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Abstract

Metabolic syndrome (MetS) is a global epidemic, which involves a spectrum of metabolic 

disorders comprising diabetes and obesity. The impact of MetS on the brain is becoming to be a 

concern, however, the poor understanding of mechanisms involved has limited the development of 

therapeutic strategies. We induced a MetS-like condition by exposing mice to fructose feeding for 

7 weeks. There was a dramatic deterioration in the capacity of the hippocampus to sustain synaptic 

plasticity in the forms of long-term potentiation (LTP) and long-term depression (LTD). Mice 

exposed to fructose showed a reduction in the number of contact zones and the size of 

postsynaptic densities (PSDs) in the hippocampus, as well as a decrease in hippocampal 

neurogenesis. There was an increase in lipid peroxidation likely associated with a deficiency in 

plasma membrane excitability. Consistent with an overall hippocampal dysfunction, there was a 

subsequent decrease in hippocampal dependent learning and memory performance, i.e., spatial 

learning and episodic memory. Most of the pathological sequel of MetS in the brain was reversed 

three month after discontinue fructose feeding. These results are novel to show that MetS triggers 

a cascade of molecular events, which disrupt hippocampal functional plasticity, and specific 
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aspects of learning and memory function. The overall information raises concerns about the risk 

imposed by excessive fructose consumption on the pathology of neurological disorders.

Keywords

Fructose; Diabetes; Metabolic syndrome; Neuronal dysfunction

1. Introduction

In recent decades, there has been a progressive increase in the incidence of metabolic 

diseases such as metabolic syndrome (MetS), type II diabetes mellitus (T2DM) and obesity. 

T2DM affects approximately 15% of the global population, comprising over 400 million 

patients worldwide [1]. The elevated consumption of fructose has been identified as one of 

the major contributors to the epidemic of MetS [2–6]. The burden of MetS is becoming even 

more alarming on the light of recent reports suggesting that MetS disrupts brain function and 

resilience to neurological disorders [7–10]. MetS increases the incidence of cognitive 

disorders in aging and Alzheimer’s disease (AD) [11, 12], and even in young individuals 

[13–15]. It has recently been reported that a decrease in gray matter in several brain regions 

of patients with T2DM, and the extent of this decrease are being proportional to the duration 

of T2DM [16–19]. These results emphasize the existence of a time period for the 

development of MetS on the brain, which can be targeted for treatments to prevent the 

neurological sequel of MetS. Unfortunately, the poor understanding of the cellular and 

molecular mechanisms underlying the neuropathology of MetS has limited the design of 

preventive therapies to cope with a potential epidemic of neurological disorders [11].

The ability of neuronal circuits to store and process information is one of the most 

fundamental pillars of brain function, and the loss of this property conforms the pathology of 

most cognitive disorders. We induced a condition like-MetS with a diet rich in fructose, a 

protocol described before and proportional to the intake of fructose by humans [20–22]. 

Accordingly, we have directed the current studies to understand the impact of MetS on 

fundamental mechanisms underlying synaptic plasticity and learning and memory in the 

hippocampus, namely long-term potentiation (LTP) and depression (LTD). Our results 

provide critical evidence for the impact of MetS on deteriorating neuronal excitability in a 

brain region crucial for the processing of cognitive information, i.e., hippocampus. We have 

extended our analysis to determine the impact of MetS on adult neurogenesis as this process 

is considered a hallmark of the capacity of the brain for plasticity [23]. The subgranular zone 

(SGZ) of the dentate gyrus displays a continuous generation of new neurons [24] that 

integrate into the pre-existing hippocampal circuitry [25]. Although some of the peripheral 

effects of MetS may be treatable [11,26], the potential reversibility of the effects of MetS on 

brain function is not understood. Accordingly, we sought to determine whether the 

deleterious consequences of MetS on hippocampal properties are reversible. Reported 

results are significant to define a mechanism by which fructose-induced MetS compromise 

the work of neural circuits underlying cognitive function.
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2. Methods

