
Lawrence Berkeley National Laboratory
LBL Publications

Title

Parallel-In-Time Magnus Integrators

Permalink

https://escholarship.org/uc/item/7nd0768c

Journal

SIAM Journal on Scientific Computing, 41(5)

ISSN

1064-8275

Authors

Krull, Brandon
Minion, Michael

Publication Date

2019

DOI

10.1137/18M1174854
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7nd0768c
https://escholarship.org
http://www.cdlib.org/


PARALLEL-IN-TIME MAGNUS INTEGRATORS1

B. T. KRULL AND M. L. MINION ∗2

Abstract. Magnus integrators are a subset of geometric integration methods for the numerical3
solution of ordinary differential equations that conserve certain invariants in the numerical solution.4
This paper explores temporal parallelism of Magnus integrators, particularly in the context of5
nonlinear problems. The approach combines the concurrent computation of matrix commutators and6
exponentials within a time step with a pipelined iteration applied to multiple time steps in parallel.7
The accuracy and efficiency of time parallel Magnus methods up to order six are highlighted through8
numerical examples and demonstrate that significant parallel speedup is possible compared to serial9
methods.10

Key words. Ordinary differential equations, nonlinear ordinary differential equations, Magnus11
expansions, isospectral flows, Lax pairs, parallel-in-time12

AMS subject classifications. 34L30, 65L05, 65Y0513

1. Introduction. The solution of ordinary differential equations (ODEs) is a14

well established field with applications across the spectrum of scientific disciplines.15

Numerical methods date back at least to Euler’s work in 1768 [5], and the accuracy,16

stability, and efficiency of various methods is well studied (see for example Refs. [8, 9]).17

In more recent years, the study of specialized numerical methods for ODEs that18

preserve certain mathematical properties of the numerical solution has seen increased19

interest. Examples include methods for Hamiltonian systems that numerically conserve20

invariants of the true dynamical system such as the energy or angular momentum.21

More generally, the true solution of an ODE posed in N -dimensional space may reside22

for all time on a manifold M of dimension d < N , and the goal is to devise a method23

for which the numerical solution will also remain on M. Such methods are referred24

to in general as geometric integrators. The interested reader is encouraged to consult25

Ref. [7] for a comprehensive introduction to the subject.26

As a concrete example, consider the ODE given by27

(1.1)
d

dt
Y (t) = F (Y (t)), Y (0) = Y0,28

where Y and F (Y ) are both N ×N matrices. Depending on the form of F , certain29

properties of the initial value Y0 may be preserved for all time, such as the determinant,30

orthogonality, idempotency, or the spectrum of eigenvalues. In general, standard31

numerical methods such as linear multistep or Runge-Kutta methods will not produce32

solutions that conserve such properties [16].33

Magnus integrators are a subset of geometric integrators based on the expansion34

proposed by Wilhelm Magnus in 1954 [14]. The Magnus expansion is closely tied to35

the concept of Lie groups and algebras due to the presence of matrix commutators,36

also known as Lie brackets. The discussion concerning solutions to Eq. (1.1) can37

in fact be generalized to differential equations on Lie groups (see e.g. Ref. [12]),38

however in this work we strictly use matrix valued solutions. Magnus integrators can39

also be viewed as a type of exponential integrator (see e.g. Ref. [11] for a review)40

since they require that the matrix exponential be evaluated. The comprehensive41

review of the Magnus expansion and applications by Blanes, et. al. [1] provides42

∗Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory,
Berkeley, CA, 94720.

1

This manuscript is for review purposes only.



2 Krull and Minion

a description of several physical applications to which the Magnus expansion has43

been applied including nuclear, atomic, and molecular dynamics; nuclear magnetic44

resonance; quantum field theory and high energy physics; electromagnetism; optics;45

geometric control of mechanical systems; and the search for periodic orbits.46

In general, numerical Magnus integrators are constructed by applying quadrature47

rules of suitable order to a truncation of the Magnus expansion. The review [12] presents48

various types of Magnus integrators up to sixth-order, and methods of order up to eight49

are considered in Ref. [2]. As the order increases, the number of commutator terms50

required in the Magnus expansion grows quickly, hence in these papers and others, a51

detailed discussion of how to minimize the number of commutators required for a given52

order is presented. So called commutator-free Magnus integrators (e.g. Refs. [3, 18])53

have also been proposed that replace the need to compute matrix commutators with54

additional matrix exponentials. This can reduce the total computational cost of55

the method depending on the relative cost of computing commutators versus matrix56

exponentials. In this paper, an additional avenue for reducing the time to solution for57

Magnus integrators is investigated, namely parallelization in time.58

The study of parallel numerical methods for ODEs dates back at least to Nievergelt59

in 1964 [17], and the field has seen an increase in activity in the last 15 years. (See60

Ref. [6] for a recent review.) The standard classification of parallel methods for ODEs61

includes parallelism across the method, across the problem, and across the time steps62

[4]. In this work we demonstrate the utility of parallelization across both the method63

and the time steps for Magnus integrators for both linear and nonlinear equations.64

Special attention is paid to schemes for solving nonlinear differential equations for65

isospectral flow problems, although the methodology that is described can be applied66

more generally.67

The remainder of this paper is organized as follows. Section 2 presents the68

mathematical background behind the Magnus expansion and Magnus integrators69

followed by some specific Magnus integrators based on Gaussian collocation in section 3.70

The parallelization strategies for these integrators is presented in section 4. Numerical71

results comparing the efficiency of different parallel methods is presented in section72

5. The results demonstrate that significant parallel speedup over serial methods is73

possible and show that parallel higher-order methods are superior in terms of accuracy74

and time to solution compared to lower-order methods.75

2. Mathematical Preliminaries. In this section, a review of the mathematics76

behind the construction of Magnus integrators for both linear and nonlinear problems77

is reviewed.78

2.1. Matrix Calculus and Differential Equations. Given a constant matrix79

A ∈ FN×N , where F can be either R or C, the exponential of A is defined by the power80

series81

(2.1) eA =

∞∑
n=0

An

n!
.82

Given the time-dependent vector y(t) ∈ FN , the solution to the differential equation83

(2.2) y′(t) = Ay(t), y(0) = y084

is given by85

(2.3) y(t) = eAty0.86

This manuscript is for review purposes only.



