive step parameter and η values of 20.

Data was fitted to trendlines using Matlab’s curve fitting toolbox. For the data

corresponding to the full and adaptive memory implementations, the best fit lines were

polynomials of second order (modeled with three coefficients). For the linked list imple-

mentation the trendline with minimum number of coefficients was a Nlog2N function.

• full implementation simulation time = p1N2 + p2N + p3 with p1 = 1.106e−

5, p2 = 5.5e−4, p3 =−0.0423 and goodness of fit measure R−squared = 0.9999

• adaptive memory simulation time = p1N2 + p2N + p3 with p1 = 2.671e−5, p2 =

1.441e−3, p3 =−0.05873 and goodness of fit measure R− squared = 0.9999

• linked list simulation time = p1Nlog2 (N) with p1 = 7.047e−4 and goodness of

fit measure R− squared = 0.9992. This is the simplest trendline that was found

to be a good fit. There were other functions that fit the data for the linked list

implementation but required additional coefficients.

The data fitting and empirical data in Fig. 4.3.1 thus supports the theoretical analysis

done in this section.
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Figure 4.3.1: Empirical data verifying theoretical complexity results. For all simulations
we set γ = 0.8, D = units2

sγ , dt = 0.1s, dx = 0.69 units. We used adaptive step adaptive step
parameter and η values of 20.
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4.4 Error

In the last section we found that the algorithmic complexity for the linked list

implementation is considerably more efficient than the full and adaptive memory im-

plementations. However, with numerical algorithms, considerable advantages in one

area usually come with some drawback or cost, in another. In this case, the accuracy

of the linked list implementation is the drawback; in Fig. 4.4.1 we compare the error

of all three explicit algorithms discussed in this chapter (full implementation, adaptive

memory, linked list implementation based on power law) and see that while the error

for the first two converge over time, the error of the linked list implementation jumps

in discrete intervals. This corresponds to the instances when the a new weight category

is introduced and the linked list is condensed according to Eq. 4.3.5. The rate at which

these jumps occur, is given by parameter η (the larger this value is, the slower the error

increases). We leave as an open problem the analysis of the error resulting from the

linked implementation (whether it converges over time and its exact dependence on η).

Even in the case that error does not converge, one can set the value of η depending on

the required length of the simulation and how much percentage error is willing to be

tolerated during the simulation.

4.5 Conclusion

We have successfully characterized the stability of two finite difference algorithms

used in solving the time-fractional diffusion equation. We provide our rationale for

selecting a von Neumann analysis while also exploring a few alternative interpretations

and approaches to analyzing stability. Using a von Neumann analysis we have developed

bounding expressions for parameters like time step, spatial discretization and grid size

that can be used to appropriately set parameters to ensure accurate simulations that reflect
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Figure 4.4.1: Error comparison between one-dimensional versions of all the explicit algorithms
discussed in this chapter. Error is compared to the fundamental solution described in Chapter
2, at the location of the initial condition (center of the spatial axis), which is the most quickly
changing point on the spatial domain. It is clear that the error for the full implementation and
adaptive memory converge over time, but the error for the linked list implementation is seen to
decay and then jump in discrete intervals.
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the true solution of the fractional diffusion to be solved. Our simulation results verify

that our bounding expressions resulting from our stability analysis are accurate and valid.

We also note here that the stability analysis of the linked list implementation should also

be explored, and we leave this as an open problem for further consideration.

We have also successfully characterized the algorithmic complexity of all three

finite difference algorithms introduced in Chapter 3. We find that the full and adaptive

step algorithms have a big-O complexity of O
(
N2) while the linked list scheme performs

much better with O(Nlog2N) complexity. We compare our analytical results with

empirical data and find they are in good agreement.

Chapter 4, in part, is currently being prepared for submission for publication of

the material. Nirupama Bhattacharya and Gabriel A. Silva. The dissertation author was

the primary investigator and author of this paper.



Chapter 5

An Efficient Finite Difference

Approach to Solving the

Time-fractional Diffusion Equation

5.1 Introduction

As discussed in Chapter 3, there has been experimental evidence suggesting

that diffusion of ATP from retinal astrocytes, has a diffusion profile with peaked center

[38]. One potential mechanism explaining such such a profile is anomalous subdiffusion,

which, as we have explored in earlier chapters, can be modeled with a time-fractional

diffusion equation. Our interest was in applying the computationally efficient approaches

developed in the last chapter, to model the diffusion of material in a cellular network

with biophysically accurate parameters, including a high diffusion coefficient. However,

we soon found that a drawback to these methods is that those approaches are based on

explicit schemes that are only conditionally stable and first order accurate in time. Using

parameters such as large diffusion coefficients, required us to use extremely small time

95
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steps in order to maintain a stable simulation. Therefore, we developed a more stable

numerical scheme that can still take advantage of the speed and efficiency increases of

the methods developed in Chapter 3.

In this chapter we apply the implicit Crank-Nicholson (CN) numerical scheme, in

combination with an operator-splitting method, to develop an efficient numerical method

for solving the two-dimensional time-fractional diffusion equation; this scheme has an

expanded stability regime that enables us to simulate problems with biologically accurate

parameters such as high diffusion coefficients, without requiring a prohibitively small

simulation time step.

5.2 Methods

As established in Chapter 2, anomalous diffusion is characterized by a nonlinear

relation between the mean square displacement of a particle, and time:

< x2(t)>∼ αtγ, γ 6= 1 (5.2.1)

0< γ< 1 denotes the subdiffusion regime and 1< γ< 2 denotes superdiffusion. If γ = 1,

we recover the linear relationship that is the basis of classical diffusion. Equation 5.2.1 is

related to the breakdown of the Central Limit Theorem which shows that the Brownian

motion random walk at the continuity limit, is the classical diffusion equation. At the

microscopic level, equation 5.2.1 represents random walk processes where a particle’s

jumps at each timestep, and the wait time between jumps, are drawn from probability

distribution functions with long tails, which are distinct from standard Gaussian distribu-

tions that are the basis of classical diffusion. These long-tailed probability distribution

functions are integral to continuous time random walk (CTRW) models, from which we

can derive (see [36, 57] for detailed derivations) the homogenous fractional diffusion
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equation given by:
∂γu(~x, t)

∂tγ
= α∇

2u(~x, t) (5.2.2)

where α is the diffusion coefficient (in spatial unit2

time unitγ ), and u is the concentration as a function

of space and time. We will begin with the homogenous equation without additional terms,

but will later consider the addition of f (u(~x, t)), a general source or sink term, to form

the general inhomogenous fractional diffusion equation

∂γu(~x, t)
∂tγ

= α∇
2u(~x, t)+ f (u(~x, t)) (5.2.3)

As in Chapter 3, we rearrange equation 5.2.2 in terms of the continuous time

Riemann-Liouville fractional derivative operator, as defined in [40, 39, 57].

∂u
∂t

= αD1−γ

t ∇
2u (5.2.4)

However, the Riemann-Liouville definition of the fractional derivative operator is given

in terms of an integral, and is not in a form that can be easily manipulated for computa-

tional purposes without the aid of quadrature algorithms. We therefore make use of the

Grünwald-Letnikov definition of the fractional derivative operator

Dp
t u(~x, t) = lim

τ→0
τ
−p

n=t/τ

∑
m=0

(−1)m




p

m


u(~x, t−mτ)⇒ (5.2.5)

= τ
−p

n=t/τ

∑
m=0

(−1)m




p

m


u(~x, t−mτ)+O(τ) (5.2.6)

where τ is the discretization step in time. The Riemann-Liouville and Grünwald-Letnikov

definitions approach the same value if u(~x, t) is continuous and its first derivative is

integrable on the interval [0, t] [57]. Since we are assuming that the solution to a fractional
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diffusion equation used to model many physical processes, is sufficiently smooth and

therefore meets the requirements of continuity and integrability of the derivative, and

so we consider it appropriate to use the Grünwald-Letnikov definition of the fractional

derivative operator.

Within this premise we can define the binomial term in equation 5.2.5 as a

‘memory’ function ψ(γ,m) = (−1)m




1− γ

m


. This memory function can also be

written as a recursive relation in terms of the Γ function, so that it can be fully computed

before the time course simulation, saving valuable computational time. See Chapter 3 for

a more detailed derivation of ψ(γ,m). Our diffusion equation can now be expressed in

terms of the ‘memory’ function ψ(γ,m):

∂u
∂t

= lim
τ→0

τ
γ−1

α

t/τ

∑
m=0

ψ(γ,m)∇2u(~x, t−mτ)⇒ (5.2.7)

= τ
γ−1

α

t/τ

∑
m=0

ψ(γ,m)∇2u(~x, t−mτ)+O(τ) (5.2.8)

5.2.1 Crank-Nicholson in Time

Progressing from this point involves approximating the time derivative and the

spatial Laplacian, and here we consider the implicit Crank-Nicholson scheme as an

alternative to an explicit scheme, in order to yield a more stable and more accurate

numerical solution.