2.1. Animals and treatments

We used two-month-old C57BL/6 male mice, the mice were separated into two experimental 

groups (n = 19 per group) according to the tap water that they received: a control group, 

which received normal food and water, and a second group that received normal food and 

water supplemented with 15% fructose by 8 weeks. The animals were housed at the Animal 

House Facility of the Facultad de Ciencias Biológicas, Pontificia Universidad Católica de 

Chile, according to the Guide for the Care and Use of Laboratory Animals (NIH-USA 

Publication 86–23). After treatment the mice were used in the fellow order: 5 animals for 

electrophysiology experiments; 5 animals for the preparation of synaptosomes, 

immunoblotting, and immunofluorescence analysis; 9 animals for the cognitive test and the 

glucose tolerance test, and 3 animals for hippocampal neurogenesis.

2.2. Biochemical analysis

MetS involves a conglomerate of pathological features including obesity, insulin resistance, 

hypertension, high triglyceride levels, cardiovascular disease, and systemic inflammation 

[27,28]. Accordingly, we measured several of these features in the animals exposed to 

fructose. Blood was collected from the tail vein after 6 h of fasting, and then the serum 

samples were obtained. Glucose levels were measured according to the hexokinase/G-6-

PDH method, using Architect Analyzer (Abbott Laboratories, Abbott Park, IL), and insulin 

levels were measured via chemiluminescence (Beckman Coulter); in both cases, the 

manufacturers’ instructions were followed. The HOMA, an index of insulin resistance 

[29,30], was calculated using the following formula: HOMA-R = fasting glucose (mmol l−1) 

× fasting insulin (μIU ml−1)/22.5. The levels of triglycerides and cholesterol were assessed 

enzymatically using the Architect c8000 analyzer (Abbott Laboratories, Abbott Park, IL).

2.3. Glucose tolerance test

After 30 days of special or standard diet, animals were fasted for 8 h and then received an 

injection of glucose (1 g/kg b.w., i.p.). Blood glucose was monitored for 90 min using a 

glucometer (Accu-Check, Roche) on samples collected from the tip of the tail vein.

2.4. Cognitive task

The Morris Water Maze (MWM) task was performed as we have previously described [31]. 

Briefly, the mice were trained in a 1.2-m-diameter circular pool (opaque water, 50 cm deep). 

The maximum trial duration was 60 s, and the animals were positioned on the platform for 

10 s at the end of each trial. To test episodic memory, each animal was trained to find the 

platform per day for 4 days, using a new platform location each day, as described previously 

[31]. The large open field (LOF) test was used to study locomotor and stress behavior in our 

mouse model [32]. Each mouse was placed individually in the center of the open field, and 

its behavior was tracked for a 20 min session. At the end of the session, the mice were 

returned to their home cages. The parameters measured included: the total time moving and 

the number of lines that crossed the center area of the platform [33,34].
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2.5. Electrophysiological recording

Hippocampal slices were prepared according to previously described standard procedures 

[31]. Briefly, transverse slices (350 μm) of the dorsal hippocampus were cut under cold 

artificial cerebrospinal fluid and incubated in ACSF for 1 h at room temperature. In all 

experiments, 10 μM picrotoxin (PTX) was included. Basal excitatory synaptic transmission 

was measured using an input/output curve protocol, which consisted of eight stimuli that 

ranged from 200 to 900 μA (with a 10-s interval between stimuli). LTP was generated using 

TBS, which consisted of 5 trains of the stimulus using an inter-train interval of 20 s. To 

generate LTD, we used LFS, consisting of 900 paired pulses at 1 Hz.

2.6. Preparation of synaptosomes

Crude synaptosomal fractions were prepared from the hippocampus of the treated and 

control mice as described previously [35]. The samples (50 μg of protein per sample) were 

subjected to SDS–PAGE, followed by immunoblotting using the indicated antibodies. The 

synaptosomal fraction from the hippocampus was examined using a scanning electron 

microscope.