Parallel in Time Magnus Integrators 3

This is easily shown by differentiating the power series definition (2.1) of the exponential87

on the right hand side term-by-term to give88

(2.4)
d

dt
eAt = AeAt.89

Now consider the more general case of a time-dependent matrix A(t). Again90

differentiating definition (2.1) term-by-term and using the product rule yields91

(2.5)
d

dt
eA(t) = A′(t)+

A(t)A′(t) +A′(t)A(t)

2!
+
A(t)′A(t)2 +A(t)A′(t)A(t) +A(t)2A′(t)

3!
. . .92

The right hand side of (2.5) can be rearranged to give93

(2.6)
d

dt
eA(t) = dexpA(t)(A

′(t))eA(t),94

where the operator on the right is defined by95

(2.7) dexpA(t)(X(t)) = X(t) +
[A(t), X(t)]

2!
+

[A(t), [A(t), X(t)]]

3!
. . . ,96

and brackets [·, ·] denote the matrix commutator [A,X] = AX −XA.97

Now consider the linear system of ODEs98

(2.8) y′(t) = A(t)y(t), y(0) = y0.99

To find a solution, suppose that it can be written in the form100

(2.9) y(t) = eΩ(t)y0101

for some matrix Ω(t). Using Eq. (2.6), Ω(t) satisfies102

(2.10) dexpΩ(t)(Ω
′(t)) = A(t), Ω(0) = 0.103

The same formal derivation can be applied to a nonlinear system of equations104

(2.11) y′(t) = A(y(t), t)y(t), y(0) = y0.105

Again, if the solution to this equation is to take the form of Eq. (2.9), then Ω(t)106

satisfies107

(2.12) dexpΩ(t)(Ω
′(t)) = A(y(t), t), Ω(0) = 0.108

In the next section, methods for finding Ω(t) are considered.109

2.2. Magnus Expansion. In 1954, Magnus introduced an explicit expression110

for the solution of Eq. (2.8), which is reviewed here [14]. The first step is the inversion111

of the operator dexpΩ(t), which gives a differential equation for Ω(t)112

(2.13) Ω′(t) =

∞∑
n=0

Bn
n!

adnΩ(t)(A(t)), Ω(0) = 0,113

where the Bn are the Bernoulli numbers and114

(2.14) adkΩ(X) = [Ω, adk−1
Ω X], ad0

Ω(X) = X.115

This manuscript is for review purposes only.



4 Krull and Minion

Next, a Picard-type iteration is applied to Eq. (2.13)116

(2.15) Ωk+1(t) =

∫ t

0

∞∑
n=0

Bn
n!

adnΩk(t)(A(t)).117

Collecting terms in Eq. (2.15) yields an infinite series for Ω(t)118

(2.16) Ω(t) = Ω(1)(t) + Ω(2)(t) + Ω(3)(t) + . . . ,119

where120

(2.17) Ω(1)(t) =

∫ t

0

dτA(τ)121

122

(2.18) Ω(2)(t) =
1

2

∫ t

0

dτ2

∫ τ2

0

dτ1[A(τ2), A(τ1)]123

124
(2.19)

Ω(3)(t) =
1

6

∫ t

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1[A(τ3), [A(τ2), A(τ1)]] + [[A(τ3), A(τ2)], A(τ1)]125

126

Ω(4)(t) =
1

12

∫ t

0

dτ4

∫ τ4

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1 [[[A(τ4), A(τ3)], A(τ2)] , A(τ1)]127

+ [A(τ4), [[A(τ3), A(τ2)], A(τ1)]]128

+ [A(τ4), [A(τ3), [A(τ2), A(τ1)]]]129

+ [A(τ3), [A(τ2), [A(τ1), A(τ4)]]] .(2.20)130

Each subsequent term in the series contains an additional integration operator, com-131

mutators of one higher order, as well as an increasing number of commutator terms.132

The reader is referred to the original work of Magnus [14] or the extensive review [1]133

for further details. To summarize, the Magnus expansion gives an explicit formula for134

the solution of the linear equation given by Eq. (2.8) in the form of the exponential of135

a matrix defined by an infinite series given by Eq. (2.16).136

2.3. The Magnus Expansion for Nonlinear Problems. The same formal137

procedure used in the last section to construct the solution to the linear problem138

Eq. (2.8) can also be applied to the nonlinear system Eq. (2.11). One can still represent139

the solution in terms of the exponential of the function Ω(t), and the only difference140

is that in the Magnus expansion terms given above in Eqs. (2.17)-(2.20), the terms141

A(τ) must be replaced with A(y(τ), τ), which by the definition of the solution is142

A(eΩ(τ)y0, τ). Although this may appear at first a small change in notation, the143

implication is quite important. For the nonlinear problem, the Magnus expansion144

does not give an explicit formula for the function Ω(t) as in the linear case. Instead,145

the result is an equation for Ω(t) involving an infinite expansion of terms containing146

integrals of commutators dependent on Ω(t). The central insight of this paper is that147

this equation for Ω(t) can be solved efficiently by a fixed point iteration that is readily148

amenable to parallelization in the time direction.149

This manuscript is for review purposes only.



Parallel in Time Magnus Integrators 5

2.4. Isospectral Flows. A special type of matrix differential equation for which150

the eigenvalues of the solution are independent of time is called isospectral flow.151

Problems of this form exist in application domains including electronic structure, wave152

dynamics, and linear algebra. Isospectral flow is often associated with the concept of153

a Lax pair: two matrices or operators A(t), Y (t) dependent on time that satisfy the154

Lax equation155

(2.21) Y ′(t) = [A(Y, t), Y (t)], Y (0) = Y0,156

where Y (t), A(Y, t) ∈ FN×N .157

It is straightforward to show that the solution to Eq. (2.21) can be written in the158

form of the transformation159

(2.22) Y (t) = (eΩ(t))Y0(eΩ(t))−1,160

where Ω(t) is defined by the Magnus expansion with respect to A(t). Since the form of161

Y (t) takes on a similarity transformation, the eigenvalues of Y (t) do not change in time,162

hence the term isospectral. In the special case where A is Hermitian (or self-adjoint)163

and Y is skew-Hermitian (or skew-adjoint), the exponential eΩ(t) is unitary, which164

reduces Eq. (2.22) to165

(2.23) Y (t) = (eΩ(t))Y0(eΩ(t))†.166

3. Numerical Methods Based on the Magnus Expansion. In this section,167

the process for constructing numerical methods for differential equations based on the168

Magnus expansion is discussed. In general, numerical methods are constructed by169

designing appropriate quadrature rules for the Magnus expansion truncated to a given170

order. The presentation here is focused on collocation type schemes based on Gaussian171

quadrature rules. As proved in Ref. [13], quadrature rules for the terms in the Magnus172

expansion based on s Gauss-Legendre quadrature nodes are sufficient for constructing173

a method of order 2s. Here, methods of order two, four, and six are considered174

using both Gauss-Legendre and Gauss-Lobatto quadrature nodes. These methods175

correspond to quadrature rules applied to one, two, and four terms, respectively, in176

Eq. (2.16).177

Considerable attention in the literature on Magnus integrators is devoted to de-178

signing methods requiring the minimum number of function evaluations and matrix179

commutators for a given order of accuracy [13, 1, 12]. In the context of time paral-180

lelization, the manner in which the cost of commutators and function evaluations are181

counted must reflect the fact that much of the work can be done in parallel, and the182

minimum parallel cost is not necessarily achieved by a direct parallelization of the183

serial method with the fewest number of commutators.184

Methods for linear equations are discussed first, followed by a discussion of185

additional considerations for nonlinear problems in section 3.3.186

3.1. Quadrature Rules for the Magnus Expansion. In this section, the spe-187

cific types of quadrature rules used in the numerical methods are described. Quadrature188

rules based on Gauss-Lobatto or Gauss-Legendre quadrature rules using either two or189

three quadrature nodes are considered here. Table 1 lists the specific nodes used for190

each choice as well as the accompanying classical weights. For a method of a given191

order, each term in the truncated Magnus expansion must be approximated using the192

function values Am = A(tm) (or Am = A(y(tm), tm) for nonlinear problems) at the193

quadrature nodes tm corresponding to the quadrature nodes scaled to the time step194

This manuscript is for review purposes only.