The general Crank-Nicholson scheme utilizes the second order accuracy given by

a centered difference scheme. The derivative with respect to time

∂u
∂t

≈
u(~x, t +∆t)−u(~x, t)

∆t
(5.2.9)

is a difference centered around t + ∆t
2 . This approximation gives us an error proportional
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to the square of ∆t, as shown by the Taylor series expansion of function u around t + ∆t
2 :

u
(

x,y, t +
∆t
2
+

∆t
2

)
= u

(
x,y, t +

∆t
2

)
+

∆t
2

u(1)
(

x,y, t +
∆t
2

)

+

(
∆t
2

)2

2!
u(2)

(
x,y, t +

∆t
2

)

+

(
∆t
2

)3

3!
u(3)

(
x,y, t +

∆t
2

)
+ . . . (5.2.10)

u
(

x,y, t +
∆t
2
− ∆t

2

)
= u

(
x,y, t +

∆t
2

)
− ∆t

2
u(1)

(
x,y, t +

∆t
2

)

+

(
∆t
2

)2

2!
u(2)

(
x,y, t +

∆t
2

)

−
(

∆t
2

)3

3!
u(3)

(
x,y, t +

∆t
2

)
+ · · · (5.2.11)

where u(n) refers to the nth derivative of u with respect to time. Subtracting

equation 5.2.11 from equation 5.2.10 and solving for the first derivative of u gives us

u(1)
(

x,y, t +
∆t
2

)
=

u(x,y, t +∆t)−u(x,y, t)
∆t

+Rn

where Rn is the Taylor series remainder, or truncation, that is O
(
∆t2).

We also use centered difference approximations for the second order derivatives

in space, which are well known to give second order truncation errors in each spatial

direction [Haberman]

∂2u
∂x2 =

u(x+∆x,y, t)−2u(x,y, t)+u(x−∆x,y, t)
∆x2 +O

(
∆x2)

∂2u
∂y2 =

u(x,y+∆y, t)−2u(x,y, t)+u(x,y−∆y, t)
∆y2 +O

(
∆y2)

In the scope of this chapter we are interested in solving the fractional diffusion equation

on an equally spaced grid in both directions and therefore we will set ∆x = ∆y = ∆ for
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the spatial discretization symbol.

Looking at equation 5.2.9, our time derivative is evaluated at t + ∆t
2 , so we need

to adjust our second order spatial derivatives by taking the averages at t and t +∆t:

∂2u
∂x2 =

1
2

(
u(x+∆,y, t +∆t)−2u(x,y, t +∆t)+u(x−∆,y, t +∆t)

∆2

+
u(x+∆,y, t)−2u(x,y, t)+u(x−∆,y, t)

∆2

)
+O(∆2)

∂2u
∂y2 =

1
2

(
u(x,y+∆, t +∆t)−2u(x,y, t +∆t)+u(x,y−∆, t +∆t)

∆2

+
u(x,y+∆, t)−2u(x,y, t)+u(x,y−∆, t)

∆2

)
+O(∆2)

We can see that the finite difference approximations for the spatial derivatives, still retain

a second order error in the spatial step size.

We can now write equation 5.2.7 using grid notation. Let us define our grid in two

spatial dimensions, with the timecourse as the third dimension. Let n = t
∆t , j = x

∆
, l = y

∆
.

Taking the limit of τ→ ∆t, we can approximate equation 5.2.7 with a partial difference

equation

un+1
l, j −un

l, j

∆t
=

α∆tγ−1

2∆2

n

∑
m=0

ψ(γ,m)
(

δxn−m+1
j,l +δxn−m

j,l +δxn−m+1
j,l +δyn−m

j,l

)

+O
(
∆

2)+O(∆t) (5.2.12)

where δxn
j,l = un

l+1, j−2un
l, j +un

l−1, j, δyn
j,l = un

l, j+1−2un
l, j +un

l, j−1.

At this point we can add in the generic source/sink term via superposition. For

example, if our source or sink term is something like an exponential decay term in time

described by du
dt =−βu, we can incorporate this into equation 5.2.4:du

dt = αD1−γ

t ∇2u−βu.

The full equation can be easily discretized in a similar manner as 5.2.12. We choose not

to consider the complicacies of a generic source/sink term for the rest of the analysis in
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Figure 5.2.1: The schematic shows the classic five-point stencil used in many two-dimensional
problems. The Crank-Nicholson algorithm applied to the fractional diffusion equation results in
solving for multiple grid points at the n+1 timestep, simultaneously, based on current and past
values; this requires a system of equations to be solved.

this chapter.

Now, when we step through a time evolution simulation of equation 5.2.12,

at each timestep we are interested in solving for all u values for the n+ 1 timestep
(

un+1
j,l ,u

n+1
j−1,l,u

n+1
j+1,l,u

n+1
j,l−1,u

n+1
j,l+1

)
, based on past values. See Fig. 5.2.1 for a schematic

of this setup.

As shown in Fig. 5.2.1, in addition to the complicacies that the summation

introduces, an implicit method requires a system of equations be solved simultaneously.

Rearranging equation 5.2.12 yields
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−run+1
l+1, j− run+1

l−1, j +(1+4r)un+1
l, j − run+1

l, j+1− run+1
l, j−1 = r

n

∑
m=1

ψ(γ,m)
(

δxn−m+1
j,l +δxn−m

j,l

+ δyn−m+1
j,l +δyn−m

j,l

)

+r
(
δxn

j,l +δyn
j,l
)
+un

l, j

+∆t
[
O
(
∆

2)+O(∆t)
]

(5.2.13)

where we set r = α∆tγ

2∆2 and make use of the fact that ψ(γ,0) = 1. Note that the right hand

side of equation 5.2.13 is a function of past and present time steps. We can write equation

5.2.13 in matrix form MUn+1 = F, where F is a matrix that is a function of current and

past events. Un+1 holds the values that we are solving for, and contains all nodes in our

grid u, rearranged in a single column format. M is a large, sparse matrix structured as

follows:

M =




T −rI 0 · · · 0

−rI T −rI 0
...

0 −rI T −rI 0
... 0 −rI T −rI

0 · · · 0 −rI T

,




T =




(1+4r) −r 0 · · · 0

−r (1+4r) −r 0
...

0 −r . . . . . . 0
... 0 . . . . . . −r

0 · · · 0 −r (1+4r)




Matrix M is built of block matrices T and −rI. T is a tridiagonal matrix, I is the identity
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matrix, and −rI is a diagonal matrix, and together they make M a very sparse, banded

matrix. If our grid u has NxNy total nodes, matrix Un+1 is of size NxNy by1, and matrix M

is of size (NxNy)by (NxNy). While directly solving this matrix problem will give us our

solution, it is extremely computationally inefficient because of the size of matrix M and

the fact that it is very sparse. While there are methods to solve sparse matrices efficiently,

we have chosen to combine the Crank-Nicholson algorithm with the alternate direction

implicit (ADI) method, which splits the problem into two half steps. To ensure that our

method is consistent with Eq. 5.2.13, we will first write our formulation in factored form,

from which we easily apply time-splitting.

5.2.2 Time-splitting into Two One-dimensional Steps

We write Eq. 5.2.13 using Λx and Λy as central difference operators in the x and

y directions, respectively.

Λxu j,l = u j−1,l−2u j,l +u j+1,l

Λyu j,l = u j,l−1−2u j,l−u j,l+1

(I− rΛx− rΛy)un+1
l, j = (I + rΛx + rΛy)un

l, j

+r
n

∑
m=1

ψ(γ,m)
[
δxn−m+1

j,l +δxn−m
j,l +δyn−m+1

j,l +δyn−m
j,l

]

+∆t
[
O
(
∆

2)+O(∆t)
]
⇒

(I− rΛx)(I− rΛy)un+1
l, j = (I + rΛx)(I + rΛy)un

l, j

+r
n

∑
m=1

ψ(γ,m)
[
δxn−m+1

j,l +δxn−m
j,l +δyn−m+1

j,l +δyn−m
j,l

]

+
α2∆t2γ

4∆2 ΛxΛy

(
un+1

l, j −un
l, j

)

+∆t
[
O
(
∆

2)+O(∆t)
]

(5.2.14)
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A Taylor expansion of the
(
uk+1−uk) term in Eq. 5.2.14 results in an order of

accuracy O(∆t). Therefore, as long as the cross terms have an order of accuracy greater

than or equal to

O
(
∆t2), we can neglect them without loss of order of accuracy in our scheme.

This is true when 2γ+1≥ 2 or when γ≥ 1/2. We can still simulate fractional diffusion

with an anomalous exponent γ < 1/2, while accepting the decrease in the order of

accuracy of our formulation.

Our formulation in factored form is now

(I− rΛx)(I− rΛy)un+1
l, j = (I + rΛx)(I + rΛy)un

l, j

+r
n

∑
m=1

ψ(γ,m)
[
δxn−m+1

j,l +δxn−m
j,l

+ δyn−m+1
j,l +δyn−m

j,l

]
(5.2.15)

From Eq. 5.2.15 we can easily make use of time-splitting. At each timestep in our

simulation, we split our problem into two half-steps. In each half step, we apply the Crank-

Nicholson algorithm only in one of our two spatial directions. This simplification has the

effect of reducing our two-dimensional problem into two one-dimensional problems, thus

eliminating the need for dealing with large and sparse matrices that are usually associated

with two-dimensional problems. See Fig. 5.2.2 for a basic schematic of the time-splitting

algorithm described in this section.

We also note that when γ = 1, ψ(γ,0) = 1 and ψ(γ,m) = 0 for all m 6= 0. This

reduces our numerical scheme to

(I− rΛx)(I− rΛy)un+1
l, j = (I + rΛx)(I + rΛy)un

l, j

which is the approximate factorization of the classical diffusion equation using the Crank-
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Figure 5.2.2: The schematic shows how the original Crank-Nicholson setup based on the
five-point stencil, is split into two one-dimensional problems where at each step, we are solving
a system of equations in one spatial direction only.

Nicholson method, which is well established to be second order accurate in time and

space [Parvez].

Step 1: We define (I− rΛy)un+1
j,l = z, so equation 5.2.15 now reads

(I− rΛx)zl, j = (I + rΛx)(I + rΛy)un
l, j

+r
n

∑
m=1

ψ(γ,m)
[
δxn−m+1

j,l +δxn−m
j,l +δyn−m+1

j,l +δyn−m
j,l

]
(5.2.16)

where z can be thought of as a ‘virtual’ timestep which we solve for as an intermediate

value but don’t use as part of our final solution (see Fig. 5.2.3). We can write Eq. 5.2.16 in

matrix form if we carefully define our grid of interest on which we will do our simulation.