2.7. Immunoblotting

The synaptosomal fraction were homogenized in RIPA buffer (50 mM, Tris–Cl, pH 7.5, 150 

mM NaCl, 1% NP-40, 0,5% sodium deoxycholate, and 1% SDS), supplemented with a 

protease inhibitor cocktail (Sigma-Aldrich P8340) and phosphatase inhibitors (50 mM NaF, 

1 mM Na3VO4 and 30 μM Na4P207), using a potter homogenizator and then passed 

sequentially through different caliber syringes. Protein samples were centrifuged at 14,000 

rpm at 4 °C twice for 15 min. Protein concentration was determined using the BCA Protein 

Assay Kit (Pierce Biotechnology, Rockford, IL). 20 μg of synaptosomal fraction were 

resolved by 10% SDS-PAGE and transferred to a PVDF membrane. The reactions were 

followed by incubation with a primary antibody; then a secondary anti-goat peroxidase 

conjugated antibody (Pierce) was used and developed using an ECL kit (Western Lightning 

Plus ECL, PerkinElmer). Primary antibodies used were mouse anti-GAPDH (Sigma-

Aldrich, St. Louis, MO), anti-GluR2 (Sigma-Aldrich, St. Louis, MO), mouse anti-

Synaptophysin (SYN) (Life Technologies, Carlsbad, CA), anti-NMDAε1 (Sigma-Aldrich, 

St. Louis, MO) and mouse anti post-synaptic density protein 95 (PSD-95).

2.8. Immunofluorescence

Immunofluorescence was performed as previously described [36]. The primary antibody 

used was mouse anti-4-HNE (Life Technologies, Carlsbad, CA). The slices were 

subsequently mounted on slides using mounting medium and analyzed using a Zeiss LSM 5 

Pascal confocal microscope. The images were analyzed using ImageJ software (NIH).

2.9. Analysis of hippocampal neurogenesis

After 4 weeks of control or fructose treatment, the animals were injected i.p. with 100 mg kg 

− 1 5-Bromo-2′-deoxyuridine (BrdU, Sigma-Aldrich) once per day for 3 consecutive days. 

After 8 weeks of treatment animals were transcardially perfused with saline, followed by 4% 

paraformaldehyde (PFA, Sigma-Aldrich) in PBS. Brains were removed and sectioned on a 
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cryostate in 12 sets of serial coronal slices of 40 μm thickness; each set contained 5–7 slices 

covering the entire length of the hippocampus. Immunodetection of BrdU and NeuN in 

tissue sections was performed as described previously [37]. The primary antibodies used 

were rat anti-BrdU (Sigma-Aldrich, St. Louis, MO) and monoclonal anti-NeuN (Millipore). 

BrdU-positive cells were counted using a fluorescence microscope (Olympus BX51, Tokyo, 

Japan) as described in [37]. For quantification of net neurogenesis NeuN staining in each 

BrdU-positive cell was detected using a confocal laser microscope (Olympus FV1000) and 

z-plane sections of 1–2 sets of coronal sections.

2.10. Studies of MetS remission

To study whether the effect of fructose are revertible we used three groups of 15 animals, 

from which the first group was treated with normal food plus water for 20 weeks. The 

second group was treated with normal food plus 15% of fructose in water for 8 weeks, then 

the fructose was replaced by plain water for another 12 weeks. In this group we monitored 

the blood levels of glucose, insulin, total cholesterol, glucose tolerance and triglycerides, and 

the HOMA index was calculated every 30 days. We observed a normalization of the blood 

parameters after 3 months, and this period was considered a critical time interval for the 

remission of MetS (Table 2). The third group was treated during the 20 weeks with normal 

food and 15% of fructose supplemented into the water. All the animals were sacrificed after 

20 weeks: 5 animals were used for electrophysiological recording, and 10 animals were used 

for the cognitive studies and then blood was collected for physiological measurements.

2.11. Statistical analysis

The results are presented as the means ± standard error. The data were analyzed via one-way 

or two-way ANOVA followed by Bonferroni post hoc analysis; *p ≤ 0.05 was considered 

significant. Statistical analysis was performed using Prism software (GraphPad).

3. Results

3.1. Establishment of MetS-like pathogenesis in mice

The protocol designed to induce MetS involved the addition of 15% fructose to the drinking 

water by 8 weeks (Fig. 1A). During the treatment period, food and fructose/water intake 

were controlled. We do not observed changes in the average of food intake by mice (Fig. 