6 Krull and Minion

Name Order Nodes q(1)

Lob-2 2 0, 1 1
2 ,

1
2

Lob-3 4 0, 1
2 , 1 1

6 ,
4
6 ,

1
6

Leg-3 6 1
2 −

1
2

√
3
5 ,

1
2 ,

1
2 + 1

2

√
3
5

5
18 ,

8
18 ,

5
18

Table 1
Quadrature nodes and weights for Gauss-Legendre and Gauss-Lobatto rules.

interval [tn, tn+1]. For the schemes described below, the same quadrature nodes are195

used at each term in the expansion in Eq. (2.16).196

First consider the approximation to the first term of the expansion Ω(1)(t) on197

the interval [tn, tn+1] with ∆t = tn+1 − tn. Approximating the integral by Gaussian198

quadrature gives199

(3.1) Ω(1)(tn+1) =

∫ tn+1

tn

A(t) dt ≈ ∆t

M∑
j=1

q
(1)
j Aj = Ω

(1)
n+1,200

where M is the number of quadrature nodes. This is classical quadrature, and the201

well-known coefficients q
(1)
j are given for completeness in Table 1.202

In order to obtain a fourth-order method, the second term in the Magnus expansion203

must be included. The simplest approximation to Ω
(2)
n+1 sufficient for fourth-order204

accuracy requires the calculation of only a single commutator term205

(3.2) Ω
(2)−1
n+1 = ∆t2q(2)−1[A1, A3],206

with q(2)−1 = 1/12. The method denoted Lob-4-1 (where the 1 denotes one commutator207

term) uses this approximation. To compute Ω(2) to the accuracy required for a208

sixth-order method, three nodes can be used and it is necessary to compute three209

commutators210

(3.3) Ω
(2)−3
n+1 = q

(2)−3
1 [A1, A2] + q

(2)−3
2 [A1, A3] + q

(2)−3
3 [A2, A3]211

with the values212

(3.4)

q
(2)−3
j = [−7.1721913818656e−2,−3.5860956909328e−2,−7.1721913818656e−2] .213

Despite the increased computational cost of two additional commutators, in a parallel214

implementation all three commutators can be computed simultaneously.215

To achieve sixth-order accuracy, the first four terms of the Magnus expansion216

must be included. The sixth-order method denoted Leg-6 approximates the Ω(3) term217

using three Gauss-Legendre nodes following the discussion in Ref. [12]. Specifically,218

Ω
(3)
n+1 = ∆t3([q

(3)
1,1A1 + q

(3)
1,2A2 + q

(3)
1,3A3, [A1, A2]]+219

[q
(3)
2,1A1 + q

(3)
2,2A2 + q

(3)
2,3A3, [A1, A3]]+220

[q
(3)
3,1A1 + q

(3)
3,2A2 + q

(3)
3,3A3, [A2, A3]]).(3.5)221

222

The values of the coefficients q
(3)
i,j are the same as those in Ref. [12], and in matrix223

This manuscript is for review purposes only.



Parallel in Time Magnus Integrators 7

form are224

(3.6)

q(3) =

3.4538506760729e−3 −5.5849500293944e−3 −7.1281599059377e−3
1.6534391534391e−3 0.0 −1.6534391534391e−3
7.1281599059377e−3 5.5849500293945e−3 −3.4538506760729e−3

 .225

Exploiting the linear property of commutators ([A,X] + [A, Y ] = [A,X + Y ]) allows226

one to combine terms that share the same inner single commutator and reduce the227

number of commutators from nine to three. Note that the single commutator terms,228

i.e. [A1, A2], are computed during the formation of the Ω
(2)
n+1 term and need not be229

computed again.230

The fourth term in the Magnus expansion can be approximated using a low-order231

quadrature for a sixth-order method. Following the discussion in Ref. [2], the fourth232

term is approximated by233

(3.7) Ω
(4)
n+1 = ∆t4q(4)[B0, [B0, [B0, B1]]],234

where q(4) = 1/60 and235

(3.8) Bi = ∆t

3∑
j=1

q
(1)
j (tj − 0.5)iAj236

with q
(1)
j given in the last row of Table 1.237

In section 5, numerical examples are presented for five different Magnus integrators.238

Table 2 lists the specific discretization of each term included for a given method. The239

overall order of each method is determined either by the number of terms used in the240

expansion, or the order of the quadrature rules. For example, the methods Leg-2, Leg-241

4-3, and Leg-6 use the same quadrature nodes, but differ in the number of terms used242

in the expansion, while Lob-2 and Leg-2 use different nodes, but are both second-order243

because only one term in the expansion is used.

Name Order Nodes Ω

Lob-2 2 Lob-2 Ω(1)

Leg-2 2 Leg-3 Ω(1)

Lob-4-1 4 Lob-3 Ω(1) + Ω(2)−1

Leg-4-3 4 Leg-3 Ω(1) + Ω(2)−3

Leg-6 6 Leg-3 Ω(1) + Ω(2)−3 + Ω(3) + Ω(4)

Table 2
Description of the numerical schemes.

244

3.2. The Matrix Exponential and Solution Update. Once all of the quadra-245

ture approximations are applied and the value of Ωn+1 is computed, the solution can246

be updated by247

(3.9) yn+1 = eΩn+1yn.248

There are many approaches to computing the product of a matrix exponential and a249

vector of the form eAy [15], some of which explicitly compute the term eA and some250

which only approximate the product eAy. The choice of method is problem dependent251

and does not affect the discussion of time parallelism of the methods. In the numerical252

examples presented here, the scaling-and-squaring method from [10] is used to form253

the matrix exponential explicitly.254

This manuscript is for review purposes only.