If we are interested in solving the problem with Dirichlet boundary conditions. Let us
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Figure 5.2.3: The values at the current and past real time steps are used to calculate the values
at the next virtual timestep. This is in turn used to calculate the values at the next real time step.

identify our grid as the following:

Nynodes





B1,1 · · · B j,1 · · · BNx,1

... u2,2 · · · uNx−1,2
...

B1,l
... . . . ... BNx,l

... u2,Ny−1 · · · uNx−1,Ny−1
...

B1,Ny · · · Bl,Ny · · · BNx,Ny
︸ ︷︷ ︸

Nxnodes

(5.2.17)

where the size of the grid is Ny total gridpoints in the y direction, and Nx total gridpoints

in the x direction. If B is a function of time, it must be known at all times. Then we

can prescribe boundary conditions for intermediate variable z, from its definition. We

can also easily modify our matrices to incorporate other types of boundary conditions,

including Neumann and mixed conditions. For the purposes of analysis later in this paper,

we will consider a simple case with periodic Dirichlet boundary conditions that can be a

function of time.
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With this formulation, we are interested in finding the z values for the internal

(non-boundary) gridpoints of layout 5.2.17. This problem can be represented in matrix

form AZ = R :

A︷ ︸︸ ︷


1+2r −r 0 · · · 0

−r 1+2r
. . .

...

0
. . . . . . . . . 0

...
. . . 1+2r −r

0 · · · 0 −r 1+2r




Z︷ ︸︸ ︷


z1,1 · · · uNx−2,1

...
...

z1,Ny−2 · · · zNx−2,Ny−2




= R (5.2.18)

where R represents the right hand side of equation 5.2.16.

We see that because we are solving an implicit algorithm in only one direction,

matrix A is a tridiagonal matrix, and this matrix equation can be very efficiently solved

using the Thomas algorithm, which uses a simplified Gaussian elimination.

Step 2: Now that we have solved for the values of z, we can solve the entire

equation in 5.2.15

(I− rΛy)un+1
j,l = z (5.2.19)

As before, equation 5.2.19 can be formulated as a matrix equation

A′︷ ︸︸ ︷


1+2r −r 0 · · · 0

−r 1+2r
. . .

...

0
. . . . . . . . . 0

...
. . . 1+2r −r

0 · · · 0 −r 1+2r




U ′︷ ︸︸ ︷


uk+1
1,1 · · · uk+1

Nx−2,1

...
...

uk+1
1,Ny−2 · · · uk+1

Nx−2,Ny−2




T

= Z (5.2.20)
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In comparing equations 5.2.18 and 5.2.20, we may note that the U matrices are transposed:

this is due to the fact that in Step 1, we applied the Crank-Nicholson scheme to one

spatial dimension, and in Step 2, we applied it to the other spatial direction.

In Step 2 we are solving for the n+1 timestep efficiently using another tridiagonal

matrix. However, in this step we don’t need to consider memory contributions of past

timesteps as that was accounted for in Step 1. This saves us from having to keep track of

the history of virtual time steps, as the real timesteps are the ones we are interested in

and visualize as our solution.

5.2.3 Adaptive Timestep

The ADI time-splitting method applied to the Crank-Nicholson differencing

scheme described in the previous sections, increases the accuracy and stability, and

decreases the computational time of our numerical scheme, compared to the full imple-

mentation described in Chapter 2. In addition, we can now apply the adaptive timestep

algorithm to further save on computational time, while still maintaining a reasonable

order of accuracy. Let a be the base interval used in the algorithm (adaptive time step

parameter).

For timestep n≤ a, the formulation is exactly the same as in equations 5.2.16 and

5.2.19.

For n> a
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(I− rΛx)z j,l = (I + rΛx)(I + rΛy)un
l, j (5.2.21)

+r

[
a

∑
m=1

ψ(γ,m)
(

δxn−m+1
j,l +δxn−m

j,l +δyn−m+1
j,l +δyn−m

j,l

)

+
smax

∑
s=2

{
ηmax(s,n)

∑
η=1

(2s−1)ψ(γ,M (s,η))
(

δxn−M(s,η)+1
j,l

+ δxn−M(s,η)
j,l +δyn−M(s,η)+1

j,l +δyn−M(s,η)
j,l

)

+
min(as,n)

∑
p=Mmax+smax

ψ(γ, p)
(

δxn−p+1
j,l +δxn−p

j,l +δyn−p+1
j,l +δyn−p

j,l

)}]

(I− rΛy)un+1
l, j = z j,l (5.2.22)

M (s,η) = as−1 +(2s−1)η− s+1

ηmax (s,n) = min
(⌊

as−as−1

2s−1

⌋
,

⌊
n−as−1

2s−1

⌋)

Mmax = M (smax,ηmax)

δxn
j,l = un

j+1,l−2un
j,l +un

j−1,l

where r= α∆tγ

∆2 , b c denotes the floor function, and smax is determined by the current

timestep n such that asmax−1 +1≤ n≤ asmax .

5.3 Analysis

5.3.1 Consistency

We begin with a consistency analysis of Eq. 5.2.15. Consider the original

fractional diffusion equation using the Grunwald-Letnikov definition given in Eq. 5.2.5.

Let ũ be the exact solution of that differential equation and u be the approximate solution

that is satisfied by our discrete numerical method given in Eq. 5.2.15. Let L [u] be the
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difference operator

L
[
un

l, j

]
= (I− rΛx)(I− rΛy)un+1

l, j − (I + rΛx)(I + rΛy)un
l, j

−r
n

∑
m=1

ψ(γ,m)
[
δ

n−m+1
x +δ

n−m
x +δ

n−m+1
y +δ

n−m
y
]

(5.3.1)

For terms outside the summation, we apply a Taylor Series expansion around location

x j,yl and the current timepoint n, but within the summation, we expand around the local

timepoint in the past history, n−m. After simplifying, our end result is

L
[
un

j,l

]
= ∆t

∂un
j,l

∂t
+

∆2
t

2

∂2un
j,l

∂t2 −α∆
γ

t

n

∑
m=0

ψ(γ,m)∇2un−m
j,l + ...(higher order terms)

(5.3.2)

If we use the notation un
j,l = u

(
x j,yl, tn

)
with x j = j∆, yl = l∆, tn = ∆tn, and consider

that indices j, l,n are generic, equation 5.3.2 can apply to any point in space and time.

Therefore we can write

L [u] = ∆t
∂u(x,y, t)

∂t
+

∆2
t

2
∂2u(x,y, t)

∂t2 −α∆
γ

t

n

∑
m=0

ψ(γ,m)∇2u(x,y, t−m∆t)

Since u is the solution of our finite difference equation 5.2.15, L [u] = 0 and we can divide

through by ∆t to get

∂u(x,y, t)
∂t

=−∆t

2
∂2u(x,y, t)

∂t2 +α∆
γ−1
t

n

∑
m=0

ψ(γ,m)∇2u(x,y, t−m∆t)

If we take the limit as ∆,∆t → 0 and replace ∆t with τ we get

∂u(x,y, t)
∂t

= lim
τ→0

τ
γ−1

α

t/τ

∑
m=0

ψ(γ,m)∇2u(x,y, t−mτ)
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Therefore, the difference equation in 5.2.15 is consistent with the original equation we

began with (Eq. 5.2.7).

In the same manner we apply a consistency analysis to the adaptive memory

version of our scheme, using equations 5.2.21 and 5.2.22. As expected, the final equation

that we recover is not the original homogenous equation that we begin with, but the

following, adaptive memory version:

∂u(x,y, t)
∂t

= lim
τ→0

τ
γ−1

α

{
ta/τ

∑
m=0

ψ(γ,m)∇2u(x,y, ta−mτ)

+
smax

∑
s=2

{
ηmax(s,n)

∑
η=1

(2s−1)ψ(γ,M (s,η))∇
2u(x,y, tη−M (s,η)τ)

}

+
t/τ

∑
p=Mmax+smax

ψ(γ, p)∇2u(x,y, t− pτ)

}
(5.3.3)

where ta, tη are the exact times when timesteps a and η occur, respectively. We

consider Eq. 5.3.3 to be a good approximation of Eq. 5.2.7 based on the fact that the total

contribution of past timepoints as described by all the discrete summations in the adaptive

memory algorithm (Section 5.2.3) very closely approaches the value of the summation in

Eq. 5.2.15. Figure 5.3.1 compares the value of the summations in equations 5.2.21 and

5.2.15 at three different locations on our spatial grid. We find that the way the adaptive

memory algorithm describes a weighted sampling of the history of the simulation is a

very good approximation of the full history when sampled at every past timestep.

5.3.2 Stability

Because our adaptive step algorithm is a linear scheme with constant coefficients

on a uniformly spaced grid, and for the scope of this analysis we are assuming simple

periodic Dirichlet boundary conditions, we are able to use a von Neumann type stability

analysis, as we have done in Chapter 4. For more complex boundary conditions or
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A)

B)

C)

Figure 5.3.1: The value of the history summation values in Eq. 5.2.15 and Eq. 5.2.21 is
compared at A) uNx/2,Ny/2, B) uNx/4,Ny/4 , and C) uNx/8,Ny/8
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non-constant parameters and coefficients, we will need more advanced approaches to

stability including matrix stability analysis. Using separation of variables we assume

a special product form of the solution to determine the convergence or divergence of

spatial wave oscillations:

un
j,l =

Ny−1

∑
v=0

Nx−1

∑
u=0

An
uveikux jeikvyl (5.3.4)

Where An
uv can be thought of as the amplification factor dependent on time, and

ku and kv are the wavenumbers in the x and y directions, respectively. See [Haberman,

Chapter 6, Section 3] for a thorough derivation.