1B). A difference in the fructose/water intake was observed between the two groups in the 

last three weeks. The group maintained with fructose ingested more liquid compared with 

the control group (Fig. 1C).

We also controlled the average weight of mice and we observed an increase in the weight of 

animals supplemented with 15% of fructose in the last two weeks (Fig. 1D). Liver weight 

provides an indirect assessment of liver function, and fructose treatment induced a 41.5 

± 9.3% increase in liver weight, normalized to the body weight of both groups (Fig. 1D).

To confirm the induction of MetS, we measured several blood parameters including the 

glucose tolerance test. We observed that the group supplemented with fructose present a 

decrease in the capacity of regulate the glucose levels after the injection of glucose (Fig. 1F). 
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Also we observed other parameters used in the diagnosis of MetS including the blood levels 

of glucose, insulin, total cholesterol and triglycerides, and calculated the HOMA ratio. 

Fructose treatment increased glucose levels (37.7 ± 7%), insulin levels (178 ± 29%), 

cholesterol levels (54.5 ± 12.2%), and triglyceride levels (69.2 ± 11.3%), and the HOMA 

index was increased 3-fold in the fructose treated group (Table 1) [38].

3.2. MetS impairs spatial memory performance

Spatial memory was assessed using the Morris water maze (MWM) paradigm, which was 

performed in a blinded manner. For the first four days, the mice in both groups took 

approximately the same length of time to find the platform at the end of the test (latency 

time); however, by day 5, the MetS group took longer time to locate the platform compared 

with the control group (40 ± 6 s and 21 ± 3 s, respectively). The trend continued up to day 

10, which suggests a decline in the learning and memory abilities of the MetS group (Fig. 

2A). The increase in latency time was associated with a longer swimming distance in the 

MetS group (Fig. 2B). No difference in swimming speed was observed between the two 

groups; this rules out the possibility that the increased latency time was a result of muscular 

failure or visual deficiency (Fig. 2C). On the final day of the test, the platform was removed 

and the time that the animals spent in each of the four quadrants of the pool was recorded: 

northwest (NW), northeast (NE), southwest (SW) and southeast (SE). In the absence of a 

platform, the control group spent more time (25 ± 3 s) in the quadrant where the platform 

had previously been located (NE) than the MetS group (15 ± 2 s), while the MetS group had 

no preference for any particular quadrant (Fig. 2D).

The LOF test was used to evaluate general locomotor activity and exploration [39]. We 

evaluated parameters related to spontaneous behavior in mice including the time of moving 

and the number of lines that crossed the center. No significant difference was observed 

between the two groups, which suggest MetS does not influence the general status of 

animals (Fig. 2E and F).

A modified spatial-memory paradigm to assess episodic memory or memory flexibility was 

used. The assessment of memory flexibility provides a sensitive indication of hippocampal 

function since the position of the hidden platform is changed every day. The MetS group 

required significantly more trials to complete the test compared with the control group (10 

and 6, respectively) starting the first day and maintained for all 5 days of the test (Fig. 2G).

3.3. MetS impairs hippocampal synaptic plasticity

We examined the effects of MetS on hippocampal synaptic plasticity to elucidate a potential 

mechanism underlying the behavioral results. Synaptic integrity was assessed using 

electrophysiological recordings for input–output analysis [31]. The field excitatory 

postsynaptic potential (fEPSP) was not altered in the MetS group (Fig. 3A and B); however, 

the fiber volley, an indicator of axonal excitability, was decreased in amplitude by 70 ± 19% 

using a stimulus strength of 1000 μA (Fig. 3C and D), which indicates an alteration in 

synaptic transmission at the presynaptic level. We measured LTP and LTD, which reflect 

persistent changes in synaptic connectivity underlying learning and memory functions. A set 

of protocols for theta burst stimulation (TBS) and low-frequency stimulation (LFS) was used 
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to induce LTP and LTD, respectively. Notably, it was not possible to induce robust LTP in 