8 Krull and Minion

3.3. Considerations for Nonlinear ODEs. Consider now problems of the255

form256

(3.10) y′ = A(y, t)y257

where non-linearity is introduced through the y-dependence of A. The terms in the258

Magnus expansion approximations introduced above now depend on the solution259

through Am, and cannot simply be evaluated. The numerical solution at each quadra-260

ture node tm will be denoted ym, and hence Am = A(ym, tm). The values of ym at261

each quadrature node are computed by262

(3.11) ym = eΩmyn,263

where Ωm is an approximation to the Magnus expansion on the interval [tn, tm]. The264

construction of Ωm is discussed below.265

A simple fixed-point Picard-type iteration is used to simultaneously solve for the266

values Ωm and ym. The iterative scheme is initialized by setting yk=1
m = yn at each267

node m, where k denotes the iteration. The solution at each quadrature node is268

updated by269

(3.12) yk+1
m = eΩk

myn.270

Then Ωk+1
m is computed using values A(yk+1

m , tm) as described below.271

To compute Ωkm, the process for constructing the quadrature rules in section 3.1272

needs to be applied to each quadrature node. Evaluating the values A(ykm, tm) at273

each node tm is straight-forward but needs to be performed each iteration. In all274

cases considered here, the same matrix commutators are used for each quadrature275

rule, so computing the commutators is also identical to the linear case. The significant276

difference is that a quadrature rule for each term in the Magnus expansion must be277

computed for each interval [tn, tm] rather then just [tn, tn+1] as in the linear case. The278

coefficients for each of the terms are included in Appendix A.279

Once each Ωk
m is computed, the matrix exponential can be computed for each280

node, and a new solution is obtained at each node by Eq. (3.12). The solution is281

considered converged when the maximum absolute value of the residual282

(3.13) Rkm = eΩk
myn − ykm = yk+1

m − ykm283

is less than a predefined tolerance. In a traditional implementation of this iteration284

using Gauss-Legendre nodes, it is not necessary to compute the values Ωkn+1 and yn+1285

at the end of the time step during the iterations; however, when pipelining of iterations286

is employed as discussed in the next section, yn+1 is computed each iteration to update287

the initial condition for the next time step.288

3.4. Considerations for Isospectral Flows. Consider now problems of the289

form of Eq. (2.21). The procedure for constructing Magnus integrators follows exactly290

that laid out in the previous section except that the solution is defined at quadrature291

nodes by292

(3.14) Y k+1
m = eΩk

mYne
−Ωk

m ,293

and likewise for the computation of Y k+1
n+1 from Ωkn+1.294

This manuscript is for review purposes only.



Parallel in Time Magnus Integrators 9

4. Parallelization in Time for Magnus Integrators. In this section, we295

investigate the theoretical computational cost of the Magnus integrators introduced in296

the previous section in both serial and parallel settings. We consider both parallelization297

across the method and parallelization across the time steps. In the following discussion,298

it is assumed that arbitrarily many processors are available for a given problem and299

the cost of communication between processors is ignored. It is also assumed that the300

matrix exponential is formed explicitly as is done for the the numerical results given301

in Section 5.302

4.1. The Linear Case. First consider linear problems where A(t) does not303

depend on the solution y. For each of the N time steps, the following tasks must be304

performed:305

L1. Evaluate Am = A(tm) for each quadrature node tm306

L2. Compute commutators necessary for each term in the truncated Magnus307

expansion308

L3. Apply quadrature rules to compute Ω(tn+1)309

L4. Form the exponential of Ω(tn+1)310

L5. Compute the solution yn+1 from yn by matrix multiplication311

Denote by CA the computational cost of computing A(t) for a given time. Then if M312

quadrature nodes are used, L1 has a computational cost of MCA. Next let np denote313

the number of commutators required to compute the pth term in the Magnus expansion314

and CC the cost of computing one commutator. Assuming that each commutator315

in the p+ 1 term can be formed with one additional commutator applied to a term316

from term p, the total number of commutators to compute is simply n1 + . . . nP .317

Denoting this sum by NC , the cost of L2 is NCCC . Task L3 requires only that a318

linear combination of the terms computed in L2 be computed. We can denote this cost319

by NCCL, where CL is the cost of adding a term in the linear combination. Denote320

by CE the cost of the matrix exponential, and hence the cost of L4 is CE . Likewise321

denote by CM the cost of multiplying the solution by a matrix which corresponds to322

the cost of task L5. Putting these together, the serial cost for N time steps is323

(4.1) CS = N(MCA +NC(CC + CL) + CE + CM ).324

Now consider the parallelization of the method for the linear problem across the325

time steps. In task L1, each function evaluation can be done concurrently, so that the326

cost is reduced from MCA to CA. For task L2, all the commutators of a given order327

can be computed concurrently, so that cost is reduced from NCCC to PCC . Task L3328

can be done with cost log2(NC)CL, and the cost of task L4 and L5 remains the same.329

Next consider the cost when both parallelization across the method and across the330

time steps is employed. Given sufficient processors, tasks L1-L4 can all be computed331

on all time steps concurrently. Only task L5 must be done serially so that the total332

cost using both forms of parallelism becomes333

(4.2) CP = CA + PCC + log2(NC)CL + CE +NCM .334

Clearly this is a significant reduction in computational cost. If the cost of computing335

the commutators and matrix exponential (L2 and L4) dominate the other terms, the336

theoretical parallel speedup approaches N .337

An important point to make about this counting is that the cost per step when338

using parallelization across the method depends very little on the number of quadrature339

nodes or commutators used in each term since only the cost of task L3 depends on340

This manuscript is for review purposes only.



10 Krull and Minion

these factors. Hence higher-order methods are only modestly more expensive per341

step than lower-order methods and there is less benefit from reducing the number of342

commutators required in each term of the Magnus expansion since multiple terms can343

be computed in parallel. Furthermore, for a given accuracy, higher-order methods will344

typically require fewer time steps (i.e. smaller N).345

4.2. The Nonlinear Case. For nonlinear problems, the theoretical accounting346

of cost must be modified somewhat. Since we are using an iterative procedure to347

compute Ω(tm), the following steps must be done for each iteration in each time step:348

N1. Evaluate A(ykm, tm) for each quadrature node tm349

N2. Compute commutators necessary for each term in the truncated Magnus350

expansion351

N3. Apply quadrature rules to compute Ωkm at each quadrature node tm352

N4. Form exponential of Ωkm at each quadrature node tm.353

N5. Compute yk+1
m at each quadrature node by matrix multiplication by Ωkm.354

The main difference between these tasks and the linear case is that N2-N5 are done355

for each quadrature node instead of only once. For simplicity, the serial cost of these356

steps will be assumed to be M times that of the linear case. Hence, denoting by KS357

the number of iterations required for each step in a serial implementation, the serial358

cost for the nonlinear Magnus method iteration becomes359

(4.3) CS = NKSM(CA +NC(CC + CL) + CE + CM ).360

As will be shown below, the number of iterations required for convergence KS depends361

on ∆t in a nontrivial way.362

If we allow parallelization across the method, the tasks above can all be computed363

concurrently at each quadrature node, and hence the cost of each iteration for the364

nonlinear method is essentially that of one step in the linear case using parallelization365

across the method.366

(4.4) CI = CA + PCC + log2(NC)CL + CE + CM .367

The speedup across the method is bounded by M .368

Now consider parallelization across the time steps. The simplest way that this can369

be accomplished is to pipeline the iterations. We first divide the N time steps into370

blocks of size NP with each step in a block assigned to a group of processors indexed by371

np. At each time step np for each iteration k, the initial condition is assigned the final372

value from iteration k − 1 of the time step np − 1. For each block, NP − 1 pipelined373

iterations are required before the last processor has a consistent initial condition. After374

this initialization step, assume KP additional iterations are needed for convergence375

on every time step in the block. As in the serial case KP depends in general on the376

time step ∆t and now also on NP , increasing as NP increases and decreasing at ∆t377

decreases. Furthermore KP ≥ KS .378

The parallel cost on each block will be (NP − 1 +KP )CI compared to (NPKS)CI379

when no parallelization across the time steps is applied (i.e. NP = 1). The potential380

speedup from parallelization across the time steps is then381

(4.5) S =
NPKS

NP − 1 +KP
=

KS

1 + (KP − 1)/NP
.382

Clearly the speedup is bounded by the number of serial iterations required and the383

best speedup will occur when the quantity KP /NP remains small as NP increases.384

This ratio will be investigated in the numerical examples.385

This manuscript is for review purposes only.