Substituting Eq. 5.3.4 into equations 5.2.21 and 5.2.22 and simplifying in the

same manner as in Chapter 4, we get

An+1
uv (1− rB)(1− rD) = An

uv (1+ rB)(1+ rD)+ r

[
a

∑
m=1

ψ(γ,m)
(
BAn−m+1

uv +BAn−m
uv

+ DAn−m+1
uv +DAn−m

uv
)

+
smax

∑
s=2

{
ηmax(s,n)

∑
η=1

(2s−1)ψ(γ,M (s,η))
(
BAn−M+1

uv

+ BAn−M
uv +DAn−M+1

uv +DAn−M
uv

)

+
min(as,n)

∑
p=Mmax+smax

ψ(γ, p)
(
BAn−p+1

uv +BAn−p
uv

+ DAn−p+1
uv +DAn−p

uv
)}]

(5.3.5)

where B =−4sin2
(

ku∆x
2

)
and D =−4sin2

(
kv∆y

2

)
. We would like to show the amplifica-

tion factor An
uvis bounded in time; that is,

|An
uv| ≤C

∣∣A0
uv
∣∣ for all timesteps n

where C is some constant that is not dependent on any parameters like time or spatial
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discretization steps. Solving for An
uv is very complicated, so we will instead proceed with

a proof by induction. Our base case is for n = 0:

A1
uv (1− rB)(1− rD) = φ0 (1+ rB)(1+ rD)⇒

∣∣∣∣
A1

uv
A0

uv

∣∣∣∣ =

∣∣∣∣
(1+ rB)(1+ rD)

(1− rB)(1− rD)

∣∣∣∣ (5.3.6)

Since r > 0 and B,D≤ 0, the numerator in Eq. 5.3.6 is always less than or equal to the

denominator, and so we have
∣∣A1

uv
∣∣≤
∣∣A0

uv
∣∣

For n = 1 we have

A2
uv (1− rB)(1− rD) = A1

uv (1+ rB)(1+ rD)+ r
(
BA1

uv +BA0
uv +DA1

uv +DA0
uv
)

= A1
uv [(1+ rB)(1+ rD)+ rB+ rD]+A0

uv (rB+ rD)

⇒
∣∣A2

uv
∣∣ =

1
(1− rB)(1− rD)

∣∣A1
uv {(1+ rB)(1+ rD)+ rB+ rD}

+ A0
uv (rB+ rD)

∣∣

≤ 1
(1− rB)(1− rD)

{∣∣A1
uv
∣∣ |(1+ rB)(1+ rD)+ rB+ rD|

+
∣∣A0

uv
∣∣ |rB+ rD|

}

≤
∣∣A0

uv
∣∣

(1− rB)(1− rD)
{|(1+ rB)(1+ rD)|+ |rB+ rD|

+ |rB+ rD|}

=

∣∣A0
uv
∣∣

(1− rB)(1− rD)

{∣∣1+ rB+ rD+ r2BD
∣∣−2rB−2rD

}

≤
∣∣A0

uv
∣∣
(

1+ r2BD−3r (B+D)

1+ r2BD− r (B+D)

)

=
∣∣A0

uv
∣∣ f (r,B,D) (5.3.7)

The value of function f is dependent on B and D, and so indirectly depend on the

wavenumbers ku and kv. The exact expression of f (r,B,D) will determine the conditions
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under which this method is stable, and we leave this as an open problem to be solved.

However, it can be empirically shown that the Crank-Nicholson ADI method with

adaptive timestep implementation, does have an expanded stability regime compared

to the explicit version of the adaptive timestep implementation defined in Chapter 3.

For example, in Fig. 5.3.2 we see a simulation with a set of parameters that results in

an unstable solution with the full implementation, and a stable one with the CN-ADI

Adaptive Memory algorithm, demonstrating an expanded stability regime for the latter

numerical method.

5.3.3 Order of Accuracy

As shown in Section 5.2, we are O
(
∆2) in the spatial variable, but only O(∆t) in

the time variable, due to the Grünwald-Letnikov approximation and the way in which

we have defined our binomial coefficients. As discussed in [40], the memory function

ψ(γ,m) = (−1)m




1− γ

m


 can be considered the coefficients of the power series for

the function (1− z)1−γ :

(1− z)1−γ =
∞

∑
m=0

(−1)m




1− γ

m


zm

Using this definition with the Grünwald-Letnikov approximation gives us an expression

for the (1− γ) th order fractional derivative that is O(∆t). Lubich shows that we can

obtain higher order approximations by using memory functions that are the coefficients

of the Taylor series expansions of the appropriate ‘generating functions’ [26, 40]. For a

second order approximation, we use the generating function χ(γ,z) =
(

3
2 −2z+ z2

2

)1−γ

.

In this way we obtain a numerical scheme that recovers O
(
∆t2), an advantage of the

Crank Nicholson formulation that was lost.
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A)

B)

Figure 5.3.2: Stability comparison for the full implementation and the CN-ADI Adaptive
Memory method. The set of parameters used are α = 50units2/sγ, ∆t = 0.5 s,∆ = 10 units,
γ = 0.7. A) These parameters clearly result in an instable solution with the full implementation.
B) However, with the same set of parameters we remain in the stable regime for the CN-ADI
Adaptive Memory method. This clearly demonstrates an expanded stability regime for the latter
method.
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A disadvantage to recalculating the memory function, however, is that we can no

longer use an ADI algorithm. With a recalculated memory function, in Eq. 5.2.14, we

would only be able to ignore the cross terms if γ> 1, which precludes all equations in

the sub diffusive realm. We could still use the unfactored version of the Crank Nicholson

scheme in Eq. 5.2.13 and combine it with the adaptive memory algorithm, but we will

have lost some of the advantage that factoring and time-splitting provides in terms of

efficiency.

However, another potential approach to recovering a O
(
∆t2) scheme, is to use

Richardson extrapolation in the time variable. Richardson extrapolation obtains accurate

numerical schemes by combining two or more less accurate solutions [37]. For example,

with a set timestep ∆t, we derived the exptression 5.2.6 that is O(∆t). We can now set time

step to ∆t/2 and rederive an expression that is also O(∆t) but with different coefficients.

We can then create a linear combination of the two expressions to eliminate the O(∆t)

term, leaving us with higher order truncated terms and a scheme that is of higher order

accuracy in time. We leave this as an open problem to be considered in the future.

5.4 Results

5.4.1 Accuracy

We compare the results of our CN-ADI Adaptive Memory algorithm given in

Section 5.2.3, with the Full Implementation, described in Chapter 3. We simulated an

initial value problem with the following conditions: ∆ = 10µm, Nx = Ny = 20, ∆t =

.5s, α = 20µm2/sγ, γ = 0.7 , with an initial condition of u(~x,0) = e−x2/2σ2
1e−y2/2σ2

2 ,

σ1 = 5 units, σ2 = 5 units. Fig. 5.4.1 shows the percentage error of the CN-ADI Adaptive

Memory implementation at grid point un
Nx/2,Ny/2, compared to the Full Implementation,

for the duration of the simulation. For initial timesteps, there is a large error compared to
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Figure 5.4.1: The figure shows the percentage error of the solution using the CN-ADI Adaptive
Memory algorithm, compared to the full finite difference algorithm, at the center of the 2D grid,
which is the most quickly changing part of the simulation.

the full algorithm, but this can be improved by reducing ∆t. After the initial timesteps, the

error quickly converges to less than 0.5%. We note here that the full implementation itself

is a numerical algorithm that has an error compared to the true solution; however, lacking

an exact analytical solution for this problem, we consider it acceptable to compare our

algorithm to the full implementation, based on the assumption that the full implementation

error decays or is bounded in time. Therefore in comparing our algorithm to the full

implementation, a converging error would mean that the error associated with our new

method, is also bounded in time.



119

5.4.2 Computational Time

In Fig. 5.5.1 we compare the actual computational time required to simulate

a set number of seconds, for the full fractional diffusion implementation as given by

Podluby([40]) and explored fully in Chapter 3 (Full Implementation), the adaptive

memory algorithm based on an explicit time scheme as described in Chapter 3 (Adaptive

Memory), the Crank-Nicholson scheme combined with the ADI method given by equation

5.2.15 (CN-ADI), and the Crank-Nicholson ADI method that includes an adaptive

memory algorithm, as given in Section 5.2.3 (CN-ADI Adaptive Memory). The plots

demonstrate that the Full Implementation algorithm is the least efficient, as computational

time has a near exponential dependence on simulation time, due to the costs of taking

into account the entire past memory of the simulation at every timestep and having to

loop over all grid location in both spatial directions. Both the original Adaptive Memory

and CN-ADI algorithms present a significant increase in efficiency compared to the Full

Implementation, and the decrease in computational time becomes more significant as

simulation length increases. Compared to all three of the other algorithms, the CN-ADI

Adaptive Memory is shown to have the greatest decrease in computational time.

However, we also note that in Chapter 4 we have done a complete algorithmic

complexity analysis on any scheme that is based on the full sampling of past timesteps or

integrates the adaptive memory algorithm based on an arithmetic sequences. Both were

found to have complexity O
(
N2) where N is the number of timesteps (proportional to

simulation time). Therefore, all four methods referred to in this section and for which

data is shown in Fig. 5.4.2, have complexity O
(
N2), despite having drastically different

raw execution times for a given simulation.