the MetS mice, who displayed a maximum of 1.33 ± 0.12 mV compared with a maximum 

1.95 ± 0.12 mV in the control group. Furthermore, in the control group, the induction and 

maintenance of LTP persisted for at least 60 min of recording (1.67 ± 0.11 mV in the control 

group and 1.1 ± 0.14 mV in the MetS group; Fig. 3E). In contrast to LTP, LTD indicates a 

reduction in synaptic strength [40]. It was almost impossible to induce LTD in the fructose-

treated animals (0.67 ± 0.054 mV) relative to the control group (1.17 ± 0.13 mV) at 60 min 

(Fig. 3F). These changes in LTP and LTD suggest that MetS leads to deregulation of 

hippocampal synaptic transmission and plasticity. We also determined the effects of MetS on 

synaptic structure by examining the synaptosomal fraction from the hippocampus using 

electron microscopy (Fig. 4A). We found a decrease in the number of synaptic contacts from 

27 ± 3 per 100 μm2 in the control group to 17 ± 4 per 100 μm2 in the treated group (Fig. 

4B). We also observed a decrease in the width of postsynaptic density (PSD, n = 5) from 68 

± 9 nm in the control group to 33 ± 13 nm in the fructose treated group (Fig. 4C). We did not 

observe any changes in the number of vesicles or the length of the PSD regions (Fig. 4D and 

E). In the synaptosomal fractions, we performed western blot for several pre- and post-

synaptic proteins and observed a significant decrease in the expression of the glutamate 

receptor subunits NMDAε1 and GluR2 (Fig. 4F and G). Together, these results provide clear 

and novel evidence for the impact of MetS on the structural and molecular composition of 

hippocampal synapses.

3.4. MetS decreases hippocampal neurogenesis

We examined the effects of MetS on hippocampal neurogenesis as the generation of new 

neurons contributes to neural plasticity and memory [41–43]. First, we evaluated the effect 

of MetS on cell proliferation in the SGZ by incorporation of the nucleotide analog BrdU. A 

significant decrease in the total number of BrdU-positive cells was observed in the granule 

cell layer (GCL) of mice treated with fructose. To evaluate the generation of new neurons, 

the expression of the mature neuronal marker NeuN in each BrdU-positive cell was 

evaluated in the hippocampus 4 weeks after BrdU injection (Fig. 5A). There was a 

significant decrease (50%) in the total number of newborn granule cells (total number of 

BrdU+/NeuN+ cells in the entire GCL) in the fructose-treated animals (Fig. 5B and C). 

These data show that MetS decreases adult hippocampal neurogenesis.

3.5. MetS increases oxidative stress

Oxidative metabolism is directly associated with the integrity of the plasma membrane and 

is a factor in almost all neurodegenerative diseases, as well as aging [44]. To determine 

whether MetS affects oxidative metabolism, we measured the levels of 4-HNE, an aldehyde 

product of lipid peroxidation that serves as a marker of plasma membrane damage [45]. 

Plasma membrane integrity is essential for neuronal signaling. Notably, the intensity of 4-

HNE immunofluorescence was significantly increased in the cortex (2-fold) and 

hippocampal CA1 and CA3 (2- and 3-fold, respectively) and displayed an increasing trend 

in the dentate gyrus (2-fold) of the MetS group compared with the control group (Fig. 5D 

and E). These results corroborate the effects of MetS on lipid peroxidation with potential 

repercussion on membrane function.
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3.6. Remission of MetS is associated with recovery of hippocampal function

To study if the effects of fructose are reversible, after fructose treatment, we prepare 3 

groups of mice (Fig. 6A). In each group we monitored the blood levels of glucose, insulin, 

total cholesterol, and triglycerides and the HOMA index every 30 days. We observed a 

normalization of the blood parameters after 3 months, and this period was considered a 

critical time interval for the remission of MetS (Table 2).

We observed that the control (group 1) and remission group (group 2) showed a similar 

capacity of regulate glucose levels after injection of glucose. However the group treated with 

fructose by 20 weeks showed a several deregulation in the glucose levels control (Fig. 6B).