Parallel in Time Magnus Integrators 11

5. Numerical Examples. In this section, the performance of the different386

Magnus integrators introduced in section 3 is examined in both serial and parallel387

settings. First, the performance of the methods is considered as applied to a Toda388

lattice problem from the literature. Serial results demonstrating the relative accuracy389

and efficiency of the various methods are presented. In section 5.1.3, some preliminary390

results on parallelization of the methods are presented. In section 5.2, the parallel391

performance of the methods is considered on a problem motivated by real-time time-392

dependent density functional theory.393

5.1. Test Case 1: The Periodic Toda Lattice. The numerical methods will394

first be evaluated on the test problem of a d-particle periodic Toda lattice [19], a395

one-dimensional chain whose dynamics are governed by nonlinear nearest-neighbor396

interactions. The equations of motion are a Hamiltonian system for positions qj and397

momenta pj (assuming unit masses)398

q′j = pj(5.1)399

p′j = e−(qj−qj−1) − e−(qj+1−qj).(5.2)400401

In order to cast the dynamics in terms of a Lax pair as in Eq. (2.21), one uses the402

Flaschka change of variables403

αj =
1

2
e−(qj+1−qj)/2(5.3)404

βj =
1

2
pj ,(5.4)405

406

which leads to definitions of Y and A407

(5.5)

Y =



β1 α1 0 . . . αd

α1 β2 α2
. . .

...

0 α2
. . .

. . . 0
...

. . .
. . .

. . . αd−1

αd . . . 0 αd−1 βd


, A(Y ) =



0 −α1 0 . . . αd

α1 0 −α2
. . .

...

0 α2
. . .

. . . 0
...

. . .
. . .

. . . −αd−1

−αd . . . 0 αd−1 0


.408

The numerical example considered here is an 11-particle periodic Toda lattice409

taken from Ref. [21] with the initial conditions410

q(0) = [0, . . . , 0]T411

pj(0) =

{
4, 1 ≤ j ≤ 4,

0, j ≥ 5.
(5.6)412

413

The periodic Toda lattice is not asymptotically free and has considerably complicated414

motion. Figure 1 shows the position and momenta of the 11 particles up to tfinal = 10.0.415

416

5.1.1. Simulation parameters. The following numerical experiments are all417

performed on this 11-particle periodic Toda lattice with initial conditions as in Eq. (5.6)418

and a fixed tfinal = 10.0. A Picard iteration tolerance of 10−12 is used on the maximum419

absolute value of the residual at the end of the timestep. The reference solution is420

taken as the Leg-6 method with ∆t = 2−15tfinal or 32768 steps. The reported error421

This manuscript is for review purposes only.



12 Krull and Minion

Fig. 1. Symmetric periodic 11-particle Toda lattice solutions with initial conditions as in
Eq. (5.6).

is defined as the matrix 2-norm of the absolute value of the difference between the422

solution in question and the reference solution.423

The methods have been implemented using the LibPFASST 1 library. Communi-424

cation between pipelined iterations is done in LibPFASST using MPI, and the variable425

NP corresponding to the number of parallel steps is also the number of MPI ranks.426

For parallelization across the method, OpenMP is used to parallelize the steps in the427

nonlinear iteration. All timing results were performed on a single compute node of428

NERSC’s Cray XC30 supercomputer, Edison, which contains 24 hardware cores and429

64 GB of memory.430

5.1.2. Serial Results. We first perform convergence tests to examine the error431

with respect to ∆t for different Magnus methods. Figure 2 shows the behavior for432

each method summarized in Table 2. Each method displays the proper convergence433

rate for a range of ∆t. For the second-order methods, note that the error for Leg-2434

is significantly smaller than that of Lob-2, which implies the dominant error term435

for Lob-2 is due to the quadrature rule as opposed to the truncation of the Magnus436

expansion. The Leg-2 method requires more serial work in this case due to the use437

of three quadrature nodes instead of two. The difference between the fourth-order438

methods is less significant. Leg-4-3 is more accurate than Lob-4-1 (with a higher serial439

cost), but since the main difference between the two methods is how the second term440

in the Magnus expansion is treated, the difference between the two is smaller than441

for the second-order methods. Leg-6 is clearly more accurate than the other methods.442

Note that only about nine significant digits of accuracy is attainable for the reference443

solution for this problem using double precision due to the sensitivity of the solution444

to perturbations.445

To better demonstrate the relative computational cost of each method, Figure 3446

shows the total serial wall-time versus number of steps for the experiment above. As447

expected, Lob-2 is the method with the shortest time to solution. Lob-4-1, the simplest448

fourth-order method that can be constructed, is actually less expensive than the second-449

order Leg-2 scheme despite the fact that Lob-4-1 requires a matrix commutator. For450

the small problem size used here, the matrix commutators are relatively inexpensive,451

and the fact that matrix exponentials must be computed at three internal quadrature452

nodes for Leg-2 more than makes up for the lack of commutator terms. Leg-4-3 and453

1LibPFASST is available at https://github.com/libpfasst/LibPFASST.

This manuscript is for review purposes only.

https://github.com/libpfasst/LibPFASST


Parallel in Time Magnus Integrators 13

Fig. 2. Error at tfinal = 10.0 versus ∆t for the Toda lattice test case.

Leg-6 are unsurprisingly the most expensive in serial.

Fig. 3. Total wall-time for the solution for the Toda lattice test case for fixed tfinal = 10.0.

454

Note that the cost of the methods displayed in Figure 3 does not grow exactly455

linearly with the number of time steps. This is due to the fact that the number of456

Picard iterations needed to converge to the tolerance depends on the time step ∆t.457

Figure 4 shows the average number of iterations over all time steps for each method as458

a function of ∆t. Note the higher-order methods require moderately fewer iterations459

This manuscript is for review purposes only.



14 Krull and Minion

than lower-order methods, and as the time step gets larger, the number of iterations460

required for convergence grows rapidly.

Fig. 4. Average number of iterations as a function of ∆t for serial methods on the Toda lattice
test case.