In Chapter 4 we also analyzed the complexity of the linked list implementation

(which essentially applies an adaptive time step algorithm based on a power law) and

found it to be O(Nlog2N), which scales considerably more efficiently with number of



120

timesteps N. Therefore a natural consideration for future development of this work would

be to adapt the Crank-Nicholson -ADI scheme developed in this chapter, with the linked

list implementation. The complexity would be O(Nlog2N) but additional stability and

consistency analyses would be necessary.

5.5 Conclusion

With the CN-ADI Adaptive Memory scheme we have developed an implicit,

efficient numerical method for solving the two-dimensional time-fractional diffusion

equation. With an expanded stability regime it can be applied to problems with bio-

physically accurate parameters (such as large diffusion coefficients) without requiring an

unfeasibly small timestep. With regards to computational time it performs well compared

to the full implementation and adaptive memory schemes described in Chapter 3. How-

ever, as alluded to in the last section, there is room to further improve on its algorithmic

complexity by combining it with the linked list approach.

In addition, we also note that although implicit methods have many advantages

over explicit methods (stability, accuracy, efficiency), it is also far less straightforward

to incorporate nonlinear or complex source terms, when applying these schemes to real

physical problems. In this regards, explicit schemes have an advantage of ease of applica-

bility. Depending on the problem being modeled, the advantages and disadvantages of

all options must be considered; the most appropriate algorithm will dependon the context

of the problem being solved.

Chapter 5, in part, is currently being prepared for submission for publication of

the material. Nirupama Bhattacharya and Gabriel A. Silva. The dissertation author was

the primary investigator and author of this paper.
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Figure 5.5.1: Comparison of computational times as a function of simulation time, for various
numerical algorithms for the fractional diffusion equation.



Chapter 6

Fractional Diffusion of IP3 in the

Induction of LTD

6.1 Introduction

Over the last three chapters we have discussed in depth numerical methods used

to solve the time-fractional diffusion equation, and now turn our focus to an application

of fractional diffusion in neuroscience, specifically regarding the anomalous diffusion of

ubiquitous second messenger signaling molecule inosital-1,4,5-trisphosphate, or IP3.

It has been experimentally and computationally demonstrated that anomalous

diffusion of various molecules occurs along the spiny dendrites of Purkinje neurons,

particularly for the second messenger IP3 [43]. Detailed computational analysis explains

that the anomalous nature of the diffusion is caused by the complex geometry of spines

along the dendrites, which act as localized traps for particles diffusing along the axial

direction of the dendrite. Santamaria et. al. also explored the diffusion of calcium;

however they found that because excess calcium concentration was so quickly removed

by buffers that it did not have a chance to be trapped, it did not undergo anomalous

122
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diffusion. This result is verified by Biess et. al [5], who find that calcium dynamics are

most strongly regulated by buffers and not by cytoplasmic crowding or the geometry of

the dendritic spines.

In the context of Chapter 2 and the discussion of certain long-tailed distributions

giving rise to the fractional diffusion equation, we can interpret the findings in [43] in the

following way. If diffusing particles travel along the dendrite as they normally would,

they are taking a finite step size after a finite time step. However, if some of these particles

are locally trapped within a nearby spine, from the axes of the dendrite, it appears that

these particles are not moving, and thus waiting for a long period of time before making

the next jump (although they may be diffusing within the spine itself). This behavior

corresponds to a long tailed probability distribution for waiting time, which, as we have

seen in Chapter 2, is the foundation for the derivation of the time-fractional diffusion

equation. Thus, anomalous diffusion in the complex geometry of spiny dendrites, can be

accurately reflected by the time-fractional diffusion equation.

Although IP3 plays an important role in many biological contexts, in this chapter

we focus on its role in the signaling events leading up to the induction of long-term

depression, or LTD, in the spines of Purkinje dendrites. Long-term depression is an

important form of synaptic plasticity that results in sustained depression of the activity

level of a neuron, caused by decrease in synaptic strength between the neuron and its

inputs. LTD is observed in cerebellar Purkinje neurons, and is involved in learning and

memory [9], motor learning tasks and coordination, as well as posture and locomotion

adaptation [16].

One of the main mechanisms of LTD induction, is coincidental activation of a

neuron by climbing fiber (CF) and parallel fiber (PF) inputs. Parallel fiber inputs are

from the axons of neighboring granule cells synapsing onto the spines of a Purkinje

cell dendrite. While each spine generally has a weak synaptic connection with a single
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PF [17], a single Purkinje neuron may have connections with a total of hundreds of

thousands of parallel fibers. The biochemical details of the parallel fiber input involves a

cascade of signaling events that begins when glutamate released from the granule cell,

binds to its receptors on the spine of the Purkinje neuron. This sets off a sequence of

events that results in production of IP3 that then diffuses through the cytosol of the spine

and neighboring dendrite [16], become degraded, or bind to IP3R (IP3 receptors), the last

of which can result in calcium release from internal stores. In contrast to the multiple

connections with parallel fibers, a single Purkinje neuron has a total input from a single

climbing fiber which has a strong synaptic connection with the Purkinje neuron [17].

CF activation results in a nonlocal depolarization of the neuronal membrane (in contrast

to a very localized activation of a single spine area by PF inputs); this allows calcium

influx into the cytosol through voltage-gated calcium channels. LTD has been found to

be initiated by a supralinear calcium response from coincidental PF and CF activation of

the Purkinje neuron; this response is greater in magnitude than the linear summation of

the individual calcium responses to individual PF or CF activation [17, 16].

Hernjak et. al. built a one-dimensional model to simulate the signaling events that

precedes LTD in a cerebellar Purkinje dendrite. Their model simulates the concentration

of several species, including second messengers calcium and IP3, as well as calcium

buffers, which strongly regulate the calcium levels outside the ER. For each species,

the concentration in the dendrite and spines are modeled as two separate compartments,

with a flux term describing the flow between the compartments, that takes into account

the complex geometry of the spine neck (see schematic in Fig. 6.1.1). This model was

able to accurately reflect parallel-fiber (PF) and climbing-fiber (CF) stimulation of a

Purkinje dendrite, both independently of each other, and coincidentally with each other.

The model also captures the supralinear calcium influx that results from coincidental PF

and CF stimulation, which, as stated, is a key component in the induction of LTD.
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Figure 6.1.1: Schematic of the model developed by Hernjak et. al [16]. The model is simulated
on a one-dimensional domain, but takes into account separate compartments for concentrations
in the spines, and concentration in the dendrite. A flux term is included to simulate the transport
of material between the compartments, through the narrow spines necks.

In this chapter, our goal is to model the diffusion of IP3 using fractional diffusion,

to reflect the geometric complexities of spines along the dendrite. A fractional diffusion

component is also used to simplify Hernjak’s multi compartmental model, while still re-

taining the functionality that captures the dynamics of PF and CF activation, and the very

important supralinear calcium response that is a vital component in the induction of LTD.

Instead of simulating species concentrations for both dendritic and spine compartments,

our modified model only has a single one-dimensional domain and does not explicitly

calculate flux through the spine neck or take into account the complex geometry of the

spines (see schematic in Fig. 6.1.2); those details are reflected in the fractional diffusion

components, as have been demonstrated in previous chapters.

6.2 Modified Model

The model we develop here is a simplified version of the one-dimensional model

developed in [16], and adapted to include fractional diffusion of second messenger
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Figure 6.1.2: In the modified model presented in this chapter, we collapse everything into
a single compartment that represents the dendrite along a one-dimensional domain. PF input,
which occurs at a single spine, is applied to a single location along the one-dimensional axis.

IP3. We model the concentration of second messengers Ca2+, IP3, and calcium buffers

parvalbumin (PV ), and calbindin (CD28k). PV has binding sites for both Ca2+ and

Mg2+, and CD28k has medium and high-affinity binding sites. For both PV and CD28k,

multiple binding sites are accounted for by treating each site as independent of each other.

Therefore the model explicitly solves for the concentrations for the unbounded and bound

forms of both buffers: PV , PV Bc, PV Bm, CD28k, CD28kB1, CD28kB2, and CD28kB12.

All variables are solved on a one-dimensional domain of length 250 µm centered around

x = 0 which is the location of the spine where PF and CF activation occur. ∆t = 0.1 ms

and spatial grid size is determined by the numerical algorithm used and order of the

fractional operator.

6.2.1 Calcium Dynamics

For Ca2+, the governing equation is given by

∂
[
Ca2+]

∂t
= Rdi f f usion,Ca +Rbu f f ering +Rchannel +Rentry−Rextrusion (6.2.1)
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where each term is explained in further detail.

Rdi f f usion describes the diffusion process acting on calcium. Santamaria et. al.

conclude that although IP3 undergoes anomalous diffusion due to localized trapping

caused by geometrical complexities of spiny dendrites, the same does not apply to

calcium in the cytosol because it is removed so quickly by calcium buffers that it does

not travel far enough to be trapped. Therefore we model the diffusion of calcium with

classical Gaussian diffusion:

Rdi f f usion,Ca = DCa
(
∇

2 [Ca2+]) (6.2.2)

where DCa is the diffusion coefficient.

Rbu f f ering describes the rate of binding of calcium to buffers calbindin and parval-

bumin. It is given by

Rbu f f ering = −RPV Bc +RCD28k

RPV Bc = kon,PV,Ca
[
Ca2+] [PV ]− ko f f ,PV,Ca [PV Bc]

RCD28k = −kon,CD28k,h [CD28k]
[
Ca2+]− kon,CD28k,m [CD28k]

[
Ca2+]

−kon,CD28k,h [CD28kB2]
[
Ca2+]− kon,CD28k,m [CD28kB1]

[
Ca2+]

+ko f f ,CD28k,m [CD28kB2]+ ko f f ,CD28k,h [CD28kB1]

+
(
ko f f ,CD28k,h + ko f f ,CD28k,m

)
[CD28kB12]

where the on and off binding rates are given in Table 6.1, and whose values are taken

from [16].