The remission group exhibited normalized memory performance in the MWM test, as 

evidenced by spending a time in the platform quadrant nearby to control values. However, 

the group treated with fructose by 20 weeks showed a increase in the latency time and a 

decrease in the capacity of remember the localization of the platform (Fig. 6C and D). 

Likewise the remission of MetS resulted in normalization of synaptic transmission and LTP 

induction such that no differences were observed between the remission and control groups 

(Fig. 6D).

4. Discussion

An increasing number of clinical reports depict the impact of altered systemic metabolism 

on the incidence of a large variety of neurological disorders. We present new mechanistic 

evidence for the disruptive effects of fructose-induced MetS on crucial aspects of neuronal 

excitability underlying brain function and plasticity. Animals exposed to fructose lost their 

ability to sustain hippocampal LTP and LTD, showed a reduction in density and size of 

active zones at synapses, and reduced the generation of new neurons in the hippocampus. 

All of these changes are congruent with a reduction in learning and memory performance, 

and the prospect of elevated vulnerability to neurological disorders. These results are 

particularly significant on the context of the epidemic of metabolic disorders such as obesity 

and diabetes [46,47]. The effects of fructose-induced MetS on hippocampal plasticity were 

partially reversible after ceasing fructose consumption, which suggests the existence of a 

window of opportunity for the application of preventive programs.

In our model we observed that the treatment with fructose induce changes in several blood 

markers commonly used for the diagnosis of MetS in humans, including insulin resistance, 

blood glucose, triglycerides and cholesterol, and obesity. We obtained similar results to 

those

4.1. Fructose-induced MetS reduces functional and structural synaptic plasticity

Our results show that fructose-induced MetS affects the long-term modulation of basal 

synaptic transmission and associated axonal excitability of hippocampal synapses [49]. 

Adaptations in hippocampal synaptic plasticity, such as LTP and LTD, underlie changes in 

spatial learning and memory processing [50]. The disruption in the balance between LTP 

and LTD in the MetS group is likely a primary event for the observed failure in learning and 

memory functions [51]. It is notable that these events were detected in the hippocampus, the 
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locus of associative memory [52], which is heavily compromised during aging and AD. We 

also observed fewer active zones and smaller PSD regions in the animals exposed to 

fructose, which harmonize with the dysfunction in LTP and cognition. Taken together, these 

results suggest that MetS reduces neuronal excitability and hippocampal function, which are 

necessary to support learning and memory processing.

Hippocampal neurogenesis is important for maintaining cognitive performance in adult mice 

and is considered a symbol of hippocampal plasticity [41–43]. According to our results, 

MetS reduced neurogenesis in the SGZ of the dentate gyrus, where newborn neurons 

integrate into the pre-existing hippocampal circuitry [25] and are involved with LTP and 

LTD [42,43]. Immature newborn neurons display greater excitability than mature neurons 

mostly due to reduced inhibition by GABA [53]. These immature neurons appear to 

contribute to LTP, as suggested by findings that blocking neurogenesis prevents the 

expression of LTP [41]. In addition, adult-born neurons are involved in certain aspects of 

hippocampus-dependent learning and memory, such as spatial memory, pattern separation 

and contextual fear conditioning [54,55]. A decrease in neurogenesis is a feature in the 

pathology of several neurological disorders [56,57]. Reminiscent of the altered levels of 

insulin in the MetS condition, it has been reported that insulin plays a central role in the 

formation of new neurons in the brain [58]. Therefore, it is possible that MetS could impact 

neural plasticity and cognitive function by altering neurogenesis. MetS could also influence 

neuronal plasticity and cognition by altering the function of the plasma membrane.

Oxidative metabolism is directly associated with the integrity of the plasma membrane and 

is a factor in almost all neurodegenerative diseases, as well as in aging [44]. We measured 

the levels of 4-HNE, an aldehyde product of lipid peroxidation that serves as a marker of 

plasma membrane damage [45]. The plasma membrane is crucial for supporting neuronal 

excitability and signaling, which depend largely on the integrity of its phospholipid 

composition. The oxidative marker 4-HNE is an end-product of lipid peroxidation [59], 

which increase in the fructose treated mice could be indicative of impaired membrane-

related neuronal excitability. Lipid peroxidation affects several processes associated with 

synaptic activity, including ion uptake, ion-channel activity, glucose metabolism, glutamate 

uptake and Na+/K+- and Ca2+-ATPase activity [60].