461

The three figures provided above demonstrate that it is not necessarily trivial to462

choose a method and time step that will provide a solution to a given accuracy with463

the least computational effort. To illustrate this, Figure 5 shows the accuracy versus464

wall-clock time for the Toda lattice test. Reading from left to right for a given accuracy465

shows in increasing order, the methods with the fastest time-to-solution. While Lob-2466

is by far the cheapest method, it only the fastest method for simulations where the467

error is O(1). Lob-4-1 is the most efficient for error tolerances to about 10−6, after468

which Leg-6 becomes the most efficient. For an error of about 10−6, Leg-6 and Lob-4-1469

are more than an order of magnitude more efficient than the second-order methods.470

5.1.3. Parallel in Time Results. In this section, the relative performance471

of parallel Magnus integrators is explored. We first consider the speedup due to472

parallelization over time steps by pipelining the Picard iterations. As discussed in473

Section 4, the theoretical speedup from pipelining is bounded by the number of serial474

iterations required for the method and depends on how the total number of parallel475

iterations required to reach convergence grows as the number of time parallel steps476

is increased. As in the serial case, the number of iterations required depends on the477

time step but now depends also on the number of parallel time steps in the pipeline.478

Figure 6 demonstrates this dependence for the Toda lattice test using method Leg-6 by479

plotting the average number of iterations required for convergence for different ∆t and480

parallel steps, denoted by NP . As in the serial case, the number of iterations required481

decreases with decreasing ∆t and here it also increases for fixed ∆t as NP increases.482

A second way to display the convergence behavior of the pipelined iteration is to483

plot the residual after each iteration for each time rank. Figure 7 shows this data for484

the Leg-6 method using a time step of ∆t = 10/128 in the top panel and ∆t = 10/1024485

in the bottom panel for 16 parallel time steps. As discussed in section 4.2, the speedup486

This manuscript is for review purposes only.



Parallel in Time Magnus Integrators 15

Fig. 5. Error versus time to solution for the serial Toda lattice test case. Each point on a line,
read from top to bottom, represents a two-fold increase in the number of steps.

Fig. 6. Average number of pipelined iterations to reach residual of 10−12 for the parallel Toda
lattice test case using the Leg-6 method.

achievable from pipelining depends on the ratio KP /NP . In this example it is clear487

that KP /NP is decreasing for large NP as more pipelined time steps are used.488

The nontrivial dependence of the parallel iterates on both ∆t and NP makes it489

difficult to predict which method with which parameters will minimize the time to490

solution for a given accuracy. As in the serial case, it is instructive to consider the491

accuracy versus wall-clock for different methods with different number of time-parallel492

This manuscript is for review purposes only.



16 Krull and Minion

Fig. 7. Residual convergence for each processor in a 16 MPI task simulation using the second-
order Legendre method Leg-6 with 128 steps (above) and 1024 steps (below). Every reoccurrence of a
given color is another 6 iterations.

steps. Figure 8 displays this information for each of the methods with increasing493

number of processors. Across a single method, e.g. Leg-6, there’s an optimal value494

of parallelization due to the fact that the increased number of iterations required in495

the pipeline algorithm starts to cost more than it gains. It is also likely for this test496

case that the small problem size implies that communication latency is not negligible.497

Nevertheless, it is again clear that higher-order parallel method gives a shorter time498

to solution than lower-order alternatives. The second-order methods are only less499

expensive than the higher-order methods when no digits of accuracy are computed.500

This manuscript is for review purposes only.



Parallel in Time Magnus Integrators 17

Fig. 8. Error versus time to solution for an 11-particle periodic Toda lattice example. Each color
represents a different method and each marker represents a different number of time-parallel steps,
Np = 1, 2, 4, 8, 16. Closed circles represent the serial computation, open circles Np = 2, triangles
Np = 4, squares Np = 8, and pentagons Np = 16.

Finally, we present preliminary results using parallelization across the method and501

across the time steps. Figure 9 shows the error versus time to solution for the serial502

implementation and time- and method-parallel methods. The particular configuration503

of Np = 8 and 3 OpenMP threads uses the entirety of 1 hardware node on NERSC’s504

Edison Cray XC30 supercomputer with no hyperthreading. The additional parallel505

across method provides an additional factor of at best two using simple OpenMP506

parallel do loops over nodes. Using both types of parallelism in this context gives507

up to a factor of 4.7 in the overall compute time compared to serial methods using508

24 total processors. Note that compared to serial second-order methods, the parallel509

sixth-order method can compute a solution in less time with more than four orders of510

magnitude lower error.511

5.2. Test Problem 2: An RT-TDDFT Proxy. The movitating application512

for the parallel Magnus methods introduced here is the simulation of electron dynamics513

using real-time time-dependent density functional theory (RT-TDDFT). In this section514

we study the parallel performance of the time-parallel Magnus methods on a test515

problem with a similar but simpler structure than RT-TDDFT.516

5.2.1. Physical Background. RT-TDDFT describes the time evolution of the517

density matrix P through the von Neumann equation of motion518

(5.7) P ′ = −i[F (P ), P ],519

This manuscript is for review purposes only.



18 Krull and Minion

Fig. 9. Error versus time to solution for an 11-particle periodic Toda lattice example. Solid
markers indicate serial calculations and open markers indicate time- and method-parallel runs with 8
MPI tasks and 3 OpenMP threads.

where F (P ) is the Fock matrix. The size of the matrices N scales with the number of520

electrons times the number of basis functions used to represent the electron density.521

The evaluation of F (P ), the construction of the Fock matrix, requires for each entry in522

P the approximation of one- and two-electron integrals which formally requires O(N4)523

work. Furthermore, the time scales on which electron dynamics occur are typically524

on the order of tens or hundreds of atto-seconds, hence even simulations of moderate525

sized molecules at the femto-second range are extremely computationally expensive.526

In the RT-TDDFT simulation suite in the NWChem code [20], Eq. (5.7) is integrated527

using a serial second-order Magnus integrator, and part of the motivation of this paper528

is to improve the efficiency of this choice.529

5.2.2. The Proxy Problem. To give an example of the performance of the530

parallel Magnus methods without requiring the considerable infrastructure necessary531

to compute the true Fock matrix, we consider a test problem inspired by a simplified532

one-dimensional RT-TDDFT problem. Here P is again an N ×N complex matrix,533

and534

(5.8) F (P )i,j =

N∑
i=1

i∑
j=1

(
Zf1(i, j) +

N∑
m=1

N∑
n=1

E(f2(i, j,m, n)− 1

2
f2(i, n,m, j))

)
535

The functions f1 and f2 correspond to the one- and two-electron integrals in RT-536

DTDFT, with the f1 term corresponding to the single electron Hamiltonian and the537

two f2 terms corresponding to the Coulomb and exchange operators respectively. The538

simplified forms here are derived by considering single Gaussian basis functions in one539

This manuscript is for review purposes only.