Rchannel describes the behavior of calcium flux across the ER membrane. It reflects

the behavior of the following components: IP3R, SERCA pumps, and leak current from

the ER. IP3R has a nonlinear response based on binding of either or both IP3 and Ca2+; it
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is responsible for releasing calcium from the ER (where it is stored in high concentration)

through calcium-induced-calcium-release (CICR). SERCA pumps are responsible for

resequestering calcium from the cytosol, back in the ER. And lastly, there is a general

leak term representing calcium that is released from the ER through a leak current that,

due to the small leak constant L, has a negligible contribution to the overall calcium

dynamics. Rchannel is based on the Li-Rinzel minimal model of calcium dynamics [20]

and is given by

Rchannel = a

(
1−

[
Ca2+]

[Ca2+]ER

)(
h
[
Ca2+] [IP3]

([Ca2+]+dCa)([IP3]+dIP3)

)3

(6.2.3)

−Vmax
[
Ca2+]2

[Ca2+]
2
+ k2

er

+L

(
1−

[
Ca2+]

[Ca2+]ER

)

∂h
∂t

=
(
K1−

([
Ca2+]+K1

)
h
)

K2

The variable h is the probability of an inhibition site on the IP3R, being unoccupied.

Three other parameters of importance in the context of this section, are a, dIP3, and dCa.

a relates directly to the density of IP3R in the system. IP3R density is found to be larger

in Purkinje cells compared to other types of neurons, and therefore the a value used in

this model is the same as in [16], which is 10x the typical value used with the Li-Rinzel

model applied to other types of neurons. dIP3 relates inversely with the sensitivity of the

IP3R to the concentration of IP3 (meaning the higher the sensitivity, the lower the value

of dIP3). IP3R in Purkinje cells have found to have decreased sensitivity, and therefore

the value of dIP3 used in this model is also the same as in [16], which is 10x the typical

value found in other studies dealing with other types of neurons. Details about parameter

values are found in Table 6.1.

Rchannel is a key part of the calcium dynamics that is largely responsible for the

supralinear calcium response during coincidental PF and CF stimulation, as we shall see
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in the results section. In Fig.6.2.1 we plot Rchannel as a function of IP3 and calcium, for

various h values. Notice that for low IP3 concentrations, Rchannel varies slowly as calcium

concentration increases. But for higher IP3 concentrations, we observe a sharper increase

in Rchannel values as calcium concentration increases, as seen by the distinct contour lines.

This essentially means that due to coincidental detection (or signal integration) and CICR

mechanisms of IP3Rs, it is easier to go from low to high calcium concentrations, for a

given high concentration of IP3. At high [IP3] concentrations, more IP3 is bound to its

receptors. If a slight increase in calcium concentration is initiated by some other external

signal (in this model it is caused by CF activation), enough calcium becomes bound to

IP3R to cause a small release of calcium from internal stores, which through the positive

feedback mechanism that is calcium-induced-calcium-release, causes more calcium to be

bound to the receptors, thus allowing more calcium influx into the cytosol. In addition,

the higher the value of h, the greater the range of values that Rchannel encompasses, and

the greater Rchannel contributes to the change in overall calcium dynamics, for given

concentrations of IP3 and calcium. Overall, we see that the Rchannel is greatest in value

when both IP3 and calcium concentrations are high, (due to the power term in Eq. 6.2.3

which represents behavior of IP3R); this clearly coincides with the idea that the receptor

together with the ER function as a signal integrator for second messengers like calcium

and IP3 [4].

Rentry is the term that simulates the depolarization of the Purkinje cell by the CF

stimulus. In the original version given by [16], to represent a delocalized depolarization

of the entire Purkinje cell, there is an influx of calcium into both the spine that the CF

stimulus originates from, and the adjacent dendrite. In this modified model, we reflect

this behavior by using Js to determine the magnitude of calcium entry in the spine, only

at the spine location (whose physical width is given by L and is inversely proportional to

the linear spine density along the dendrite), while Jd is used as the magnitude of calcium
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Figure 6.2.1: The behavior of Rchannel as a function of IP3 and calcium concentrations. Notice
that for low IP3 concentrations, Rchannel varies slowly as calcium concentration increases. But
for for higher IP3 concentrations, we observe a sharp increase in Rchannel value when the calcium
concentration is around 1 µM, as seen by the distinct contour lines. In addition, the higher
the value of h, the greater the range of values that Rchannel encompasses, and the great Rchannel
contributes to the change in overall calcium dynamics, for given concentrations of IP3 and
calcium.
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entry everywhere else in the domain, which represents the dendrite.

Rentry,s =

(
|x|< L

2

)
Js (t > τ1)(t < τ2)

([
Ca2+]

ex−
[
Ca2+]) (6.2.4)

Rentry,d =

(
|x|> L

2

)
Jd (t > τ1)(t < τ2)

([
Ca2+]

ex−
[
Ca2+]) (6.2.5)

Rentry = Rentry,s +Rentry,d (6.2.6)

This entry term represents an influx of calcium proportional to the difference in calcium

concentration between the extracellular space and the ER, that only occurs during the

time period τ1 < t < τ2.

And finally, Rextrusion represents the removal of calcium through the plasma

membrane and is proportional to the amount of calcium above a threshold level (below

which the membrane pumps providing the mechanisms for extrusion are inactive):

Rextrusion = σP
([

Ca2+]−
[
Ca2+]

T

([
Ca2+]>

[
Ca2+]

T

))

P is the rate of pumping, and σ denotes the surface to volume ratio of the area of extrusion,

and this value is different for the dendrite and spine compartments. In the modified model,

this translates to a different extrusion value at the location of the spine, compared to

everywhere else on the domain.

A general schematic of the components contributing to calcium dynamics and

where they are occuring, is given in Fig. 6.2.2.

6.2.2 IP3 Dynamics

The governing equation for IP3 dynamics is given by

∂ [IP3]

∂t
= Rdi f f usion,IP3 +RIP3 (6.2.7)
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Figure 6.2.2: Schematic of the components contributing to calcium dynamics, including
diffusion, calcium buffers, transport across the ER membrane, and transport across the plasma
membrane.



133

Santamaria et. al. concludes that IP3 undergoes anomalous diffusion due to localized

trapping caused by geometrical complexities of spiny dendrites; therefore we choose to

describe IP3 diffusion with fractional diffusion:

Rdi f f usion,IP3 = DIP3

(
D1−γ

t ∇
2 [IP3]

)

where DIP3 is the diffusion coefficient and D1−γ

t is the fractional derivative operator.

However, in this model, IP3 influx is initiated at a location on the one-dimensional model,

that corresponds to a single spine. That is, IP3 influx caused by PF activation, occurs in a

spine before spreading to the adjacent dendritic segment. In Hernjak’s original model,

the spine and dendrite are simulated as distinct compartments, and there is a flux term

describing the flow of material from the location of the spine, to the adjacent section

of the dendrite. There is no other diffusion term applied to the IP3 located in the spine;

in this way the signal there remains localized and only travels to the adjacent dendritic

segment through the geometric bottleneck that is the spine neck. The resulting effect

is elevated IP3 concentration at the point of influx (at the location of the spine), which

approximates the localized IP3 signal that is sustained in a separate spine compartment

(that undergoes no diffusion except as flux through the spine neck) as modeled by Hernjak

et. al.

The source term RIP3 describes the production of IP3 due to PF activation, as well

as degradation of IP3 to IP2 and IP4, and is given by

RIP3 =

(
|x|< L

2

)
Jpexp(−K3t)

n−1

∑
i=0

(t > (iτ3))exp(iτ3K3) (6.2.8)

−Kdeg ([IP3]− [IP3]0)

PF activation instigates IP3 production only in a single spine, and there is then flux of

material between the spine and neighboring dendritic segment, through the spine neck.
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Figure 6.2.3: Schematic of the components contributing to IP3 dynamics, including a source
term that represents the production of IP3 resulting from PF activation, degradation, and diffu-
sion.

The increase in [IP3] is modeled as a series of pulses that are spaced out by time τ3, and

whose magnitude and decay rate are controlled by parameters Jp and K3.

A general schematic of the components contributing to IP3 dynamics and where

they are occuring, is given in Fig. 6.2.3

6.2.3 Calcium Buffers

The behavior of calcium buffer dynamics are given by the common governing

equation
∂ [X ]

∂t
= Rdi f f usion,X +RX

where species X represents the bound and unbound forms of the buffers parvalbumin and

calmodin. Rdi f f usion,X is given by classical diffusion, DX ∇2 [X ]. While it is possible that

compared to individual ions, the relatively large size of calcium buffer molecules causes
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them to undergo anomalous diffusion due to molecular crowding or localized traps, there

is currently a lack of experimental or computational data to reflect this and therefore we

do not consider the fractional diffusion of the buffer species, in the modified model.

RX gives the expression of binding rates, and the expressions for all buffer

species are the same as in the Appendix of [16], where instead of dendritic and spine

compartments we have a single one-dimensional domain: [X ]d = [X ]s = [X ]

6.2.4 Parameters

While the majority of parameters used in the modified model are taken from

Table 1 in [16], there were several initial conditions that needed to be calculated, and

several parameters that needed to be adjusted to recreate signals comparable to existing

experimental results in literature.

To begin, initial buffer concentrations were determined by removing both PF and

CF inputs, and letting all concentration values reach steady state. The steady state buffer

concentrations under these conditions were then used as initial values. All initial values

of species are reported in Table 6.1.

In addition, when running the modified model with only PF stimulation, the

parameters relating to IP3 influx, needed to be adjusted from the source values in [16].