4.2. Fructose-induced MetS reduces learning and memory function

We found that MetS caused a disruption of spatial learning, which is a sequel of Alzheimer’s 

and Parkinson’s diseases [61,62]. Remarkably, AD might represent a “type 3 diabetes” 

based on deregulated insulin and glucose metabolism that are components of its pathology 

[63–65]. On the episodic memory tests, which require the mice to learn and memorize daily 

alterations in the platform location, the MetS group required more attempts to locate the 

hidden platform than the control group. These cognitive deficits were likely not a result of 

visual or muscular deficiencies because the swimming speed of the MetS mice did not differ 

from that of the control mice. These results are relevant to humans because this type of 

memory is essential for coping with daily routines, such as remembering specific series of 

events within contexts. One of the most relevant questions from a public health standpoint is 

whether the effects of MetS on the brain are reversible. We assessed this possibility by 
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removing fructose from the diet after the establishment of the MetS condition. We monitored 

the blood glucose levels once a month and found that the levels of glucose tolerance were 

similar to the control levels 3 months after terminating the fructose-containing diet. 

Remarkably, spatial-learning performance was nearly completely normalized. In addition, 

there was complete recovery from LTP. However, other properties did not recover, such as 

LTD, emphasizing the strong impact of MetS on the brain. Conversely, we also set a group 

with a chronic exposition to fructose; this groups present a several alteration in the blood 

parameters as also in the cognitive performance. These data are important for identifying 

specific aspects of MetS that may serve as targets of therapeutic strategies to reduce its 

effects on the brain. These findings, upon further validation in humans, are critical for the 

development of public health policies.

4.3. How fructose affects the brain

The animals exposed to high fructose exhibited several hallmarks of MetS as defined in 

humans by increases in weight, dyslipidemia, impaired glucose tolerance, and insulin levels. 

In particular, our results revealed a significant increase in liver weight, which is consistent 

with the effects of fructose on lipid deposition and the sequel of fatty liver disease [11,38].

MetS in humans has been associated with an increased risk of neurological disorders 

[66,67], however, the mechanisms by which MetS impairs cognitive processing are poorly 

understood. Fructose could influence the brain by elevating various peripheral parameters of 

MetS such as increased adiposity, insulin, and triglycerides [11,21,68], and some of the 

associated metabolites could reach the brain. An emerging line of evidence indicates that 

fructose could influence brain function directly, i.e., neuronal cells are able to metabolize 

fructose uptaken from the extracellular medium [69]. Administration of 20% of fructose 

induces an increase in the glucose transporter 5 (GLUT5) in glial cells in the hippocampus 

and cortex in rats. GLUT5 is the main transporter of fructose into the brain and likely 

important for neuronal function [70–72]. Intraventricular administration of fructose provokes 

feeding in rodents and suggests a direct action of fructose on hypothalamic function in 

appetite. The administration of fructose lead to a reduction in cerebral blood flow (CBF) in 

the thalamus, hippocampus, posterior cingulate cortex, and visual cortex [73]. A reduction in 

CBF has been associated with alterations in CA1 hippocampal cells including reductions in 

dendritic arborization and spine density [74].