Parallel in Time Magnus Integrators 19

dimension with single point approximations of the integrals. Specifically540

(5.9) f1(i, j) = −Pi,jP̄j,i
r2

exp(− (x(i)− x(j))2

2
)541

with r = (x(i) + x(j))/2. Similarly542

(5.10)

f2(i, j,m, n) =
Pm,nP̄n,mPi,jP̄j,i

r2
exp(− (x(i)− x(j))2

2
) exp(− (x(m)− x(n))2

2
)543

with r = ((x(i) + x(j))/2 − (x(m) + x(n))/2). Note that the computation of F (P )544

in the problem is formally O(N4) whereas the matrix commutator terms are O(N3).545

The matrix exponential when computed by power series is also O(PN3) where P is546

the number of terms in expansion. Hence in this application (as in full RT-TDDFT547

simulations), the computation of F (P ) is the dominant cost for even moderate N .548

In the numerical tests, the spatial locations are uniformly spaced on [−1, 1] so that549

x(i+ 1)− x(i) = 2/(N − 1). The values for Z and E are 0.5 and 0.05 respectively.550

5.2.3. Parallel in Time Results. For the test problem described above, we run551

the parallel Magnus algorithms Lob-2, Lob-4-1, and Leg-6 on a 20 particle RT-TDDFT552

proxy problem as described above, using a final time of the run T = 0.05. For each553

choice of method, runs using 48, 96, 144, and 192 time steps are compared for different554

numbers of parallel processors Np = 1, 2, 4, 8, 16 and 24. A uniform time step is used555

in all cases, which is justified since the character of the dynamics does not change in556

time. As above, computations are run on 1 hardware node on NERSC’s Edison Cray557

XC30 consisting of 24 cores. For these comparisons, only the parallelism across time558

steps is used. Unlike the results in the previous section, the convergence tolerances559

are adjusted by case to avoid unnecessary iterations. In practice this means that560

the tolerances are larger for less accurate simulations since additional SDC iterations561

will reduce the residual but not the numerical error determined by the underlying562

quadrature rule. The tolerances here were chosen using knowledge of the error in the563

simulations and are shown in table 3 . Dynamically choosing the optimal tolerance for564

serial or parallel SDC methods is an open problem.

48 96 144 196
Lob-2 1e− 4 1e− 4 2e− 5 1e− 5

Lob-4-1 1e− 5 1e− 6 5e− 7 1e− 7
Leg-6 1e− 6 1e− 8 1e− 9 1e− 10

Table 3
Residual tolerances for the RT-TDDFT proxy problem for different methods and number of steps.

565

Fig. 10 compares the accuracy versus total computational time for each variation566

and demonstrates the attractiveness of both higher-order methods and time parallelism.567

The reported error in each case is the maximum absolute error along the diagonal of568

P (which in RT-TDDFT are the relevant quantities). It is clear from the timings that569

significant parallel speedup is attainable for methods of all order. As expected, the570

smaller the error tolerance, the larger the possible parallel speedup since there are571

in general more iterations to amortize over processors. Note that serial second-order572

methods are more expensive than the fastest fourth-order methods. In particular,573

the fastest serial fourth-order method runs in less time than the fastest serial second-574

order method because fewer iterations are needed for convergence (despite the smaller575

This manuscript is for review purposes only.



20 Krull and Minion

residual tolerance). Parallel sixth-order methods run faster than serial second-order576

methods while producing smaller errors by several orders of magnitude. In general,577

the optimal choice of method and parallelization depends on the error tolerance.

Fig. 10. Error versus time to solution for a 20-particle RT-TDDFT proxy example. Each color
represents a different method and each marker represents a different number of time-parallel steps,
Np = 1, 2, 4, 8, 16, 24. Closed circles represent the serial computation, open circles Np = 2, triangles
Np = 4, squares Np = 8, pentagons Np = 16, hexagons Np = 24.

578

6. Discussion. Much of the initial work on Magnus integrators is focused on579

linear problems where only a single evaluation of the Magnus expansion is required580

for each time step. In contrast, this paper explores the accuracy and cost of Magnus581

integrators applied to nonlinear problems. Nonlinear Magnus methods require solving582

an implicit equation involving the Magnus expansion to obtain the solution in each583

timestep, and the methods proposed here use a simple fixed point iteration for this584

solution that can be readily parallelized in time.585

One conclusion presented here is that in both the linear and nonlinear case,586

straight-forward parallelization across the method is possible, leading to higher-order587

methods with only marginally higher computational cost than lower-order methods.588

This is complimentary to previous results in the literature where considerable effort is589

placed on reducing the complexity of each of the terms in regards to the number of590

commutators required.591

The second level of parallelism described in this work, namely parallelization592

across the time steps through pipelined iterations, can further decrease the overall593

time-to-solution for nonlinear problems. There is a non-trivial relationship between594

the number of pipelined time steps, the time step size, and the number of iterations595

required for convergence of the iteration, hence it is not easy to predict a priori which596

choice of parameters will lead to the shortest wall clock time given a desired level597

This manuscript is for review purposes only.



Parallel in Time Magnus Integrators 21

of accuracy. Nevertheless, for the test cases considered here, in most situations, the598

parallel sixth-order methods require the least computation time and are far superior599

to serial second-order methods.600

It is important to note that the results here are preliminary and are performed on601

two test cases of moderate size. In general, the possible parallel speedup attainable602

for a given problem will depend on the sensitivity of the problem to perturbations,603

the relative cost of the operations such as computing commutators or the matrix604

exponential, and the ratio of computation to communication costs. In future work,605

the authors will use this parallel methodology to investigate real-time electronic606

dynamics, where the calculation of the right-hand side values is more expensive than607

both commutators and matrix exponentials as in the second numerical example. This608

paper addresses only the use of time-parallelism to reduce the wall clock time of serial609

Magnus methods, and not important issues like the best way to compute the matrix610

exponential, the optimal choice of time step, nor the dynamic stopping criteria for611

iterations. Such issues are present in both serial and parallel implementations of612

Magnus methods and are most likely problem dependent.613

7. Acknowledgments. The work here was supported by the U.S. Department of614

Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied615

Mathematics program under contract number DE-AC02005CH11231. Part of the616

simulations were performed using resources of the National Energy Research Scientific617

Computing Center (NERSC), a DOE Office of Science User Facility supported by the618

Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-619

05CH11231.620

Appendix A. Quadrature Rules for Intermediate Nodes. The necessary621

weights for implementing each of the methods Lob-4-1, Leg-2, Leg-4-3, and Leg-6 for622

nonlinear problems are presented here. For Lob-2, no additional rules are necessary.623

For the computation of the single integrals in the first Magnus term, the necessary624

rules take the form625

(A.1) Ω(1)
m = ∆t

M∑
j=1

q
(1)
m,jAj ,626

and the coefficients q
(1)
m,j correspond to the classical collocation schemes (see e.g. [9])627

For Lob-3, only one additional rule is needed at the midpoint t2,628

(A.2) q
(1)
2,j =

[
5

24
,

1

3
,− 1

24

]
.629

For Leg-3, rules for each node are required, and the q
(1)
m,j are given by630

(A.3) q
(1)
m,j =

 5
36

2
9 −

√
15

15
5
36 −

√
15

30
5
36 +

√
15

24
2
9

5
36 −

√
15

24
5
36 +

√
15

30
2
9 +

√
15

15
5
36

 .631

For the second term Ω(2) there are two versions described in the linear case by632

Eqs. (3.2) and (3.3). In the first case, only one additional coefficient is needed, namely633

q
(2)−1
2 = 1/48. In the second case, we have634

(A.4) Ω(2)−3
m = q

(2)−3
m,1 [A1, A2] + q

(2)−3
m,2 [A1, A3] + q

(2)−3
m,3 [A2, A3],635

This manuscript is for review purposes only.