Even in attempting to replicate the results using the original model by Hernjak et. al,

the IP3 dynamics during only PF stimulus were not able to be captured given the same

parameter values as in Table 1 of [16]. The amplitude of the fast rise of IP3 seen in the

activated spine (Fig. 4 in [16]), were only replicated when parameters JIP3 and K3 were

adjusted. The model by Hernjak et. al., was solved by finite volume methods in the

Virtual Cell program, while I reproduced their model in Matlab using finite difference

methods; the discrepancy in parameter usage may possibly lie in this difference in

numerical implementation.
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Table 6.1: Parameter values and initial conditions used in the modified model.

Parameter Description Value Source, Notes

DCa Calcium diffusion coefficient 223 µm2s−1 [16]
DIP3 IP3 diffusion coefficient 283 µm2s−1 [16]
DPV PV diffusion coefficient 43 µm2s−1 [16]

DCD28k CD28k diffusion coefficient 28 µm2s−1 [16]
kon,CD28k,high Forward rate coefficient for CD28k 5.5 µm2s−1 [16]
kon,CD28k,med Forward rate coefficient for CD28k 43.5 µm2s−1 [16]

ko f f ,CD28k,high Reverse rate coefficient for CD28k 2.6 s−1 [16]
ko f f ,CD28k,med Reverse rate coefficient for CD28k 35.8 s−1 [16]

kon,PV,Ca Forward rate coefficient for PV , calcium binding site 107.0 µM−1s−1 [16]
kon,PV,Mg Forward rate coefficient for PV , magnesium binding site 0.8 µM−1s−1 [16]
ko f f ,PV,Ca Reverse rate coefficient for PV , calcium binding site 0.95 s−1 [16]
ko f f ,PV,Mg Reverse rate coefficient for PV , magnesium binding site 25.0 s−1 [16]

a IP3R calcium release amplitude,
proportionate to receptor density/abundance

21,000.0 µMs−1 [16]

[Ca2+]er ER
[
Ca2+] 400 µM [16]

dCa IP3R binding constant for calcium,
inversely proportionate to sensitivity

0.3 µM [16]

dIP3 IP3R binding constant for IP3,
inversely proportionate to sensitivity

20.0 µM [16]

Vmax Amplitude of SERCA pump intake 3.75 µMs−1 [16]
ker Pump binding constant 0.27 µMs−1 [16]
L Leak constant 0.12 µM [16]

K1 Dissociation constant for IP3R 0.2 µM [16]
K2 Forward rate coefficient,

calcium binding to inactivating IP3R site
2.7 µM−1s−1 [16]

h0 Initial h value, probability of inhibition site on IP3R
being unoccupied

0.6 Fit

τ1 Start time of CF calcium influx 0.18 s Fit
τ2 End time of CF calcium influx 0.185 s Fit
Js Magnitude of CF calcium entry signal at the spine

location
6 s−1 Fit

Jd Magnitude of CF calcium entry signal
along the rest of the dendrite

3 s−1 Fit

[
Ca2+]

ex Extracellular calcium concentration 1000 µM [16]
JIP3 IP3 pulse magnitude 1200µM s−1 Fit
τ3 Time between IP3 pulses 0.012 s [16]
K3 IP3 pulse decay factor 10∗1.188 s−1 [16]

Kdeg IP3 degradation rate 0.14 s−1 [16]
P Calcium extrusion pumping rate 8.0 µm s−1 [16][

Ca2+]
T Threshold

[
Ca2+] 0.2 µM [16][

Mg2+] [
Mg2+] 590 µM [16]

[PV ]t Total [PV ] 40 µM [16]
[CD28k]t Total [CD28k] 40 µM [16]
[PV ]0 Initial [PV ] 1.63 µM Calc.

[PV Bc]0 Initial [PV Bc] 8.14 µM Calc.
[PV Bm]0 Initial [PV Bm] 30 µM Calc.
[CD28k]0 Initial [CD28k] 34.615 µM Calc.

[CD28kB1]0 Initial [CD28kB1] 3.304 µM Calc.
[CD28kB2]0 Initial [CD28kB2] 1.9 µM Calc.
[CD28kB12]0 Initial [CD28kB12] 0.181 µM Calc.[

Ca2+]
0 Initial

[
Ca2+] 0.045 µM [16]

[IP3]0 Initial [IP3] 0.16 µM [16]
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6.2.5 A Note on Numerical Methodology

There are several details to consider when deciding what numerical methods

to apply to the set of equations constituting this adapted model. The nonlinear aspect

of several source terms (including Rchannel) that contribute to the governing equation

for calcium dynamics, create stiff equations that require a small timestep for stability,

especially when using explicit methods. In addition, the diffusion coefficients for calcium

and IP3 are large, and also require small timesteps to maintain stability. Using implicit

methods will generally relax the stringent stability requirements of small timesteps

associated with explicit numerical methods, but developing an implicit framework with

such nonlinear source terms as in Eq.6.2.1, is quite complicated.

There have been methods developed to deal with fractional diffusion equations

with nonlinear source terms [21]; however their numerical methods proceed from the

Riemann-Liouville definition of the fractional derivative operator, and further work is

needed to integrate their approach with the finite summation methods developed in the

last few chapters of this thesis.

Therefore, explicit methods have been chosen to implement this modified model.

However despite the ease with which explicit methods for fractional diffusion can be

integrated with this modified model, the general nature of explicit numerical methods

results in a strict relationship between fractional order γ, and simulation parameters

∆x and ∆t, provided diffusion coefficients are fixed, as they are in this context. As

demonstrated in [57], for a one-dimensional system, the required relationship between

parameters to ensure a stable simulation is

D∆tγ

∆x2 ≤
1

22−γ
(6.2.9)

One of the major challenges in developing this modified model, was in choosing ap-
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propriate timestep and grid size parameters in order to balance the execution time with

inaccuracies that might result from too large a grid size, especially since localized signals

are important in this model, and localization is lost once ∆x becomes too large.

It should also be noted that for very small step sizes ∆t, there is also an error

introduced in the numerical algorithms for fractional diffusion, due to the ∆tγ term that is

present in both explicit and implicit numerical methods to solve the fractional diffusion

equation. Depending on the value of γ, when ∆t is extremely small, this term can diverge

greatly from the analogous term (simply timestep taken to the first power) for classical

diffusion, and the result is a skewed solution in time where the fractional diffusion

profile diffuses more quickly than the classical diffusion profile (all other conditions

held constant), which is clearly an incorrect result. To bypass this numerical artifact, we

would require implicit numerical time marching schemes for all equations that contribute

to the modified model. As we have already stated, this is not straightforward because of

highly nonlinear source terms that make certain governing equations very stiff in nature,

but this is an open problem to consider in future endeavors and in refining the modified

model to make it more robust to parameter changes.

6.3 Preliminary Results and Discussion

6.3.1 Modified Model With Fractional Diffusion

We present in Fig. 6.3.1 the results of our modified model with fractional diffusion

of IP3, with γ = 0.7, which is within the range of γ values that Santamaria et. al. found

corresponded to spiny dendrites on Purkinje neurons [43]. The figure shows the IP3 and

calcium dynamics with PF activation, CF activation, and coincidental activation. In part

A of Fig. 6.3.1, we see the IP3 signal resulting from combined CF and PF inputs; this

signal is the same as for PF activation alone, and remains at equilibrium concentration
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for CF activation alone. In 6.3.1 B, we see that under PF activation alone, the rise in

calcium concentration is very small. Under CF activation alone, we see an expected

spike in calcium concentration due to the dynamics presented in 6.2.4. The amplitude

of this spike is approximately 2.5 µM. However, under coincidental activation (PF + CF

activation), the resulting calcium dynamics clearly represent supralinear behavior: that

is, the result is greater than a linear sum of the calcium response under PF activation

alone, and CF activation alone. The key to this supralinear response lies in the dynamics

representing the IP3R (as mentioned in the discussion about Rchannel in Section 6.2.1) and

high concentration of both IP3 and calcium. The calcium response has two components:

a fast spike, followed by a slower rise and decay. The fast spike has an amplitude

that is greater than the sum of the calcium spike under CF activation alone, and the

small calcium rise under PF alone; this represents supralinear behavior. In addition, the

following slower rise and decay is due to Rchannel which represents the activity of the

IP3R. The dip in calcium concentration immediately after the fast spike, is due to fast

acting calcium buffers trying to counter the rise in cytosolic calcium; however, they are

completing with the behavior of IP3R (represented by Rchannel), which continues to have

a large response due to simultaneous high concentration levels of calcium and IP3 which

is decaying slowly due to the decay factor K3 in Eq. 6.2.8, as well as the fact that we are

modeling diffusion with fractional diffusion (which as established in previous chapters,

results in sustained higher concentrations for longer periods of time). As you can see in

Fig. 6.3.1, the peak IP3 concentration coincides with the time of CF stimulus; this time,

set by τ1 in Table 6.1, was selected to give the maximum supralinear response.

6.3.2 Modified Model With Regular Diffusion

Figure 6.3.2 shows the results of our modified model when the fractional diffusion

of IP3 is changed to regular diffusion (a simple switch by setting γ = 1). In A, it is clear



140

A)

B)

Figure 6.3.1: Preliminary results for the modified model with fractional diffusion, γ = 0.7:
demonstration of PF activation, CF activation, and supralinear calcium dynamics during coinci-
dental activation. A) [IP3] at the location of the spine, during PF + CF coincidental activation.
Since the governing expression for IP3 does not depend at all on calcium concentrations, the
dynamics seen in this figure are the same as during solely PF activation. B) The graph shows the
calcium dynamics during only PF activation (red), only CF activation (blue), and coincidental
activation (PF + CF). It is clear that under coincidental activation the model produces supralinear
calcium dynamics.