5. Conclusions

MetS, obesity and diabetes have become worldwide epidemics that affect patients of all ages 

and result in high health care costs [75]. Our results indicate that fructose induced MetS 

affects specific aspects of neuronal and synaptic plasticity, and raises concerns about the risk 

imposed of MetS for the pathogenesis of disorders affecting cognitive abilities such as AD 

[11] and depression/anxiety [76]. Given the current lack of effective pharmacological 

approaches to treat these disorders, the most effective therapy is prevention [77], and our 

results provide some evidence for the reversibility of the neural pathogenesis related to the 

MetS. The results of this study demonstrate that MetS disrupts the function of neuronal 

circuits involved in cognitive processing while MetS remission normalizes these alterations. 
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These results are significant to define a targetable mechanism to reduce the risk posed by 

altered metabolism on neurological disorders.
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LTP long-term potentiation
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Fig. 1. 
Establishment of like-MetS condition. (A) Representative model of the induction of MetS in 

mice. (B) Average food intake during the 8 weeks of treatment. (C) Water of fructose intake 

during the treatment time. (D) Average weight of control and treated group. (E) Liver weight 

in the treated animals (F) Glucose tolerance test by 90 min after glucose injection. The 

values are expressed as the means ± SEM of n, *p < 0.05 based on ANOVA (one-way) 

followed by Bonferroni post hoc analysis.
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Fig. 2. 
The induction of MetS leads to a decrease in cognitive performance. (A) The time required 

to find the hidden platform (latency time) was determined for both groups. (B) Speed of 

swim of both groups during the MWM test. (C) Swimming path during the MWM test by 

group. (D) The time spent in each quadrant in the absence of the platform. (E and F) In the 

large open field we measured the number of lines crossing the center and the time of 

moving. (G) The performance of both groups on the memory-flexibility task was analyzed 

by assessing the number of trials to meet the criteria. The values are expressed as the means 

± SEM of n animals per group and were analyzed via ANOVA (one-way) followed by 

Bonferroni post hoc analysis.
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Fig. 3. 
MetS reduces the excitability of the hippocampus. (A–D) First, synaptic integrity was 

evaluated via input–output analysis of the electrophysiological recordings. (E) LTP was 

measured in the hippocampal slices of the mice in both groups (drinking water with or 

without supplemental fructose). (F) LTD was determined in both groups. The values are 

expressed as the means ± SEM of n animals per group. *p < 0.05 based on ANOVA (one-

way) followed by Bonferroni post hoc analysis.
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Fig. 4. 
MetS affects the synaptic structure of the hippocampus. (A–E) Electron microscopy of 

synaptosomal fractions and quantification of several characteristics of the pre- and post-

synaptic regions (red arrows). (F–G) The induction of MetS triggered a decrease in the 

levels of pre- and post-synaptic proteins. Scale: 200 nm. The values are expressed as the 

means ± SEM of n animals per group. *p < 0.05 based on ANOVA (one-way) followed by 

Bonferroni post hoc analysis.
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Fig. 5. 
MetS reduces the generation of new neurons in the adult hippocampus and increase the 

levels of oxidative stress. (A) Representative immunofluorescence staining for BrdU and 

NeuN. The inset shows a higher magnification of BrdU-positive cells that are also positive 

for NeuN. The arrows indicate BrdU+ cells. Scale bar: 50 μm (original magnification 20×). 

(B–C) The total number of BrdU+ and BrdU+/NeuN+ cells in the GCL was determined. (D–

E) Quantification of the immunofluorescence signal normalized to that under the control 

conditions. 4-HNE, red; nuclear stain Hoechst, blue. The values are expressed as the means 
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± SEM of n animals per group. *p < 0.05 and **p < 0.01 based on ANOVA (one-way) 

followed by Bonferroni post hoc analysis. Scale bar: 100 μm.
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Fig. 6. 
MetS remission enabled amelioration of specific aspects of hippocampal deterioration. (A). 

We used three groups of animals: control with normal diet, fructose-treated for 8 weeks 

followed by fructose removal for 12 weeks, fructose-treated for 20 weeks. (B) Glucose 

tolerance test was performed to assess insulin resistance. (C) Behavioral performance on the 

MWM task was normal after remission and no difference was observed compared to control 

animals. We observed a significant decrease in the cognitive performance in the group 

treated with fructose for 20 weeks. (D) In the absence of the platform, we did not observe 

any differences between the remised and control groups. (E and F) Recovery of LTP 

depression after MetS remission. The values were expressed as the means ± SEM. *p < 0.05 

and **p < 0.01 based on ANOVA (one-way) followed by Bonferroni post hoc analysis.
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