22 Krull and Minion

with the values of q
(2)−3
m,j given by636

(A.5)

q
(2)−3
m,j =

−7.0825623244174e−4 −3.5291589565775e−2 −7.8891497044705e−2
2.0142743933468e−4 4.4826196136660e−3 −1.8131905893999e−2
−2.6081558162830e−6 −5.6936734355286e−4 −3.5152700676886e−2

637

The third term takes the form638

Ω(3)
m =[q

(3)
m,1,1A1 + q

(3)
m,1,2A2 + q

(3)
m,1,3A3, [A1, A2]]+639

[q
(3)
m,2,1A1 + q

(3)
m,2,2A2 + q

(3)
m,2,3A3, [A1, A3]]+640

[q
(3)
m,3,1A1 + q

(3)
m,3,2A2 + q

(3)
m,3,3A3, [A2, A3]].(A.6)641

642

with643

(A.7)

q
(3)
1,i,j =

 1.4667828928181e−6 −2.5468454487434e−6 7.1885579589404e−7
−3.0653702506833e−7 6.9623363228690e−7 −1.9684558120029e−7
−2.2622163607144e−8 −2.7279719400850e−9 8.5484354192049e−10

644

(A.8)

q
(3)
2,i,j =

 1.0401143365317e−3 −1.7143302808715e−3 1.9808827525182e−4
−6.9105495969459e−5 2.9054016014502e−4 −3.4658846939476e−5

9.2451884893203e−5 1.2595057164957e−5 −2.4709074423914e−6

645

(A.9)

q
(3)
3,i,j =

4.1482959753609e−3 −6.3874218931689e−3 −3.5942319108173e−3
9.9737811032708e−4 1.2415302375576e−4 −3.8059754231607e−4
3.7183849345731e−3 1.6935142950568e−3 −1.0604085845381e−3

 .646

Finally, for the fourth term, Ω
(4)
m is computed as in Eqs. (3.7) and (3.8), with647

q(4) = 1/60 and q
(1)
j in (3.8) replaced with q

(1)
m,j from Eq. (A.3).648

This manuscript is for review purposes only.



Parallel in Time Magnus Integrators 23

REFERENCES649

[1] S. Blanes, F. Casas, J. A. Oteo, and J. Ros, The Magnus expansion and some of its650
applications, Physics Reports, 470 (2009), pp. 151–238.651

[2] S. Blanes, F. Casas, and J. Ros, Improved High Order Integrators Based On The Magnus652
Expansion, Bit, 40 (2000), pp. 434–450.653

[3] S. Blanes and P. C. Moan, Fourth-and sixth-order commutator-free Magnus integrators654
for linear and non-linear dynamical systems, Applied Numerical Mathematics, 56 (2006),655
pp. 1519–1537.656

[4] K. Burrage, Parallel methods for ODEs, Advances in Computational Mathematics, 7 (1997),657
pp. 1–3.658

[5] L. Euler, Institutiones calculi integralis, no. v. 2, Acad. Imper. scientiarum, 1768.659
[6] M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time660

Domain Decomposition Methods, T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, eds.,661
Cham, 2015, Springer International Publishing, pp. 69–113.662

[7] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration : structure-preserving663
algorithms for ordinary differential equations, Springer, 2006.664

[8] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations I. nonstiff665
problems, Mathematics and Computers in Simulation, 29 (1987), p. 447.666

[9] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II : Stiff and Differential-667
Algebraic Problems, Springer Berlin Heidelberg, 1991.668

[10] N. J. Higham, The Scaling and Squaring Method for the Matrix Exponential Revisited, SIAM669
Journal on Matrix Analysis and Applications, 26 (2005), pp. 1179–1193.670

[11] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numerica, 19 (2010),671
pp. 209–286.672

[12] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna, Lie-group methods, Acta673
Numerica, (2000), pp. 215–365.674

[13] A. Iserles and S. P. Nørsett, On the solution of linear differential equations in Lie groups,675
Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 357 (1999),676
pp. 983–1019.677

[14] W. Magnus, On the exponential solution of differential equations for a linear operator, Com-678
munications on pure and applied . . . , VII (1954), pp. 649–673.679

[15] C. Moler and C. Van Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix,680
Twenty-Five Years Later, SIAM Review, 45 (2003), pp. 3–49.681

[16] H. Munthe-Kaas and B. Owren, Computations in a free Lie algebra, Philosophical Transac-682
tions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 357 (1999),683
pp. 957–981.684

[17] J. Nievergelt, Parallel methods for integrating ordinary differential equations, Communications685
of the ACM, (1964), pp. 731–733.686

[18] M. Thalhammer, A fourth-order commutator-free exponential integrator for nonautonomous687
differential equations, SIAM J. Numer. Anal., 44 (2006), pp. 851—-864 (elect.688

[19] M. Toda, Vibration of a chain with nonlinear interaction, Journal of the Physical Society of689
Japan, 22 (1967), pp. 431–436.690

[20] M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, D. W. H.J.J. van Dam,691
J. Nieplocha, E. Apra, T. Windus, and W. de Jong, NWChem: a comprehensive692
and scalable open-source solution for large scale molecular simulations, Comput. Phys.693
Commun., (2010), pp. 1477–1489.694

[21] A. Zanna, Numerical solution of isospectral flows, PhD thesis, University of Cambridge, 1998.695

This manuscript is for review purposes only.


	Introduction
	Mathematical Preliminaries
	Matrix Calculus and Differential Equations
	Magnus Expansion
	The Magnus Expansion for Nonlinear Problems
	Isospectral Flows

	Numerical Methods Based on the Magnus Expansion
	Quadrature Rules for the Magnus Expansion
	The Matrix Exponential and Solution Update
	Considerations for Nonlinear ODEs
	Considerations for Isospectral Flows

	Parallelization in Time for Magnus Integrators
	The Linear Case
	The Nonlinear Case

	Numerical Examples
	Test Case 1: The Periodic Toda Lattice
	Simulation parameters
	Serial Results
	Parallel in Time Results

	Test Problem 2: An RT-TDDFT Proxy
	Physical Background
	The Proxy Problem
	Parallel in Time Results


	Discussion
	Acknowledgments
	Appendix A. Quadrature Rules for Intermediate Nodes
	References