141

that IP3 reaches much lower concentration levels over the same time period of simulation,

and decays at a faster rate (compared to Fig. 6.3.1). In B, we see that the calcium

response for PF or CF activation alone, is similar to Fig. 6.3.1B; however, the response

during coincidental activation, fails to reproduce the supralinear dynamics that we see in

Fig. 6.3.2. This suggests that the fractional diffusion component of our modified model

is required to ensure that IP3 concentration is high enough at the location of spine of

interest, to induce a proper supralinear calcium response.

It should be noted that the grid size for the results in this section, are not the same

as in Section 6.3.1; with regular diffusion, we find that we can make our grid more refined

and still maintain stability. With fractional diffusion, to achieve the same refinement

in grid size, we must decrease our time step further, which, because of increases in

computational time and memory requirements, we found to be unfeasible to simulate

with the use of a single personal computer; a cluster is likely required to calculate those

results efficiently. However, we also refer to the discussion on numerical considerations in

Section 6.2.5 and emphasize that in order to concretely compare the results of our model

using fractional diffusion, and using regular diffusion, we would need to use implicit

numerical methods for all governing equations (particularly for IP3 and calcium), so that

the time step can be increased, perhaps by a factor of 5 or 10. This would also allow us

to decrease the spatial grid size and better localize some of our signals (especially related

to PF activation). The result would be a more accurate model that is more robust to

parameter changes. Nevertheless, the preliminary results given in Fig. 6.3.1 and 6.3.2 are

logical given what we know about the nature of anomalous diffusion and are qualitatively

in line with what we would expect from fractional diffusion of IP3 in comparison to

normal diffusion.
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A)

B)

Figure 6.3.2: Preliminary results for the modified model with regular diffusion: demonstration
of PF activation, CF activation, and lack of supralinear calcium dynamics during coincidental
activation. A) [IP3] at the location of the spine, during PF + CF coincidental activation. Since
the governing expression for IP3 does not depend at all on calcium concentrations, the dynamics
seen in this figure are the same as during solely PF activation. B) The graph shows the calcium
dynamics during only PF activation (red), only CF activation (blue), and coincidental activation
(PF + CF). It is clear that under coincidental activation the modified model with regular diffusion
of IP3, fails to produce supralinear calcium dynamics.
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6.4 Conclusion

In this chapter, we have explored a particular application of the time-fractional

diffusion equation, in modeling the anomalous diffusion of IP3 in spiny dendrites of

Purkinje neurons. We have shown that we can use fractional diffusion in predictive

modeling, to simplify an existing, more complicated geometrical model developed by

Hernjak et. al., which explicitly takes into account spine and dendritic compartments,

as well as the flux between the two through a narrow spine length. After removing all

references to explicit geometry of the protruding spines and replacing these geometric

details with a fractional diffusion element in the governing equation for IP3 dynamics, the

modified model was still able to capture the most important functionality of the original

model related to the induction of LTD, as shown in Section 6.3. There are still some

open ended numerical considerations to pursue in order to make the modified model

more accurate and robust to parameter changes, but in this chapter we have laid out the

motivation for our modified model, the details of our model, and preliminary results

demonstrating our initial predictions which were based on well known and observed

characteristics of anomalous diffusion (sustained, slowly diffusing peaked profile).



Chapter 7

Conclusion and Future Directions

This thesis represents a multifaceted exploration of the fractional diffusion equa-

tion. In Chapter 2 we focused on its theoretical derivations originating from the random

walk scenario and the trajectories of diffusing particles; Chapters 3-5 then explored the

practical considerations of numerically simulating this equation, including questions

related to stability, efficiency, and algorithmic complexity, and the development of a new

computational algorithm. In Chapter 6 we delved into a specific neuroscience application

in which the time-fractional diffusion equation was used to simulate the dynamics of

anomalously diffusing IP3, and integrated into a larger model of the signaling events

leading up to the induction of LTD. Finally, in this chapter, we take a brief look at several

future directions where there are interesting questions to be asked about how fractional

diffusion can accurately reflect the true behavior of diffusing particles, and what kinds

of problems can be answered by integrating fractional diffusion into broader biological

models.

144
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7.1 Fractional Diffusion and Effects on LTD

In Chapter 6 we have established that we can use fractional diffusion to simplify

an existing computational model of the signaling events leading to LTD, and still capture

an important functionality of the original model (the required signaling inputs resulting

in a supralinear calcium response that matches the true experimental results). When

discussing our modified model results, we focused on species concentrations at the

location of a single spine where LTD would occur due to the localized PF input. However,

it is interested to observe how fractional diffusion affects the diffusion profile of IP3 along

the entire dendrite, and what consequences this has on calcium signals in neighboring

spines or dendritic segments. Fig. 7.1.1 demonstrates the difference in the diffusion

profile when our modified model uses fractional diffusion, and regular diffusion. It is

clear that elevated [IP3] occurs along the dendrite near the location of the single spine that

was activated by the parallel fiber of interest. Given that IP3R are spread along the ER

through the dendrite and protruding spines, does elevated [IP3] make it easier for localized

calcium influx at these neighboring locations, to trigger some sort of elevated calcium

response? Since a single Purkinje neuron can be connected to many parallel fibers,

each synapsing onto a single spine, it would be interesting to consider how anomalous

diffusion of IP3 along the dendrite, affects coincidental PF and CF activation, and the

induction of LTD, in several spines in the same vicinity. In addition, while we have only

considered a one-dimensional problem in Chapter 6, we can construct a two-dimensional

domain and make use of the two-dimensional explicit and implicit numerical methods

discussed in Chapters 3-5. In that scenario we could consider how the signaling related to

LTD, is different from one ‘side’ of a dendrite to another - how does the size and radius

of the dendrite affect the propagation of these signals and the spread of LTD?
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A

B

Figure 7.1.1: Diffusion profiles along the length of the dendrite. A) The IP3 diffusion profiles
from our model when using fractional diffusion, and using regular diffusion, at t = 0.1 s. B)
The IP3 diffusion profiles from our model when using fractional diffusion, and using regular
diffusion, at t = 0.5 s. It is clear that at all times in the simulation, the diffusion profile resulting
from fractional diffusion is greater in magnitude and retains the characteristic persistent central
peak, in comparison with the Gaussian diffusion profile (which, while in A, starts out peaked
due to a localized initial condition and source term for IP3, very quickly smoothes out as seen in
B.
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7.2 Calcium Signaling

There is potential to use fractional diffusion to model underlying biophysical

behavior of calcium. As discussed in [1], calcium signaling is important on many

spatiotemporal times scales. In all cell types, calcium is involved as a signaling molecule

on all spatial scales, from the nanodomain to full intracellular and intercellular calcium

waves.

Tan et. al. take a closer look at modeling calcium sparks in cardiac myocytes, with

fractional diffusion [50]. Their research was motivated by the fact that existing models

based on classical Fickian diffusion, failed to accurately capture spatial characteristics of

recorded calcium sparks, especially with regards to full-width-half-maximum (FWHM)

measurements, which were not reproduce able using models with classical diffusion

(referred to as the FWHM paradox). Possibly underlying reasons for this discrepancy

is related to the ongoing discussion in the scientific community about the structure

of the cytoplasm being more complex than previously thought, having characteristic

on multiple length scales, as well as viscoelastic properties, none of which are taken

into account with classical diffusion models. Tan et. al find their model best fits

spatiotemporal characteristics of experimental data and is able to FWHM paradox, when

they use anomalous space diffusion (i.e., the fractional operator is in relation to the

spatial derivative, not the time derivative). Chen builds upon these results and uses space-

fractional diffusion to model the transport of calcium at the scale of intracellular waves,

and are able to recreate calcium waves under physiological conditions and replicate wave

velocities observed in experimental data [8].

Given this growing interest in modeling calcium sparks and general calcium

diffusion in terms of fractional diffusion, there are several important questions to consider.

Firstly, while we have shown in this thesis that there are clear biophysical mechanisms
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that cause anomalous diffusion which can be modeled with the time-fractional diffusion

equation, what are the underlying mechanisms behind space-fractional diffusion? In

the same way that anomalous diffusion is non-Markovian in time (with the state of the

system at the next time step depending on the history of the system), space-fractional

diffusion is non-Markovian in space. That is, when numerically simulating this type

of equation [49], the state of the system at a particular location, depends on the entire

domain of the system, not just local values of neighboring grid points. It is interesting

to consider what kind of physical behavior leads to this spatial non-locality. [50, 8]

suggest some hypotheses that include the long range effects of an electric field caused

by the calcium ions themselves, or complex characteristic structures of the cytoplasm.

On a larger spatial scale, we can also consider whether the modeling of calcium with

fractional diffusion, is able to predict wave size, propagation distance, or details about

the conditions under which calcium sparks and individual calcium-release-units (CRUs),

may or may not coalesce into a larger intracellular wave.

7.3 ATP Signaling in Astrocyte Networks

Several times in this thesis we have mentioned that our original motivation for

exploring anomalous diffusion and the fractional diffusion equation, was observing the

unusual peaked diffusion profiles of ATP in glial cells in the retina (Fig. 7, [38]). This

suggested that ATP possibly undergoes anomalous diffusion in the extracellular space;

some potential underlying mechanisms for this behavior include a general complex

and tortuous extracellular environment, which is well known to be extremely complex

in nature. Given these observed profiles, it would be interesting to include fractional

diffusion of ATP in a signaling model, such as the one developed in [29], where ATP

is a vital signaling component in the propagation of intercellular calcium waves in an
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astrocyte network. In much the same manner as the intracellular calcium waves discussed

in the last section, some possible questions to explore would be the effects of ATP

subdiffusion on the propagation of the astrocytic intercellular calcium waves, including

wave size and traveling velocity, or the pattern of activation of astrocytes in the network.
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